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Abstract

Iterative Electromagnetic Born Inversion Applied
to Earth Conductivity Imaging

by
David L. Alumbaugh
Doctor of Philosophy in Material Science and Mineral Engineering
University of California at Berkeley
Professor H. F. Morrison, Chair

This thesis investigates the use of a fast imaging technique to deduce the spatial
conductivity distribution in the earth from low frequency (< 1 MHz), crosswell
electromagnetic (EM ) measurements. The theory embodied in this work is the extension
of previous strategies and is based on the Born series approximation to solve both the
forward and inverse problem. Nonlinear integral equations are employed to derive the
series expansion which accounts for the scattered magnetic fields that are generated by
inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally
oscillating, vertically orienied magnetic dipole is employed as a source, and it is assumed
that the scattering bodies are azimuthally symmetric about the source dipole axis. The
use of this mode) geometry reduces the 3-D vector problem to a more manageable 2-D
scalar form.

Two different strategies for approximate forward modeling are analyzed and
compared to a full nonlinear integral equation solution. This analysis is accomplished in
terms of the dimensionless anomalous induction number which is defined as AGwpS,
where Ao is the conductivity contrast between the background and the body, ® is the
frequency of operation, [t is the magnetic permeability of free space and § is the cross
sectional area of the scattering body. The first order Born approximation, which
represents the first term in the Born series, is found to be valid for AcwS <0.02, while
the Born series is demonstrated to yield accurate results up to ACWWUS = 2.0.

To examine how measurements with different source-receiver combinations and
operating frequencies are combined to probe the medium under investigation, the first
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order Born approximation is applied to linearize the integral equations. From these
simplified equations, sensitivity functions are derived which define the ability of the
crosswell magnetic field measurements to detect small local changes in conductivity.
Plots of the spatial variation in sensitivity indicate that vertical resolution is a function of
the spatial sampling density in the vertical direction, while the horizontal resolution
depends on the vertical separation between the source and receiver. Additional
improvement in the horizontal resolution can be provided by making additional
measurements with both the source and receiver in the same hole.

Further sensitivity analysis is completed in terms of a dimensionless background
induction number that is defined by owp/ 2 where © is the background conductivity and
[ is the source-receiver separation. Analysis of the crosswell sensitivity in terms of this
parameter facilitates experimental system design for a given borehole separation and
background conductivity, as well as the determination of the operating frequency which
falls within an optimal range of cwp/ -

For cwpu! 2 <10, the scatiered fields are very small compared to the primary field,
making measurements of the inhomogenous response very difficult in the presence of
noise. In addition, a given source-receiver pair is sensitive to a large volume of strata
outside of the interwell zone rather than just the region immediately between the probes.
The latter property requires that a larger region be considered in the interpretation
phase and that the proper 2-D or 3-D model geometry is employed. As the induction
number is increased the nature of the sensitivity functions change. For cwul/ 2> 50 a
given source-receiver pair is sensitive only to a "ray-path” shaped zone immediately
between the two probes and the scattered fields are on the same order of magnitude as the
primary fields. Unfortunately the attenuation at these large induction numbers prevents
accurate measurement of the fields for large vertical probe separation due to the dynamic
range limitations of the measurement system.

The validity of using a 2-D cylindrical model to simulate a generally
inhomogenous earth is investigated by comparing the 2-D Born series solution to other 1-
D, 2-D and 3-D modeling algorithms. For cwpl2 < 50 the size of the region outside of
the wells that is included in the model has a significant effect on the properties of the
calculated EM fields with the different model geometries producing significantly
different results. At larger induction numbers (cwy/ 2>50) a given source-receiver pair
senses only the medium directly between the probes and the resulting fields are fairly
independent of whether a 1-D, 2-D or 3-D model is employed. Unfortunately at these
large induction numbers the Born series does not readily converge.

To image the subsurface conductivity structure between two wells, the 2-D
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cylindrical Bomn series approximation is incorporated into an iterative Born inversion
scheme. The inversion problem is stabilized by using bounding constraints and
regularization method which results in a smoothest model that fits the data to the desired
noise level. Resolution of this imaging scheme is defined by employing two small
conductive anomalies that are located adjacent to each other. At low background
induction numbers (cwp/ 2< 10) the resolution is poor due to small signal swength. For
owp!/ 2 >50 the resolution is excellent, however the Born series approximation tends to
fail. In between these two extremes lies a range of cwy/ 2 in which both the resolution
and modeling accuracy are very good.

The applicability of cross well EM for imaging and monitoring changes caused by
subsurface processes is demonstrated using 1-D layered models as well as 2-D and 3-D
models that simulate an injected plume of conductive fluid. Here also the extension of
the model outside of the interwell region is very important at low induction numbers.
When cwp/?< 50, image artifacts that mimick structure can appear if the proper
geometry is not employed. These effects are found to be minimal for cwp/ 2>50 as long
as the Born series approximation yields accurate forward modeling results.

- The validity of the cross well EM method is tested by applying the imaging
scheme to two sets of field data. Images of the data collected at the Devine, Texas test
site show excellent correlation with the well logs. Unfortunately there is a drift error
present in the data that limits the accuracy of the results. A more complete set of data
collected at the Richmond field station in Richmond, California demonstrates that cross
well EM can be successfully employed to monitor the position of an injected mass of salt
water. Both the data and the resulting images clearly indicate the plume migrates toward
the north-northwest. The plausibility of these conclusions is verified by applying the
imaging code to synthetic data generated by a 3-D sheet model.
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List of commonly used symbols

Matrices representing a discretization of the first derivative in the
horizontal and vertical directions

Data in discreet and vector form

Downgoing component of the wavefield in the 1'th layer

Electric field in Volts/m (a vector)

Total, primary and scattered electric field in the ¢ direction (Volts/m)

electromagnetic

Frequency

2-D electric field Green's function

3-D electric field Green's function

2-D radial and vertical magnetic field Green's functions

3-D radial and vertical magnetic field Green's functions

Total, primary and scattered magnetic fields in Amps/m (vectors)

Primary magnetic field in the radial and vertical directions (Amps/m)

Scattered magnetic field in the radial and vertical directions (Amps/m)

Struve functions of the first kind of orders O and 1

NE

Source current density in Amps /m?(a vector)

Source current flowing in a magnetic dipole (Amps/m?)

Zero'th order Bessel's function of the first kind

First order Bessel's function of the first kind

Background wavenumber = J:Eo_&o_u

Born kemnel for the radial and vertical scattered magnetic fields

Sensitivity in discreet and matrix form

Y./ o, for the i'th layer

Number of data points

Number of cells in model or number of unknowns
Object function - (6 =%)

60
Object function in matrix form
Distance between two points
Location of point of interest in cylindrical coordinates
Cylindrical coordinate system

Location of a single cell anomaly
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rx = (I=,zx) Receiver location in cylindrical coordinates

rx==(0.z=x)  Source position in cylindrical coordinates

e Reflection coefficient at the i'th layer boundary

S Cross-sectional area of a inhomogenous body

Uu.\) Upgoing component of the wavefield in the i'th layer

VMD Vertical magnetic dipole

X,¥,Z (x,y,z) Cartesian coordinate system

Xc,YeZe Location of the center of a 3-D sheet

74 Impedance matrix

Z, Input impedance at the i 'th layer interface

) Delta function

A Length of the side of a cell

Ac o(r) - o,

0 VAZ + ko’

A Hankel transform wavenumber

A Lagrangian multipliers controlling smoothness in the horizontal and
vertical directions

1! Magnetic permeability

\Y Function defined on page 67.

T Pi

o} Electrical conductivity

Go Background electrical conductivity

Cq Anomalous conductivity

Gc

)

\%

Conductivity of a single cell anomaly
Radial frequency = 2nf
Gradient operator (a vector)
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Chapter 1
Introduction

The cross-well electromagnetic (EM) method is a rapidly evolving geophysical
technique that has recently experienced increased attention due to improvements in field
instrumentation, computing power and methods of interpretation. The principal goal of
this method 1is to obtain high resolution images of the subsurface electrical conductivity
distribution from which vital information on geological structure, rock porosity, fluid
saturation and fracture orientation can be deduced. In the oil patch this type of
knowledge is extremely useful in determining reservoir heterogeneity and the amount of
oil in situ. In environmental and engineering studies it can be used to estimate water
quality, to monitor the subsurface position of contaminants and to characterize aquifer
properties.

One of the most promising areas for using cross well EM is the monitoﬁng of
processes which alter the physical properties of the subsurface. In enhanced oil recovery
(EOR) projects, techniques such as steam injection, in situ combustion,water flooding
and carbon dioxide injection are routinely employed to either mobilize hydrocarbons in
heavy oil deposits and/or recover additional oil from depleted reservoirs (van Poolen
and Associates Inc.,1980). Steam injection is also rapidly developing as an economically
sound method of cleaning up hazardous waste and petroleum spills (Adenekan and
Patzek, 1993). Unfortunately, due to reservoir complexity the injected fluid often does
not migrate in the predicted direction. Thus by using cross-hole geophysics to more
accurately define the reservoir conditions that exist between the wells we may be able to
save both time and money. _

In this chapter we will review the electrical properties of rocks and how these
properties can be altered by the injection of fluids. Next, geophysical techniques will be
discussed which have been succesful in monitoring reservoir processes. Finally, I will

summarize the research results are presented in each chapter of this thesis.

1.1 Electrical properties of reservoir rocks

It is well known that the electrical conductivity (and its reciprocal, the resistivity) of
rocks is dependent on a wide variety of factors. As shown in Figure 1.1, the conductivty
of naturally ocurring earth materials varies over several orders of magnitude. In
sedimentary rocks the electric current flow is through the ionic pore fluid rather than
through the rock matrix. Thus the conductivity is primarily dependent on the rock
porosity, the fluid conductivity, the rock saturation, and to a lesser degree the formation



temperature and pressure, the pore geometry and the wettability of the grains. An
additional property that severly affects the bulk conductivity of sedimentary rocks is the
percentage of clay minerals present in the rock matrix. This effect will be discussed more
fully below. '

For an isotropic, fully saturated medium free of clay, Archie (1942) found an
empirical relationship between the bulk conductivity of the rock (©,) ,the porosity of the
rock (¢) and the conductivity of the pore fluid(¢,). This relationship has come to be

known as Archie's Law and is given by

G, =0,0". (1.1
Here n is a constant dependent on the rock matrix which in most cases takes on values
between 1.8 and 2.2. '

The dependence of the rock conductivity on the fluid properties is immediately
evident from this equation. Keller (1988) shows that the conductivity of water can vary
over several orders of magnitude depending on its salinty (Figure 1.2). Fresh waters tend
to be resistive while saline brines are very conductive. QOils on the other hand are
resistive. Thus a 'clean’ sand of constant porosity can exhibit conductivities which rahge
over several orders of magnitude depending on the type of fluid that is present in its
pores. The introduction of gas into the medium further complicates matters with equation
1.1 becoming also dependent on the percentage of fluid saturation.

If clays are present in the rock matrix, the relationship between the bulk rock
conductivity and porosity becomes even more complicated (Waxman and Smits, 1968).
This complexity arises from the presence of absorbed cations that are present on the
surface of the clay particles. These cations diffuse into the pore fluid adjacent to the clay
surface adding to the number of ions already present in solution and thus allowing the
rock to carry a larger electric current (Ward and Fraser, 1967). This process accounts for
the relatively high conductivty values of clays and shales as shown in Figure 1.1. In
addition because clay minerals tend to exhibit a flat 'platy’ shape when compared to the
spherical grains found in clean sandstones, the geometry of the pores will also affect the
bulk conductivity.

Though the affects of the rock temperature are not as significant as those described
above, Figure 1.3 demonstrates that increasing the temperature will result in more
conductive fluid due to increased ion mobility. Therefore if the rock is fully saturated,
higher temperatures will result in greater bulk rock conductivities. However, higher
temperatures can also evaporate the pore fluid which decreases the saturation. Thus
raising the temperature can in some cases increase the resitivity of the rock.



The dependence of the bulk rock conductivity on the electrical properties of the pore
fluid as described above is very useful for monitoring EOR processes. For example, the
most commonly employed EOR process in heavy oil reservoirs involves the injection of
hot water and steam into the pay zone. Increasing the temperature in this manner makes
the oil less viscous thereby allowing for easier extraction. The process not only increases
the temperature in the reservoir and surounding rocks, but as the fluid is pumped further
into the formation it displaces resistive oil there by increasing the percentage of water
saturation. If the injected water is saline it will increase the salinity of the formation.
However if it is fresh, the water will tend to 'flush out' any saline pore fluid and thus
decrease the salinity within the injection zone.

Mansure and Meldau (1990) have hypothesized a model for such a flood (Figure
1.4) and determined that the processes described above can cause changes in the bulk
rock conductivity of an order or magnitude or greater. Figure 1.5 shows the ratio of the
final-to-initial formation resitivities due to changes in salinity, temperature and water
saturation. Thus if we are able to monitor the spatial variation of resitivity within the
reservoir as a function of time, we will be able to deduce the progress of the steam front
in the subsurface. Examples of geophysical methods used to monitor this and other types
of reservoir processes will be discussed in the next section.

1.2 Geophysical methods for reservoir process monitoring

Because the process we are interested in monitoring involves either the injection or
withdrawal of fluids and/or gases in a reservoir at depth, monitoring wells are often
installed to track its progress. Unfortunately measurements of pressure, temperature and
conductivity made within these wells are single point measurements which reflect
properties of the reservoir only in the immediate vicinity of the hole. However,
geophysiscs can be employed to fill in the gaps between wells.

Surface geopysical techniques can provide high resolution imaging of changes within
the reservoir if the injection zone is near the surface. Of the methods available, 3-D
seismic monitoring has been extremely successful in detecting changes in both seismic
velocities and amplitude attenuation (Greaves and Fulp, 1987, Robertson, 1989). Surface
electromagnetic methods have showed some success in detecting conductivity changes at
depth (Bartel, 1982, Bartel and Ranganayaki, 1989) and self-potential anomallies have
been measured on the surface which can be correlated with oil field stimulation effects
(Dorfman, et al., 1977). However, due to the small volume of rock affected by these
processes and the depth at which they occur, surface methods often do not produce
optimum resolution.



If one borehole is available, the surface geophysical methods described above can be
improved upon by employing surface-to-borehole techniques. Vertical seismic profiling
(VSP) is routinely employed to achieve better resolution of reservoir properties than can
be deduced from the surface (Hardage, 1985). Surface to borehole resistivity
measurements have been exteremely succesful for environmental monitoring of
contaminant injections (Bevc and Morrison, 1991, Schenkel, 1991) and to determine the
direction of groundwater flow (Sill and Sjostrom, 1990). However, attempts to use the
same processes to monitor EOR in an oilfield have shown very limited sucess (Bevc, et
al. 1989). Numerical modeling has shown that surface to borehole EM can detect changes
caused by EOR processes as far as 100m away from the instrument well '(Spies and
Greaves, 1991) and these types of mesurements have been made both in an oil field
environment (Wilt and Ranganayaki, 1990) as well as in a shallow injection
experiment(Hanson, et al. 1991). Methods for interpreting surface to borehole EM data
are under development.

If multiple bore-holes are available, then conductivity well logging before, during
and after the injection process has been completed can yield useful estimates of the
spatial variation in conductivity and of the changes that have occured within the
reservoir. Ranganayaki, et al. (1992) show how the conductivity increases over time
within a steam injection zone by running resitivity logs in several oil field wells before
and during an EOR experiment. Newmark and Wilt (1992) found similar results in the
simulated steam clean-up of a gasoline spill. Unfortunately to adequately sample the
spatial changes in conductivity in this manner requires a large number of wells which can
be extremely costly.

To estimate the reservoir properties at depth between wells, cross-well geophysics
can be employed. Seimic tomography has been very succesful in monitoring EOR
produced changes with respect to time. Excellent examples of the seismic mapping of
steam injection and in-situ combustion processes can be found in Bregman, et al. (1989),
Justice, et al. (1989) and Paulsson, et al. (1992). Cross-well resistivity tomography has
shown promise in monitoring both oil and environmental related steam injections
(Beasley and Tripp,1991, Shima and Imamura, 1991, Ramirez, et al, 1992) and Daily and
Ramirez (1992) have found it useful for tracking the flow of ground water through the
unsaturated zone.

High frequency EM (f>1MHz) has also been useful in monitoring changes in
reservoir properties between boreholes. Davis, et al (1979) reported on the changes in
measured electromagnetic fields caused by an in situ coal gassification project. Daily
(1984) and Laine (1987) describe variations in tomographic images of attenuation caused



by an oil shale retort and steam flood, respectively. The benefit of working at these
frequencies is that the EM fields obey the wave equation thus allowing techniques
developed for seismic interpretation to be applied. Unfortunately, due to the extremely
high attenuation rate of these fields in conductive media the boreholes must be fairly
close together . Thus the high frequncy method is unusable in conductive areas where the
wells are tens to hundreds of meters apart.

Because of the diffusive nature of lower frequency EM fields in conductive media
where displacement currents are negligible, the audio frequency range has until recently
largely been ignored. However, the work of Zhou (1989) showed that a low frequency
analog to diffraction tomography is useful in determining the orientation of fractures in a
fracture zone. Wilt, et al. (1991) have demonstrated that single frequency measurements

“can be made in oil wells separated by 100m, while Wilt and Schenkel (1992) and Hanson,
et al. ( 1991) have shown that these type of cross well measurements are useful in
monitoring environmental injection processes. In this thesis methods will be developed
to both model the audio frequency EM response to conductivity changes caused by these
processes, and to interpret data collected in cross-well EM surveys.

1.3 Scope of this research

Although the word itself has appeared in the literature only within the last two
decades, Worthington (1984) states that tomography has routinely been employed in
geophysics since seismic surveys were first used to define the location of salt domes in
the 1920's. The basic idea behind tomography is to obtain a two dimesional image of a
selected plane or 'slice’ through a solid object. In some cases the process can be extended
to three dimensions to obtain a volume image of the object. In geophysics this imaging
process usually implies making measurements of the seismic or electromagnetic fields at

~multiple positions that are produced by sources at various other locations. Tomographic
reconstruction tecniques are then applied to these data to produce images of earth
properties such as seismic velocity and/or attenuation, electrical conductivity, dielectric
constant, ect., from which subsurface geology can be inferred.

Following the work of Wu and Toksoz (1987), Zhou (1989) developed a technique
similar to seismic diffraction tomography to interpret crosswell electromagnetic data.
The problem is simplified by applying either the weak scattering Born or Rytov
approximations to the integral equations governing electromagnetic wave propogation.
To be consistant with Wu and Toksoz, Zhou formulated the problem in the wave-number
domain rather than in the space domain. Unfortunately this is where the similarity



between seismic and electromagnetic tomography ends. Due to the diffusive nature of
the EM fields in the frequency range that we are interested, the concept of geophysical
ray tomography is invalid and thus raytracing, algebraic reconstruction, and filtered
backprojection image reconstruction tecniques are invalid. Zhou dubbed this method
electromagnetic diffusion tomography.

In this thesis I build on the theoretical work found in Chapter 3 of Zhou and apply a
cross-well EM imaging technique to data collected in an injection experiment. However,
unlike Zhou I have developed the formulation in the space domain rather than the wave-
number domain. The reason for this is three fold. First , the wavenumber domain
formulation requires large numbers of evenly spaced source and receiver points which at
this time is unfeasible. Second, the space domain formulation allows for easier forward
modeling thus allowing us to iteratively find better estimates of the conductivity. Lastly,
the space domain formulation allows for more complicated starting models than the
wave-number domain formulation. These concepts will be discussed more fully in the
proceeding chapters.

In Chapter 2, I will develop the integral equation formulation for calculating the
scattered electromagnetic fields resulting from inhomogeneities imbedded in an otherwise
homogenous medium that are excited by a magnetic dipole source . To simplify the
problem it is assumed that the scattering bodies are symmetric about the source dipole
axis in an azimuthal direction. Next a perturbation method known as the Born
approximation is applied (Morse and Feschbach, 1953) and a sensitivity function is
derived. This function describes the sensitivity of a given source-receiver pair to points
within the medium. The spatial variation of the sensitivity will be analized for both
different source and receiver combinations as well as different operating frequencies. In
addition it will be employed to compare the simple cylindrically symmetric 2-D geometry
to more realistic model geometries.

In Chapter 3, the Born approximation of the integral equations are investigated as a
quick, numercial forward modelling scheme. The limitations of this approach are
discussed as well as the benefit in computational time savings. Next, a more accurate
iterative Born approximation is developed. Again its limitations are discussed and
weighed against the savings in computing time. This solution is compared to both
simpler one dimensional models to determine its accuracy and against more complicated
two and three dimensional models to determine the usefulness of the cylindrically
symmetric geometry.

In Chapter 4 an imaging scheme is developed which applies the Born approximation
to obtain an initial estimate of the conductivity distribution, and then applies the iterative



Bomn series to obtain more accurate estimates of the conductivity. The resolution of the
method as a function of frequency will be discussed and the effects of noise determined.
EOR injection processes will be simulated with forward models and the resulting
conductivity images analized for accuracy. The theory for a more complicated, one
dimensional layered background model will be incorporated into the imaging scheme and
then applied to field data collected by Wilt, et al. (1991). Finally as in the preceeding
chapters we will use the 2D cylindrically symmetric imaging scheme on synthetic data
generated with 3D models to determine the limitations of the simplified cylindrical
geometry.

Chapter 5 will describe a field experiment in which cross well EM data were collected
to monitor the injection of electrically conductive salt water into an aquifer at depth.
Estimates of the data quality will be derived and possible sources of error determined.
The 2D imaging scheme will then be applied to the data and the resulting images
interpreted. Finally, simple forward 3D models will be employed to determine if the
images correspond to the observations.
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Chapter 2
Two Dimensional Formulation for a Magnetic Dipole Source in a
Conductive Whole Space

The numerical formulation for the transverse electric (TE) electromagnetic response
that is induced in a two dimensional (2-D) earth by an oscillating magnetic field is fairly
trivial. Hohmann (1971) used an integral equation solution to investigate the use of a line
source of alternating current on the surface of the earth for mineral exploration. Chang
and Anderson (1984), Pai and Huang (1988) and Chew, et al (1991) developed solutions
for a medium which is cylindrically symmetric about the transmitter borehole (Figure
2.1) to model the effects of drilling mud invasion in thin beds. The former uses a finite
element method, while the last two employ a Haskill matrix - mode matching scheme.
Unfortunately, these three solutions were designed with borehole induction logging in
mind rather than cross well measurements. Recently Zhou (1989) and Sasaki, et al
(1992) have developed forward modeling schemes to calculate the crosswell
electromagnetic (EM) response of two dimensional, cylindrically symmetric conductors
in an otherwise homogenous medium. The former uses an integral equation approach
while the latter uses a finite element method.

In this chapter the mathematical theory is developed for low frequency (f < IMHz)
electromagnetic scattering by two dimensional conductors that are cylindrically
symmetric about the source dipole. This formulation, which provides the starting point
for the imaging scheme given in Chapter 4, is very similar to that of Zhou (1989) except
that it is developed in the space domain rather than the wave-number domain. To
simplify the theory the Born approximation is applied. From these approximate equations
sensitivity functions are derived which yield valuable information about how a given
source-receiver pair senses the medium between and around the probes. These sensitivity
functions are then analyzed for different source-receiver configurations to determine both
how they vary with respect to the background induction number, and how they vary
spatially. In addition the limitations of the cylindrical geometry are explored by
comparing the 2-D cylindrical sensitivity functions to the those that result from
employing a two and one-half dimensional (2 1/2-D) model. The space-domain
conclusions will then be compared to the wave number domain analysis of Zhou(1989)
and Zhou, et al. (1993).
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2.1 Mathematical formulation of the two-dimensional integral equation

As shown in Figure 2.1, the region of interest is imbedded in an otherwise
homogenous background medium of electrical conductivity Ge. A magnetic dipole
source which is harmonic in time is located at r=0, z=zx on the axis of symmetry. If the
anomalous conductivity , ©(r,z), is distributed symmetrically about this axis then
electric currents induced by the source can exist only in the azimuthal ((f)) direction.
These currents in turn produce magnetic fields in the t and z directions which can be
measured either within the transmitter borehole as is commonly done in electromagnetic
well logging, or in a second borehole some distance away as is done for crosswell EM
measurements.

Because we are operating in a conductive medium at frequencies below a megahertz,
displacement currents can be ignored (Ward and Hohman, p136). Using this quasi-static
approximation, Maxwell's equations for the electric and magnetic fields in the frequency
domain are given by

VxH = cE +]Js (2.1a)
and

VxE =-iopH (2.1b)
where E and H are the total electric and magnetic fields respectively, Js is the source
current density, © is the conductivity, ® is the operating frequency in radians, p is the
magnetic permeability which is assumed to be that of free space, and i = N1,

Because the electric field has only one component in the azimuthal or (Ab direction, a
scalar differential equation can be derived for Es in cylindrical coordinates by taking the
curl of equation 2.1b and combining it with equation 2.1a. The resulting expression has
the form

V?E, —rizm — i0OUGEs = ioopJe (2.2)

where now Jo represents the external source current flowing within the magnetic dipole.
The object function O(r) is now defined as

(o(r)-0o,)

1]

o(r) = (2.3)

and the background wave number, %, to be

ko =/—iQColL. (2.4)

Substituting these two expressions into equation 2.2 and rearranging yields
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V?Eo - r—12E¢ + ko Eo = i®Ws + ko” O(r)Es. (2.5)

The total electric field in the inhomogenous medium (Es) is now decomposed into
two parts. The first part, Ej, is the field resulting from a magnetic dipole source

operating in a homogenous background of conductivity Go. This background or primary
electric field satisfies the scalar wave equation

V2 Eg—rizsg+k.,2Eg = iaws 2.6)

and is given by the analytical expression (Ward and Hohmann, 1988)

_iop

Eg= 4T

[%(1 +ikoR)e'“‘°R] 2.7
where R =+/r> +(z-2x) and r and z define the point of interest. The second part, Ej is
the scattered or secondary electric field resulting from anomalous currents which are
induced in any conductivity inhomogeneities that are present in the region. The total
electric field is simply the summation of these two separate parts, i.e..
Eo=ES+E} . (2.8)

Substituting this expression into equation 2.5 , rearranging terms and removing the
primary field contribution yields a wave equation for the secondary electric fields,

1
VPE{-Ei+ ko” B4 = ko’ O(r)Es (2.9)
where the term on the right represents the source induced or scattered currents within the
inhomogeneities. This is the Helmholtz equation for the secondary fields written in

cylindrical coordinates which can be solved using the Green's function formulation (Sena
and Tokoz, 1990):

Eo(rm, Tex) = E3 (Fm, Tex) = G | [ O(F) Eo(r, r) G(re, r)drdz. (2.10)

In this expression the receiver lies at the point rex =(r=,z=), the source dipole at
rx = (0,zx) and the integration is over the entire region containing anomalous conductors.

The Green's function, G, represents the electric field at r= induced by a circular loop of



current that is symmetric about the source dipole axis , passes through r, and satisfies the
equation

VzG-—;lgG+kozG=imu8(r—-r'). (2.11)

Ward and Hohmann (1988) show it to have the form of a first order Hankel transform,

f -)L—Jlé}\i).],(krn)dl\. (2.12)

. T -
G(rem,r) =—1cou5'£e Yz=-2|
where Y2 =A2+ko° and J,(Ar) is the first order Bessels function of the first kind.

In the borehole environment, it is the magnetic fields (H) that we are interested in
measuring rather than the electric fields . Thus an expression for the magnetic field
equivalent to equation 2.10 must be developed. This is accomplished by taking the curl of
the vector form of 2.10, i.e., VX E¢(rrx,ru)§> with respect to the observation point re.

This operation results in an integral equation for magnetic fields which is given by,

H(re, r) = HP (P, Fix) — Go j [O(MEu(r, Pe)Gy (rex, r)dirdiz. (2.13)

In equation 2.13, HP(rm,r«) is the primary magnetic field generated by a magnetic dipole
source in a homogenous medium of conductivity co which is given by

Hp(r:'x,l'tx) =

R? R?

ar| [ Zea  TonZa s 203 s o
e | v P (~ko’R>+3ikoR +3)+ (2.14)

(k02R2 —ikoR- 1)2]
(Ward and Hohmann, 1988) and G (r=,r)is the is the Green's function which relates the
induced current loop at a point r to the magnetic fields at the receiver location. Equation
2.13 can be simplified by subtracting the primary field and decomposing the remaining
vector equation into two scalar equations for the secondary horizontal and vertical
magnetic fields. This results in the expressions

H: (rm,rx) = — 6, [ O(r)Ee(r, re)Gyy, (rex, T)drdz (2.15)

and

H; (o, Tex) = = Gy [ [ O(F)Bo(r, 1)y, (e, T)dirdz (2.16)
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where the Green's functions are given by

Gy, (rm,1) = %je-vlmlx J,(Ar) J1 (Are)d (2.17)
0

and

oo 2
Gua(rmr) = je'Y'“‘zl%Jl(kr)Jo(Xrn)dX (2.18)

0

and Jo(Ar=) and J,(Ar) are the zero-th and first order Bessel's functions of the first
kinds, respectively.

2.2 The Born approximation solution

The relationship between H® and the object function O(r) is nonlinear because Es is
also dependent on O(r). Thus both the forward modeling and the estimation of the
conductivity structure through inversion are nonlinear processes that require large
amounts of computer time and memory so that only the simplest problems can be
examined. Even a simple analysis of the field behavior nontrivial.

These solutions however, can be simplified by assuming that the medium contains
only weak scatterers. When this is true, O(r) is small and linearized versions of 2.15 and
2.16 are obtained through the use of the Born approximation, Es = Es?, which simply
assumes that the field in the scatterer is equal to the primary field (Kong,1975):

H' (1w, Fer) = = G [ | O(T)Ee? (, F) Gy, (e, ¥ dirdz (2.19)

and

H; (P, Tex) = — o [ | O(F)Ee” (1, 1) Gy, (e, T) iz (2.20)

The linearity between the object function and the magnetic fields implies that the
scattering currents within the inhomogeneities are small and that coupling between
individual scattering currents can be neglected. Because this represents the first term in
the Born series, I will refer to it at times as the first order Born approximation. The
limits of this approximation will be discussed more fully in chapters 3 and 4.



2.2.1 The Born Kernel
Equations 2.19 and 2.20 relate small perturbations in the magnetic field, H; and H,
to small perturbations in the model, ¢,0(r) = Ao, through the functions
Ky, = Eo* (r,rx)Gy, (rex, 1) (2.21a)
and
Ky =Eé (r,re)Gy, (rex, 1) (2.21a)
which are dependent only on the background conductivity, Ge, and the relative positions
of the source, the receiver, and the location and dimensions of the region of interest.
Thus the terms on the right hand side of equations 2.19 and 2.20 can be thought of as the
Frechet’ derivatives for a homogenous whole space model (Hohmann and Raiche, 1988)
with the functions given in 2.21 representing the Frechet' kernels or sensitivity functions.
Use of the Frechet' derivative in linear inverse theory dates back to the work of Backus
and Gilbert (1968), and since that time these functions have been used quite extensively
for EM inversion and sensitivity analysis (e.g. Parker,1977, Chave, 1985, E. Gomez-
Trevino, 1987 and Spies and Habashy, 1992).
Closer examination of equations 2.19 through 2.21 indicates that if the background
conductivity, Ge, is grouped with the Frechet' kernels in 2.21 rather than the object

function ,i.e.,

Ky =6,Ed (r, ra)Gy (re,T) (2.22)

the relationship between the perturbed fields and the integrated kernel is dimensionless.
This allows us to present a sensitivity analysis for the cylindrical crosswell problem as a
function of background induction number (WHG,*R?*) where R is source-receiver
separation, rather than as a function of specific models. Thus we can determine the
corresponding sensitivity for any combination of frequency, conductivity and borehole
separation. Because the function given in 2.22 is derived using the Born approximation, it
will be referred to here after as the Born Kernel.

2.3 Sensitivity analysis as a function of the background induction number

The first sensitivity analysis has been done for the general crosswell model shown in
Figure 2.2a. The transmitter and receiver are located at a depth z=0 in two separate
boreholes located a distance R=rx apart. Because the value of the Born kernel is
dependent not only on the source and receiver locations but also on the point of interest
within the medium, it has been calculated at five different positions located on a line
extending radially outward from the source toward the receiver.
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Figure 2.3a shows the amplitude of the H, Born kernel as a function of the
background induction number, and the real and imaginary components of the kernel at
two of the points has been plotted on the same scale in Figure 2.3b. Because the
scattered fields at the receiver are proportional to these sensitivity functions, the primary
magnetic field (H?) has also been plotted in Figure 2.3a which allows us to compare the
relative behavior of the primary and secondary fields. The abscissa of these graphs starts
at an induction number of 0.01 because below this point the total field is almost equal to
that of the free space value (Spies, 1992). The largest induction number used is 1000 as
above this value the fields are difficult to measure because of attenuation (Deszcz-
Pan,1993).

At this point an explanation is required to define how the kernel values on the
ordinate have been normalized so that both axis are dimensionless. All values have first
been divided by the free space magnetic field for the given source-receiver separation.
This removes a 1/ R? component from the kernel values and fully normalizes the primary
field such that at low frequencies it is unity. However a there still exists a 1/ m?® in the
Born kernel because the integration in r and z has not been completed. To remedy this
matter the kernel values have arbitrarily been multiplied by the square of the source-
receiver separation. The primary field has also been multiplied by this value so that it
scales appropriately when compared to the kernel.

Several important characteristics about the cylindrically symmetric geometry and its
application to cross borehole studies can be derived from a Figures 2.3a and 2.3b. The
linear increase in sensitivity amplitude with increasing induction numbers below 1.0
indicates that we are in the near field. In this region the primary field dominates the
secondary field which suggests that the response of small conductors will be
unmeasurable. However the primary field is dominated by the real component while the
scattered field is dominated by the imaginary. Thus even in this low induction number
region anomalous conductors may be detected by measuring the quadrature alone .

" At an induction number of approximately 10, the kernel amplitude is maximum
which indicates that this is the point at which the secondary fields will be most easily
detected. In addition Figure 2.3b shows that the phase changes quite rapidly as the
induction number is increased. Replotting the kernel as a function of source-receiver
separation divided by skin depth (Figure 2.3c) shows that this region occurs when the
receiver is approximately 2 to 6 skin depths away from the source. This figure can be
used when designing a survey to maximize the measured response.

At higher induction numbers the sensitivity falls off very rapidly implying a severe
decrease in secondary field magnitude. However, the fact that the primary field
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amplitude decreases at even a quicker rate implies that this fall off is not due to a lack of
sensitivity to the region but rather is the product of severe attenuation.

A characteristic that is immediately apparent from these figures is the relative size of
the kernel to the primary field. If the scatterer consists of a small cell of low contrast
with respect to the background, the secondary fields will be at best two to three orders of
magnitude less than the background field. However if the body is given some size and/or
a higher conductivity contrast then the scattered field is approximately equal to the kernel
multiplied by area-object function product. Thus the difference between the primary and
secondary fields becomes one order of magnitude or even less which is easily
measurable.

Some interesting properties of the secondary fields which are dependent on the
scatterer location can be deduced from Figure 2.3. The most noticeable of these is that
the sensitivity is much greater for points near the receiver than for points near the source.
Spies and Habashy (1992) show that for two and one-half dimensional (2 1/2-D) and
three dimensional (3-D) geology the sensitivity is reciprocal, or symmetric about a line
drawn between the source and receiver, i.e. regions near the source and receiver have
identical values. The disparity between these 2 1/2-D and 3-D cases and the 2-D
cylindrical case is a function of the geometry that has been imposed on the problem. For
the cylindrical case, a point near the transmitter forms a small ring of current about the
axis of symmetry , while near the receiver the point forms a large ring of current. Thus
unlike the 2 1/2-D and 3-D cases, the geometry produces sensitivities which are not
reciprocal between the source and receiver.

Another interesting phenomenon dependent on the location of the scattering body is
the decreasing frequency at which the kernel peaks with increasing distance to the point
of interest. This again is a function of the geometry imposed on the problem. The Green's
function can be though of as a circular loop of wire which is exited by a dipole source at
its center. West and Macnae (1991) give the induction number of such a loop to
bewL /R where L is the inductance of the loop and R the resistance. For such a loop L
is given by Romo and Whinnery (1953) to be

L= m[m(%’-)-z] (2.23)

where / is the radius of the loop and a is the radius of the wire. For a wire of given
resistance per unit length R,, R is given simply as R=2n/R,. Thus, wL/R is

proportional to wln/ and thus as the radius of the loop / is increased, the frequency ®

must decrease to keep the response at its peak.
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A third and very important characteristic that can be deduced from these sensitivity
diagrams is that at low induction numbers (<1), the response from zones outside of the
wells (for example the point at 1.25R) can produce secondary fields that are larger than
those generated from region between the wells. This reemphasizes the benefit of
operating in the range of 2 to 6 skin depths between wells. Unfortunately this also
demonstrates a problem with making crosswell measurements in steel cased wells as
suggested by Uchida, et al. (1991), and Newman (1992a) who determined that crosswell
EM signals can be detected through casing as long as frequencies below 1kHz are
employed. This problem of being sensitive to regions outside the wells will be discussed
in more detail later.

To demonstrate that the behavior of the sensitivity function is relatively independent
of the source - receiver geometry, the Born kernel has been calculated for the geometry
shown in Figure 2.2b. In this case the receiver is a distance R= V2r1x to the left and
below the source, and thus both horizontal and vertical components of the magnetic field
will exist. Again the points of interest are located on a straight line between the source
and receiver at the same intervals of 0.05*R, 0.50*R, 0.95*R, 1.05*R and 1.25*R as
before. Figures 2.4a and 2.4b show that the behavior of the Born kernel for both the
vertical and horizontal components is in general the same as when the source and
receiver are at the same depth (Figure 2.3)with the sensitivity peaking when the
transmitter and receiver are approximately 2 to 6 skin depths apart.

One noticeable difference between the vertical and horizontal components of the
kernel is in their relative sensitivities to the region outside the wells at induction numbers
less than 1. The vertical component (Figure 2.4a) shows a relatively large sensitivity
response when compared to the horizontal component (Figure 2.4b). This suggests that if
we are going to make low frequency measurements through steel well casing as
suggested by Uchida, et al.(1991), it may be beneficial to use the horizontal component of
the field rather than the vertical.

In addition to the crosswell models, the Born kernel has been calculated for the in-
hole case (Figure 2.2c). In addition to being useful for well log analysis and design
(Barber,1992), the sensitivity plots (Figure 2.5) can be employed to examine the relative
merits of using the back scattered response for improving image quality in crosswell
tomography experiments (Zhou,1989). Although the sensitivity amplitude is much
different compared to those for the crosswell models, the curves show the same general
characteristics as noticed before with the response peaking at an induction number of
approximately 10 and the frequency at which the kernel peaks decreasing as the radial
distance to the scatterer increases. Notice that at low induction numbers, the sensitivity
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peaks between 0.25*R and 1*R away from the borehole while at higher induction
numbers the peak occurs closer to the borehole. This agrees well with induction log
theory where lower frequencies are employed to sense further out into the medium.

In general these Born kernel plots are very useful to determine how the sensing ability
of a given source-receiver configuration changes with respect to induction number (or
frequency). Though the magnitude of the Born kernel is not constant for different
source-receiver configurations, the general behavior of the fields is. A general rule of
thumb has been proposed which states that the peak response of an inhomogenous region
for a crosswell experiment will occur when the transmitter is 2 to 6 skin depths away
from the receiver, and that for in-hole measurements the maximum sensitivity will never
extend radially beyond the transmitter-receiver separation. Unfortunately these curves
yield only limited information about the spatial characteristics of the Born kernel. Thus
in the next section I will analyze the spatial variation of the Born kernel for constant
induction numbers.

2.4 Spatial sensitivity analysis

Spies and Habashy (1992) showed how the Frechet' derivative can be employed in a
spatial sensitivity analysis of the low frequency crosswell EM problem. The illustrations
they present for a 3-D geometry are very useful for defining the region of the earth thata
given source-receiver pair is sensitive to in a frequency range where the concept of ray
paths is inappropriate. Although the sensitivity function they define is nonlinear in the
anomalous conductivity o, it is essentially the 3-D Born kernel multiplied by a localized
Nonlinear Operator (Habashy, et al., 1992) and normalized by the background
conductivity Go. In the first part of this section I will analyze the spatial sensitivity of the
vertical magnetic field at three distinct frequencies (and induction numbers) for the
cylindrically symmetric crosswell geometry. The second part will consist of a
comparison between these results and the 2 1/2-D sensitivity formulated by Spies and
Habashy (1992). In the third part we will look at the sensitivity functions for the
horizontal field and then in the fourth part examine these functions for the back scattered
or in hole vertical magnetic fields.

2.4.1 Spatial sensitivity of the vertical magnetic field for a 2-D cylindrical geometry
The crosswell model employed in this spatial sensitivity analysis is shown in Figure
2.6. In order to analyze the importance of vertical coverage or offset on target
delectability and resolution, the spatial sensitivity distribution has been calculated for a
single source and three different receiver locations representing aspect ratios (zrx/rrx), or
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apertures of 0:1, 1:1 and 2:1 . Three frequencies (1kHz, 10kHz and 100kHz) have been
employed to illustrate the varying sensing capabilities of different frequencies. The low
frequency of 1kHz was chosen because below this point Figures 2.2 and 2.3 show the
amplitude of the sensitivities, and thus the secondary fields to be several orders of
magnitude less than that of the primary. The high frequency of 100kHz was chosen as
above this point the field source field falls off very quickly with distance due to
attenuation and the fields become difficult to measure. Although the model is defined for
a specific background conductivity and source-receiver separation, the dimensionless
relationship between the integrated Born kernel and the measured fields implies that the
results will be identical for constant induction numbers wuo*R? and source-receiver
configuration.

For the sake of comparison the sensitivity values have all have been normalized in
the same manner as given in Spies and Habashy(1992). The Born kernel is calculated at
a constant interval of r and z, normalized by the total sensitivity which has been
integrated over the region of interest, and then multiplied for display purposes by an
appropriate constant which in this case was 1.5x10%. The absolute values of the
sensitivity are then converted to decibels and then the results plotted as positive and
negative values of the real and imaginary components. Choosing an appropriate scaling
factor allows us to plot the results over 3 orders of magnitude from 1 to 60 dB with the
white space representing values 83dB or more below the integrated value. In addition,
the small white 'lines' between areas of shading represent regions where that particular
component of the sensitivity is undergoing a reversal of sign (i.e. a 180° phase shift). The
position of these lines is independent of the scaling factor used. In all the results the
arrow on the left represents the dipole source location and the arrow on the right the
receiver location. Due to plotting considerations the sensitivity values at 1kHz were
calculated at 10m intervals while at 10kHz and 100kHz the interval was Sm.

Figure 2.7 shows the sensitivities calculated at 1kHz for aspect ratios of 0:1, 1:1, and
2:1 which correspond to a induction numbers of 0.8, 1.6 and 3.9, respectively.
Comparing these induction numbers to those plotted on the abscissa in Figures 2.3 and
2.4 show that this frequency lies on the low side of the Born kernel, that is we are
operating in the near field. The most noticeable characteristics of Figure 2.7 that are also
illustrated in Figures 2.3 and 2.4 are 1) the kernel is maximum near the receiver and 2) it
is very sensitive to a large area outside of the interwell region. The size of the region that
the various source-receiver combinations are sensitive to and the smoothly varying nature
of the kernel suggest that imaging at this frequency will recover smooth, large scale
features and provide good estimates of the average background conductivity. However
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the images at these low induction numbers will not have very good resolution. In
addition, the sensitivity to the zone outside the wells implies that bodies in this region

will produce anomalies that could be mistaken to originate from bodies located between -

the wells. Notice also that the sensitivities in the interwell region near the receiver have
opposite signs compared to the region just outside the wells. Thus the effect of horizontal
features near the receiver (for example layers) will be diminished (Spies and
Habashy,1992).

Some general conclusions can be made from Figure 2.7 about the horizontal and
vertical resolution with respect to different array aspect ratios. For an aspect of 0:1 and
induction number of 0.8 (Figure 2.7a), the imaginary component dominates the response.
For a point of interest centered between the source and receiver, small changes (for
example 10% of the separation) in both its horizontal and vertical position due not cause
substantial changes in the sensitivity of this component. Though the real component is
very sensitive at the central location do to a reversal in sign, the response from outside the
interwell region will dominate any response originating between the wells. This
demonstrates the low resolution of the 0:1 aspect ratio array for this induction number.

Increasing the aspect ratio to 1:1 (Figure 2.7b) offers definite improvements to the
resolution. Small changes in both the vertical and horizontal position of a point centrally
located between the source and receiver cause measurable changes in both the real and
imaginary sensitivities do to sign reversals in this region. Also the relative magnitude of
the imaginary sensitivity compared to that of the real component has been reduced with
the larger induction number. Increasing the aspect ratio to 2:1 improves matters further.
Small changes in the scatterer location between the source and receiver result in different
sensitivity for both components which suggests an increase of resolution. In addition the
increase of the induction number to 3.94 has produced real and imaginary components of
almost the same amplitude which agrees well with the curves shown in Figure 2.3b.
However, any increases in resolution due to larger aspect ratios must be weighed against
the large sensitivity to zones outside the interwell region.

Figure 2.8 shows the normalized Born kernel for a frequency of 10kHz (and
induction numbers for the different aspect ratios of 8, 16 and 39 ) plotted on a scale which
is twice that of Figure 2.7. The reduction in the area outside the wells being sensed is
immediately noticeable when compared to Figure 2.7. Also, though the kernel still peaks
near the receiver small maxima now appear near the transmitter.

Further comparison of these plots to Figure 2.7 indicates that a substantial
improvement in resolution has occurred with the increase in frequency and induction
number. For the 0:1 aspect ratio (Figure 2.8a), the area of constant sensitivity in the
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central region between the source and receiver has narrowed in the vertical direction
indicating an in increase in the vertical resolution. However there is still a definite lack
of resolution in the horizontal direction except near the source and receiver. Increasing
the aperture to 1:1 (Figure 2.8b) increases both the vertical and horizontal resolution
significantly. Notice that a focused zone of sensitivity stretching almost directly between
the source and receiver has developed in the real component, and that excellent vertical
resolution exists in the imaginary component due to a sign reversal in the central region.
Increasing the aspect ration to 2:1 improves the horizontal resolution even further due to
the almost vertical alignment of the sensitivity variations. Thus small horizontal
position changes will cause fairly large changes in the measured fields.

Increasing the frequency to 100kHz such that the induction numbers for the three
different aspect ratios are 80,160 and 390 once again reduces the area being sensed and
thus improves the resolution. Figure 2.9 shows that the contribution from outside the
wells has been reduced to almost nothing indicating that at these higher induction
numbers we are primarily sensing the area directly between the transmitter and receiver.
A very defined maximum sensitivity ‘path' has developed between the source and receiver
which is suggestive of a ray path and implies the use of ray theory and ray tracing to
interpret the results. In addition a symmetry between the regions near the source and
receiver is beginning to develop which will be discussed in more detail in the next
subsection.

Once again the increase in aperture causes an increase in horizontal resolution with
very poor resolution at an aspect ratio of 0:1 and very good resolution at an aspect ratio
2:1. Also due to the formation of the previously mentioned 'ray path', there is
considerable vertical resolution improvement for the 0:1 aspect ratio compared to those
at lower frequencies and induction numbers.

Several conclusions can be made about the results presented above, the first being
that single frequency (monochromatic) crosswell data should be collected at as high a
frequency as possible to maximize resolution while minimizing the contribution of the
zone outside the interwell region. This agrees well with Zhou's (1989) results who found
that higher frequency data resulted in higher resolution images. However, the benefits of
multiple frequency data should not be overlooked. Different frequencies sense the
medium differently thus supplying additional information which can be used to better
constrain the interpretation. This agrees well with the use of wave number domain
coverage diagrams introduced by Zhou (1989) and Zhou, et al (1993). These diagrams
show how the wave number spectrum of anomalous bodies are sampled by an EM array
of multiple sources and receivers. Low frequencies are shown to sample low wave
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number components of the target shape and higher frequencies sample larger
components. Thus with multiple frequencies we sample a larger portion of the target's
wave number spectrum and thus better reconstruction of a conductivity image should
result. Finally, the real and imaginary components sense the medium differently at
different frequencies with the imaginary component dominating at low induction
numbers. This suggests that the imaginary component alone can be used to image the
medium through steel casing when using low frequencies as suggested by Uchida, et al.
(1991).

2.4.2 Comparison of the sensitivity for 2-D cylindrical and 2 1/2-D geometries

Although the cylindrical geometry shown in Figure 2.1 crudely simulates current flow
in the earth resulting from a VMD source, it is not very realistic as the earth does not
often exhibit this type of symmetry about the dipole axis. In addition the cylindrical
formulation accounts only for TE current flow and thus does not account for current
crossing conductivity boundaries. A different geometry that can better approximate EM
scattering in the inhomogenous region between two wells is the 2 1/2-D geometry. As
shown in Figure 2.10, this geometry employs a VMD source but extends the earth
infinitely in the 'y’ direction.

The sensitivity functions for the 2 1/2-D problem can be derived from the linear
versions of the 3-D sensitivity functions given in Spies and Habashy (1992) which have
the form

Kra(ra,r 1) = z%g[(x -x (X=X ) H (Y- Yo )Y - Vmx )]SR"ST" (2.24)

for the vertical component sensitivity and

Kitx(res T oFa) = %{(x x4 N2~ 2, )]SR"ST" (2.25)

for the radial or x component. In these expressions r,r,and r, represent the distance
from the origin to the receiver location , to the point at which the sensitivity is calculated,
and to the source location, respectively and S® and S™ are given by

eilm|r-r,[

% =
Ir-rm{3

(1-ikdr-r_]) (2.26)

and
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§™ = (1= ikdr-r,|). (2.27)

It is easy to show that expressions 2.24 and 2.25 are simply the magnetic fields at the
receiver produced by an electric dipole source at the point of interest, multiplied by the
electric field at that same point resulting from an oscillating magnetic dipole at the
source location. That is, the expressions given in 2.24 and 2.25 are simply the 3-D Born
kernel divided by the background conductivity ¢,. To calculate the 2 1/2-D sensitivity
requires integrating these functions along the y axis from minus to positive infinity. The
2 1/2-D sensitivity functions then become

Kiz(Fxr,T,Tx) = (;C‘:t“;z[(x Xy )(X- X )+ (y-ym)(y-yn)]SR‘ST‘dy (2.28)
y=—co
and
Ken(FoToFo) = | (_f";‘ x,.)(z- 2, )|S¥S ™ dy (229)
y=—co

where S** and S™ are defined as above. Note, though these functions are not multiplied
by ©,, normalizing them by the total integrated sensitivity removes the dependence of
this factor and thus these results can be compared to the Born kemnel's in section 2.4.1.

To compare the relative merits and drawbacks of the two different geometries I have
calculated the 2 1/2-D sensitivity functions at the same three frequencies employed in the
last subsection for the 0:1 and 1:1 aspect ratio models shown in Figure 2.6. Figure 2.11
~ shows the 2 1/2-D sensitivities at 1kHz which should be compared to the cylindrical case
in given Figures 2.7a and 2.7b. Though there are many differences in the two sets of
plots, the general characteristics are the same. For both cases the imaginary component
dominates the response and is less sensitive to regions outside the well compared to the
real component, which is very sensitive to some distance outside this region.

The most noticeable difference between the kernels for the two different geometries is
that the 2 1/2-D sensitivities have sidelobes outside the interwell region near the
transmitter as well as near the receiver. Thus one possible advantage of the cylindrical
symmetry is that forward modeling requires smaller meshes due to the fact that the
region on the negative side.of the source doesn't have to be accounted for. A second
interesting comparison that was discussed earlier is the reciprocity of the 2 1/2-D
geometry with respect to the source and receiver position.
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There are other, more subtle differences between the two geometries at this
frequency. The vertical resolution for the 0:1 aspect ratio may be better for the 2 1/2-D
model due to the fact that a narrow band of high sensitivity extends all the way across
from the source to receiver. However, because the regions near the source and receiver
for the cylindrical geometry are not reciprocal, it may provide better horizontal
resolution. This is especially evident in the real component which shows a sign reversal
in the interwell region for both the 0:1 and 1:1 aspect ratios which is not present in the 2
1/2-D sensitivity functions. However, as was mentioned in the last subsection any
increased resolution in the real component for these low induction numbers is negated by
the fact that it is sensitive to a large region outside the wells, and that the primary field
dominates the in-phase response.

The 2 1/2-D sensitivity functions for 10kHz are plotted in Figure 2.12. Again there is
a general similarity between the cylindrical symmetry (Figures 2.8a and 2.8b) and the 2
1/2-D geometry, especially in the region near the receiver. In fact these two sets of
sensitivities show many more similarities when compared to the 1kHz results. This
suggests that as we go to higher frequencies, the geometry of the problem becomes less
important and a greater proportion of the response comes from the region immediately
between the source and receiver. In addition, these results imply that the response of 2
1/2-D and cylindrically symmetric objects will be nearly identical in the region near the
receiver . _

However, some noticeable differences still exist between the sensitivities for the two
geometries. The vertical resolution for the 0:1 aspect ratio is somewhat better for the 2
1/2-D case as it shows a narrower region of maximum sensitivity, especially in the
imaginary component. The cylindrical symmetry again shows slightly better horizontal
resolution due to the non-reciprocal nature of points near the transmitter and receiver.
The cylindrically symmetric sensitivities also show a sign reversal in the interwell
region, in this case in the imaginary component for the 1:1 aspect ratio ( Figure 2.8b),
which may tend to produce better resolution both horizontally and vertically. In general
however, the differences between the two geometries are less significant at this
frequency compared to 1kHz.

The 2 1/2-D sensitivity functions at 100kHz (Figure 2.13) show remarkable similarity
to the cylindrical equivalents (Figure 2.9) for both the 0:1 and 1:1 aspect ratios. This
similarity is especially evident in the real components which show almost no differences
except immediately adjacent to the source. Noticeable differences do exist in the
imaginary components, however even these have been reduced compared to those
existing at lower frequencies. These results verify that at higher frequencies and for low
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conductivity contrasts, the scattering currents sensed by a crosswell EM array are the
same whether the body is extended in the y direction or symmetric about the transmitter
axis. Thus at this point it is hypothesized that at high frequencies 2 1/2-D data are
interpretable assuming a cylindrically symmetric geometry. This independence of
geometry also may explain why ray theory solutions like those proposed by Nekut (1992)
and Stolarchyk (1992) work well at higher frequencies but not at lower. This concept will
be investigated more thoroughly in the next chapter.

2.4.3 Horizontal magnetic field sensitivity analysis

Using wave number domain analysis Zhou (1993) showed that if we assume a
cylindrical geometry and we have complete, continuous data in both boreholes with large
aspect ratios, then use of bqth the horizontal and vertical magnetic fields is redundant.
Thus his work focused on using the vertical magnetic fields to image the conductivity
structure. In practice however, data are collected at discreet points over a smaller vertical
distance than we would hope for (e.g.. Wilt, et al. 1991). Because of this, the horizontal
magnetic field sensitivity plots have been examined to determine the benefits, if any, of
measuring this component of the field. The model used in the sensitivity analysis is the
same as Figure 2.6 with the Hz (vertical) receivers replaced with Hr (horizontal) field
receivers.

Figure 2.14 shows the horizontal field sensitivity plotted for the three different aspect
ratios at 1kHz, and thus induction numbers of 0.8, 1.6 and 3.9. The most notable
difference between these figures and those of the vertical field sensitivities (Figure 2.7)
that was also evident in Figure 2.4 is that the horizontal component of the field is less
sensitive to regions outside the wells. The simplest way to explain this is by analyzing
the sidelobes that develop near the receiver. For the vertical field sensitivity, the
sidelobes are oriented horizontally about the receiver as demonstrated in Figure 2.7.
This tends to draw the sensitivity to the right of the receiver out into the region beyond
the wells. However for the horizontal field sensitivity the side lobes are oriented
vertically and thus more of the high sensitivity region lies between the wells. A second
phenomenon is that the two components tend to compliment each other at these induction
numbers. Regions of little or no vertical field sensitivity tend to coincide with regions of
maximum horizontal field sensitivity and vice versa.

Other benefits of measuring the horizontal field are determined by comparing the
horizontal and vertical field sensitivities for each of the different aspect ratios separately.
The most notable difference occurs for an aspect ratio of 0:1. When the source and
receiver are in this configuration they are null coupled and thus the horizontal component
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(Figure 2.14a) is very sensitive to vertical changes in the conductivity. The figure also
indicates that the horizontal component is sensitive to radial changes in position when the
scatterer is not directly in line with the source and receiver. This suggests that for limited
angle data, i.e. data collected using aspect ratios from 0:1 up to 1:1, we might get slightly
better resolution by employing the horizontal component then from the vertical
component. In addition, the fact that the source and receiver are null coupled means that
the primary field will be absent for this configuration. Thus thc only field measured will
be the secondary fields of scatterers we wish to detect.

As the aspect ratio increases to 1:1 and 2:1 the differences between the horizontal
field sensitivity and vertical field sensitivity decrease. The sign reversals apparent in the
vertical component for these larger aspect ratios (Figures 2.7b and 2.7¢) do not appear in
the horizontal component. This suggests that the gain in vertical resolution achieved by
measuring the horizontal component at the 0:1 aspect ratio may be lost at greater aspect
ratios. However as can be seen from figures 2.14b and 2.14c the sensitivity to the
horizontal position of a scatterer increases with increasing aspect ratio which is consistent
with what we found in sections 2.4.1 and 2.4.2.

Figure 2.15 shows the horizontal field sensitivities at 10kHz (corresponding to
induction numbers of 8, 16 and 39). Comparing these to the vertical field sensitivities
(Figure 2.8) indicates that many of the same comparisons exist that were found between
the 1kHz horizontal and vertical sensitivities. The horizontal component tends to be less
sensitive to the region outside the wells, especially at larger aspect ratios. Again, because
of the null coupling at an aspect ratio of 0:1, the horizontal component (Figure 2.15a) is
much more sensitive to vertical and horizontal changes in position compared to the
vertical component (Figure 2.8a). However, notice that at these induction numbers the
horizontal and vertical components no longer complement each other at larger aspect
ratios. Instead we find that the zones of maximum horizontal and vertical field sensitivity
tend to occupy the same region. This suggests that one of the two components becomes
redundant at higher frequency and supports Zhou's conclusion on this matter,

This redundancy becomes more apparent at 100kHz. Except for the 0:1 aperture,
there is very little difference between the horizontal field sensitivities (Figure 2.16) and
the vertical field sensitivities (Figure 2.9). The maximum kernel values occupy the same
regions except immediately adjacent to the receiver, and in both cases there is very little
sensitivity to the region outside the wells. In addition, the regions of maximum
sensitivity form patterns that resemble ray paths. Once again, because the horizontal
component (Figure 2.16a) is significantly different for the 0:1 aspect ratio compared to
the vertical component (Figure 2.9a) , measuring both the horizontal and vertical
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components may be useful at this frequency for limited angle data. However, the above
results show that measuring both magnetic field components at large aspect ratios may
only be useful at lower frequencies.

2.4.4 Spatial sensitivity analysis of the vertical magnetic field for in-hole geometries

Zhou (1989) showed that improvements in image resolution can result from using in
hole or back scattered data. Thus I have chosen to briefly examine the sensitivity
functions for the source and receiver in the same borehole. As previously mentioned, this
analysis has previously been used for well logging analysis and tool design (e.g..
Barber,1992) however here we are more concerned in its use to supplement crosswell
data. ‘

The model used for this analysis is given in Figure 2.17. Two VMD's , a source and a
receiver, are separated vertically by 100m in a whole space of conductivity 0.01S/m.

- The same three frequencies of 1kHz, 10kHz and 100kHz have been used as previously.

Again the dimensions of the problem can be normalized to the induction number of the
background medium, which ultimately allows this analysis to be related to any scale by
keeping this number constant. The induction numbers corresponding to the above
frequencies are 0.8, 8.0 and 80, respectively.

The vertical field sensitivities for all three frequencies have been plotted on the same
scale in Figure 2.18. Immediately it is evident that with increasing frequency, less of the
region is sensed by this source-receiver configuration. As predicted by figure 2.5a, as
the frequency is increased upward from 1kHz, the region of maximum sensitivity moves
closer to the well.

The benefit of using the in hole data with the cross well data for imaging is very
evident from the spatial sensitivity plots. As a point is moved horizontally away from the
well out into the medium, the sensitivity changes quite dramatically, especially at higher
induction numbers. This added horizontal sensitivity explains why Zhou (1989)
improved his crosswell images by incorporating the in-hole component with the crosshole
fields.

Another noteworthy phenomenon apparent in these plots is that the region of
maximum sensitivity is controlled primarily by the source-receiver separation. In fact
except for the low induction number case, that region doesn't extend out much past .5 to
.75 times the source receiver separation. This rapid fall off of the sensitivity functions
with radial distance explains why Zhou (1989) was able to image object edges near the
borehole in his single hole inversions, but couldn't recover edges far away from the
borehole.
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2.5 Summary

To summarize this chapter, the Born kernel which results from applying the Born
approximation to the integral equations governing EM propagation is a very useful tool
for studying how well various source-receiver configurations and frequencies can be
used to sense the conductivity structure in the region between two boreholes. At low
frequencies both field components arise from a zone that is largely outside the region of
interest between the source and receiver. However the horizontal component is less
sensitive than the vertical to this unwanted region suggesting that it should be employed
if measurements through casing are to be made as suggested by Uchida, et al(1991) and
Newman (1992a). As the frequency is raised, the sensed region becomes more focused
between the boreholes and the difference between the vertical and horizontal components
response is reduced. In addition, it has been shown that at higher frequencies, the
geometry of the target body is less important with a 2 1/2-D geometry producing almost
the same sensitivity coverage as a 2-D cylindrical geometry, especially near the receiver.
This topic will be investigated more thoroughly in the next chapter.

Because the sensitivity functions are very useful in determining how well an array
resolves a target body, comparisons can be made with the conclusions of Zhou(1989)
who analyzed the problem with coverage diagrams in the wave number domain. The
analysis in both domains indicates that there is greater resolution at higher frequencies,
and that higher aspect ratios lead to better horizontal resolution. In addition it has been
determined that the in-hole component of the vertical magnetic field offers additional
horizontal resolution. However, although the both components of the magnetic field
seem to be redundant for higher induction numbers and aspect ratios of 1:1 and greater,
the space domain sensitivity analysis indicates that the horizontal component may be
very useful in supplementing the vertical component at lower frequencies and when only
small aperture data is available. These characteristics will be examined again in Chapter
4,

30



Receivers

Go

N

N>

Figure 2.1 - Cylindrical two dimensional (2-D) geometry for the crosswell problem. The
inhomogenous body is cylindrically symmetric about the magnetic dipole axis.
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Figure 2.2 - Models used to demonstrate the properties of the Born kernel. (a) Crosswell
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same distance below and to the side of the source. (c) In hole with receiver directly
below source.
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Figure 2.6 - Model used for the the Born kernel crosswell sensitivity analysis. Two wells
are located 100m apart in a 0.01S/m whole space with a VMD source located in one
borehole, and a vertical magnetic receiver in the other. The spatial sensitivties are
calculated for three different receiver locations. The upper receiver position represents an

aspect ratio or aperture (zrx/rrx) of 0:1, the middle an aspect ratio of 1:1 and the bottom
an aspect ratio of 2:1.
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Figure 2.7 - 1kHz Born kernel sensitivities calculated at 10m intervals for the model
shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number =0.8. (b) Aspect ratio =1:1,
induction number = 1.6. (c) See following page.
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Figure 2.7 - (Continued from preceeding page). (c) Aspect ratio=2:1, induction
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Figure 2.8 - 10kHz Born kernel sensitivities calculated at 5m intervals for the model
shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number =8.0. (b) Aspect ratio =1:1,

induction number = 16. (c) See following page.
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Figure 2.9 - 100kHz Born kernel sensitivities calculated at Sm intervals for the model
shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number =80. (b) Aspect ratio =1:1,
induction number = 160. (c) See following page.

42



43

Imaginary

Real

(gp) AnAnisuss

1, induction

.
.

ber=390.

Figure 2.9 - (Continued from preceeding page) (c) Aspect ratio=2
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Figure 2.10 - 2 1/2-D geometry for the crosswell problem. The inhomogenous body is
infinate in the y direction and is is excited by a 3-D vertical magnetic dipole.
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Figure 2.11 - 1kHz Born kernel sensitivities calculated at 10m intervals for the 2 1/2-D
equivalent of the model shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number
=0.8. (b) Aspect ratio =1:1, induction number = 1.6.
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Figure 2.12 - 10kHz Born kernel sensitivities calculated at Sm intervals for the 2 1/2-D
equivalent of the model shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number =8.
(b) Aspect ratio =1:1, induction number = 16.
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Figure 2.13 - 100kHz Born kernel sensitivities calculated at 5Sm intervals for the 2 1/2-D
equivalent of the model shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number =80.
(b) Aspect ratio =1:1, induction number = 160.
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Figure 2.14 - 1kHz Born kernel sensitivities for the horizontal field calculated at 10m
intervals for the model shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number
=0.8. (b) Aspect ratio =1:1, induction number = 1.6. (c) See following page.
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Figure 2.14 - (Continued from preceeding page) (c) Aspect ratio=2:1, induction
number=3.9.
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Figure 2.15 - 10kHz Born kernel sensitivities for the horizontal field calculated at Sm
intervals for the model shown in Figure 2.6. () Aspect ratio = 0:1, induction number
=8.0. (b) Aspect ratio =1:1, induction number = 16. (¢) See following page.
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Figure 2.16 - 100kHz Born kernel sensitivities for the horizontal field calculated at Sm
intervals for the model shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number =80.
(b) Aspect ratio =1:1, induction number = 160. (c) See following page.
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Vertical Magnetic
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Figure 2.17 - Model used for the the Born kernel in-hole sensitivity analysis. A VMD
source is located in 100m above the vertical magnetic receiver in the same borehole. The
background conductivity is 0.015/m.
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Figure 2.18 - (Continued from preceeding page.) (b) Frequency 10kHz, induction
number = 8.0. (c¢) Frequency 100kHz, induction number =80.
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Chapter 3
Forward Modeling with the First-Order Born and Born Series Approximations

As mentioned in Chapter 2, electromagnetic modeling in two dimensions is a fairly
simple process. For the cylindrically symmetric medium which is considered here an
integral equation solution similar to that developed by Zhou (1989) is employed.
However it will be shown that the forward problem involves the integration of Green's
functions which involve the Hankel Transform. Because the Hankel transform can be
associated with numerical instability under certain geometries, a stable Simpson's
integration method will be developed to evaluate these integrals under these conditions.

Even with the added stability of the Green's function calculations, the full integral
equation formulation requires the inversion of a N X N full matrix where N is the
number of cells in the model. Thus the computer simulation of large, complicated models
is a time consuming and memory intensive process which limits the applicability of this
method. To speed up this forward modeling process which will eventually be
incorporated into the imaging scheme developed in Chapter 4, two approximate schemes
will be analyzed. |

The first of these is the first order Born approximation that was introduced in the last
chapter. The use of this approximation in a numerical forward modeling scheme will be
demonstrated and the results compared to those calculated with the full forward
modeling scheme. In this comparison, benefits in computational time savings will be
contrasted against the limitations in accuracy.

A Bom series solution which utilizes higher order terms in the Born series will also
be developed. This approximation provides for better accuracy than the first order Born
formulation yet again does not require the inversion of a matrix. To ascertain its
accuracy, this solution will be tested not only against the full integral equation solution
but also against 1-D layered models. Comparisons will also be made against 2 1/2-D and
3-D solutions to determine the usefulness and limitations of the cylindrically symmetric
model.

3.1 Mathematical formulation of the two-dimensional forward modeling scheme
Although the integral equation modeling scheme employed in this work was
originally developed by Zhou (1989), the formulation is included here for completeness.
In the forward problem the object function (O(r)) is given and it is the total electric field
within the medium (Eo(r,rw)in equation 2.10) that is unknown. In order to generate a

set of linear equations appropriate for modeling, the region of interest is first discretized

57



into N cells. If E¢(r,rx) and O(r) are assumed to be constant across each one of these

cells, then a discrete form of equation 2.10 can be written as

N
Es, =E3,— 00, OB, [G(r,.r)drdz, 3.1

i=1 i—th cell
where the field point is the j-th4 cell and the integrals are evaluated over the i-th cell.
Because there are N such equations for N unknowns, expression (3.1) can be written for j
- =1,2,3,...,Nin amatrix equation format (Hohmann, 1988)

ZE=E, 3.2)
where E and E, are N x 1 element vectors of the unknown total and the known primary

fields respectively and the elements of the impedance matrix Zare given by

z, =8, - a0, j G(r,.r,)drdz, (3.3)
J=th cell
with
_ lfori=j (3.4
¥ 00 forizj )

After solving for E in equation 3.2 through inversion of the matrix Z, the secondary
magnetic fields can be calculated using the discrete forms of equations 2.15 and 2.16
which are given by

y |
Hi(TpoTo) = =G0 Y, O,Bs, |Gy (r,,r)drdz (3.5)
j=1 j=thcell
for the radial field and
N
H(r,To) == 00 Y, 0By, [Gy(ro.r,)drdz, (3.6)
Jj=1 Jj—thcell

for the vertical field.

3.1.1 Integration of the Green's functions
Recall from equation 2.12 that the electric field Green's function is given by a first
order Hankel transform. Thus for a square cell of side A the integration is given by
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JG(r‘.,rj)dr,.dz‘. _ Jﬁlz " dz,}ﬁﬂm_ﬁf(ﬂ dr‘} Ji(ar;)da. 3.7)

i~thcell 0L z-A/2 ni-A/2

When zi = zj then the expression is singular and special care must be given to the

| integration. Luke (1962) shows that 3.7 can be integrated through the singularity to yield '

J (A
[G(r,,r;)dr dz; = —T [1 e P2 v(A rl,rz)——gr—)a?» (3.8)

i—th cell

where

V(h1y,1;) = 5,] 7, (Ar, )y (Ar, ) - Hy (Ar,) J(Ar,)] -
r,[ J1(r JHo(Ar,) - H,(Ar,) Jo(Ar, ) (3.9)

H, and H, are the Struve functions of the first kind of orders 0 and 1 respectively,
Jo(Ar=) and Ji(Ar) are the zero-th and first order Bessel's functions of the first kinds,
respectively, r,=r1,+A /2, and r, =r;, ~A/2. For the non-singular cell, the integration

results in the expression

J G(r;,r;)drdz; = - doi sign(z, — Zj)j [e_rlz"'z‘l —e 7k _z‘|]V(A,r1,rz) G dA
i=~th cell 4 0 yz

(3.10)

where z, =z, +A/2, z, =z, —A/2, and the other quantities are defined the same as in
equation 3.8.

The expressions for the magnetic fields involve similar integration of the Green's
functions given in 2.17 and 2.18. For the horizontal magnetic field it has the form

|G (x;,r,, )dr dz, =£T[1 — e M2 v(A,1,,1,) ——=- S ”‘)J)» (3.11)
i—th cell 2% Y
for the singular cell and
. [ J— Jy(Ar,)
[Gu(rr)drdz, = Zsign(z; —2,) [[ete=zel - NV(A,1,,r,) 22242
i—th cell 0
(3.12)

for the non-singular cell. For the vertical field the integration results in the expressions
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J'GHz(r‘,r Ydr,dz,; —fjl e??\V(A,1,,1,) Jo(ar )7’} dA (3.13)
a

i~thcell 2

for the singular cell and

JGHz(r,,r )dr dz, -—51gn(zz—z )J el - gt nl|V(4,1,,1,) Jo(Ar, );j' dA

i—thcell

(3.14)
for the non-singular cell.

3.1.2 Numerical instability of the Fast Hankel transform

Inspection of the integrals given in equations 3.9 to 3.14 reveal that they have the
form of Hankel transforms of zero and first order. To evaluate these numerically, a
lagged convolution routine for fast Hankel transforms developed by Anderson (1982) can
be employed in most instances. Unfortunately, Ryu, et al. (1970) showed that when a
loop of current and the field point are located in the same horizontal plane, the numerical
integration of expressions similar to (2.12) become extremely unstable. To determine if
this instability exists when the loop of current is integrated over a cell of area A%,
expression 3.8 has been plotted at three different field points, r; as a function of current
cell location r,. The current cell dimensions are 5m by 5m, the background conductivity

is 0.01S/m, and the operating frequency is 5 kHz. Figure 3.1 shows that although the
imaginary component is fairly stable, the real component tends to oscillate when the
distance from the source to the current cell is large. Thus the fast Hankel transform can't
be used to calculate the Green's function for the singular cell.

3.1.3 Calculation of the Green's function using Simpson integration

Because of the previously mentioned numerical instabilities, Zhou (1989) computes
the Green's functions integrals using a Simpson integration method. Magnetic dipoles of
unit moment are summed in a plane radially outward from the source to a radius r' . The
summation of the electromagnetic fields produced by each individual dipole is the same
as the field resulting from a current loop of radius r' which is symmetric about the
source axis. This summation of dipoles is repeated at discreet intervals of r' across a
cross-sectional area to determine the fields resulting from a volume of current flowing in
a 'doughnut’ shaped cell. Although results calculated with this method have been shown
to be accurate with comparisons to scale model data, it is a very time consuming process
for all but the simplest models. To improve upon this approach a method has been
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developed that employs the 3-D Green's function for an electric dipole which is
analytically integrated over a 3-D volume element. These elements are then summed in a
circle about the source dipole axis to yield a value for the cylindrical Green's function.
The result is just as accurate as that for Zhou's method while the computation is orders of
magnitude faster.

In the full 3-D problem, Hohmann (1988) shows that the integral equation
formulation for EM problems involves calculating a Green's function which is a tensor
rather than a scalar. Matters are further complicated by the fact that each component of
this tensor contains both an inductive or vector component which results from current
sources, and a scalar component resulting from charge sources. Fortunately it has been
determined that because the cylindrical problem exhibits pure TE propagation in which
there are only induced current elements, there are no charge sources generated at

boundaries and thus the scalar component can be ignored.
The inductive component of the 3-D electric field Green's function at a point r;due to

a current source at r, is given by Hohmann (1975) to be

—iky|r; v

g(r,.r,) = —iop (3.15)

47tlr ;T ,‘I
Becasue the integration of this function over a volume is independent of the volume

shape, a cubic cell of side Acan be replaced with a sphere of volume A’ which makes the
integration analytic. When the field point, r;, is inside the sphere the singularity can be

integrated through to obtain
[erav, === (ik,a+1)e ™ ~1] (3.16)
k—thcell ko

where a is the radius of the sphere. Similarly when r; is outside the sphere,

. —ik,lrj-r,l
[er.rpav, =B

3
k—th cell ke, — rkl

sin(k,a) - k,acos(k,a)). (3.17)

Simpson integration of these 3-D functions to replace a cylindrical cell of current is
illustrated in Figure 3.2. The 'doughnut’ is divided up into a number of segments of
volume A3 and the radius of an equivalent spherical volume is determined. The
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contribution of the 'starting cell' in Figure 3.2 is computed first. The summation of cells
then proceeds in both a clockwise and counter clockwise direction with the contributions
from both % and ¥ components of the secondary currents calculated. This process is
continued until the angle ¢, is approximately 180° and a volume less than 2-D3 remains
at the point furthest away from the field point. The volume of this 'left over' cell is
calculated, the radius of the equivalent volume sphere is determined and its contribution
added to the sum. The resulting equation has the form

(N-1)/2

[G drdz; = gt ) stmear + 3 [cos@,)er,.r;)+sin(®,)g(r,.r;) (3.18)
k=1

i—th cell
+¢0s(—0,)g(r,,r;)+ sin(—d)k)g(rk,rj)] = 8(reT;) Leaover

where g(I;,T ;)i .en 18 calculated using equation 3.16 if it is singular and 3.17 otherwise,
g(re,r;) and g(r..r;) erove aTC calculated using equation 3.17, and N is the total
number of whole cells with volume A3 . The magnetic field Green's functions are

calculated in the same manner with the expressions having the form

~ik, |r o =1, |
g (r,,r )dV, =— Zi€ [1 + }[sin(koa) —kacos(k,a)]  (3.19)

k—th cell ko:-’ll',x - rklz kolrrx - rkl
for the radial field and
I (r,,r_)dv, = xe 1+ 1 [sin(k a)—k,acos(k a)] (3.20)
k—th cgelflz o * kozlrrx - rklz ko‘rn - rkl ’ ’ ’ .
for the vertical field.

This method of calculating the cylindrical Green's functions has been verified by
comparing it to both the fast Hankel transform as well as Zhou's numerical summation
of magnetic dipoles. A comparison of this method to the fast Hankel transform for the
singular cell is shown in Figure 3.3. Notice that the 3-D Simpson integration method
avoids the erroneous oscillations present in the fast Hankel transform results. For a non-
singular cell the difference between the results produced by the two methods is almost
negligible. Comparisons of this method to Zhou's method again show almost identical
results for both singular and non-singular cells. In fact the only major difference between
the different methods of calculating the Green's function for the non-singular cell is the
computational time involved. The 3-D Simpson integration is 3 to 5 times quicker than
the fast Hankel transform and at least 2 orders of magnitude faster than Zhou's method.

62



This fact alone allows significantly more difficult models to be calculated and thus for the
remainder vof this thesis this schema for the remainder of this thesis to calculate the
Green's functions.

3.2 Forward modeling with the first order Born approximation

In his thesis, Zhou(1989) compared images of the conductivity distribution resulting
from synthetic data that were calculated with the first order Born approximation to
images of data generated with the full forward solution. For the low contrast models
employed in that work, the two images were almost identical. In this section a forward
modeling algorithm will be developed which employs the first order Born approximation
as developed in the last chapter and these approximate results compared to those
calculated with the full solution. This new work will thoroughly analyze the limits of the
Born approximation as a forward modeling scheme and determine the point at which it
fails.

The approximate magnetic fields are calculated using the.linearizcd forms of
equations 3.5 and 3.6. Once again, this is accomplished by replacing Ee,, which is

dependent on O;, with Es’ which depends only on the background conductivity. The

resulting expressions have the form

N
Hi(r,o ) =~00 Y, 0Es [Guylr,,r)drdz, (3:21)

Jj=t j=thcell

for the radial secondary field and

Hi(r,,,Ty) =~ a.,io JEo! |Gy (r,,r))drdz, (3.22)
J=1 j—thcell
for the vertical field where Es is calculated at the center of the j 'th cell using equation
2.7. .

As mentioned in Chapter 2 the first order Born approximation is only valid when
weak scattering occurs within the medium. Habashy, et al. (1992) show that the
definition of weak is not only dependent on the conductivity contrast between the body
and the background medium, but also the size of the scattering body and the operating
frequency. Under these conditions it was also shown by Zhou (1989) that the error is on
the order of the perturbation in the background wave number times the distance the wave

travels in the anomalous material. Thus the usefulness in the Born approximation is
dependent on the anomalous induction number, Ac@WS =20 S/ 5> where S is the cross-
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sectional area of the inhomogeneities that are present in the medium and 3 is the skin
depth of the background medium.

To illustrate this concept the models shown in Figure 3.4 are employed. Four
different bodies of square cross sectional area are located at different positions between
two wells. The secondary vertical magnetic fields have been calculated using the full
integral equation solution given in equations 3.1 through 3.6 and compared to the
approximate Born solution given in expression 3.22. The mean phase and amplitude
errors of the approximate fields and the standard deviation of these errors are listed in
Table 3.1 as a function of the model and its anomalous induction number (Ac®WS ). The
horizontal components of the scattered fields were also computed and the errors between
the first order Born and full solutions determined. However because these errors were
found to be of the same magnitude and to exhibit the same characteristics as the vertical
field errors, they have not been included here.

The validity of the Born approximation in these results is clearly related to the
magnitude of the scattering body's induction number. For a mean error of less than one
percent, the induction number of the object must be less than approximately 0.02. It is
also evident from the relatively small values of standard deviation that the magnitude of
the error is fairly independent of the source and receiver position.

By multiplying the x axis of the Born kernel plots given in Figures 2.3 through 2.5 by
the object function O(r) the kernel can be plotted as a function of anomalous body
induction number rather than the background induction number. The kernel function that
results from using the parameters of model 2 in Figure 3.4 is shown in Figure 3.5.
Comparing this plot to the results in Table 3.4 indicates that the point at which the error
reaches 1% occurs just below the peak of the kernel. Below this value the mean error
decreases linearly with the kernel as the induction number is decreased, while above it
the error increases with the induction number in a nonlinear manner. Thus it can be
assumed that this is the point at which mutual interaction of the scattering currents must
start being accounted for.

Though the error is dependent primarily on the size of Ao, there is some reliance on
the magnitude of the contrast between the body and the background (G,/6,), or in other
words in terms of the object function Ac/0y. To demonstrate this Model 2 in Figure 3.4
has again been employed with different background conductivities and object functions.
Table 3.2 shows that although the errors for constant induction numbers are within the
same order of magnitude, they are definitely larger when the contrast is greater. This
coupled with the fact that the error is dependent on the position of the body with respect
to the source well indicates that the value of ACWWS=0.02 should be used only as an
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approximate rule of thumb when determining at which point the Born approximation

becomes invalid.
% Amplitude Degrees Phase
Error Error
Model | Freq AG | Acwus || Mean | Stand. || Mean [ Stand.
(Hz) | (S/m) Dev. Dev.
1 1x102 0.0T 11.97x104{ 3.2x103 | 1.3x10-4}f -1.8x103 | 7.4x10->
1 1x103 0.01 |1.97x103 | 3.1x102 | 1.3x10-3}} -1.7x10-2 | 7.4x104
1 1x104 0.01 |1.97x10-2{ 3.2x101 { 1.3x10-2}f -1.8x10-1 | 7.4x10-3
1 1x105 0.01 |1.97x101 3.0 1.3x10-1 Il -1.7 7.4x10-2
1 5x1053 0.01 |9.86x10-1 12.0 6.4x10-1 -7.0 4.1x101
2 1x102 0.01 |1.97x104| 1.0x102 | 2.8x10-> " -6.0x10-3 | 1.6x10-
2 1x103 0.01 |1.97x103[9.9x102 | 1.7x104}l -5.7x10-2 | 9.7x10-5
2 1x104 0.01 |1.97x10-2[ 9.0x101 | 1.3x10-3|| -5.0x10-! | 7.9x104
2 1x105 0.01 }1.97x101 5.8 1.6x10-2 -3.1 1.5x10-2
2 5x10° 0.01 |9.86x10-1 17.0 1.3x10-1 -8.4 1.8x10-1
2 2x103 0.05 | 1.97x10-2]9.9x101 | 1.5x103}} -5.6x10-! | 8.5x104
3 1x102 | 0.01 [1.97x104] 1.2x10% [ 2.1x104{| -7.1x10-3 | 1.2x104
3 1x103 0.01 | 1.97x103| 1.2x101 | 7.4x104}| -6.8x102 | 4.1x104
3 1x104 | 0.01 | 1.97x102{9.3x101 | 6.1x10-3 || -5.2x10-! | 3.6x10-3}}
3 1x105° 0.01 }197x101 5.7 9.1x10-2|f -3.0x10-! | 6.0x10-2
4 2.5x103 | 0.01 [1.97x10-2|7.7x10°! | 4.3x10-3|| -4.4x10-! | 2.5x10-3
4 2.5x104 | 0.01 | 1.97x10! 5.8 3.7x10-2 -3.2 2.7x102
4 2.5x103 | 0.10 | 1.97x101 7.7 4.4x102 -4.4 2.4x10-2
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Table 3.1 - Error of first order Born approximation for the different models shown in
Figure 3.4. 'Mean' refers to the calculated mean error for all source -receiver
combinations and 'Stand. Dev. ' the standard deviation of the errors about the mean.

% Amplitude Degrees Phase
Error Error
Freq o Ac | Ac/o Mean | Stand. || Mean | Stand.
(Hz) (S/1(1)1) (S/m) 0| Aowus Dev. Dev.
1x104 | 1x10-3| 0.01 10 1.97x102|[ 0.99 [1.7x10-3}f -0.57 |9.7x104
1x105 | 1x103 | 0.01 10 0.197 9.11 §1.3x102|| -5.1 |7.9x1073
1x104 | 1x10-2| 0.01 1.0 | 1.97x102} 090 |6.1x103 -0.50 |3.6x103
1x10° | 1x10-2{ 0.01 1.0 0.197 5.8 19.1x102 -3.1 |6.0x102
1x104 | 1x10'1| O.1 1.0 0.197 59 |1.6x102f -3.1 1.5x102
1x105 | 1x10-1] 0.01 0.1 0.197 2.89 |3.8x10-2)f -1.34 |5.1x102
Table 3.2 - Error of first order Born approximation for different background

conductivities and conductivity contrasts. The model employed is Model 2 in Figure 3.4.
"Mean' refers to the calculated mean error for all source -receiver combinations and
'Stand. Dev. ' the standard deviation of the errors about the mean.



To illustrate that these results hold for resistive bodies as well as conductors, i.c.
bodies in which the conductivity is less than that of the background, Model 2 in Figure
3.4 has again been employed with the values listed Table 3.3. Comparing this to Tables
3.1 and 3.2 it is evident that the mean error is almost identical for conductive and restive
bodies as long as the magnitudes of Ac and o are the same. However there is a definite
difference in the response of equations 3.21 and 3.22 for conductors and resistors. As the
anomalous body becomes more conductive relative to the background, Ac/Gp goes to
infinity and thus the Born approximation will at some point break down. However as the
conductivity goes to zero, i.e. a perfect resistor, Ac/Gg goes to -1 which doesn't
necessarily cause the approximate solution to fail. This implies that the first order Born
approximation will work better for calculating the response of resistors than for
conductors. This also demonstrates why inductive methods are insensitive to resistive
bodies which is a point that will be discussed more fully in the next chapter

% Amplitude Degrees Phase

Error Error
Freq | o, AG |AG/Ga| Acwus || Mean | Stand. | Mean | Stand.
Hz) | (S/m) | (S/m) 0 M Dev. Dev.

1x104 1.0 -099 | -0.99 -0.195 6.12 f1.6x102 3.25 |1.5x102
1x104 | 1x10-2 | -.0099 | -0.99 |-1.95x102}f 0.91 |1.3x10-3} 0.514 }|7.8x10+4
1x105 | 1x102] -.0099 | -0.99 -0.195 598 |1.6x102 3.25 |1.5x10-2
1x104 | 1x101 | -.01 0.1 }-1.97x10-2| 0.59 |1.6x103|| 0.32 |1.5x10-3
1x105] 1x10-1 | -0.01 -0.1 -0.197 297 |3.7x10-2f 1.38 }3.3x103

Table 3.3 - Error of first order Born approximation for a resistive body of different
conductivity in a background of various conductivities. The model employed is Model 2
in Figure 3.4. 'Mean' refers to the calculated mean error for all source -receiver
combinations and 'Stand. Dev. ' the standard deviation of the errors about the mean.

3.3 The Born series approximation

Equations 3.1 through 3.4 demonstrate how a linear system of equations can be set up
to solve for the internal electric fields (Eo)within a scattering body. An alternative
approach is to assume that Ee can be expanded in a Born, or Neumann series of the form
(Kong,1975)

Eo=3Eo . (3.23)

If this holds true than the electric field can be solved for iteratively. The schema for
doing this is developed here.
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The first term in the Born series is given by the first order Born approximation, i.e.,

I
E'(Dl;) =E§, - c"XOiEg; JG(ri’rj)dridzi s (3.24)
i=1 imth cell
the second term by
I
E(¢'2;) =E§, - G“ZOiEg) J G(r,,r;)dr,dz,;, (3.25)
i=1

i—~th cell

and so on with the N'th term having the form

1
E® =E3, -0 ), O.EN [G(r,r))dr,dz,. (326)
i=l i—th cell

The process is repeated until convergence occurs at which time E; is substituted in
equations 3.5 and 3.6 to calculate the magnetic fields at the receiver. The advantage of
this method over the full forward solution is that no matrix inversion is required and thus
very large models can be computed more efficiently. This advantage as well as the
disadvantages of the method are discussed more fully below.

3.3.1 Theoretical limitations of the Born series approach

Although the Born series approach provides a more accurate alternative to the first
order Born approximation, it will not work if the series expansion of the internal electric
field does not converge. To determine if and under what conditions it diverges let's
consider a body consisting of a single cell. In this case, N=1 for the summations given in
equations 3.24 through 3.26. The first order term of the scattered field is given by

E;® =-c,0,EZ. J' G(r,,r;)dr dz, (3.27)

where the ¢ represents the position and dimensions of the single cell. The second order
term is obtained by substituting this in 3.25:

E{? =-000,.[E} +E{"][G(r,r))dr,dz, = (3.28)

-G 0, [Ef; +—GCo OCE;’JG(r‘-, r;)dr dz, }JG(ri, r;)dr dz,.



Similarly the third order term is found to be

E;f3) == OC[Eg‘ + E;c@)” G(l',-,l'j)drcdzc = (3.29)

2
=-6¢0,EZ |1~ o0, [ G(r,.r,)dr,dz, + L— 600, [G(r,.r j)drcdzc) ] | Gr,or))dr dz,

and so on. The function within the square brackets on the right hand side of equation 3.29
is now recognizable as a geometric series. Thus the N'th term in the series can be

written as
E;™ =-0,0,[Ef +E;™][G(r,,r))dr dz, = (3.30)
N-1 n
~040,EZ [G(r,,r))dr,dz, Y | =060, [G(r,.r))dr dz, | -
c n=0 ¢

If N=oo, the infinite series will converge to

! (3.31)
1+ Ao, [G(r,r,)dr dz,
if and only if (Swokowski,1979)
-Ac, [G(r,,r;)dr dz, |<1. (3.32)

(Note: This the equivalent 2-D form of the 3-D non-linear operator developed by
Habashy et al. (1993).) Thus if this value is greater than or equal to 1 then the series
diverges and the Born series approximation can not be used to calculate the
electromagnetic fields in the medium. In addition, because the integral of the Green's
function given in equations 3.8 and 3.10 has an oy term out front and the integration is
over some area S, the limitations of this approximation are once again primarily
dependent on the anomalous induction parameter (Ac@WS =20 S / 8%) of the body. Thus

expression 3.32 gives us a method to determine when the series expansion is valid.
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3.3.2 Comparison of the Born series method to the full integral equation solution

To demonstrate the use and limitations of the Born series approach the model shown
in Figure 3.6 which consists of a body of tabular cross section centrally located between
two wells is employed. (Notice that the model employed here is larger than those used to
test the validity of the first order Born approximation in Section 3.2. As it will be
demonstrated, this is due to the fact that the Born series is a more accurate approximation
and thus can handle models with much larger anomalous induction numbers than can the
first order Born approximation.) The operating frequency and the dimensions of the body
have been fixed and the conductivity varied to yield five different anomalous induction
numbers. The first model is a fairly low contrast model , while model 5 represents a case
in which the Born series solution fails. Once again, because the mean amplitude and
phase errors in the vertical and horizontal scattered magnetic fields exhibited the same
characteristics, only results for the vertical component are presented here.

The mean error between the series and full solutions at each iteration are displayed
for each of the five models in Figure 3.7. In addition to the magnetic field errors, the
change in the internal electric fields between iterations has been plotted. The iterative
process was terminated in each case when the amplitude of these electric fields changed
less than 0.5% from one iteration to the next. The standard deviation of the error about
the mean was also calculated but like for the first order Born approximation, it was 2 to 3
orders of magnitude below the mean. Thus in order to make the following figures easier
to understand the standard deviations have not been included.

The results in Figure 3.7 show that for induction numbers less than or equal to one,
the Born series scheme works extremely well. Initial tests with these small models have
shown that when the Born series converges very quickly (under 5 iterations) this solution
is at least three times faster than the full solution. This is due to the fact that the matrix
inversion in the full solution requires 1/3N° to N3 calculations where N is the number of
unknowns (Press, et al, 1986). However the Born series solution involves only IN?
operations where I is the number of iterations. Thus when I is small, the Born series
solution is much faster. This will be very important for the conductivity imaging process
described in the next chapter.

It is evident from the slower series convergence of models 3 and 4 that the Born series
solution is beginning to fail. Model 4 represents approximately the largest induction
number (2.4) for which the Born series converges. Comparing this to the results listed in
Tables 3.1 through 3.3 indicates that the this approximate solution is able to accurately
calculate the electromagnetic fields for anomalous induction numbers two orders of
magnitude greater than that of the first order Born approximation.
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The Born series does not converge for model 5. Assuming that the body in Figure 3.6

can be thought of as a single cell allows us to estimate |~Ac, [G(r;,r;)dr dz | yielding a

value of 1.33. Because this is larger than 1.0 , as determined by expression 3.32 the Born
series fails to converge.

The above calculation verifies the mathematical cause for the divergence. To
determine the physical significance of this, the electric fields have been calculated on a
profile across the block shown in Figure 3.8 with the full integral equation solution .
Figure 3.9 shows the total and scattered field amplitudes and the phase difference
between the primary and total fields as a function of cell location. As the conductivity of
the block is increased, the scattered field also increases while the total electric field
becomes smaller. Comparing the results for models 4 and 5 indicates that the series
diverges when the scattered electric field in the block becomes larger than the total field.
Expression 3.30 can not converge when this happens because during the n'th iteration a
value is present in the right hand side that is larger than for the n-1'th iteration and thus
the magnitude of the left-hand side grows larger with each iteration. Incidentally this
coincides with the point at which the phase difference between the primary and
secondary fields well exceeds 45 degrees.

As it was determined in Section 3.3.1, the magnitude of the Green's function in
expression 3.31 is primarily a function of the size of the object as well as the operating
frequency and therefore the convergence of the series is strongly dependent on the
anomalous induction number of the body. To demonstrate this the size and conductivity
of the block is held constant and the frequency varied to produce the error analysis shown
Figure 3.10. Next the size of the block was varied while the frequency-conductivity
product was held constant (Figure 3.11) and these results are shown in Figure 3.12. As
predicted both these Figures show that as the induction number of the body becomes
larger than 1, the Born series begins to diverge.

The rate at which series converges is also dependent on the position of the body,
especially for induction numbers greater than 1. This is illustrated with the models shown
in Figure 3.13. A block with AcwuS=1.6 is placed in three different positions and the
errors between the full and Born seriessolutions calculated at each iteration. Figure 3.14
shows that as the body gets closer to the receiver well, the solution takes longer to
converge. This agrees well with the sensitivity diagrams in the last chapter which
showed that the most sensitive region is directly adjacent to the receiver borehole.

Although from equation 3.32 it is apparent that it is primarily the difference (AGc)
rather than the ratio (0,/0g) between the anomalous and background conductivities that
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dominates the behavior of the Born series, the magnitude of the conductivity ratio does
have some influence on the convergence. To illustrate this the model shown in Figure 3.6
has again been employed. With Ac held constant at 0.99 S/m, background conductivities
of 1.0, 0.1, 0.01 and 0.001 S/m have been employed which varies 6, accordingly. The
results in Figure 3.15 show that as the background conductivity is decreased and thus the
contrast increased, the series takes longer to converge. (Notice that only the internal
electric fields have been plotted here. This is because if the magnetic field errors are
included, the illustrations become very congested and difficult to comprehend.) The
reason for this becomes evident when the singular cell Green's function is calculated for
the same background conductivities and operating frequency as given in the model. It is
evident figure 3.16 that as the background conductivity increases and thus the ratio
decreases, the amplitude of this integrated function also decreases and thus expression
3.32 becomes easier to satisfy.

Finally to prove that the series converges in approximately the same manner for
bodies that are less conductive than the background, i.e. resistive bodies, as it does for
conductive bodies, the model shown in Figure 3.17 has been employed. The target in the
first example has a conductivity of 0.01S/m and is embedded in a background of 1.0S/m,
while the second employs a target of conductivity 0.1S/m embedded in a 10.0S/m
background. The results shown in 3.18 are very similar to those given in Figures 3.7,
3.10 and 3.12 with the convergence of the series being dependent on the magnitude of
Ac.

3.4 Comparison of the 2-D cylindrically symmetric model to other models

Though the two dimensional, cylindrically symmetric model is computationally
efficient and useful in describing some situations, useful geological models often require
either more complicated 2 1/2-D and/or 3-D geometries or sometimes simpler 1-D
layered geometries. In Chapter 2 a spatial sensitivity analysis showed that cross well
electromagnetic measurements are very sensitive to the geometry and to the length extent
of an anomalous body in the direction perpendicular to the plane containing the wells.
However, it was also determined that the sensitivity to this region is decreased as the
background induction number is increased. To tie these ideas in with those developed in
this chapter, the Born series solution developed for a 2-D cylindrically symmetric
medium will be compared to 1-D, 2 1/2-D, and 3-D models.
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3.4.1 Comparison to 1-D horizontally layered models

In theory, the cylindrically symmetric integral equation solution can be used to
compute the response of horizontal layers by extending the radius of the slab (r) to
infinity. However due to numerical errors and limits on computer memory there are
limitations of how large and complex the model can be. In addition, because the Born
series approximation can only can be used to model bodies of finite induction number, at
some point with increasing slab radius, frequency, conductivity and/or layer thickness the
series will become divergent.

To both demonstrate the limitations of the Born seriessolution as well as illustrate
certain properties that were revealed in the sensitivity analysis of Chapter 2, the model
shown in Figure 3.19 is employed. A 20m thick layer of conductivity G,is located in a
whole space of conductivity 6. Two 120m deep wells are separated by 100m and both
penetrate the layer. The vertical magnetic field calculations for the layered model were
made, for source and receiver intervals of 10m, with a 1-D solution written by Lee (1988)
which is based on a method originally published by Stoyer (1977). To simulate the layer
with the cylindrically symmetric model, a 20m thick slab was extended out to a radius of
L. Different frequencies, conductivities and slab radii (L) have been employed and the
errors between the two solutions computed. The results of this analysis are listed in Table
3.4 for a conductive layer, and Table 3.5 for a resistive layer.

Several things are evident from these results. As expected, the Born series converges
as long as the induction number of the radial slab is small. At higher frequencies and
large contrasts, more iterations are needed. Raising the frequency and thus the
background induction number while keeping L constant causes the mean amplitude and
phase errors in the scattered field to decrease. This phenomenon was discussed in Chapter
2 and is caused by a decrease in sensitivity of the array to the region outside of the well
with increasing induction number. In fact the mean error at 100 kHz is less than 10% in
amplitude and 5° in phase without extending the layer beyond the receiver well at all.

The 1% amplitude error at lower frequencies indicates that the cylindrically
symmetric solution is accurate and can be used to calculate the EM response of layered
media. Unfortunately, these results also demonstrate that the cylindrical slabs equivalent
to the layers inherently have large anomalous induction numbers (AcwpS). In addition,
the inability of the amplitude error to converge to less than 3% at 100 kHz indicates the
integral equation solution might be exhibiting some numerical instabilities which will be
discussed in more detail below. Both conclusions suggest that in order to more accurately
and effectively determine the effects of smaller inhomogeneities, the layer response

72

|



)

73

should somehow be removed from the model . A method for doing this which employs a

layered background model will be developed in the next chapter.

% Amplitude || Degrees Phase “
Error Error

Freq G Cell L (m) N Mean | Stand. | Mean | Stand. ’]
(Hz) (S/:n) Dim(m) Dev. Dev.
2x103 [ 0.02. | 10X10 100 2 95 28 48 16
2x103| 0.02 | 10X10 | 200 3 6.7 2.3 2.6 1.6
2x103] 0.02 | 10X10 | 300 3 1.2 0.61 0.018 0.27
2x103] 0.02 | 10X10 | 400 3 1.1 0.86 0.45 0.33
2x103}| 0.10 | 10X10 100 6 73 24 35 14.6
2x1031 0.10 | 10X10 | 200 18 2.7 1.3 1.3 0.87
2x103| 0.10 | 10X10 | 300 54 1.0 0.80 0.33 0.34
1x104| 0.02 | 10X10 100 3 32. 15 15. 6.4
1x104| 0.02 | 10X10 | 200 4 1.4 0.66 0.20 0.09
1x104] 0.02 | 10X10 | 300 5 1.3 0.72 0.21 0.12
1x105 | 0.02 5X5 100 12 7.0 6.5 3.1 3.0
1x10°| 0.02 5X5 200 20 3.3 4.0 1.1 1.9

Table 3.4 - Error between the Born series approximation and the 1-D solution for a
conductive layer. The model employed is given in Figure 3.19 with a background
conductivity of 0.01s/m. 'N'is the number of iterations the series takes to converge,
'Mean' refers to the calculated mean error for all source -receiver combinations and
'Stand. Dev. ' the standard deviation of the errors about the mean.

% Amplitude Degrees Phase
Error Error

Freq | ¢, Cell | L(m) N Mean | Stand. | Mean | Stand. ll
(Hz) | (§/m) |Dim(m) Dev. Dev.
2x10°| 0.01 SX5 100 4 22 12 6.5 4.3
2x103 | 0.01 5X5 200 6 0.38 0.16 0.16 0.06
1x104| 0.01 5X5 100 9 6.5 55 53 1.51
1x104| 0.01 5X5 200 17 1.3 0.32 1.15 0.31

Table 3.5 - Error between the Born series approximation and the 1-D solution for a
resistive layer. The model employed is given in Figure 3.19 with a background
conductivity of 0.01s/m. 'N'is the number of iterations the series takes to converge,
'Mean' refers to the calculated mean error for all source -receiver combinations and
‘Stand. Dev. ' the standard deviation of the errors about the mean.



As the standard deviations in Tables 3.4 and 3.5 indicate, the error is not consistent
for any source - receiver combination but rather varies depending on their position. In the
previous sections when the first order and Born series approximate solutions were
compared to the full integral solution this was not the case. In those comparisons the
models that were employed exhibited the same 2-D cylindrically symmetric geometry,
they were discretized in the same manner and were calculated using the approximately
the same theory. Because of this, the standard deviation of the errors about the mean
were 2 to 3 orders smaller than the mean error itself. Here a 1-D modeling scheme
that employs impedance matching at boundaries (Stoyer, 1977) is being compared to a 2-
D integral equation solution and thus the errors exhibit a wider distribution.

To illustrate how the error is distributed for the first and fourth models listed in Table
3.4, the error between the full integral equation solution and the Born series
approximation is shown in gray scale format as a function of source position on the x axis
and receiver position on the y axis. The first model represents a poor fit and the resulting
errors are shown in Figure 3.20. Notice that the maximum error occurs when the source
is far away from the layer. This can be contrasted to a better fitting model in which the
calculated mean error between the two solutions was 1%. Figure 3.21 shows that the
maximum errors occur when both the source and receiver are within the layer. The
same type of error distribution exists at other frequencies, and for different layer
conductivities which suggests that the integral equation solution exhibits numerical
problems when the both the source and receiver are located within the layer. These could
be caused by discretization which is too coarse near the source and receiver. On the
other hand, the 1-D solution is designed to calculate the total fields in the medium.
Recalculating the mean error of the total vertical magnetic field for the best fitting
conductive layer models as shown in Table 3.6 demonstrates that the results actually fit to
under 1% amplitude and 0.5° phase. Thus it is unclear which method is numerically
more stable, and in fact there may be inconstancies present in both computational
methods which are causing the errors between the two solutions.
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Scattered Field Total Field
Error Error
Freq | o, Cell | L (m) N Amp | Phase | Amp | Phase
(Hz) | (S/m) |DPim(m) (%) | (Deg) | (%) | (Deg)
2x103{ 0.02 10X10 400 3 1.1 0.45 0.062 0.029
2x103| 0.10 | 10X10 | 300 54 1.0 0.33 0.55 0.26
1x1041 0.02 | 10X10 { 300 5 1.3 0.21 0.25 0.11
1x105| 0.02 5X5 200 20 3.0 1.1 0.80 0.24

Table 3.6 - Scattered and total field error between the Born series approximation and the
1-D solution . The model employed is given in Figure 3.19 with a background
conductivity of 0.01s/m. 'N'is the number of iterations the series takes to converge and
the amplitude and phase errors are the mean error..

3.4.2 Comparison to 3-D sheet models

In general the earth is not cylindrically symmetric about the source dipole axis but
rather exhibits a three dimensional geometry. An excellent description of 3-D modeling
techniques can be found in Hohmann (1988). Unfortunately up until a few years ago
these modeling programs required a super computer to calculate the response for all but
the simplest models. However due to recent advances in computing power, many of
these programs can now be run on desktop computers. We have found the integral
equatibn solution developed by Newman and Hohman (1988) to be very useful, though it
is time consuming for larger models and high frequencies. Druskin (1992) has developed
a super fast finite difference scheme which unfortunately is not readily available. Because
of the computational time required by the former and the lack of availability of the latter,
a thin sheet algorithm originally written by Wiedelt (1981) and modified by Zhou (1989)
for the cross hole geometry is employed to compare simple 3-D models to the
cylindrically symmetric formulation.

To determine how well the cylindrical solution can approximate a simple 3-D body,
the model shown in Figure 3.22 is used. The scattered vertical magnetic fields have been
calculated for a 40m by 40m conductive sheet located between two boreholes as shown.
In the first model the sheet is located symmetrically about the source borehole. For this
case the 2-D and 3-D formulations should match very well. The sheet is then moved
progressively further away from the source borehole. For the 2-D model this corresponds
to the enlargement of a ring of conductive material. The calculations were made at three
different frequencies; 1 kHz, 10 kHz and 100 kHz. The resuits of this test in terms of the
mean amplitude and phase error, and their standard deviations are given in Table 3.7.



When the sheet is located symmetrically about the source borehole (x. =0), the error
between the two solutions is less than 5% 1in all cases. This once again verifies the
validity of the Born series approximate solution. The fact that the error gets larger as the
frequency is raised may be indicating that higher frequencies are slightly more sensitive
to the shape of the body, or that one or both of the solutions is breaking down at higher

frequencies.

---------- 1kHz 10 kHz --- 100 kHz

% Amp Phase % Amp Phase % Amp Phase

Error Error (Deg) Error Error (Deg) Error Error (Deg)|
x. || Mean|Stan |Mean|Stan ||Mean | Stan | Mean | Stan || Mean | Stan | Mean | Stan
(m) Dev. Dev. Dev. Dev. Dev. Dev.
0. I 22 104871 0.5 [0.10}f 3.0 J056}) 0.2 {0.04}f 3.3 {073} 1.6 |0.31
10.|l 62 [ 69 20 | 53§ 36 | 441 20 27| 39 | 18] 20 | 12
20. ] 58 11 20 | 584 37 |66} 21 |38} 10 {35 55 | 16
50. 4 36 13 19 |90 73 66| 67 38} 39 | 50] 12 |0.33
80. " 81 57 54 | 49 72 {25 ) 75 | 61| 35 |123) 10 | 1.5
100.{| 1920 {14231 236 | 9.0 §f 250 | 174 | 38 13 31 |"17. 1 3.2 10.80

Table 3.7 - Error between the 2-D Born series approximation and the 3-D thin sheet
solution for the models shown in Figure 3.22. 'x.'refers to the location of the center of
the sheet away from the source borehole, 'Mean' refers to the calculated mean error for
all source -receiver combinations and 'Stand. Dev. ' the standard deviation of the errors
about the mean. The labels at the top refer to calculations made at 1,10 and 100 kHz.

As the sheet is moved off center to x.=10m and 20m, the error between the two
solutions at 1 and 10 kHz quickly increases. This is likely due to current channeling
effects that dominate the 3-D response at low frequencies. At 100 kHz however, the
solutions match fairly well. At this frequency with the sheet centered at x =10m the
mean error is approximately the same as it was for the centered sheet, and for x, =20m the
average amplitude error is only 10%. As the body is moved even further out into the
medium (x. =50.0, 80.0 and 100.0 m) the mean error at the lower frequencies continues to
increase, maximizing when the sheet is symmetric about the receiver. Though the error
also increases at 100 kHz, the average amplitude error is never larger than 40% even
when the body surrounds the receiver borehole.

The above results confirm the analysis completed in section 2.4.2 where it was
determined in that section that as the frequency is raised, the sensitivity for a given
source-receiver pair becomes less dependent on the model geometry that is imposed upon
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the problem. At 100 kHz the array will be less sensitive than lower frequencies to the
edges of the 3-D body that are located at y =%20 m, and thus the error between the two
solutions will also be less. This will be discussed more fully in the next subsection.

When the sheet is located close to the source borehole, the standard deviation of the
errors about the mean tends to be 5 to 10 times less than mean error itself. Though not as
good as the standard deviations observed Section 3.3, this is definitely better than those
observed in the comparison with the 1-D solution. However, as the sheet is moved out
away from the source borehole, the magnitude of the standard deviation increases with
respect to the mean such that when the sheet is symmetric about the receiver, the average
error and its variation are on the same order of magnitude.

Because of the relatively large standard deviations in the cases described above, the
distribution of the error is plotted as a function of source and receiver location, the
location of the sheet, and frequency, in the gray scale format developed in the last
subsection. Figure 3.23 shows the error between the 3-D and cylindrical models for xc
=20.0m and a frequency of 1 kHz, and Figure 3.24 the same model with the frequency of
100 kHz. At the lower frequency (Figure 3.23), the best fit occurs when the source is far
from the sheet and the receiver is near it. This contrasts sharply with Figure 3.24 which
shows that at 100 kHz the maximum error occurs with the source and receiver in this
same configuration and the minimum error between the two solutions occurs when both
the source and receiver are fairly close to the sheet. These two figures can in turn be
compared to the error plots for the sheet that is symmetric across the receiver borehole.
For both the low frequency (Figure 3.25) and the higher frequency (Figuré 3.26) the
minimum error occurs when the receiver is close to the sheet.

The error plots presented in Figures 3.23 through 3.26 do show different
characteristics depending on the location of the body. For the imaging process described
in the next chapter, a least squares minimization technique is used to fit the data to the
image. If the image fits the data very well, the errors should be randomly distributed. The
appearance of patterns like those displayed in these figures might indicate the presence of
structure in the earth that the model employed in the imaging routine can not.account for.
Thus the use of this error analysis will be discussed more thoroughly in the next chapter.

3.4.3 Comparison to 2 1/2-D sheet models

In Chapter 2 the cylindrically symmetric geometry was compared to the 2 1/2-D
geometry by Calculating the sensitivity functions for the two different geometries. To
verify the conclusions of that comparison a 2 1/2-D body is approximated with an
extended version of the thin sheet models shown in Figure 3.27. The three bodies are
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20m across and extend 300m in the direction perpendicular to the cross well plane.
Again three frequencies were employed and the error between the two solutions

calculated (Table 3.8).

---------- 1kHz -- 10 kHz --emeeene|femeanaeeae 100 KkHz

% Amp Phase | % Amp Phase % Amp Phase

Error |Error (Deg){l Error |Error (Deg)i Error |Error (Deg)
X: || Mean[Stan |Mean|Stan || Mean | Stan | Mean | Stan || Mean | Stan | Mean | Stan
(m) Dev. Dev. Dev. Dev. Dev. Dev.
1000 87 [ 25 20 [ 524 76 20 33 |37 42 |32} 20 [ 19
50.04 56 | 11 20 | 854 29 [ 57} 16 | 36) 55 120] 19 [0.38
90.0{f 158 | 127 | 115 | 103 )] 40 | 29 19 13 10 | 5.1 )28 | 1.5

Table 3.8 - Error between the 2-D Born series approximation and the 2 1/2-D
approximation with the thin sheet solution for the models shown in Figure 3.27. 'x'
refers to the location of the center of the sheet away from the source borehole, ‘Mean'
refers to the calculated mean error for all source -receiver combinations and 'Stand. Dev. '
the standard deviation of the errors about the mean. The labels at the top refer to
calculations made AR 1,10 and 100 kHz.

These results compliment well the conclusions drawn in section 2.4.2. The mean
error is greatest when the body is near the source. The sensitivity diagrams indicated that
the worst correlation between the two geometries occurs at these locations. When the
sheet is centrally located both the mean error, and in the 100 kHz case, the standard
deviation about the mean, are minimized. As the sheet is moved close to the receiver
well, the mean error and standard deviation increase. However, once again the higher
frequencies result in a smaller mean error. These results validate the spatial sensitivity
analysis accomplished in Chapter 2 and prove that at low frequencies, a given source -
receiver pair is very sensitive to the geometry of a scattering body outside of the interwell
region and that this phenomenon is diminished by operating at higher frequencies.

3.5 Summary
In this chapter the benefits and drawbacks of both the Born and Born series

approximations have been demonstrated as have the limitations of the cylindrically
symmetric model. The first order Born approximation is computationally very simple but
limited to modeling anomalous bodies whose anomalous induction numbers are relatively
small. The Born series approximation can be used to accurately calculate the response of
scatterers with anomalous induction numbers two orders of magnitude greater than those
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that can be treated with the first order approximation and it is considerably faster than the
full integral equation solution.

General rules have been developed to determine when both of these approximations
degenerate to an unacceptable level of accuracy. These rules are based on the anomalous
induction number of the scattering body which is defined as AcwusS =20 5 /8%and is
dimensionless. The first order Born approximation has been found to be accurate to 1%
for AcwpS £0.02 while the Born series approximation converges for all AcopS <2.0.

The cylindrically symmetric model has been demonstrated to be very useful for
modeling cross well EM problems. The computation of the Hankel transforms that
constitute the Green's function can be unstable. Fortunately a Simpson integration
method for a 3-D Green's function seems to eliminate this problem. The cylindrical
geometry works rather well in modeling 1-D layered media although numerical errors
exist when the source and receiver are within the anomalous layer. A comparison
between the cylindrically symmetric models and 2 1/2-D and 3-D models shows that at
higher frequencies the measurements are less sensitive to the dimensions of the
conductivity anomaly outside of the plane containing the two wells. The effects of these
geometries on an imaging scheme employing the cylindrical geometry will be discussed
more fully in Chapter 4.
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Figure 3.1 -The electric field Green's function (Expression 3.8) calculated numerically at
three different field points as a function of the current cell location. The abscissa
represents the radial distance from the origin to a Sm by 5m cell that contains of a unit
amp of current flowing in the angular direction about the origin. (a) Real component. (b)
Imaginary component.
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Figure 3.2 - Illustration of Simpson integration of 3D volume elements to produce a
cylindrically symmetric Green's function that has been integrated over the cross sectional

area of the cell.
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Figure 3.3 - Comparison of the 3D Simpson integration and the fast Hankel Transform
method of calculating the cylindrical Green's function . Results have been calculated at
two different field points as a function of the current cell location. The abscissa represents
the radial distance from the origin to a Sm by 5m cell that contains one ampere of current
flowing in the azimuthal direction about the origin. The current cell and the field point
are both located at z=0 and thus the integration is over the singular cell.
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Figure 3.4 - Model used to analize the limits of the Born approximation as a forward
modeling scheme. Two 100m deep wells are separated by 100m in a 0.01 S/m whole
space. Sources and receivers are located at 10m intervals within the wells. Models 1,2
and 3 are 5m by 5m, and model 4 (the shaded square) is 10 m by 10 m. The models were
discreetized into 1m by 1m cells and the secondary vertical magnetic fields calculated for
each source-receiver pair.
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Figure 3.5 - The Born kernel for model 2 in Figure 3.4 plotted as a function of the
anomalous induction number of the body. The line marks the point at which the error of
the Born approximation for model 2 is 1% with the error increasing to the right.
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Model# 0. ACOU*AxAz
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2 010 1.4x101
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Figure 3.6 - Model used to analize the limits of the Born series approximation as a
forward modeling scheme. Two 100m deep wells are separated by 100m in a 0.01 S/m
whole space. 11 sources and receivers are spaced at 10m intervals within the wells and
the operating frequency is 1000 Hz. A conductive block of varying conductivity is
situated in the center of the array. The body was discreetized into 50 2m by 2m cells and
the secondary vertical magnetic fields calculated for each source-receiver pair.
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Figure 3.7 - Mean error in the scattered vertical magnetic field between the Born
seriesand full solutions, and the mean change in the internal electric fields from one
iteration to the next for the models shown in Figure 3.6 as a function of the iteration
number. (a) Mean amplitude error and difference in percent. (b) Mean phase error and
difference in degrees.
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Figure 3.8 - Model used to analize the electric fields in the body at the limit of the Born
series approximation. A conductive block of varying conductivity is situated in the
center of the array and the electric field is calculated in10 cells across the blocks center .
A vertical magnetic dipole source operating at 1000 Hz is located at the same depth as
the body. "Model #' refers to the models listed in Figure 3.6.
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Figure 3.9 - The electric field behavior across the conductive block shown in Figure 3.8.
The model numbers refer to the block conductivities listed in Figure 3.6. (a) The total
and scattered electric field amplitude as a function of cell location. (b) The phase
difference between the total and primary electric fields as a function of cell location.
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Figure 3.10 - Mean error in the scattered vertical magnetic field between the Born series
and full solutions, and the mean change in the internal electric fields from one iteration
to the next. Model 2 in Figure 3.6 has been employed with 3 different operating
frequncies and the results plotted as a function of iteration number. (a) Mean amplitude
error and difference in percent. (b) Mean phase error and difference in degrees.
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Figure 3.11 - Model used to analize the limits of the Born series approximation as a
forward modeling scheme. Two 100m deep wells are separated by 100m in a 0.01 S/m
whole space. 11 sources and receivers spaced at 10m intervals within the wells and the
operating frequency is 1000 Hz. A conductive block of varying size is situated in the
center of the array. The body was discreetized into 2m by 2m cells and the secondary
vertical magnetic fields calculated for each source-receiver pair.
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Figure 3.12 - Mean error in the scattered vertical magnetic field between the Born series
and full solutions, and the mean change in the internal electric fields from one iteration
to the next for the different models shown in Figure 3.11 as a function of the iteration
number. (a) Mean amplitude error and difference in percent. (b) Mean phase error and
difference in degrees.
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Figure 3.13 - Models used to analize the position dependence of the Born series
approximation. Two 100m deep wells are separated by 100m in a 0.01 S/m whole space.
A conductive block is located at three different positions from the source well. The two
wells contain 11 sources and receivers spaced at 10m intervals and the operating
frequency is 1000 Hz. Each body was discreetized into 50 2m by 2m cells and the
secondary vertical magnetic fields calculated for each source-receiver pair.
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Figure 3.14 - Mean error in the scattered vertical magnetic field between the Born series
and full solutions, and the mean change in the internal electric fields from one iteration
to the next for the models shown in Figure 3.13 as a function of the iteration number. (a)
Mean amplitude error and difference in percent. (b) Mean phase error and difference in
degrees.
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Figure 3.15 - The mean change in the internal electric fields from one iteration to the
next for Model 2 shown in Figure 3.6 with differnt background conductivities as a
function of the iteration number. (a) Mean amplitude difference in percent. (b) Mean
phase difference in degrees.
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source borehole. THe amplitude has been plotted as a function of frequency.
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Figure 3.17 - Model used to analize the limits of the Born series approximation as a
forward modeling scheme for resistive bodies. Two 100m deep wells are separated by
100m in a whole space of conductivity Go. 11 sources and receivers are spaced at 10m
intervals within the wells and the operating frequency is 1000 Hz. A resistive block of
varying conductivity is situated in the center of the array. The body was discreetized into
50 2m by 2m cells and the secondary vertical magnetic fields calculated for each source-

receiver pair.
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Figure 3.18 - Mean error in the scattered vertical magnetic field between the Born series
and full solutions, and the mean change in the internal electric fields from one iteration
to the next for the models shown in Figure 3.16 as a function of the iteration number. (a)
Mean amplitude error and difference in percent. (b) Mean phase error and difference in
degrees.
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(b)

Figure 3.19 - Model used to compare the Born series solution for cylindrical geometry to
a 1D layer. (a) The layered model. Two 100m deep wells are separated by 120m in a

whole space of conductivity Go. For the conductive layer model, 6o =0.01S/m. For the

resistive model 6¢=0.1S/m. A 20m thick layer of varying conductivity extends to
infinity in the horizontal directions. The two wells contain 13 sources and receivers
spaced at 10m intervals. (b) The cylindrically symmetric model. All dimensions are
identical to the layered model except the slab extends horizontally outward from the
source well to a radius of L.
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Figure 3.20 - Misfit error between thelD layered solution (Lee,1988) and 2D cylindrical
integral equation solution employing the Born series approximation for the first model
listed in Table 3.4. The errors have been plotted as a function of source and receiver
location. (a) Amplitude error as a percentage of the 1D amplitude. (b) Phase difference
between the two results.
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Figure 3.21 - Misfit error between thelD layered solution (Lee,1988) and 2D cylindrical
integral equation solution employing the Born series approximation for the fourth model
listed in Table 3.4. The errors have been plotted as a function of source and receiver
location. (a) Amplitude error as a percentage of the 1D amplitude. (b) Phase difference
between the two results.
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Figure 3.22 - Models used to compare the Born series olution with cylindrical geometry
to a 3D thin sheet model. (a) Side view of the thin sheet model. (b) Plan view of the thin
sheet model. Two 100m deep wells are separated by 100m in a whole space of
conductivity 0.01S/m. A 40m by 40m thick of thin sheet of conductance 0.28 is located
with its center at yc =0 and xc at Om, 10m, 20m, 50m 80m and 100m. The two wells
contain 11 sources and receivers spaced at 10m intervals. The sheet is discretized into
4m by 4m cells and the scattered vertical magnetic field calculated for each source-
receiver pair. The three different sheets in b indicate models with xc =0m, xc =50m and

xc =100m. (c) Continued on next page.
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Figure 3.22 (Continued) (c) Plan view of the cylindrically symmetric models
corresponding to the sheet models shown in b. The conductive rings are 0.5m thick in the
and their conductivity is 0.4S/m. To simulate a thin sheet the rings have been discretized

into a single layer of 0.5m by 0.5m cells.
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Figure 3.23 - Misfit error in the scattered vertical magnetic field between the 3D thin
sheet solution (Zhou,1989) and the 2D integral equation solution employing the Born
series approximation for the center of the sheet at xc =20m and a frequency of 1 kHz. The
errors have been plotted as a function of source and receiver location. (a) Amplitude
misfit in percentage of the thin sheet amplitude. (b)Phase difference.
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Figure 3.24 - Misfit error in the scattered vertical magnetic field between the 3D thin
sheet solution (Zhou,1989) and the 2D integral equation solution employing the Bormn
series approximation for the center of the sheet at xc =20m and a frequency of 100 kHz.
The errors have been plotted as a function of source and receiver location. (a) Amplitude
misfit in percentage of the thin sheet amplitude. (b)Phase difference.
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Figure 3.25 - Misfit error in the scattered vertical magnetic field between the 3D thin
sheet solution (Zhou,1989) and the 2D integral equation solution employing the Born
series approximation for the center of the sheet at xc =100m and a frequency of 1 kHz.
The errors have been plotted as a function of source and receiver location. (a) Amplitude

misfit in percentage of the thin sheet amplitude. (b)Phase difference.
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Figure 3.26 - Misfit error in the scattered vertical magnetic field between the 3D thin
sheet solution (Zhou,1989) and the 2D integral equation solution employing the Born
series approximation for the center of the sheet at xc =100m and a frequency of 100 kHz.
The errors have been plotted as a function of source and receiver location. (a) Amplitude
misfit in percentage of the thin sheet amplitude. (b)Phase difference.
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Figure 3.27 - Models used to compare the 2D cylindrical solution to the 2 1/2D solution.
The thin sheets extend out of the page 150m in both directions. Two 100m deep wells are
separated by 100m in a 0.01 S/m whole space. The two wells contain 11 sources and
receivers spaced at 10m intervals. The sheets have been discretized into 3.3m by 6.6m
cells and the scattered vertical magnetic fields calculated for each source-receiver pair.
For the cylindrically symmetric models, rings of conductivity were discreetized into 0.5m
by 0.5m cells.
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Chapter 4
Electromagnetic Conductivity Imaging using an Iterative Born Approach

Electromagnetic imaging refers to the process of directly converting measured
electromagnetic fields to a spatial distribution of electrical conductivity. Ideally this process
takes place without the involvement of any a priori model. The results are then presented
graphically to yield an image or picture of the distribution for visual interpretation by the
eye.

Most of the previous research involved frequencies greater than 1 MHz because of the
similarity between high frequency electromagnetic (HFEM) wave propagation in dielectrics
and seismic propagation in acoustic media (e.g. Howard et al., 1983, Laine, 1987, Habashy
and Mittra, 1987 and Sena and Toksoz, 1990). This similarity allows techniques which
have previously been developed for seismic analysis to be applied to interpretation of the
electrical structure of the earth. Unfortunately, because electrically conductive media are
highly attenuating, good results can only be obtained when the background is extremely
resistive or the boreholes are extremely close together. In many cases these requirements
render HFEM methods impractical. _

In order to propagate electromagnetic energy tens to hundreds of meters through
conductive rocks, frequencies lower than 100 kHz must be employed. At these frequencies
the EM fields act in a diffusive rather than a wave like manner. Zhou (1988) and Zhou et
al. (1992) showed that a diffusion analog of seismic diffraction tomography (Devany,
1984, Wu and Toksoz, 1987) can be developed for these lower frequency fields by
applying either the Born or the Rytov approximation. Although the resulting images
recover the geometry of the heterogeneities remarkably well, it was demonstrated in
previous chapters that for the Born approximation to be valid the scattering region (i.e. the
induction number of the body) must be electrically small . Unfortunately in the earth this
condition is often violated.

In order to account for greater conductivity perturbations, larger scattering bodies, and
higher operating frequencies, an iterative Born inversion technique can be used. In this type
of scheme the total electric fields in the medium are calculated at each iteration with some
type of forward modeling. Chew and Chuang (1984) propose an iterative distorted Born
approach to invert for a one dimensional profile using either a point or line source. In this
approach the unperturbed field values in a background medium of anomalous electric
conductivity and dielectric are used (Kong, 1975), i.e., the Green's functions used to
calculate the primary field are altered. Habashy et al. (1986) apply this technique to a
dipole source and a receiver in the same hole to recover the radially varying profile
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parameters. Sena and Toksoz (1990) propose an iterative Born approach which doesn't
alter the Green's function to simultaneously recover the conductivity and dielectric from
cross well data in radially varying media. Unfortunately though all of these cases assume
either a 1-D or 2-D cylindrical geometry, they all employ frequencies greater than 1 MHz.

The first published use of the an iterative Born inversion in the audio frequency range is
given in Barthes and Vasseur (1978) who apply it as the first step in an iterative scheme to
recover the conductance of a thin sheet imbedded in a layered half-space. More recently
similar methods have been developed for the low frequency cross-well case. Newman
(1992b) employs full 3-D modeling at each iteration to update the internal electric fields.
Although the forward calculations are robust, the overall inversion process is extremely
time and memory intensive. A much quicker method employing the second term in the
Bom series is developed by Alumbaugh and Morrison (1993). Unfortunately the simplicity
of the 'second-order Born approximation' renders the routine only slightly more accurate
than the first-order scheme of Zhou et al (1993). Torres-Verdin and Habashy (1993)
propose a scheme that utilizes a 'non-linear localized operator' to approximate the electric
fields in the medium. This routine not only proves to be time efficient but is also fairly
robust at lower frequencies.

In this chapter an electromagnetic conductivity imaging scheme will be developed that
employs the Born series approximation developed in Chapter 3 to calculate the electric
fields at each iteration. The resolution of the method will be demonstrated as function of
the frequency and the magnitude of the conductivity perturbation. Layered earth models
and data will be examined and a 1-D layered background model is incorporated into the
theory. An injection of conductive material at depth will be crudely simulated and the
results imaged to determine the usefulness of cross well EM in monitoring the progress of
such a process. This same model will be employed to determine the robustness of the
imaging scheme by including various amounts of noise. Finally, in the last section the
limits of the cylindrically symmetric model will be analyzed by imaging synthetic data
calculated for a 3D sheet.

4.1 Formulation of the Iterative Born inversion scheme

The iterative imaging scheme developed in this thesis is essentially a two step process.
The first step employs a least squares inversion technique to estimate the anomalous
conductivity distribution, while the second step applies forward modeling to calculate the
scattered electric fields within the anomalous zone. Because this forward modeling is
accomplished using the Born series approximation that was analyzed in Chapter 3, the
discussion here will focus on the least squares inversion process. A flow chart of the
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imaging algorithm is given in figure 4.1, and périodic references will be made to it for
clarification.

Before the imaging process is initiated, only the background conductivity is assumed to
be known. Thus the initial image is constructed by employing the first order Bormn
approximation. The discreet, approximate equations for the scattered magnetic fields are
given by

N
H: =—00Y OB [Guy,drdz (4.1)
Jj=1

j—thcell

for the radial or horizontal field and

N
H:, =—00 Y 0Es/’ j Gydr dz, (4.2)

i=t j=theell

for the vertical field where i designates the i'th source-receiver pair, j designates the j'th
cell,and O i is the object function to be solved for. All of the terms on the right hand side

other than O; are assumed to be known and can be grouped into what was referred to in

Chapter 2 as the sensitivity function, i.e.

Ky =0, Eé’ (r,ra)G (rex, T). 4.3)
Integrating over the j'th cell and writing this in discreet form yields

k,=CE¢; [Gydrdz;. | 4.4

J—thcell

Notice that this sensitivity equation can also be thought of as the weighting for the j'th
pixel and i'th source-receiver combination. Using this formulation for k;we can write 4.1

and 4.2 as

d.=3k0, | (4.5)
j=1

e A
where now d, is the measured scattered field data for i'th source-receiver pair. Rewriting

this in matrix form yields

D =KO' (4.6)
where D is an M element vector of the measurements, K is the N by M sensitivity or
weighting matrix relating the geometry of the model to the transmitter-receiver positions,
and O'is an N element solution vector. We can solve this set of linear equations for O' by
a least squares method in which we minimize the squared error function defined as



5(0') =|KO' -DJ*- 4.7)
The scheme employed to do this is discussed more fully below.
Because the sensitivity matrix is initially calculated using the first order Born
approximation, solving for O' using yields a first order image of the conductivity
distribution. To improve on this solution, the scattered electric field generated by O' is

calculated and included with the primary field in expression (4.4) to provide a better
estimate of the total electric field. Thus the updated form of k /15 given by

k, =C,(Ee"s +Es's) |Gy drdz, (4.8)

j—th cell
where Ey'; are the secondary electric fields calculated using the Born series approximation
given in Equations (3.24) through (3.26).
After the total electric fields have been determined for the region containing Q', the
magnetic fields generated by them are calculated for each source-receiver combination and
the mean residual error is determined. This error is defined by the expression

Er(n) = iLT___ (4.9)

where d; is the i'th data point, m; is the magnetic field that is calculated from O'for the
i'th source-receiver pair, and n is the number of data points. If Er(n) is equal to or less than
some predetermined noise level, then the scheme is terminated. However if the error is
greater than the noise level, then the whole process (equations 4.5 through 4.9) repeated
iteratively until Er(n) either approaches -the estimated noise level or converges to a

4.4.1 The smoothest least squares inversion technique

Unfortunately, the inversion of electromagnetic data is generally non-unique. The
problem is further complicated by the presence of noise in the data which can cause the
inversion process to become unstable and oscillations appear in the solution. To solve for
the conductivity structure (O') while reducing uncertainties and instabilities in the solution,
the inversion needs to be regularized (Tikhonov and Arsenin,1977) which results in a
smooth rather than oscillatory image of the object function. The method employed here
minimizes the error function
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5(0') =|KO' D} +A,JA, 0 +1,JA, 0 (4.10)

where A, and A, are matrices representing a discretization of the first derivative in the
horizontal and vertical directions, respectively, and the A's are the associated Lagrangian
multipliers which control the degree of smoothness.

The greater the A's are in equation (4.10) the smoother the resulting image will be.
Unfortunately the choice of what value to use for A is not an exact science. Too small a
value for A will result in an image that has good resolution but may contain oscillations.
 Because the earth is in general smoothly varying, a high resolution image containing sharp
boundaries and rapidly varying conductivities may be an unreasonable representation of the
structure. On the other hand if the value for A is too large then the solution will be
unreasonably smooth resulting in lower resolution than is provided by the data. An image
which is too smooth will be evident from the relatively large magnitude of Er(n).

In order to balance these two extremes a smoothest inversion technique similar to that
used by Constable, et al (1987), Park and Van (1991) and Sena and Toksoz (1990) is
employed. In this type of inversion A is relatively large for the first iteration which assures
both a very smooth solution and a mean residual error (Er(n)) that is greater than the
estimated noise level. At each successive iteration A is decreased which provides for
greater resolution and also a smaller Er(n). The process is continued until Er(n) either
approaches the estimated noise level or reaches a minimum value. At this point the iterative
scheme is terminated because if it were to continue, noise would be controlling the added
resolution.

Imaging the data in this manner provides the choice of the smoothest model which best
fits the data to the accuracy with which it was measured. However, unlike for the schemes
discussed in the references above, here A is not determined by s (O') or some eigenvalue
criterion. Rather A is decreased at each iteration by a constant amount which insures that
the resolution is continually improving while the smoothest model is not overshot (Torres-
Verdin, 1993, personnel communication).

The above regularization process greatly enhances the stability of the inversion.
However the solution can be further stabilized by solving (4.10) subject to the constraints

L, <0<V i=1,2,...,N. (4.11)

where Liand Ui are the lower and upper bounds of the solution, respectively. These
bounds help to enhance solution stability and resolution greatly (Stark, 1987), ensure a
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reasonable solution, and for the cross well imaging case can easily be derived from
borehole logs.

Because of the ease with which the quadratic programming technique (Gill et al. ,1981,
Lawson and Hanson, 1974) handles linear bounding constraints, this method has been
chosen as the least squares inversion scheme to solve for a best fitting solution. To get the
least square error functional into quadratic form ,equation (4.10) must first be expanded
which yields

s(0)=0T(K'K+X,AJA, +L ATA YO 2D'K’0'T+2D'D  (4.12)

where ATA,and ATA, are the smoothing matrices which are more fully defined in
Appendix A. Because the last term on the right hand side is not dependent on the object
function, it can be moved to the left hand side such that

s(0)-2D"D=07 (K'K+A,ATA, +A,ATA YO'-2D'K'0'". (4.13)
Solving for an O' that minimizes this expression subject to the linear bounding constraints
given above constitutes the quadratic programming problem. The particular subroutine

employed here is VEO4A in the HARWELL mathematical program library (Hopper,
1979).

4.2 Image resolution of the Iterative Born imaging scheme

One of the most important properties of any imaging system is its resolving power or
resolution , i.e., how well can it form distinct images of adjacent features in the medium
that is being probed. For example in seismic imaging the resolution is defined by Raleigh
quarter-wavelength criterion (Sherrif and Geldart, 1981). Two neighboring bodies will be
imaged as separate objects as long as this criterion is met. Because no comparable measure
has yet been formulated for the audio frequency EM method, Zhou et al. (1993) and
Alumbaugh and Morrison (1993) employed models that consist of two single cells
separated by some distance L. Though the models are fairly subjective and unrealistic, the
resolution can be defined by how well the method images the two separate bodies with
respect to their separation and the operating frequency.

This type of analysis will be incorporated in this section. However, in addition to
defining the resolution in terms of frequency and separation, the difference between
horizontal and vertical resolution will be examined as will the effect of the conductivity
contrast. An improvement in resolution through a data weighting scheme will be
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attempted, and the consequences of noise determined. The end result of this analysis will
be a general description of the imaging characteristics for cross well EM with respect to this
range of parameters, and in particular the iterative Born scheme developed here.

The general model configuration used in this section is shown in Figure 4.2. The 200
m deep wells are separated by 100 m in a 0.01 S/m whole space with 21 sources and 21
receivers spaced at 10 m intervals. This yields a vertical magnetic field measurement for a
total of 441 source - receiver combinations. To save computing time, the imaging region
was limited to one-half of the area between the wells and the anomalous conductivity
distribution is located near the center of this zone. The frequencies employed are 1 kHz, 10
kHz and 100 kHz which correspond to the low induction number side of the Born kernel
(Figure 2.3), the peak of the kernel, and the high induction number side of the kernel peak
, Tespectively.

In most of the examples given below the scattering bodies are more conductive than the
background medium. Thus except in the examples where it is explicitly noted, positivity
constraints have been imposed upon the solution. These constraints imply that the solution
must always be more conductive than the background. As mentioned in section 4.1 these
types of constraints ensure both maximum resolution and stability in the imaging process.

In any experiment the measured data will always contain some type of noise. In the
cross well experiments discussed below, the magnitude of the measured total field falls off
with increasing source-receiver separation. Assuming that the noise is a function of the
dynamic range of the system implies that the noise-to-signal ratio will be smallest when the
source and receiver are at the same depth and the signal is strong, and it will become
progressively greater as the source and receiver are moved further apart. To incorporate
this phenomena into the analysis presented here, random Gaussian noise with a variance
that is some percentage of the maximum total field amplitude at that frequency has been
added to the synthetic data. In this section the variance of the noise is 0.001% of the
maximum total field amplitude unless otherwise noted. Although this may seem to be an
unreasonably small magnitude for the noise, it was needed due to the small amplitude of the
scattered fields at 1 kHz for the models examined below.

In order to statistically compare one image to another, two different values will be
calculated. The first is the mean residual error (Er(n) in Figure 4.1) which is described in
Equation 4.9 above. This value describes how well the data fits the image and determines
when the iterative Born inversion is terminated. To describe how well the image recovers
the input model used to calculate the synthetic data, the total mode! error (TME) is also
computed. This value is defined here to be the %2 error between the final image and the
model over all the cells in the imaging region. After the %2 error is calculated it is
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normalized by the integral over the perturbations from the background conductivity in the
input model such that the final form is given by

3 (ot — gt
TME = &} -
X(G;Mw - Go)

i=1

where ¢;™ is the image conductivity for the i'th cell, 6™ is the model conductivity for the

(4.14)

i'th cell and N is the number of cells or pixels in the image. It must be pointed out that
although this total model error may be a statistically sound description of the image, its
definition of image quality does not always coincide with the visual definition, and thus it
must be used with caution. Examples of where it could be considered to fail will be given
below.

4.2.1 Image resolution versus frequency for low contrast models

In this section the horizontal and vertical resolution will be analyzed in terms of the
operating frequency. Figure 4.3a shows the first model which will be referred to as the
low contrast-vertical resolution model. Two 5Sm by 5m square bodies are located near the
center of the interwell region and are separated by L=25m. The conductivity of the bodies
is 0.02 S/m which is twice that of the background. Note, the polygonal shape of the two
bodies in Figure 4.3a is a function of the software used to plot the images (DeltaGraph
Professional for MacIntosh, 1991). Because the software automatically smoothes between
adjacent points using a spline, single celled bodies are distorted into this polygonal shape.
This distortion becomes less of a problem as more cells are added to the anomalous bodies.

Figures 4.3b through 4.3d yield valuable information about the vertical resolution of
the method. At 1 kHz the two bodies are not separately defined and the conductivity is not
recovered. This is due to the small magnitude of the scattered fields which in general are
less than 0.1% of the total field. Because of these relatively insignificant values, the
residual error between the calculated image results and the input data rapidly converges to
the noise level. In contrast to this low frequency result, the images at 10 kHz and 100 kHz
are quite sharp and precisely define the location of the two bodies. Though the difference
is difficult to visually detect, the total model error indicates that the 100 kHz image is
statistically better than the 10 kHz result. Thus at least for this low contrast example, the
resolution increases with frequency.

In Figure 4.4 the horizontal resolution is examined for the low contrast case. Once
again the lowest frequency exhibits poor resolution due to the small magnitude of the
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scattered fields. For this example the 1 kHz secondary fields at maximum are no more than
0.2% of the total field. At 10 kHz the resolution is excellent with the position of the two
cells recovered exactly. However notice that the TME is approximately twice that of the
value for the low contrast-vertical example. This is a statistical affirmation that, because the
measurements are made in vertical boreholes on each side of rather than all around the
anomalous region, the horizontal resolution in worse than the vertical resolution. This
same conclusion falls out of the wave number domain analysis by Zhou, et al. (1993) who
show that the horizontal resolution is a function of the vertical coverage of the data.

At 100 kHz the imaging scheme develops problems in uniquely reconstructing the two
cells (Figure 4.4d). Instead of resolving two separate bodies most of the conductivity is
lumped into the center of the region with "ghosts" appearing on either side. To determine
if this is a data sampling problem or an error in the algorithm, several variations of the
model were calculated. Images were reconstructed using synthetic data with finer source
and receiver sampling intervals to avoid aliasing, with the boreholes extended to provide
greater vertical coverage, and with the cell size decreased in the imaging region to avoid
numerical problems. Though none of these methods worked, a data weighting scheme
discussed in subsection 4.2.3 did show some success. However as it will again be
demonstrated below there does exist a loss of resolution at 100 kHz which may be the
result of high frequericy numerical instabilities. '

4.2.2 Image resolution versus frequency for high contrast models

To examine the effects of higher conductivity contrasts on image resolution, the same
model geometry shown in Figures 4.3 and 4.4 is employed. However the conductivity of
the single cell anomalies is 0.1 S/m which corresponds to a contrast of 10 to 1 or a
conductivity difference of 0.09 S/m. Figure 4.5 shows the results for the high contrast-
vertical resolution model, and Figure 4.6 the high contrast-horizontal resolution model.

A comparison of the images shown in figures 4.5b and 4.6b to the equivalent images in
the previous section (Figures 4.3b and 4.4b) indicates that the horizontal and vertical
resolution at 1 kHz has improved both visually and statistically. This is primarily due to
the fact that the scattered fields generated by the high contrast model at this frequency are an
order of magnitude greater than those for the low contrast model. Thus a less smooth
solution is required in order to fit the data to the desired noise level. This demonstrates that
resolution is not only a function of the background conductivity, but also of the difference
in conductivity between the background and the scatterer.

As demonstrated by Figure 4.5c the vertical resolution at 10 kHz remains
approximately the same whether a low or high contrast model is employed. Visually the
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same seems to be true for the horizontal resolution. Figure 4.6¢ distinctly shows the
presence of two separate bodies of approximately the correct conductivity and position.
However both the mean residual error and the total model error indicate that at least
statistically this is a lower quality image. The large errors result from the body on the right
hand side being misplaced one position to the left when compared to the model and
illustrate the problem of using these statistical properties to define resolution.
Unfortunately they do not take into account slight mispositioning errors or differences in
amplitude.

At 100 kHz the images for both of the high contrast models (Figures 4.5d and 4.6d) are
distorted in the horizontal direction. In addition, the relatively large mean residual errors
indicate that the iterative Born scheme is finding it difficult to fit the data to the desired
noise level. Because the anomalous induction numbers for these models as defined in
Chapter 3 are near the break down point of the Born series approximation, this lack of
horizontal resolution may be due to inaccurate forward modeling. Another possible source
of instability is the inductive coupling between the two bodies which becomes larger as the
conductivity and frequency increase. This mutual coupling may make it difficult for the
imaging routine to distinguish the two separate bodies.

4.2.3 A data weighting scheme to improve horizontal resolution

As mentioned in section 4.2.1 several attempts were made to improve the horizontal
resolution at 100 kHz for the low contrast - horizontal resolution mode! (Figure 4.4d). One
possible source of error can be directly observed in the data amplitudes. From minimum to
maximum source - receiver offsets these values change over five orders of magnitude. In
Chapter 2 it was demonstrated that the horizontal resolution is controlled by the long offset
data, i.e. when the source and receiver are separated by a large vertical distance. Thus
because the data controlling the horizontal resolution are five orders of magnitude smaller
than the near offset data, the inversion process is dominated by the larger values and thus
has difficulty correctly recovering the horizontal position of the bodies. This effect is not
as evident at lower frequencies because the fields do not fall off as quickly with increasing
source-receiver separation. ‘

The solution to this problem is to weight each source-receiver combination equally, that
is, give each datum the same importance. Two simple methods of accomplishing this are to
normalize the scattered fields by either the theoretical primary (background) field , or the
measured total field. The advantage of using the total field is that it contains measurement
noise. Thus normalizing by this value will not weight the noise present in the long offset
data to the degree that the theoretical primary field does (Torres-Verdin,1993,personnel
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communication).

The results of weighting the data at 100 kHz for the low contrast-horizontal resolution
model (Figure 4.4a) are shown in Figure 4.7. In these examples no random noise was
added to the data for reasons that will be evident shortly. Though the resolution is not of
the quality that exists in the 10 kHz results (Figure 4.4c), these images certainly show
improvement over the unweighted results given in Figure 4.4d. Applying the same
weighting to the 100 kHz data in both of the high contrast models given in the last section
improved the image quality somewhat. However there was not enough improvement to
warrant showing the results here which again suggests the existence of some type of high
frequency numerical instability.

A major concern when weighting the data in this manner is that the process also
weights upward the noise that is in the long offset data. Thus when the noise is
comparable to or larger than the signal, the weighting will have negative effects. This is
illustrated in Figure 4.8 where 0.01% random noise has been added to the synthetic data.
Without any normalization the noise has little effect on the resulting image (Figure 4.8a) .
However Figures 4.8b and 4.8c show that by emphasizing the noise at large offsets serious
image degradation results. As shown in Figure 4.9 the scheme can not converge to a
reasonable solution as is illustrated by plotting the mean data error at each iteration.

To this point the image resolution of the iterative Born scheme has been demonstrated
in terms of different operating frequencies and conductivity contrasts. Lower frequencies
do not yield very good resolution simply because the scattered fields are very small. High
frequencies offer the best results in some cases, but due to severe attenuation much of the
data which contains the horizontal resolution information is unusable. In addition at high
frequencies and conductivity contrasts the scheme exhibits some type of numerical
instability which suggests that it is at its induction number limit. The best trade off between
image resolution and numerical stability occurs for data collected in the induction number
region near the peak of the Born kernel. In all of the examples given above, the 10 kHz
images recovered both the conductivity and position of the dual scatterers extremely well.
Therefore this frequency alone will be employed in the next section to determine the
resolving power of the method with respect to the separation of the two scatterers.

4.2.4 Image resolution with respect to target separation
In this section the resolution will be analyzed with respect to the separation of the
bodies. The same general geometries employed in the models above will be used with the
operating frequency fixed at 10 kHz.
Figure 4.10 shows the first example which is for the low contrast-vertical resolution
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model shown in Figure 4.3. It is clear from these images that the vertical resolution is
excellent both visually and statistically for low contrast anomalies. Even when the two
bodies are only one cell width apart, i.e. when the center-to-center separation 'L’ is 10m,
the image shows two separate maxima in the right locations separated by a lower
conductivity region. Comparing these results to the high contrast examples (Figure 4.11)
indicates that a greater conductivity contrast results in lower resolution. In these examples
the imaging scheme is unable to properly determine the correct position of the anomalies
when L=15m, and for L=10 m the conductivity is all lumped together at the center point
between the two cells. Because of the cylindrical symmetry imposed upon the problem the
two bodies can be thought of as rings or loops about the source axis. The loss in resolution
for this high contrast model may be the result of increased mutual coupling between the two
loops as they are brought closer together.

The horizontal resolution is also examined as a function of scatterer separation. As was
demonstrated in Sections 4.2.1 and 4.2.2 the resolution is worse in this direction compared
to that in the vertical. Figure 4.12 indicates that for the low contrast-horizontal resolution
case the two separate bodies are not defined even for L=15 m while for L=10 the
conductivity pattern is reconstructed as a single blob at the center of the imaging region.
Although the horizontal resolution seems to improve visually with increasing conductivity
contrast, statistically the results shown in Figure 4.13 are worse that those in Figure 4.12.
Thus once again there is disagreement between the visual and statistical descriptions of
image quality.

In this section the resolution as a function of target separation has been demonstrated.
The vertical resolution has again been demonstrated to be better than the horizontal
resolution for lower conductivity contrasts. In some cases larger conductivity contrasts
seem to degrade image quality while in others the resolution seems to improve. Because all
of the examples to this point have dealt with electrically conductive anomalies, a model
containing both resistive and conductive bodies will be examined before moving on to more
realistic models.

4.2.5 Resolution of adjacent conductors and resistors

A more difficult model to reconstruct is shown in Figure 4.14a. Two blocks of
identical geometrical dimensions but of opposite conductivity contrast with respect to the
background are separated by 10m in a 0.01S/m medium. Because of the size of the blocks,
the scattered magnetic fields generated by them are almost an order of magnitude greater
than those produced by the single cell anomalies presented in previous sections. Thus the
random noise added to the synthetic data has been increased to 0.01% of the maximum total
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the source and receiver are at the same depth. Because these sensitivity functions describe
the weighting of points within the medium in relation to each other, those points at which
the sensitivity is large will have more importance in the inversion process. Thus not only
does the manner in which the data are weighted have to be considered with respect to
resolution and noise, but the method in which the model cells are weighted must be
understood in order to properly interpret the final image.

In Section 3.4 the benefit of plotting the error between the 1-D solution and the 2-D
Born series approximation as a function of source and receiver depth was demonstrated. If
geometrical patterns appear in these error plots then some type numerical problem exists in
the 2-D cylindrical model. The major source of error in simulating 1-D media was
determined to be edge effects caused by terminating the mesh too close to the receiver
borehole rather than extending it horizontally outward. The same type of analysis is
provided here to verify that none of these types of errors exist in the imaging process.

In Figure 4.17 the amplitude errors between the synthetic input data and the image
results (Figure 4.16) calculated with the Born series approximation have been plotted. For
both 1 kHz and 10 kHz the errors are randomly distributed as a function of source and
receiver position. This verifies that the mesh extends far enough horizontally to eliminate
any edge effects. This type of analysis will be applied in future sections to determine
whether the data being reconstructed is of 2-D or 3-D origin.

In Figure 4.18 the resolution of a resistive layer is examined. Again the model consists
of a single layer, however the conductivity in this case is ten times less than that of the
background. To provide maximum stability and resolution in the solution for this particular
model, negativity constraints have been imposed on the object function which requires the
anomalous conductivity to be less than that of the background.

At 1 kHz (Figure 4.18b) the image is again very smooth and lacks spatial resolution of
the layer boundaries. In fact it would be difficult to determine from this result that a layered
structure exists. At 10 kHz the resolution is again much better (Figure 4.18c). However
the similarity between the maxima within the layer and the sensitivity functions described in
Chapter 2 still exist. A method to remedy this problem is demonstrated in the next
subsection.

4.3.2 Imaging with the horizontal magnetic field

In section 2.4.3 it was determined from a cross-well sensitivity analysis that at
frequencies on the low induction number side of the Born kernel, the horizontal field
contains additional information that is not provided by the vertical field. To determine the
benefits of measuring both the radial and vertical components, the horizontal magnetic
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fields have been calculated for the model shown in Figure 4.16a. Images have been
reconstructed using this component exclusively as well as both components
simultaneously. Plots of the residual errors between the input data and the calculated image
results have not been included here because they exhibit the same random nature as shown
in Figure 4.17.

As Figure 4.19a shows there is a definite improvement in image quality at 1 kHz using
the horizontal rather than the vertical fields. Comparing this image to that in Figure 4.16b
demonstrates that the vertical boundaries of the layer are much better defined and the
conductivity is more accurately recovered . These results agree well with the sensitivity
analysis performed in Chapter 2 where a comparison between the horizontal and vertical
fields indicated that the horizontal component is less sensitive to the region outside of the
wells and more sensitive to the vertical position of a body. However the greater magnitude
of the scattered horizontal fields when compared to the scattered vertical fields is at least
partially responsible for this increase in resolution. Because of these larger magnitudes the
radial component is less susceptible to measurement noise, and thus less smoothing is
required for the inversion scheme to converge to the desired residual error. This difference
in magnitude of the two different scattered field components becomes more apparent when
both the horizontal and vertical fields are employed simultaneously. Figure 4.19b shows
that only minor differences exists between it and Figure 4.19a suggesting that the radial
component is dominating the inversion process.

Though the sensitivity analysis in Chapter 2 did show some differences between the
horizontal (Figure 2.15) and vertical (Figure 2.8) components of the magnetic field at 10
kHz, they were not as large as those at 1 kHz. This becomes apparent when comparing the
image reconstructed from the 10 kHz horizontal fields (Figure 4.19¢c) to that resulting from
the inversion of the vertical fields ( Figure 4.16c). Subtle differences, such as the different
locations of the maxima within the conductive layer, do exist between the two images, but
in general the two images have very similar characteristics. However as shown in Figure
4.19d imaging with both components simultaneously yields quite spectacular results.
Rather than reconstructing a high conductivity zone with localized maxima, the scheme has
reconstructed a layer in which the high conductivity region extends horizontally across the
whole image. The only conductivity gradients that exists occur in the vertical direction.
Thus it can be implied that by using both components each pixel between the two wells is
being weighted equally. Unfortunately, because no horizontal component data have been
collected in any of the crosswell experiments to date, the routine incorporation of this
component will be left for now as a topic for future research.
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4.3.3 Imaging of data collected at the Devine test site

Since 1989 researchers from Lawrence Berkeley Laboratory, Lawrence Livermore
National Lab and U.C. Berkeley have jointly been involved in the development of a cross
well EM system. The initial field test of this system was conducted in September of 1990 at
British Petroleum's Devine test site near Devine, Texas (Wilt, et al., 1991). The purpose of
the test was to prove system viability by collecting a set of cross well data that was
repeatable to 1%. In this section the iterative Born imaging scheme will be applied to these
data and the resulting images analyzed in terms of resolution and data quality.

The Devine site was chosen as a system testing ground primarily because of the simple
1-D layered geology that exists there as well as the general lack of cultural noise (Wilt et al.
,1991). The subsurface consists of flat lying, alternating layers of sand, shale and
limestone which can be correlated from one well log to another. A conductivity log from a
well surveyed in the experiment is given in Figure 4.20. The low conductivity zone that
extends from approximately 600 to 630m depth consists of limestone, and it is this layer
that was selected to be the target of the experiment.

The cross well EM survey was conducted at an operating frequency of 512 Hz between
two PVC cased wells separated by 100m . While the receiver was held in a fixed position
the source was slowly raised upward from a depth of 670m to 550m. Measurements were
made at approximately 0.9m source intervals yielding a nearly continuous profile of data
versus source depth. The receiver was then moved to a new position and the process
repeated. This resulted in a data set consisting of 128 source locations for each of the 13
receiver depths shown in Figure 4.20.

An initial interpretation of the data was accomplished by fitting a layered earth model to
the data in a least squares sense (Deszcz Pan ,1993). The resulting eight layer model for
one of the receiver profiles is plotted with the conductivity well log in Figure 4.20. In
addition the same least squares program was used to determine the best fitting whole space
conductivity , which was found to be 0.35S/m (Deszcz Pan, personnel communication).
Employing this value with an operating frequency of 512 Hz yields a background induction
number of 14. Comparing this to Born kernel plotted in Figure 2.3 indicates that the
system is operating near the peak in sensitivity which should provide for both image
resolution and numerical stability. Thus this data set should provide an excellent test for the
iterative Born inversion scheme presented here.

Due to computer limitations only half of the data (64 source by 13 receiver
combinations) were employed in the imaging process. Because the measurements were
made of the total vertical magnetic field, the scattered field data required by the iterative
Born scheme were again calculated by subtracting the theoretical primary fields that would
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exist in a whole space with a conductivity of 0.35S/m. Note that although these primary
fields were calculated using the same analytic expression as employed in Section 4.3.1,
here the background conductivity was unknown and thus an average or best fitting
background conductivity had to be determined prior to applying the imaging scheme. The
mesh was constructed from 800 Sm by Sm cells extending vertically from 510m to 710m,
and horizontally from 0 to 150m. A lower bounding constraint of 0.1 S/m was imposed
upon the solution, and the noise was estimated from measurements of repeatability to be
approximately 0.5% to 1% of the maximum field amplitude(Wilt, et al, 1991).

The results of the Devine data inversion after 4 and 6 iterations of the iterative Born
scheme are plotted in Figure 4.21. Smoothed versions of the conductivity log ( Figure
4.20) have been included next to each of the cross well images for comparison. Not only
has the scheme defined the existence of the resistive zone between the more conductive
layers, but the general trend is suggestive of a 1-D structure. Considering that the iterative
Born imaging scheme is derived from theory which assumes small isolated scatterers
rather than large slab like bodies, these results can be considered to be very good.

There do however exist serious deviations from the layered conductivity structure
exhibited in the smoothed well log. The resistive zone is thicker near the receiver borehole
while the conductive layers are imaged as maxima near the source well. To determine if
these deviations from layered structure are due to poor quality data, limitations of the
imaging scheme, or a combination of the two, synthetic results were calculated for the eight
layer model shown in Figure 4.20 using the same source and receiver depths as the data.
The imaging scheme was then applied to these synthetic data with 0.5% noise added.

The resulting images after 4 and 6 iterations have been plotted in Figure 4.22 along
with the eight layer model. Comparison of these results to Figure 4.21 indicates that
although the same general structure is recovered, the synthetic data images are more
suggestive of a layered medium. The resistive zone exhibits a fairly constant thickness
across the region between the boreholes and the conductivity maxima above and below this
zone are not as prominent as in the image of the real data. Because the geology at the site is
known to be 1-D, these results suggested that the noise in the field data may not be random
but rather is correlated and have a magnitude greater than 1.0%.

To determine the characteristics of the noise present in the Devine data, both the ratio in
total field amplitude and the phase difference between the field data and theoretical results
have been calculated. Figure 4.23 shows the results plotted for each receiver position as a
function of source depth. For the profiles with the receiver above 602m in depth, the
amplitude ratio remains fairly constant at about 0.95 to 0.97. However for receiver depths
greater than 617m this ratio is approximately 1.0. A similar change is apparent in Figure
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4.23b with the mean phase difference decreasing with increasing receiver depth. Because
the fields in a layered medium exhibit reciprocity with respect to source and receiver depth,
and because the mean error between the real and synthetic data changes in a logical
progression as a function of receiver depth, it is evident that a systematic drift occurred
over time which was not accounted for.

To verify that this drift could cause the non-one dimensional distortions that are present
in the images given in Figure 4.21, each receiver profile of the data was corrected with the
mean amplitude and phase errors between the data and the layered model. After the
corrections in Table 4.1 had been applied a second attempt was made to image the data.
Though the "corrected" images in Figure 4.24 are not identical to the model images given
in Figure 4.22, they are a significant improvement over the originals shown in Figure 4.23.
Thus it can be concluded that a serious a drift error exists in the Devine data which needs to
be removed in order to meet the initial data quality standards of 1%.

Receiver Amplitude Phase
Depth (m) Correction Correction (Deg)
564 1.06 5.7
571 1.05 5.2
579 1.04 4.3
586 1.04 32
594 1.05 3.6
602 1.04 1.6
609 1.03 1.5
617 1.02 1.6
625 1.01 1.3
632 1.00 0.8
640 1.00 0.3
647 1.00 0.4
655 1.00 -0.6

Table 4.1 - Corrections applied to the Devine data set for each reciver profile.

To determine if the residual errors between the input data and the calculated results for
the image could be used to detect this drift, the errors have been plotted as a function of
source and receiver depth for both the original and corrected images in Figure 4.25. Notice
that for the residuals of the uncorrected data (Figure 4.25a) a large error occurs when both
the source and receiver are at approximately 610m depth, i.e., when the two are close to or
inside of the resistive zone. This same error distribution does not exist in the corrected data
errors (Figure 4.25b). Although certain receiver profiles have larger mean errors than
others, the distribution is much more random suggesting that the cylindrical symmetry fits
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the data. Thus to a certain degree the lack of data quality is indeed present in the residuals.

In this section we have analyzed the first cross well data set collected with the
Lawrence Livermore Laboratory / Lawrence Berkeley Laboratory cross well EM system.
A systematic drift has been found in the data which was not accounted for in the calibration
phase. Not only does this drift produce distortions in the cross well images, but it is also
evident in the plot of the residual errors. In the next section the theory will be developed to
account for layered media, and an example of how this could employed in improving the
quality of the Devine images will be given.

4.3.4 Theoretical formulation for a 1-D layered background model

To this point the imaging scheme has been formulated assuming that the region of
interest is an isolated zone of anomalous conductivity lodged in an otherwise homogenous
whole space of conductivity 6g. This homogenous whole space serves as the background
model for which the primary fields and Green's functions are calculated. However there
are many instances where a different background model is appropriate. For instance, near
the surface of the earth, the earth-air interface causes distortions of the electric field which
are not accounted for by a whole space model. Another example which will be considered
in the next chapter relates to monitoring reservoir processes in a layered media. In these
cases the scattered fields resulting from the layers can dominate the response of the
changes caused by the process. In addition the large magnitude of these fields coupled with
the fact that the mesh has to be extended horizontally past the receiver well to account for
layers causes the routine to need considerably more time to converge than if just the small
volume affected by the process was being imaged. These types of problems can sometimes
be overcome by incorporating a 1-D layered half space as the background model.

The theoretical formulation for a layered backgroxind has been used quite extensively in
3-D integral equation modeling to limit the mesh size and thus reduce the computational
time involved (e.g. Wannemaker, et al., 1984, Newman and Hohman, 1988). To
formulate the 1-D background model for the 2-D cylindrical geometry being considered
here, the impedance concept originally introduced by Wait (1970) for plane waves and later
modified for dipoles by Stoyer (1977) and loops by Wait and Hill (1980) will be
employed. Because the derivation is fairly lengthy, it is given in Appendix B and only the
results are presented here.

The geometry employed is shown in Figure 4.26. The source is either a vertical
magnetic dipole, or a horizontal current loop of cross sectional area A%, centered at z=-d,
r=0 in layer 0. As before the Z axis is oriented downwards, with the origin situated
directly beneath the source at the base of this layer. N layers are located below the source
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and M layers above with n and -m being semi infinite. Each layer is considered
homogenous and isotropic with a conductivity of ©,.

Because of the cylindrical symmetry imposed upon the model, the problem exhibits
pure TE excitation which simplifies the theory considerably. The electric fields within the

source layer resulting from a vertical magnetic dipole of unit moment can be expressed as
the sum of the field that exists in a whole space of conductivity 6, and the fields that are

reflected by the layer boundaries. The final expression has the form

EL=Ef - % [UoR)e™™= + Dy (M) "] AJ,(Arw)dh. (4.15)
0

where E is the primary electric field given by expression 2.7 , U,(A) and D,(A)

represent the reflected upgoing and downgoing components which are given by

Yod + 1 ,=%ed
D,(A) = :Y?‘-r;,se'”oho le - im_ezm 4.16)
0 - I'TEI'TEE °
and
A, e T 4k g Te(d-2ke)
U,y = ‘,Y_r}n-: -1 ::i PETE TR (4.17)
1} TE*TE

and Y3 =A\*+ko". If the source and receiver are located in the upper semi-infinite half
space then downgoing component can not exist and thus Dy(A)= 0. Similarly if the
source layer is the semi-infinite basal half space then U,(A)= 0.

In equations 4.16 .and 4.17, ri; represents the reflection coefficients at the i=-1 and i
=] interfaces which are given by

; _Ky—=2,
E = : 4.18
T UK, +Z (4-18)
where K, has the form
k=X 4.19)
a;

and Z, is the input impedance (Wait,1970) at the i 'th interface. This value is solved for

recursively from the n'th layer upward, or the -m'th layer downward, to the interface of
interest. For the region below the source layer Z, is given by



Z.=K, Z., + K, tanh(y;h)) (4.20)
K, +Z,, tanh(yh,)
while above the source layer the expression has the form
7 =K Z._,+ K tanh(yh)) @.21)

‘77K +2Z,_ tanh(yh,)

Expressions 4.15 through 4.17 consider only points within the source layer. If the
point lies within a different layer, then the primary field term in Equation 4.15 drops out
and the electric field in the i 'th layer has the form

— lm“’ T §2x =Y iz
By =" { [U:M)e™™ + D, (Me™" | A Jy (Ater) ). (4.22)

For this scenario U,(A) and D,(X) must propagated either upward or downward from

source layer to the layer of interest. For points below the source layer this is accomplished
using

D,‘+1 (?\') = Ci+ [D‘ (?“) + a(i)'_y}_\'_e‘Yod ]e(T.'+1 Yz + Ci-Ui(X)e(YM +Y:)z (4.23)
0

and

U, W) =C[D,A)+ S(i)%e'“"]e'“""“‘ 4 CHU,A)e TV (4.24)

0

where 8(i) is the Dirac delta function which equals unity for points within the source layer

and zero otherwise, and the C 's are given by

Ct =1[ o il-] (4.25)

For propagation to a layer above the source the expressions have the form

D,(0) = T (M1 4 T, [U g (A) + 8 + 1) o0 T (4.26)

0
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and

U,(A\) =T, D,,,(A)e V"% £ T [U,, (M) +8G + 1)—)1-e7°"]e(7‘*‘ v (4.27)

0

where the T* s are given by

Tx = 1) Qi g Yu | (4.28)
20 ¥

The magnetic fields generated by the vertical magnetic dipole source can be derived by
taking the curl of equations 4.15 through 4.27 with respect to the point of interest.
Fortunately, the expressions for U;(A)and D;(A) remain the same as given above. The
only differences in the formulations for the electric and magnetic fields appear in equations
(4.15) and (4.22). Thus the expression for the vertical component of the magnetic field is
given by

HL = §()H? + Z%I[Ui(?»)e"” + D, (M) X Jo(Are)dh (4.29)
0 .

while the horizontal component is given as

: 17 2 g
H* =8(1)H§-4—n-£[ui(x)e7 +D,(Me ™™y, A J1(Ar=)dA (4.30)

In these expressions H? and H? are the primary magnetic fields existing in a whole space
of conductivity ©g and are given by equation (2.14), and 3({)is the Dirac delta function for
the source layer.

Similar expressions can be developed for the integrated forms of the Green's functions
that were derived in Section 3.1. The electric field Green's function in a layered medium
has the form '
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JG* =8)] Gr 5, )dr dz,; - O ien(z, - zk)I[Ui Wfer= — et] @31)
J'thee j
J
+D‘- ()\,)[e"ﬁzz - e-’Y-'zl]]v()\’, I, ,rz) ;\'(trk) o

where i designates the layer containing the point of interest, j indicates the source-cell
across which the current is being integrated, k¥ refers the cell containing the point of interest
and V(A,1,,1,) is calculated using expression (3.9). The first integral on the right hand
side of (4.31) represents the whole space term which is evaluated using expression (3.8) if
(z,+2,)/2=d, i.e. if the cell is singular, and equation (3.10) otherwise. The
expressions for U,(A)and D,(A) are almost identical to those given above except they must
be evaluated at d=z, and d=z, and then differenced to account for the integration in zZ. For
example, equation (4.16) becomes

A g oy, €07 - 4 rp(e 1 —e M)
Do) = rrze = (4.32)
0 JTE 1- 1Ll g2Tebo

when the integration is completed. Because the change is trivial, the remaining integrated
forms of U;(A)and D,(A) will not be written out explicitly here.

The expressions for the magnetic field Green's functions are given by expressions
similar to equation (4.31). The vertical magnetic Green's function has the form

[GL, =8()[ Gy, (v 51, )dr jdz, - “”:”‘ sign(z, -z, )I[U,- M)fer - er] (4.33)
J

Ftheel
+D,(M)fe 1= — e V(A1 ,rz)—-——J1 (A:)

i

d\

where the first integral on the right hand side is calculated using either expressions (3.13)
or (3.14) depending on the singularity of the cell over which the integration is taking place.
Similarly, the horizontal magnetic field Green's function is given by

iU

[ Gl =8| Gy, (r;;r, )dr ;dz; —

Jthcell J

sign(z, —z,,)]'[U,.(K)[eY-% — e 4.34)
(¢}
+D;(A)[e7"? — e“'*‘"]]v(l, 1.1,) AJ, (A1, )dr

where now the first term on the right is calculated using either (3.11) or (3.12).



To demonstrate how a layered background model can be used to improve image
resolution of the iterative Born technique, the synthetic data calculated for the eight layer
Devine model (Figure 4.20) have again been employed. Figure 4.27a shows the image
after 11 iterations with 0.5% amplitude noise added to the data. Notice that although the
resolution of the layers in the upper part of the section is better than shown in Figure 4.22,
the resistive layer does not extend across the region between the two wells and the zone
from 630m to 670m suggests the existence of two dimensional structure.

The 2-D structure appearing in the lower part of the section is at least partly caused by
the presence of a resistive layer in the model starting at 670m just below the bottom point
of the survey region and extending downwards (Figure 4.20). Remember that the
estimation of the scattered fields first involves finding the best fitting background
conductivity that minimizes the sum of the scattered field amplitudes. The theoretical
primary fields are then calculated for each source-receiver combination using this
background conductivity and then subtracted off of the total field. Because of this
procedure a layer immediately below the imaging region will generate secondary fields that
are measurable when the source and receiver are in the lower part of the section. Thus
because a lack of vertical source-receiver coverage exists in this region, the imaging scheme
will experience problems determining if these anomalous fields are within or outside of the
interwell zone.

To reduce these effects a three layer background model is employed. The first layer has
a conductivity of 0.5 S/m and extends to 550m depth while the lower layer of conductivity
0.125 S/m starts at 670m and extends to infinity. The imaging region lies between these
two layers and has a conductivity of 0.35 S/m. Because the scattered fields are calculated
by subtracting the primary field generated by this model, the effects of the lower layer
should be removed. Figure 4.27b shows that this is indeed the case as the zone between
630m and 670 m depth appears to be fairly homogenous and flat lying. In addition the
resistive layer from 600m to 630m extends almost the entire distance between the two
wells.

In this section the theory has been presented which allows a layered background
model to be incorporated into the iterative Born imaging scheme. Though the primary
motivation for this is to account for the earth-air interface in the experiment described in
Chapter 5, the benefits of using this type of model have been demonstrated using a
simulation of the Devine field experiment. In the next section models which simulate
reservoir processes such as steam injection and contaminant disposal will be analyzed to
determine how well we can monitor their progress using cross well EM imaging.
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4.4 Tmaging changes caused by reservoir processes

As mentioned in Chapter 1, one of the most promising applications of crosswell EM is
the monitoring of changes in reservoir properties that are caused by some type of injection
process. If these changes can be tracked with respect to time, then the position and
progress of the steam, water or gas front can be determined. In Chapter 5 an experiment
in which electrically conductive salt water is injected into an aquifer will be analyzed. In
this section, the ground work for this analysis will be developed by examining how well
the iterative Born scheme can image a body whose size and/or position is changing.

Because the theory for the iterative Born scheme assumes symmetry about the source
borehole, this analysis will focus on examples in which the injection occurs at some depth
within the transmitter well. The first set of examples assume that the injected plume
expands symmetrically about the borehole such that the cylindrical geometry criterion is
obeyed. Different amounts of noise will be added to the synthetic data, and the resulting
images analyzed to determine the data accuracy that is required in order to accurately map
the plume. In the second half of this section, problems associated with an asymmetrical
plume will be addressed and a method to determine the validity of the 2-D geometry
analyzed.

4.4.1 Imaging an expanding, symmetric body

When gas or fluid is injected into a reservoir at depth, it is sometimes assumed that the
permeability of the injection zone is radially homogenous. In this scenario, the resulting
plume spreads symmetrically about the injection zone, expanding horizontally at the same
rate in all directions as the process continues. To analyze this ideal case and determine how
well the iterative Born scheme can image such a process, the 2-D integral equation solution
is employed to calculate the response of tabular bodies such as the one shown in Figure
4.28a. The simulated plume is ten times more conductive than the 0.01 S/m background
which coincides with the conductivity contrast encountered in the experiment described in
Chapter 5. The plume is 10m thick and results have been calculated for plume radii of 20,
30, 40, 50 and 60 m. Again 21 source and receiver positions have been employed with a
sampling interval of 10m. Initially a frequency of 10 kHz will be used due to the stability
and resolution of the imaging scheme at the associated induction number.

Figure 4.28 shows the resulting images for different plume radii assuming that the
measurements are accurate to 1% of the maximum total field. Resolution in both the vertical
and horizontal directions is excellent, although the radial extent of the bodies is slightly
distorted. In addition, the conductivity of the injection zone has been recovered almost
exactly. Notice that for a radius of 60m the image is starting to develop conductivity
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maxima similar to those observed in the 1-D layered images that were discussed in section
4.3.1. .

Figure 4.29 shows the results when 5% random noise is added. Although the plume is
still very prominent, the image resolution has degraded substantially. Both the radial and
vertical boundaries of the plume are less well defined although the quality improves as the
plume radius increases. The conductivity has not been recovered as accurately as above,
and the maxima within the plume are now more prominent. Adding 10% random noise
causes a further reduction in image quality (Figure 4.30). However, the fact that the
general location and size of the plume can be recovered with this much added noise
indicates that the imaging method is quite robust.

Because the cylindrically symmetric model has been employed to compute the input
data, the residual errors between this input and the results calculated for the image should
be randomly distributed with respect to the source and receiver depth. In Figure 4.31 the
residual errors for two of the images in Figure 4.28 have been plotted. Because the input
data contain 1% added random noise, the error distribution does not exhibit any type of
pattern that would imply a non symmetrical geometry. Figure 4.32 shows the resulting
residuals when 10% is added to the input. Comparing these plots to those given in Figure
4.31 indicates that the extra noise simply causes an amplitude shift in the errors while
leaving the basic random distribution the same.

To illustrate that low frequency data can provide excellent resolution as long as they are
accurate, the simulation above has been repeated at an operating frequency of 1 kHz with
0.1% added noise. The results given in Figure 4.33 reveal that the resolution is
comparable to that at 10 kHz ( Figure 4.28 ) although the convergence to the final solution
is slower. This demonstrates the possibility of imaging the conductivity structure trough
steel casing by making low frequency measurements as suggested by Uchida et al. (1991)
and Newman (1992a). However it also indicates a need for measurement accuracy which
probably has not yet been attained.

The analysis above demonstrates the use of the iterative Born imaging scheme to image
a body that is expanding symmetrically in a radial direction over time. The trade off of
resolution versus measurement noise has been discussed and it has been demonstrated that
low frequency measurements can provide excellent resolution as long as the data is of high
~ quality. Unfortunately aquifers and reservoirs tend to be extremely inhomogenous in terms
of permeability and thus the injected matter rarely obeys the cylindrically geometry. This
problem will be addressed in the next section where the ability of the 2-D imaging scheme
to reconstruct 3-D data will be analyzed.
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4.4.2 Imaging a 3-D body

To this point the imaging scheme has only been applied only to examples where the
medium exhibits a cylindrical symmetry about the source well. In Chapter 3 the 2-D
cylindrical solution was compared to a 3-D solution using models with identical cross-
sectional areas. It was determined in this analysis that as the operating frequency and thus
the background induction number is increased, the measurements become less sensitive to
the third dimension of the body outside of the interwell plane. In this subsection the extent
to which the iterative Born imaging scheme can be used to reconstruct a three dimensional
inhomogeneity simulating an asymmetrical injection will be examined. These results will in
turn be applied to analyze the experiment described in Chapter 5.

The model employed in this study consists of a 40m long by 40m wide conductive
sheet located at 95m depth as shown in Figure 4.34a. The sheet is symmetrically
positioned in the ¥ direction in and out of the page, however its position can vary
horizontally. In order to demonstrate some interesting properties that exist at high
frequencies, the conductance of the sheet has been kept rather low (0.2S) so that the Born
series approximation will not be violated. Because of the relatively small secondary fields
generated by this body at 1 kHz, only 0.1% amplitude noise has been added to the
synthetic data. As in section 4.2 the results are presented at 1 kHz , 10 kHz and 100 kHz,
and positivity constraints have been imposed to stabilize the solution.

Figure 4.34 shows the first example in which the sheet is symmetric about the source
borehole. Because of this symmetry the 3-D effects will be minimized. As expected from
earlier results the image at 1 kHz (Figure 4.34b) is very smooth with poor definition. The
resolution is much improved at 10 kHz and 100 kHz (Figures 4.34c and 4.34d,
respectively). At both of these frequencies the horizontal extent of the sheet and its
conductance are recovered almost exactly. The validity of fitting this particular 3-D sheet
with a cylindrical model is demonstrated by plotting the residual amplitude errors between
the input data and the calculated image results. Figure 4.35 indicates that a random error
distribution exists at each frequency which suggests a 2-D geometry in the target.

It will be demonstrated below that moving the center of the sheet off of the source
borehole axis results in a 3-D "bias"” in the residual errors. . Even though the smoothest
inversion approach employed here results in a gradual decrease in the mean residual error
with each iteration, the bias prevents this error from converging to the level of the added
noise. Thus because of this lack of convergence, the imaging scheme does not know when
to terminate. This illustrates a problem with decreasing the regularization parameter by a
constant amount at each iteration. To avoid this dilemma in the analysis presented below,
the program was terminated at the same iteration at which convergence was reached in the
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symmetric example given above (Figure 4.35). This was done so that the same amount of
smoothing is applied in each example.

The first asymmetric case is that in which the sheet is displaced 10% of the interwell
separation towards the receiver (Figure 4.36). At 1kHz the reconstructed image indicates
that the body has been displaced horizontally. However notice that compared to Figure
4.34b there is a degradation in the vertical resolution and it is difficult to define the leading
edge of the sheet. Although the vertical resolution is good at 10 kHz, the horizontal
resolution has been degraded. Rather than extending the conductive region continuously
out to 30m, the imaging routine has produced an artifact at r=60m. Finally, as predicted
by the analysis in Chapter 3, the 100 kHz image resolves the position of the sheet
extremely well with very little image distortion resulting from 3-D effects.

The residual errors for these images are plotted in Figure 4.37. Notice that the errors
with the largest amplitude are concentrated at a source depth that is equal to that of the
sheet. This effect is the previously mentioned 3-D bias and at 10 kHz it is so strong that it
completely masks the random residual errors resulting from the added noise. As might be
expected the bias is minimized at 100 kHz. Because these plots indicate when the scheme is
having problems fitting the data, they are useful for determining how well the images
represent the true subsurface structure.

Moving the sheet horizontally another 10% such that the center is displaced 20m off
center causes further degradation in the lower frequency images. As demonstrated by
Figure 4.38b 1 kHz data can barely resolve the sheet at all. At 10 kHz (Figure 4.38c) the
artifact at r=60m has grown in magnitude such that it is as large as the main section near
the injection hole. In addition the vertical resolution has been decreased. Again at 100 kHz
the image recovers both the location and conductivity of the sheet very well. However
plotting the residual errors (Figure 4.39) indicates strong 3D effects even at this highest
frequency . This implies that even though the image is reconstructed remarkably well, the
three dimensionality of the sheet is still being detected and can not be accounted for by the
2-D geometry.

When the sheet is placed at the center between the two wells (Figure 4.40), the imaging
procedure fails almost completely at the two lowest frequencies. At 1 kHz a very diffuse
region of slightly greater than background conductivity is recovered while at 10 kHz a
delta function is reconstructed at the location of the previously described artifact.
However, the 100 kHz image still correctly identifies both the position and conductivity of
the body, even though the sheet is located relatively far away from the injection well.
Notice that the residual errors plotted in Figure 4.41 do not indicate the presence of 3-D
structure as clearly as those given in Figures 4.37 and 4.39 above. This indicates that a
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thorough analysis of these plots may be required to avoid missing this type of problem.

The next example (Figure 4.42a ) involves displacing the sheet 10% to the left of the
source bore hole which demonstrates how the iterative Born scheme reacts when the plume
moves away from the receiver. Again the 3-D nature of the data causes the scheme to
completely fail at lower frequencies. Nothing is seen at 1 kHz while at 10 kHz two small
artifacts are formed near the source borehole just above and below the sheet. And once
again at 100 kHz the imaging process resolves the correct position and conductivity of the
sheet (Figure 4.43d). As expected the residual errors indicate the presence of a large 3-D
bias at all three frequencies ( Figure 4.44 ).

As previously mentioned, the above results have incorporated positivity constraints to
stabilize the inversion and provide better resolution. In many cases however, such as the
experiment described in the next chapter, these constraints are unrealistic. To determine
the degree of resolution that is possible when positivity is not imposed on the solution,
three of the models given above are imaged with the constraints removed. Unfortunately,
due to the instability of the scheme at higher frequencies, solution convergence was
unattainable at 100 kHz. Thus the following images are reconstructed only for the 1 kHz
and 10 kHz data. Because the residual amplitude errors have been found to display the
same type of distribution as those presented above, they will not be plotted for these
examples.

Figure 4.44 shows the images for the axially centered sheet shown in Figure 4.34a.
Although the position of the sheet has been recovered, relaxing the positivity constraints
has resulted in a serious loss of resolution, especially at 10 kHz. Where as the conductivity
was reconstructed almost exactly in Figure 4.31c, the value recovered here is much less.

The images of the sheet when it is offset 10m toward the receiver well (Figure 4.36a)
are shown in Figure 4.45, and the results for a -10m offset as shown Figure 4.42a are
given in Figure 4.46. In both cases there is a loss of resolution compared to when
positivity constraints are imposed. No definition is apparent at 1 kHz and at 10 kHz the
shape of the sheet is severely distorted. In addition large 'side lobes' or regions of
conductivity both greater than and less than the background have formed around the edges
of the plume. The presence of these sidelobes will be employed in the analysis presented in
the next chapter.

4.5 Summary

An imaging scheme has been developed which employs an iterative Born approach to
reconstruct the conductivity structure from cross well EM data. The scheme assumes 2-D
cylindrical symmetry and uses the Born series approximation developed in Chapter 3 as a
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forward modeling scheme to calculate the electric fields existing in the region between the
wells. This forward modeling allows the sensitivity matrix to be updated which results in
more accurate images. To find a model which best fits the data in a least squares sense, a
quadratic programming routine has been employed. The solution is stabilized through
regularization and by applying a smoothest model inverse approach. Positivity constraints
can also be used to further stabilize the solution and provide for better resolution.

A resolution analysis incorporating single cell scatterers has shown that the
resolution in the cross well scenario is better in the vertical direction than in the horizontal.
At higher frequencies the resolution tends to decrease with increasing conductivity contrast,
while at lower frequencies the opposite is true. The former conclusion results from
numerical instability of the iterative Born scheme while the latter conclusion is a function of
the signal strength. The best trade off between resolution and stability seems to occur
when the background induction number is somewhere between 10 and 50.

Images of synthetic data calculated for a layered model indicate that the horizontal
component of the field may be very useful in the reconstruction process. At lower
frequencies it was found to yield higher quality images that the vertical field. In addition it
was demonstrated that a simultaneous inversion using both components can produce better
results than either component by itself. An analysis of field data collected at Devine, Texas
has shown that a systematic drift is present. Although the scheme is very robust in terms of
random noise, it has been demonstrated to be very sensitive to this type of correlated noise.

Simple simulations of reservoir injections have indicated that cross well EM imaging
can track changes in a reservoir over time. However it has also been determined that at
frequencies on the low induction number side the Born kernel, any deviation in the medium
from a 2-D cylindrically symmetric geometry can cause severe artifacts in the images.
Fortunately the degree to which the medium is three dimensional can be estimated by
plotting the residual errors between the input data and the numerical results calculated from
the image. In the next chapter all of the tools that have been developed in this chapter will
be applied to a salt water injection experiment at the Richmond Field Station test site in
Richmond, California.
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Figure 4.2 - Model and imaging configuration employed in section 4.2. Two 200 m deep
wells are seperated by 100m in a 0.01 S/m whole space. 21 sources and 21 receivers are
spaced at 10m intervals yielding 441 vertical magnetic field calculations at each frequency.
The imaging area is 100m by 100m and has been divided into 400 5m by 5m square cells.
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Figure 4.3 - Low contrast-vertical resolution model and images as a function of frequency.
(a) Model with results calculated fot 21 source and receiver positions spaced at 10m
intervals from 0 to 200m depth. The added noise is 0.001% of the maximum total field
measured at each frequency. (b) 1 kHz image. Mean residual error after 23 iterations=
1.0e-5. Total model error=9.3e-1. (c) 10kHz image. Mean residual error after 25
iterations=1.0e-5. Total model error=1.4e-2. (d) 100kHz image. Mean residual error after
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Figure 4.4 - Low contrast-horizontal resolution model and images as a function of
frequency. (a) Model with results calculated for 21 source and receiver positions from 0 to
200m depth. The added noise is 0.001% of the maximum total field measured at each
frequency. (b)1 kHz image. Mean residual error after 27 iterations =1.02e-5. Total model
error=8.1e-1. (c) 10 kHz image. Mean residual error after 25 iterations =1.03e-4. Total
model error = 2.2e-2. (d) 100 kHz image. Mean residual error after 20 iterations =2.90e-

4, Total model error=1.9.
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Figure 4.5 - High contrast-vertical resolution model and images as a function of frequency.
(a) Model with results calculated at 21 source and receiver position from 0 to 200m depth.
The added noise is 0.001% of the maximum total field measured at that frequency. (b)
1kHz image. Mean residual error after 28 iterations = 1.04e-5. Total model error= 3.4e-1.
(c) 10 kHz image. Mean residual error after 30 iterations = 1.03e-5. Total model
error=1.3e-2. (d) 100 kHz image. Mean residual error after 28 iterations = 4.6e-3. Total
model error=3.4.
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Figure 4.6 - High contrast-horizontal resolution model and images as a function of
frequency. (a) Model with results calculated at 21 source and receiver positions at 10m
intervals from O to 200m depth. The source borhole is at Om and the added noise is 0.001%
of the maximum total field measured at each frequency. (b)1 kHz image. Mean residual
error after 26 iterations = 1.02e-5. Total model error= 6.4e-1. (c) 10 kHz image. Mean
residual error after 23 iterations = 2.15e-4. Total model error = 1.07. (d) 100 kHz image.
Mean residual error after 11 iterations=1.02 Total model error= 2.1.
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Figure 4.7 - 100 kHz images of the model shown in Figure 4.4a with no added noise. The
inversion was terminated when the mean misfit approached 0.01% of the total field. (a)
Image primary field weighting. Mean residual error after 15 iterations=9.0e-5. Total
model error=9.9¢e-1. (b) Image for the total field weighting. Mean residual error after 15
iterations =9.0e-5. Total model error=1.0.
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Figure 4.8 - 100 kHz images of the model shown in Figure 4.4a with 0.01%added
random noise. The inversion was terminated when either the mean data error approached
0.01% of the total field or converged to a minimum. (a) Image with no weighting applied.

Mean residual error after 25 iterations r=1.1e-5. Total model error=1.6. (b) Image for

primary field weighting. Mean residual error after 25 iterations=4.0e-3. Total model
error=2.7. (c) Image for the total field weighting. Mean residual error after 25 iterations
=6.2e-3. Total model error=4.3.
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Figure 4.10 - Low contrast-vertical resolution model and images as a function 'L'. These
results can be compared to those in Figure 4.3¢ in which L=25. (a) Model for L=25m with
results calculated for 21 source and receiver positions from 0 to 200m depth. The added
noise is 0.001% of the maximum total field. (b) Image for L=20m. Mean residual error
after 26 iterations=1.0e-5. Total model error=3.7¢-2 (c) Image for L=15m. Mean residual
error after 27 iterations=9.9e-6. Total model error= 2.3e-3. (d) Image for L=10m. Mean
residual error after 25 iterations=1.0e-5. Total model error=2.0e-1.
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Figure 4.11 - High contrast-vertical resolution model and images as a function 'L'. These
results can be compared to those in Figure 4.5¢c in which L=25. (a) Model for L=25m with
results calculated for 21 source and receiver positions from 0 to 200m depth. The added
noise is 0.001% of the maximum total field. (b) Image for L=20m. Mean data error after 31
iterations=1.4e-5. Total model error=2.3e-2. (c) Image for L=15m. Mean data error after
25 iterations =3.5e-5. Total model error=1.39. (d) Image for L=10m. Mean data error
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Figure 4.12 - Low contrast-horizontal resolution model and images as a function L'
These results can be compared to those in Figure 4.4c in which L=25. (a) Model for L=25
with results calculated for 21 source and receiver positions from O to 200m depth. The
added noise is 0.001% of the maximum total field. (b) Image for L=20m. Mean residual
error after 26 iterations=1.0e-5. Total model error=1.4e-1. (c) Image for L=15m. Mean
residual error after 24 iterations=1.0e-5. Total model error=1.1. (d) Image for L=10m.
Mean residual error after 23 iterations=1.0e-5. Total model error=8.0e-1.
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Figure 4.13 - High contrast-horizontal resolution model and images as a function L.
These results can be compared to those in Figure 4.6¢ in which L=25. (a) Model for
L=25m with results calculated for 21 source and receiver positions from 0 to 200m depth.
The added noise is 0.001% of the maximum total field. (b) Image for L=20m. Mean
residual error after 27 iterations=1.8e-5. Total model error=8.4e-1. (¢) Image for L=15m.
Mean residual error after 22 iterations=1.4e-5. Total model error=1.23. (d) Image for
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Figure 4.14- Model consisting of both a conductor and resistor in close proximity and
images as a function of frequency. (a) Model with results calculated at 21 source and
receiver positions at 10m intervals from 0 to 200m depth. The added noise is 0.01% of the
maximum total field measured at each frequency. (b)1 kHz image. Mean residual error
after 20 iterations =1.00e-4. Total model error=7.8e-1. (¢) 10 kHz image. Mean residual
error after 18 iterations=9.9e-5. Total model error = 5.8e-1. (d) 100 kHz image. Mean
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Figure 4.15 - Images of the conductor-resistor model shown in Figure 4.14a. The imaging
scheme was terminated when the mean data error was a minimum for at least two of the
frequencies. (a)Three frequency image with no weighting and 0.01% added noise. Total
model error after 15 iterations =5.2e-1. (b) Three frequency image with weighting and no
noise. Total model error after 15 iterations = 1.8e-1. (c) 100 kHz image with weighting
and no noise. Total model misfit after 12 iterations = 2.2e-1. (d) Three frequency image
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Figure 4.16 - Conductive layer model and images for two frequencies. (a) Model with
results calculated for 21 source and receiver positions from 0 to 200m depth. The added
noise is 1.0% of the maximum total field measured at each frequency. (b)1 kHz image.
Mean residual error after 11 iterations=1.0e-2 (c) 10 kHz image. Mean residual error
after 12 iterations=1.0e-1.
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Figure 4.17 - Residual amplitude errors between the input data and the calculated results for
the images as a function of source and receiver location. The errors have been normalized
by the maximum value of the total field in the input data. (a) Residual errors for the 1kHz
image in Figure 4.16b. (b)Residual errors for the 10kHz image in Figure 4.16c.
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Figure 4.18 - Resistive layer model and images for two frequencies. (a) Model with results
calculated for 21 source and receiver positions from 0 to 200m depth. The added noise is
1.0% of the maximum total field measured at each frequency. (b)1 kHz image. Mean
residual error after 11 iterations =1.0e-2. (c¢) 10 kHz image. Mean residual error after 11
iterations=1.0e-2.
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Figure 4.19 - Images of the model shown in Figure 4.16a reconstructed using the
horizontal magnetic fields. (a) 1 kHz image using the horizontal magnetic fields. Mean
residual error after 12 iterations =1.0e-2 (b) 1 kHz image using both the horizontal and
vertical magnetic fields. Mean residual error after 12 iterations=1.0e-2. (c) 10 kHz image
using the horizontal magnetic fields. Mean residual error after 13 iterations =1.0e-1. (d) 10
kHz image using both the horizontal and vertical magnetic fields. Mean residual error after

13 iterations =1.0e-1.
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Figure 4.20 - Electrical conductivity log from a well used in the cross borehole EM
experiment at the British Petroleum Devine test site near Devine, Texas. Included with the
log is the best-fitting eight layer model. The "source logging interval" and "receiver depths”
refer to the interval over which the source was moved and the discreet receiver locations
employed in the cross well experiment, respectively.

160



Distance (m)

0 20 40 60 80 100
550 ! | | |

Distance (m)

O 20 40 60 80 100
550 fo_L___L_I_

Conductivity (S/m)

570

Depth (m)
(o)) (o)) (9)]
W = ©
T 27

650

670

(b)

Figure 4.21 - Image of the Devine data after different number of iterations. 64 sources
were employed from 548 to 672 m depth with the 13 receiver locations show in Figure
4.21. A smoothed version of the conductivity well log is plotted in gray scale format at the
right of each image. (a) Image after 4 iterations. Mean residual error=0.96%. (b) Image
after 6 iterations. Mean residual error= 0.65%.
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Figure 4.22 - Images of the synthetic data calculated for the 8 layer model given in Figure
4.21 with 0.5% random noise added. 64 sources were employed from 548 to 672 m
depth with the 13 receiver locations shown in Figure 4.21. The model is plotted in gray
scale format to the right of each image. (a) Image after 4 iterations. (b) Image after 6
iterations.
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Figure 4.23 - Comparison of the Devine data to the theoretical fields calculated for the
eight layered model shown in Figure 4.20. The results have been plotted in terms of the
receiver depth. Receivers in the upper part of the section are represented as a thin black
line, receivers in the 'drift zone' as a thick gray line, and receivers near the bottom as a
dashed line. (a) Devine data amplitude normalized by the model amplitude. (b) Phase
difference between the Devine data and the model results.



Distance (m)

0O 20 40 60 80 100
B S S . ——

(@)

Distance (m)
0 20 40 60 80 100
550 | 1 i 1

Conductivity (S/m)

(b)

Figure 4.24 - Images of the corrected Devine data after a different number of iterations.
64 sources were employed from 548 to 672 m depth with the 13 receiver locations show
in Figure 4.21. A smoothed version of the conductivity well log is plotted in gray scale
format to the right of each image. (a) Image after 4 iterations. Mean residual
error=0.87%. (b) Image after 6 iterations. Mean residual error= 0.57%.
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Figure 4.25 - Residual amplitude errors between the input data and the calculated results
for the images as a function of source and receiver depth. the errors have been normalized
by the maximmum value of the total field in the input data. (a) Residual errors for the
image of the uncorrected Devine data in Figure 4.21b. (b) Residual errors for the image
of the corrected Devine data in Figure 4.23b.
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Figure 4.26 - Vertical magnetic dipole and a horizontal loop of current imbedded in a
stratified medium. Both the dipole and loop are at a distance z=-d above the base of the
source layer (z=0) and are centered radially at r=0.
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Figure 4.27 - Images of the synthetic data calculated for the 8 layer model given in
Figure 4.20 using two different background models. 64 sources are evenly spaced from
550 to 670 m with 13 receivers spaced as shown in Figure 4.21 and 0.5% random noise
have been added to the data. (a) Image using the whole space model with a conductivity
of 0.33S/m. Mean residual error after 11 iterations=0.50%. (b) Image using 3 layered
background model. Mean residual error after 10 iterations=0.50%. Layer 1 has a
thickness of 550 m and a conductivity of 0.5S/m. Layer 2 has a thickness of 120m and a
conductivity of 0.35 S/m. Layer 3 extends downward from 670m to infinity and has a
conductivity of 0.125 S/m.
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Figure 4.28 - Injected plume model and 10 kHz images for different plume radii (rp).
The images were reconstructed using results calculated at 21 source and receiver
positions spaced at 10m intervals from 0 to 200m depth. The added noise is 1.0% of the
maximum total field and the bracket in each image indicates the radial extent and width
of the body (a) Model for rp=30m. (b) Image for rp=20m. Mean residual error after 17
iterations = 1.0%. (c) Image for rp=30m. Mean residual error after 18 iterations = 1.0%.
(d) Image for rp=40m. Mean residual error after 17 iterations = 1.0%. (Continued on
next page)
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Figure 4.28 - (Continued from previous page) (e) Image for rp=50m. Mean residual
error after 19 iterations = 1.0% (f) Image for rp=60m. Mean residual error after 19
iterations = 1.0%.
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Figure 4.29 - Injected plume model and 10 kHz images for different plume radii (rp).
The images were reconstructed using results calculated at 21 source and receiver
positions spaced at 10m intervals from 0 to 200m depth. The added noise is 5.0% of the
maximum total field and the bracket in each image indicates the radial extent and width
of the body (a) Model for rp=30m. (b) Image for rp=20m. Mean residual error after 13
iterations = 5.0%. (c) Image for rp=30m. Mean residual error after 13 iterations = 5.0%.
(d) Image for rp=40m. Mean residual error after 14 iterations = 5.0%. (Continued on

next page)
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Figure 4.29 - (Continued from previous page) (¢) Image for rp=50m. Mean residual
error after 15 iterations = 5.0% (f) Image for rp=60m. Mean residual error after 15

iterations = 5.0%.
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Figure 4.30 - Injected plume model and 10 kHz images for different plume radii (rp).
The images were reconstructed using results calculated at 21 source and receiver
positions spaced at 10m intervals from O to 200m depth. The added noise is 10.0% of the
maximum total field and the bracket in each image indicates the radial extent and width
of the body (a) Model for rp=30m. (b) Image for rp=20m. Mean residual error after 9
iterations = 10.1%. (c) Image for rp=30m. Mean residual error after 10 iterations =
10.1%. (d) Image for rp=40m. Mean residual error after 11 iterations = 10.1%.
(Continued on next page)
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Figure 4.30- (Continued from previous page) (¢) Image for rp=50m. Mean residual error
after 12 iterations = 10.1% (f) Image for rp=60m. Mean residual error after 12 iterations

=10.1%.
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Figure 4.31 - Residual amplitude error between the input data and the calculated results
for images given in Figure 4.28 as a function of source and receiver depth. The errors
have been normalized by the maximum value of the total field in the data. (a) Residual
errors for the image given in Figure 4.28b. (b) Residual errors for the image given in
Figure 4.28e.
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Figure 4.32 - Residual amplitude error between the input data and the calculated results
for images given in Figure 4.30 as a function of source and receiver depth. The errors
have been normalized by the maximum value of the total field in the data. (a) Residual
errors for the image given in Figure 4.30b. (b) Residual errors for the image given in
Figure 4.30e.
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Figure 4.33 - Injected plume model and 1 kHz images for different plume radii (rp).
The images were reconstructed using results calculated at 21 source and receiver
positions spaced at 10m intervals from 0 to 200m depth. The added noise is 0.10% of the
maximum total field and the bracket in each image indicates the radial extent and width
of the body. (a) Model for rp=30m. (b) Image for rp=20m. Mean residual misfit after 24
iterations = 0.10%. (c) Image for rp=30m. Mean residual error after 25 iterations =
0.10%. (d) Image for rp=40m. Mean residual error after 26 iterations = 0.10%.
(Continued on next page)
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Figure 4.34- Centered 3D sheet model and images as a function of frequency. (a) 40m by
40m sheet model of conductance 0.2S which is centered both in the x and y directions
about the source borehole. Results have been calculated for 21 source and receiver
positions spaced at 10m intervals from 0 to 200m depth. The added noise is 0.1% of the
maximum total field at each frequency. (b) 1 kHz image. Mean residual error after 11
iterations=0.10%. (c) 10 kHz image. Mean residual error after 19 iterations = 0.10%.
(d) 100 kHz image. Mean residual error after 25 iterations = 0.12%.
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Figure 4.36- 3D model with the sheet offset from the source well by +10m and the
resulting images as a function of frequency. (a) 40m by 40m sheet model of conductance
0.2S centered in the y direction (in and out of the page) about the source borehole.
Results have been calculated for 21 source and receiver positions from 0 to 200m depth at
10m intervals. The added noise is 0.1% of the maximum total field at each frequency. (b)
1 kHz image. Mean residual error after 11 iterations=0.17%. (c) 10 kHz image. Mean
residual error after 19 iterations = 0.49%. (d) 100 kHz image. Mean residual error after
25 iterations = 0.13%.
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Figure 4.37 - Residual amplitude error between the input data and the calculated results
for the images in Figure 4.36 plotted as a function of source and receiver depth. The
errors has been normalized by the maximum value of the total field in the data. (a)
Residual errors for the 1kHz image given in Figure 4.36b. (b) Residual errors for the 10
kHz image given in Figure 4.36¢c. (c) Residual errors for the 100 kHz image given in
Figure 4.36d.
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Figure 4.38- 3D model with the sheet offset from the source well by 20m and the
resulting images as a function of frequency. (a) 40m by 40m sheet model of conductance
0.2S centered in the y direction (in and out of the page) about the source borehole.
Results have been calculated for 21 source and receiver positions from 0 to 200m depth at
10m intervals. The added noise is 0.1% of the maximum total field at each frequency. (b)
1 kHz image. Mean residual error after 11 iterations=0.37%. (c) 10 kHz image. Mean
residual error after 19 iterations = 1.1%. (d) 100 kHz image. Mean residual error after
25 iterations = 0.24%.
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Figure 4.39 - Residual amplitude error between the input data and the calculated results
for the images in Figure 4.38 plotted as a function of source and receiver depth. The
errors has been normalized by the maximum value of the total field in the data. (a)
Residual errors for the 1kHz image given in Figure 4.38b. (b) Residual errors for the 10
kHz image given in Figure 4.38c. (c) Residual errors for the 100 kHz image given in
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Figure 4.40- 3D model with the sheet offset from the source well by 50m and the
resulting images as a function of frequency. (a) 40m by 40m sheet model of conductance
0.2S centered in the y direction (in and out of the page) about the source borehole.
Results have been calculated for 21 source and receiver positions from 0 to 200m depth at
10m intervals. The added noise is 0.1% of the maximum total field at each frequency. (b)
1 kHz image. Mean residual error after 11 iterations=0.17%. (c) 10 kHz image. Mean
residual error after 19 iterations = 0.27%. (d) 100 kHz image. Mean residual error after
25 iterations = 0.12%.
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the 1kHz image given in Figure 4.40b. (b)Residual errors for the 10 kHz image given in
Figure 4.40c. (c) Residual errors for the 100 kHz image given in Figure 4.40d.
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Figure 4.42- 3D model with the sheet offset from the source well by -10m and the
resulting images as a function of frequency. (a) 40m by 40m sheet model of conductance
0.2S centered in the y direction (in and out of the page) about the source borehole.
Results have been calculated for 21 source and receiver positions from 0 to 200m depth at
10m intervals. The added noise is 0.1% of the maximum total field at each frequency. (b)
1 kHz image. Mean residual error after 11 iterations=0.18%. (c) 10 kHz image. Mean
residual error after 19 iterations = 0.29%. (d) 100 kHz image. Mean residual error after
25 iterations = 0.21%.
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Figure 4.44- Images of the centered sheet model given in Figure 4.34a with no positivity
constraints imposed. (a) 1 kHz image. Mean residual error after 8 iterations=0.10%. (b)
10 kHz image. Mean residual error after 15 iterations = 0.10%.
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Chapter §
The Richmond Field Station Cross Well EM Experiment

Beginning in 1988, a series of salt water injection experiments were conducted at the
University of California Richmond Field Station test site to evaluate the use of different
geophysical methods for monitoring the injection process and for determining the geometry
of the resulting plume. The first set of experiments involved surface-to-borehole resistivity
measurements and were conducted in February of 1988 and 1989 (Bevc and Morrison ,
1992). Approximately 25,000 gallons of 1.0 S/m salt water were pumped into a 3 m
thick, 30 m deep, flat lying aquifer. Resistivity measurements were made both before and
after injection with current electrodes above, in, and below the aquifer, and with potential
electrodes spaced at Sm intervals along the surface in lines radiating outward from the
injection well (INJ in Figure 5.1). These experiments were useful in determining the
migration path of the salt water, but no inversion of the data was attempted to determine the
geometry of the injected plume.

In the spring of 1991 cross borehole electromagnetic (EM) measurements were made
by Lawrence Berkeley Laboratory and Lawrence Livermore Laboratory personnel to track
a similar volume of injected salt water. About 36,000 gallons of water were employed in
this experiment and cross-borehole EM data were collected both before and after the
injection. The test employed two observation boreholes EMNE and EMSW (Figure 5.1)
separated by 50m and approximately equidistant from the injection well (INJ). The EM data
were collected at a frequency of 18,800 Hz using a tool spacing of 0.2 m from the surface
to a depth of 85 m in the EMSW well. The receiver station spacing was 5 m starting at the
surface and extending to a depth of 85 m.

The primary conclusion from this experiment was that the salt water slug provided an
excellent target for cross borehole EM. The maximum difference between magnetic field
measurements made before and after injection was more than ten percent in amplitude
which was easily detectable with the cross well system. However attempts to interpret the
data using both an imaging scheme developed by Zhou (1989) and by fitting the results
with a simple 3-D "block" model in a layered host (Tripp, 1991 personal communication)
were unsuccessful. These problems in interpretation were primarily caused by the
complexity of the Richmond geology, i.e., the surrounding medium is neither a
homogenous whole space or one-dimensionally layered, and the salt water body not a
tabular block. Rather, the salt water plume appears to be an irregular three-dimensional
zone of varying salt concentration that followed the existing high permeability network
around the injection zone.
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Although the 1991 experiment at the Richmond field station was a technical success and
yielded a quality set of data, the geometry of the experiment does not conform to the
cylindrical symmetry required for the iterative Born inversion scheme developed in the last
chapter. Thus a second more involved cross well experiment was initiated in 1992, the
design of which centered around providing this 2-D geometry by placing the source in the
injection hole and the receivers in monitoring wells. In the following sections the geology
of the Richmond Field station will be described and the experimental procedure will be
outlined. Next a detailed description of the data is given which includes descriptions of the
calibration process, a simple noise analysis, and general observations about what
information the raw data yields. In the final section of this chapter the measurements will
be interpreted by applying the imaging routine to both the field data and numerical models
simulating the experiment.

5.1 Geology of the Richmond Field Station test site

The Richmond field station is located in a light industrial area which lies about six
miles north of the University of California at Berkeley campus. The well field (Figure 5.1)
is located in an open area approximately 400m north of San Francisco Bay. The upper 30-
35 m of the site consists of unconsolidated alluvium, chiefly muds and silts interbedded
with layers of sand and gravel of variable thickness. Below the unconsolidated sediments
lies a basement of sandstone and shale, most likely from the Cenozoic Great Valley
formation. A more complete description of the site geology including some well correlation
is provided by Pouch (1987).

Figure 5.2 shows the EM induction logs for wells EMSW and EMNE together with
stratigraphic logs derived from well cuttings. The logs were obtained in two wells that are
50.2 m apart and suggest that individual layers cannot be easily correlated over large
distances at Richmond. Pouch (1987) found that a few of the layers, in particular some
water-bearing sands and silts, could be traced across the field but that they varied
considerably in thickness. He suggested that the sediments were deposited in a
fluvial/deltaic environment with some of the individual sands deposited in channels.

The logs also show that the basement rock is variable. In four of the five wells that
penetrated basement, the rock type was a very hard sandstone. In well EMNE, however,
this basal unit is a softer, finer grained rock consisting predominantly of shale. This
variation might represent a basement fault or possibly a stratified basal section with a steep
dip.

Estimates of the conductivity distribution can also be made from these logs. The clays
and silts, which constitute the majority of the overburden, range from 0.05 to 0.2 S/m,
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while the coarser grained sand and gravel units tend to be more resistive (0.03 to 0.08
S/m). In the basement rocks the conductivity tends to drop substantially. The sandstones
are often less than 0.01 S/m while the shales range between 0.015 and 0.025 S/m.

The variability in rock type, and hence the variability in conductivity that exists over
short distances at Richmond illustrates the geologic complexity that made a simple
interpretation of the 1991 data impossible. In order to get a better handle on the situation
several new wells were drilled in early 1992, including a new injection well (INJ1) which
allows the source to be placed within the injected plume. The hope was that by doing this,
the geometry would crudely simulate the cylindrical symmetry used in the iterative Born
inversion scheme, thus simplifying the interpretation. The description of this experiment,
including measurements that were made in addition to the cross well EM, is given in the

following section.

5.2 The 1992 Richmond Field Station experiment

The 1992 salt water injection experiment at Richmond proceeded in much the same
manner as the previous experiments where cross hole EM data was collected both before
and after the saline fluid was injected. The field system used in the experiment is described
by Wilt et al. (1993) and is included in Appendix C.

The baseline cross hole EM data were measured in May, 1992 after an initial system
set-up and debugging session. Four cross hole data sets were collected with the transmitter
in the central well (INJ1) and the receiver tool deployed in each of the four EM observation
holes. A frequency of 18.5 kHz was employed using a transmitter tool spacing of 0.5 m
from the surface to a depth of 60 m. Receiver stations were separated by 5 m starting at 5
m depth and extending down to 55 m in each of the four observation holes. This yielded
111 source positions at 11 receiver depths for each cross well pair.

After the baseline EM data were collected a set of EM induction and water conductivity
logs were made in each of 12 boreholes near the injection well (These can be found in
appendix D). Just after these measurements were completed a volume of water was
pumped into a 100,000 gallon holding pond and mixed with salt until the water
conductivity reached 1 S/m. This fluid was then injected into a 3 m thick gravel aquifer
through a perforated zone that extends from 26 m to 30 m depth in borehole INJ1. A rate
of 10 gallons per minute was maintained for about 4 days yielding a total injected volume
of approximately 50,000 gallons. This is 50 percent greater than that used in the 1991
experiment. Assuming a porosity of 30 percent, the injected water would sweep a
cylindrical space 3 m high and 8 m in radius. Immediately following the termination of the
injection process well INJ1 was flushed with fresh water to remove the conductive salt

193



water from the length of the borehole. A second set of cross hole EM, induction log and
water conductivity data were then collected during a four week period in June following
the injection .

After the post-injection measurements were made, fluid was pumped out of well INJ1
until the water conductivity was restored to the pre experiment background value. The total
volume drawn out was 300,000 gallons which is about 6 times the amount injected. The
pumping began on July 6 at a rate of 20 gallons per minute and lasted for 12 days. Water
levels in the wells open to the aquifer were monitored during this period to better
understand the hydrology of the site (Appendix E). After a two week period to allow the
ground water level to recover to its original position, an attempt was made to repeat the
baseline EM measurements in the EMNE well. Unfortunately, due to instrument problems
the data quality was much poorer than in May and thus this data was not retained. In all,
the experiment was conducted over a period of three months.

In Table 1 a summary is given of the cross well electromagnetic data collected in this
experiment. The induction logging and borehole water conductivity data and results are
listed in Appendix D and the water level draw-down data collected during the pumping out
phase are given in Appendix E.
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Source Well Receiver Well Pre Injection Post Injection
May 1992 June 1992
INJ1 NW yes yes (2 sets)
INJ1 SW yes yes (2 sets)
INJ1 NE yes yes
INJ1 SE yes yes

Table 5.1 - Summary of the cross well EM data collected in the 1992 Richmond Field
Station experiment. Each cross well data set consists of 18.5 kHz measurements made at
111 source positions for 11 receiver depths.

As described in Table 1, ten sets of cross-well data were collected with the transmitter
in INJ1 and the receiver in each of the four surrounding EM wells. Four of these data sets
were collected before injection and six after injection. The two extra sets were collected
after injection in order to estimate the system noise. A full description of the data
processing, estimates of the noise and qualitative déscriptions of the data are given in the
following sections.



5.2.1 System verification

As mentioned in the Section 5.2, considerable time was spent before the data collection
to verify that the system was operating correctly. Three tests were employed for this
purpose; 1) noise tests without the source connected, 2) repeatability tests, and 3) a
reciprocity test. The noise test without the source operating was accomplished by shorting
the transmitter cable at the cable head, capping it to waterproof it and lowering this shorted
cable down the well. Once the ground loops had been eliminated from the system, the
voltage measured by the receiver during this procedure did not exceed 30 LV, which
corresponds to 3.7 x 10 A/m and is less by one order of magnitude than the smallest
signal measured with the transmitter operating. In addition this signal did not vary by more
than a few WV as the cable was lowered down the well.

During the system set up and ground loop elimination, profile repeatability
measurements were done to check the system stability. These tests involved fixing the
receiver at some point and then collecting data as the source was moved down the well.
The measurements were then repeated either immediately after the source was returned to
the surface, or overnight, and the errors between the two sets of measurements calculated.
The final repeatability tests before the experiment began were done overnight from April 30
to May 1 and over the weekend from May 1 to May 4 with the transmitter in INJ1 and the
receiver in EMNE at 5m depth. In both of these cases the amplitude and phase repeated to
approximately 1% and 1°, respectively. Repeatability measurements like this were also
made periodically during the experiment to verify that the system was operating propertly.

The reciprocity measurements provided the final system check. This involved
collecting two sets of cross hole measurements with the transmitter and receiver each at 15
m, 30 m and 45 m depth. This yields a total of nine source-receiver combinations. The first
set of measurements were done with the transmitter in the INJ1 well and the receiver in
EMNE. The two system elements were then physically interchanged for the second set of
measurements such that the source was in EMNE and the receiver in INJ1. The reciprocity
principle states that measurement at point A due to a source at point B should be identical if
the points of the source and of the measurement are interchanged. Because this involves
breaking down and moving the transmitter and receiver systems to opposite wells, errors
at least twice that of the repeatability errors were expected.

Reciprocity results measured on May 1 are given in Table 5.2. Notice that except for
the two points of maximum source - receiver separation, the results are very good. These
results coupled with the repeatability measurements suggested that the ground loops had
been eliminated and thus the system was stable enough for the experiment to proceed.
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Depth of Tool Depth of Tool % Amplitude Degrees Phase

in INJ1 (m) in EMNE (m) ‘ Error Error
15 15 0.6 0.1
30 15 1.4 1.3
45 15 -7.8 -1.4
15 30 1.9 -0.1
30 ' 30 0.1 0.1
45 30 -1.5 0.7
15 45 -.8 2.3
30 45 0.9 0.8
45 45 2.3 0.7

Table 5.2 - Reciprocity errors calculated for the test conducted on May 1, 1992 at the
Richmond Field Station with the cross borehole EM system.

5.2.2 Data processing and system calibration

Because the receiver output is in Volts rather than units of magnetic field (A/m), the
system must be calibrated before the data can be analyzed. This calibration process
consists of determining an amplitude and phase constant, which when applied to the data
convert the observed voltages to magnetic field intensity, H, per unit dipole moment.
These two constants were determined after the post-injection measurements had been
completed. Unfortunately both an amplitude and phase tare were noticed between the May
and June measurements, and thus corrections had to be applied to tie the two data sets
together.

Since the rocks at the Richmond Field station test site are fairly conductive, calibrating
the system at the operating frequency without including the earth response is rather
difficult. In addition, because the geology is relatively complex, determining the calibration
constants by comparing the raw data to simple layered earth models may yield erroneous
results. To minimize these problems a dual frequency method was employed to determine
the amplitude calibration. The first frequency (100 Hz) is low enough so that the earth
response is minimal at the transmitter-receiver separation employed (20 to 25 m). The
second frequency is the operating frequency of 18.5 kHz at which the earth response is
large.

The first step in the amplitude calibration is to determine the transfer function, or
sensitivity of the receiver coil at each of the frequencies. This was accomplished by placing
the receiver coil in a calibration solenoid and using a Hewlett Packard spectrum analyzer to
determine the transfer function over a wide frequency band. The receiver sensitivity was
found to be 640 V/(A/m) at 100 Hz and 722 V/(A/m) at 18.5 kHz. The phase shift of the
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receiver coil at 18.5 kHz, which is used to determine the phase calibration constant, was
also determined at this time.

The second step in the amplitude calibration is to determine the moment of the
transmitter coil. This involved measuring the 100 Hz field that resulted from placing the
transmitter at the top of INJ1 and the receiver in EMNW well. The voltage measured at'the
receiver was first converted to the equivalent magnetic field by applying the sensitivity
constant determined above. Because the 100 Hz field 20 m away from the transmitter is
not very sensitive to the conductivity distribution between the two wells, the magnetic field
per unit dipole moment can be estimated using an analytic solution for the magnetic fields
produced by a dipole source in a layered half-space. The program developed by Lee
(1988) was again employed for this purpose.

The magnetic dipole moment is determined by dividing the measured field by this
calculated field. In this case the moment/unit current (1M, ) was found to be approximately
12.2 m? and was calculated using the formula

m.= VR100
I100 HIOO TIOO (51)

where Vgigo and Ijgp are the voltage in the receiver coil and current in the transmitter
during the 100 Hz measurements, Hjoo is the calculated 100 Hz magnetic field per unit
moment at the receiver location, and T100 is the receiver coil transfer function at 100 Hz.
The total amplitude calibration constant then takes the form

CAL = 1.

I g5k Tigsk my (5.2)

where Iigsk is the current in the transmitter during the data collection and Tigsk is the
receiver coil transfer function at 18.5 kHz. This constant (CAL) is used to convert the
amplitude of the observed voltage to the amplitude of the magnetic field per unit transmitter
moment.

The above formula assumes that the transmitter moment per unit current is identical at
100 Hz and 18.5 kHz. To verify this, we measured the voltage generated in a small loop
placed around the transmitter coil at the two frequencies. These measurements were made
with the center of the transmitter coil 80 cm below the surface of the earth and 1 m below
the loop of wire which was wound around the INJ1 casing. For a sinusoidal transmitter
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current this voltage is equal to the mutual inductance between the loop and the transmitter
multiplied by the transmitter current-frequency product, i.e.

V=M11 Iy (53)

where M is the mutual inductance, It is the current in the transmitter coil and @ is the
angular frequency. Because the mutual inductance is dependent only on the geometrical
relationship between the two coils, it is directly proportional to the transmitter moment.
Thus if it is determined that the mutual inductance is constant at the two frequencies, then it
can be implied that the moment per unit current is also constant. When this test was
performed at Richmond it was found that the mutual inductance at the two frequencies
varied only by 3.3% , thus verifying the constant moment / unit current assumption.
However this value also indicates that the calibration is only good to 3% and that calibrating
the data in this manner will introduce non-random error into the measurements.

Determining the phase calibration constant was relatively simple compared to that of the
amplitude. The phase shift in each component of the system was first measured separately
with the lock-in amplifier. The total phase calibration correction was then determined by
summing all these individual phase shifts. This process was checked by referencing
various combinations of the system components to a calibration coil of known phase shift
placed immediately adjacent to the transmitter. The value obtained by summing the phase
of the individual components was found to be within 1° of the value measured with the
calibration coil.

As mentioned in the introduction of this section, a tare was noticed between the May-

and June data. To properly tie both sets of data together, the calibration constants were
adjusted appropriately. We determined that the June data was of better quality compared to
the May data as the error calculated between repeat measurements was less after the
injection of the salt water. To verify this we kept the calibration constant for the June data
the same for each of the wells. The calibration for the May data was then varied on a well
to well basis such that for points with both the source and receiver at either the top or
bottom of the well away from the injection zone, the average misfit between the May and
June data was within approximately 2% amplitude and 1 degree phase. As shown in Table
3, the May phase calibration constants increase in the order that each data set was collected
which seems to verify our hypothesis of system instability. The final check was to
compare the resulting May calibration constants to those determined from a layered earth
inversion routine developed by Deszcz-Pan (1992, personal communication) to ensure that
they are correct. The final constants used to calibrate each set of data are given below.
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Joosemommaaanees May Data ---ce-c-ne-ceee- | memecmmoeannaas June Data ---ecoceeneneo.
Well Start Amp Phase Start Amp Phase
Date * * % Date * * &
EMNW 5/5 1.23 60 6/5 1.30 58
EMNE 5/4 1.23 59 6/3 1.30 58
EMSW 5/11 1.25 63 6/2 1.30 58
EMSE 5/8 1.27 60 6/4 1.30 58

Table 5.3 - Calibration constants to convert the measured voltages to magnetic field. The

units for the amplitude calibration are X 10-4 (Amps/m)/Volts and for the phase calibration
are in degrees.

5.2.3 Error analysis and data quality

During the experiment, profiles for a given receiver position were repeated at the
beginning of each day and whenever a new well was started to ensure that the system was
operating properly. In general an average of 2% amplitude error and 1° phase difference
were considered good stability bounds for the system. Due to time considerations
however, greater amplitude errors were often considered acceptable if the phase was stable
and vice versa. In addition it was noticed that the quality of the data decreases in a
clockwise fashion from the EMNW well (best) to the EMSW well (worst). This is based
not only on repeat error analysis but also on the secondary field calculations which are
presented later. To determine the distribution of and the types of errors and noise present
in the measurements, extra sets of post injection data were collected in the EMNW and
EMSW wells 5 days and 2 weeks after the original data, respectively.

The overall mean error and standard deviation between the original and repeat
measurements were the first statistics to be calculated. In order to compare the data for
two wells which are located different distances away from INJ1 , the errors are presented
in percent amplitude and degrees phase. Table 5.4 shows that both the mean error and
standard deviation are greater for the EMSW repeat surveys compared to those done in the
EMNW well. These larger errors may be due in part to the greater distances between INJ1
and EMSW, and the larger time separation between repeats. Histograms for the two sets of
repeatability errors have also been plotted. As shown in Figures 5.3 and 5.4 the
distribution is skewed about the mean rather than being equally distributed.



EMNW EMSW
% Amplitude Degrees Phase % Amplitude Degrees Phase
Mean Error 2.26 -0.81 3.30 -1.09
Standard 1.40 0.92 2.18 1.31
Deviation

Table 5.4 - Mean repeatability error between the two sets of post injection data collected
between INJ1 and EMNW, and INJ1 and EMSW. The two sets of data involving EMNW
were collected 5 days apart and the data involving EMSW two weeks apart.

To better understand the origin of the noise, two additional sets of statistical
calculations were made. The first set involved calculating the mean error and the standard
deviation with the transmitter and receiver at approximately the same level but at different
depths below the surface. To get a mean error at each depth, the results for ten
transmitter positions within * 2.5m of the receiver depth were averaged. The differences
were calculated in terms of magnetic field rather than relative (percent) amplitude so that
errors present in both the real and imaginary components as well as amplitude and phase
could be calculated and compared.

As shown in Figures 5.5 and 5.6, both the mean error and standard deviation show no
correlation to the tool depth below the surface. This indicates first of all that the noise is not
dependent on the length of cable down hole, i.e. the cable is not leaking. In addition, the
errors do not seem to be caused by surface noise as the magnitude of this type of error
would decay with increasing transmitter-receiver depth as the noise is attenuated by the
earth.

The repeatability errors have also been calgulated as a function of source-receiver
separation to determine if the noise is truly random as suggested by the above results.
Again the results were calculated for the real and imaginary components as well as
amplitude and phase. Due to the geometry of the experiment, there are a larger number of
data at smaller transmitter-receiver separations than at larger separations. This problem in
itself may introduce some error to this analysis.

The results given in Figures 5.7 and 5.8 indicate that the noise is not constant with
increasing source-receiver separation.  Rather, from the closest separation to a source-
receiver separation of 45m the error decreases at approximately the same rate as the
magnetic source field. For source-receiver separations greater than 45 m the error stabilizes
at about 1x10% A/m which suggests that this value represents the system noise floor.

200



These results coupled with those above strongly imply that some type of electrical leakage
from the transmitter tool is occurring which is contaminating the results. Unfortunately the
source of this leakage has not been located and thus this effect can not be decoupled from
the data. Because of this the noise level is probably higher than the system noise floor, and
thus here it is estimated to be approximately 5x10-8 A/m.

5.2.4 Data presentation and description

In order to present all the data measured in the cross well experiment simultaneously,
they have been plotted in gray scale format as a function of source and receiver position.
Notice that this is the same format employed to analyze the residual errors in Chapter 4.
Presenting the data in this manner allows the continuity between profiles to be checked and
also allows for the detection of any changes that occur due to the injection. Unfortunately
because the receiver stations are spaced rather far apart (5 m), the interpolation between
data points is greater in this direction than in that of the source. Because of this distortions
can occur which are not properties of the data but rather are errors generated by the plotting
routine.

Figures 5.9 and 5.10 show the EMNW data sets before and after injection,
respectively. In both cases the data are smoothly varying both along each individual
profile and in between the individual lines. In addition the amplitude is maximum along the
diagonal which coincides with the source and receiver being at the same depth. Both of
these properties tend to imply that the system is operating properly and thus the data is of
good quality.

Although the magnitude of the changes is not spectacular, comparing the two sets of
data indicates that the injection causes changes in both amplitude and phase when the
source is at a depth of 30m, i.e. when the transmitter is in the plume. These changes
become much more apparent if we calculate the secondary fields resulting from the
introduction of the plume. This is a simple process which involves subtracting the fields
measured before the injection from those measured after injection. Figure 5.11a shows the
amplitude of the scattered fields measured in the EMNW well, and in Figure 5.11b the
phase differences between the post and pre injection fields have been plotted. In both cases
a fairly large anomaly is present at a source depth of 30m . The fact that this anomaly is
several times larger than the noise estimates developed in the last section suggests that the
EMNW data are of sufficient quality to be used in the iterative Born imaging scheme. Itis
easy to see that by calculating the scattered fields in this manner, the changes caused by the
plume can be isolated which may lead to a more robust initial interpretation than would
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result by using the total fields. In addition this shows the benefit of making measurements
over time when trying to monitor injection processes.

The cross well data set collected in the EMNE well show similar characteristics when
compared to those measured in EMNW. The pre and post injection measurements given in
Figures 5.12 and 5.13, respectively, are smoothly varying which again implies fairly good
data quality. However the magnitude of the fields measu;ed in the EMNE well are about
half those measured in EMNW. In addition the phase has been in general rotated by -30
degrees. These differences are caused not by very inhomogenous geology but rather by the
interwell separation being 25m for the EMNE measurements compared to 20m for the
EMNW data. The additional Sm results in a greater attenuation of the fields.

The scattered fields measured in the EMNE well that resulted from the injected body are
plotted in Figure 5.14. These exhibit the same type of character as the fields measured in
EMNW ( Figure 5.11) except that once again the magnitude has been halved. Because the
secondary fields plotted in these figures exhibit similar properties, a rough, initial
interpretation can be made that the injected water seems to be heading at least partially in a
northern direction.

As mentioned earlier, the data quality appeared to decrease in a clockwise fashion from
the EMNW well to the EMSW well. This problem is not apparent in the pre and post
injection data collected in the EMSW well. Figures 5.15 and 5.16 show that the EMSE
data exhibit approximately the same character as those data collected in the EMNW well
(Figures 5.9 and 5.10). This should be the case as both wells are located approximately
20m from the source bore hole. However the secondary fields in the two wells that result
from the injection are very different. Notice that the scattered field amplitudes (Figure
5.17a) are much less in the EMSE data than those measured in the EMNW well (Figure
5.11a). In addition a second anomalous zone is apparent when both the source and receiver
are at depth. The differenced phase data indicate even larger discrepancies. Whereas
Figure 5.11b shows a phase anomaly for the EMNW data that displays a pattern similar to
that displayed by the amplitude, the scattered phase measured in the EMSE well (Figure
5.17b) is much different, with the maximum occurring when the receiver furthest from the
injection zone rather than at the same level.

The scattered field quality seems to be even worse for the data collected in the EMSW.
Again the pre and post injection data as shown in Figures 5.18 and 5.19, respectively,
seem to be of good quality. However the scattered fields plotted in Figure 5.20 indicate
very little response to the injection process. In fact these results are fairly close to the
repeatability noise level that was estimated in the last section.
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The scattered fields measurements in each of the wells can be combined to produce an
initial interpretation. The fact that the anomalies in the northern wells are much greater than
those to the south indicates that the majority of the water is migrating to the North. This
interpretation agrees fairly well with that of Bevc and Morrison (1992). Some migration
may be occurring to the southeast, however the almost negligible anomaly observed in the
southwest data indicates very little injection in this direction. In order to more accurately
determine how far the plume is migrating in each direction, the iterative Born imaging
scheme will be employed in the next section to image the conductive salt water body.

5.3 Interpretation of data

One of the prime considerations of the Richmond '92 experiment was to produce a data
set in which the geology, to a first order, exhibits a geometry suitable for the 2-D inversion
routine. However, because the Richmond geology consists of interbedded conductive
shales and sands overlying a more resistive basement, the plume can't be interpreted as
being injected into a homogenous half-space. There are two different methods of
approaching the problem. The first is to image the entire conductivity structure between the
two wells both before and after injection, and then compare the two images to determine
what changes have occurred due to the injection. The second approach is to image only the
scattered fields resulting from the injected body using a layered background model which
approximately mimics the conductivity structure. Both of these methods are employed
below to determine the position of the plume. In addition these images are compared to
theoretical results using the sheet model in order to determine the accuracy of the process
for this experiment.

5.3.1 Imaging the total field data

The first step in inverting the total field data before and after injection is to determine an
average background conductivity. As was done for the Devine images, this value was
determined by finding the conductivity that minimizes the sum of the residual errors
between the data and the fields that would exist in a homogenous half space. The residual
errors in turn are then the scattered fields to which the imaging process is applied. The
background conductivities that were employed for each cross well pair are given in Table
5.5 along with the corresponding background induction number for that interwell
separation.

As shown in Figure 2.3a the induction numbers listed in Table 5.5 indicate that the
system is operating on the low induction number side of the Born kernel. In Chapter 4 it
was demonstrated that at these low induction numbers, the iterative Born scheme
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experiences problems converging to the estimated noise level. This is the result of a bias
which is produced when trying to fit 3-D data to a 2-D cylindrically symmetric model. Thus
because the conductivity distribution at Richmond exhibits a three dimensional behavior
(Pouch,1986), we can expect that the solution will experience difficulty in converging to
the noise levels that were estimated from the repeatability errors. Because of this, the
results given in this section were obtained by arbitrarily terminating the scheme after 10
iterations. It will be seen that this provides adequate resolution of the injected plume while
also exhibiting artifacts due to the three dimensional nature of the conductivity.

Cross Well Pair Interwell Background | Induction Number
(See Figure 5.1) Separation ,I Conductivity, (Gomul 2) '
(m) o (S/m)
INJ1 - EMNW 20.0 0.051 3.0
INJ1 - EMNE 25.0 0.054 4.9
INJ1 - EMSE 19.6 0.057 3.2
INJ1 - EMSW 25.0 0.064 5.8

Table 5.5 - Background conductivities employed to image the Richmond field station
cross well data. The corresponding background induction numbers have also been
included.

It was also demonstrated in Chapter 3 that at the lower induction numbers, a given
source-receiver pair is fairly sensitive to the region outside of the wells. To avoid edge
effects, the mesh was extended horizontally to a distance twice that of the interwell
separation, and also from the surface to a depth of 80m. A cell size of 2m by 2m was
employed which yields a mesh of 800 to 1000 cells depending on the interwell separation.
To account for the earth-air interface, the layered background model (Section 4.3.4) was
employed to calculate the fields and Green's functions for a uniform half space. Because
of the computer time and memory involved in these computations, only 56 source
positions were incorporated at 1m intervals with the 11 receiver locations. This yields a
total of 616 data points.

Figure 5.21 shows the images obtained by inverting the pre- and post-injection data
collected in the EMNW well. For comparison these have been plotted with the conductivity
logs measured in each of the wells (The well logs are plotted graphically in appendix D).
Notice that the images do recover the general structure of conductive sediments overlying a
more resistive basement. Thus as was demonstrated with the Devine data the imaging
scheme recovers a smoothed version of the well logs. In addition comparing the two
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images definitely shows the conductivity changes at a depth of 30m near the source well
that are caused by the injection of the conductive salt water . A method to better resolve the
extent of this plume will be examined below.

A closer examination of the logs in Appendix D indicates the three dimensional nature
of the subsurface. Even the logs for INJ1 and EMNW that are given in Figure 5.21 do not
correlate to each other particularly well. The 3-D nature of the subsurface and thus the cross
well data manifests itself as artifacts in the 2-D images. Although the contact between the
conductive sediment and the resistive basement is shown in the logs to exhibit a slight dip,
it is clearly not as severe as the cross well image in Figure 5.21a shows it to be. In
addition the image shows a large conductor at a depth of 25m near the receiver well which
is not apparent in the well log. Because the well logs correlate so poorly with the images,
these results should not be considered to be high resolution images of the subsurface.
Rather, the safest conclusion that can be made is that at least a portion of the injected water
is migrating in a north-western direction.

The three dimensional effects are also apparent in the residual errors. Figure 5.22
shows a non-random distribution in the errors with respect to the source and receiver
depth. As was demonstrated in Section 4.4 this type of behavior suggests that there is a 3-
D component in the data. The residuals are especially large when both the source and
receiver are in the basement. This implies that the iterative Born scheme is finding it
especially hard to fit the basement region with a cylindrical model. In Figure 5.22a large
errors exist when the receiver is at 40 m and the source is between 30 and 40m. This
corresponds to the previously described contact between the conductive sediments and
resistive basement, and further emphasizes that the image of the dipping contact is most
likely incorrect. In contrast the post injection residuals show a slightly different character
in this region. Figure 5.22b shows substantial residuals for all receiver locations whenever
the source is at 30m depth. Realizing that this is the depth of injection and comparing this
with the residual plots given in Section 4.4.2 indicates that the plume itself is exhibiting a
three dimensional nature which the imaging scheme can not account for. Thus some
caution must be must be taken when interpreting the edges of the injected body from the
images. . ‘

The images of the cross well the data collected between INJ1 and the EMNE well are
given in Figure 5.23. These results demonstrate many‘ of the same characteristics as those
given in Figure 5.21. The general structure of conductive sediments overlying resistive
basement is recovered, and a comparison of the pre- and post- injection images indicates
the appearance of a conductive body near the source well after injection. Again this
indicates that at least some of the salt water is migrating in this direction. However there
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exists a poor correlation between the well logs and the images which again suggests that the
imaging scheme is having problems fitting a cylindrical model to the data.

The residual errors plotted in Figure 5.24 do indicate that there is a 3-D nature to the
data. Again the largest magnitude errors occur when both the source and receiver are at
depth suggesting that the basement is very inhomogenous. This inhomogenous nature is
present in the logs for these two wells, with the basement in EMNE being approximately
twice as conductive as that in INJ1 (Figure 5.23a). In addition notice that large residuals
exist at a source depth of 30m in the pre-injection residuals that are not present in the post-
injection plots. This suggests that either the introduction of the salt water imposes more of
2-D geometry on the medium, or that the post-injection data is of better quality. In either
case it seems apparent that the post-injection image (Figure 5.23b) may be a more accurate
representation of the subsurface between INJ1 and EMNE than the pre-injection image in
Figure 5.23a.

In general the images of the cross well data collected in the EMSE and EMSW wells
(Figures 5.25 and 5.27, respectively) display the same characteristics as those collected in
the wells to the north. A conductive section overlies a more resistive basement and the
correlation between the logs and the images is fairly poor. As before the cylindrical
symmetry of the imaging scheme has problems imaging the 3-D geometry which is present
in the data. In fact Figure 5.26 shows that for the southeast data the maximum residual
errors line up along the diagonal. The fact that the iterative Born scheme always
experiences problems fitting the data when the source and receiver are at the same depth
suggests that the geology between these two wells is extremely complex. Although the
residuals for the EMSW images (Figure 5.28) also tend to line up along the diagonal, the
tpattern is not nearly as strong as that shown in Figure 5.26.

Although the images of the data collected to the north and south show the same general
characteristics, one major difference does exist. The results for the southern wells do not
indicate a drastic change between the pre- and post-injection images within the injection
zone. In both cases the region of interest is slightly less conductive after injection. These
results are similar to those in Figure 4.46b which demonstrates that when a 3-D sheet is
offset in the direction away from the receiver well, resistive artifacts are formed in the
images. Thus, even though the images in Figures 5.20 through 5.27 probably do not
represent the true conductivity distribution between the wells, they do yield valuable
information about the injection process. It is apparent that the water is moving a northerly
direction which coincides both with the results of Bevc and Morrison (1992) and the data
analysis presented earlier in this chapter.
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The direction of migration and possibly even the horizontal extent of the plume become
more apparent if the difference in conductivity between the post- and pre-injection images
are plotted. This is a simple process of subtracting the values in each cell of the pre-
injection image from those in the post injection image. Figure 5.29 leaves little doubt that
the water is heading primarily in a northern direction. Both of the images of the data
collected in the northern wells (Figures 5.29a and 5.29b) show large positive changes in
conductivity within the injection zone. In addition notice that the imaged plume for the
EMNW data seems to be slightly larger and more conductive than that for EMNE. This
tends to agree with the results of Bevc and Morrison (1992) who showed that when the
injection occurred in INJ, the plume trended in a northwest rather than northern direction.
However, the greater differences in conductivity in one direction may be an artifact of the
imaging routine, and this possibility will be discussed in the following sections.

Also present in each of the images given in Figure 5.29 are negative changes in
conductivity. Although these could represent resistive water displacing conductive water
within the injection zone, they are more likely 3-D artifacts of the 2-D imaging scheme
similar to those observed in the images of section 4.4.2. Again the presence of these types
of artifacts will be discussed in the next section.

In this section the iterative Born scheme has been applied to the total-vertical- magnetic
field data collected at the Richmond Field Station in order to image the subsurface
conductivity structure. It has been determined that although the general geologic structure
is recovered, the 2-D model employed by the imaging scheme experiences problems in
fitting the data to the estimated noise level. This is most likely due to the three dimensional
nature of the conductivity structure combined with the relatively low operating frequency.
This inability to fit the data accurately results in the creation of artifacts which don't agree
with the well logs. However it has also been demonstrated that by observing the changes
in conductivity between the pre- and post-injection images, the general migration direction
of the plume can be determined. In the next section a method for imaging the location of
the plume will be discussed which is not as time and memory intensive.

5.3.2 Imaging the scattered field data

The second method of imaging the injected body involves inverting on the scattered
fields that are generated by the plume, i.e. those fields that are given in Figures 5.11, 5.14,
5.17 and 5.20. However, because the geology of the Richmond Field station consists of
conductive sediments overlying a resistive basement, it isbe inappropriate to simulate the
injection as occurring in a homogenous half space. Rather, a two layer background model
can be introduced using the theory outlined in Section 4.4.4. The conductivities of the
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layers as well as the depth of the interface were obtained using a least squares inversion
technique on the pre-injection data (Deszcz-Pan, 1993, personnel communication). The
two layer background models that were employed are listed as a function of the cross well
data set in Table 5.6.

Cross Well Pair Layer 1 Layer 1 Layer 2
(See Figure 5.1) Conductivity Thickness (m) Conductivity
(S/m) (S/m)
INJ1 - EMNW 0.073 34.0 0.0043
INJ1 - EMNE 0.079 36.0 0.0045
INJ1 - EMSE 0.067 38.0 0.0150
INJ1 - EMSW 0.076 38.0 0.0041

Table 5.6 - Two layer background models employed to image the scattered fields.

The mesh parameters were identical to those used in Section 5.4.1 except for one major
difference. Because the body that is generating the scattered fields is confined to the region
between the wells, the mesh does not need to be extended as far horizontally or vertically.
Thus for the two data sets that were collected between wells 20m apart, the mesh was 10
cells wide and 30 cells deep to cover the 20m by 60m region between. In the two other
cases where the bore holes are separated by 25m, the mesh width was 12 cells. Again the
cell size was 2m by 2m.

This reduced mesh size combined with the smaller magnitude scattered fields results in
a much quicker run time. For the images given in Section 5.4.1, the CPU time needed to
calculate the Green's functions and electric fields for each source-receiver-cell combination,
and then iterate 10 times to produce an image, was approximately 1000 to 1200 minutes on
a Silicon Graphics, Inc. IRIS INDIGO workstation. In addition, to produce both pre-
injection and post-injection images the iterative sequence was repeated. Therefore the time
needed to produce each of the images given in Figure 5.29 was approximately 1600 to
2000 CPU minutes. However when the scattered rather than total magnetic fields are
employed a final image of the plume is produced in less than 100 CPU minutes. This time
savings is the product of two factors: 1) a lower computing time because fewer cells are
present in the mesh and 2) the Born series converges quicker because the magnitude of the
scattering body is much smaller. Although this imaging method results in a less accurate
description of the overall conductivity distribution, it does produce a fairly accurate
description of the plume in a much more time-efficient manner.



The scattered field images that result after five iterations are shown in Figure 5.30.
Notice that these results compare very well to the "differenced" images in Figure 5.29.
Images of the data collected between INJ1 and the two wells to the north (Figures 5.30a
and 5.30b) indicate the presence of large conductors in the zone of interest, while those to
the south (Figures 5.30c and 5.30d) show very little response at all. Thus again the
conclusion is that the plume is heading in a northerly direction.

There are however significant differences between these images and those given in
Figure 5.29. Figures 5.30a and 5.30b show that to the north most of the conductive
material is confined within the injection zone. However these images also contain "arms"
which extend upwards from the plume. It will be shown in the next section that these are
artifacts which can be attributed to 3-D nature of the conductivty distribution. Artifacts are
also present in the images of the data collected in the southern wells (Figures 5.30c and
5.30d) but they are less well defined. In fact these show much less response compared to
the corresponding difference images given in Figures 5.29¢ and 5.29d.

A possibly more significant difference between the two set of results is that the
scattered field image of the data collected in the EMNE well (Figure 5.30b) shows the
plume to be extending out further horizontally than that of the difference image (Figure
5.29b). Unfortunately due to the complexity of the geology it is extremely difficult and time
consuming to accurately model the Richmond Fields Station experiment before and after the
injection and thus simulate the process that produces the differenced images. Because of
this it was not determined which of these two methods of reconstructing the geometry and
conductivity of the plume is more accurate.

If the aforementioned artifacts are due to a plume geometry that is three dimensional,
then these effects should also be present in plots of the residual errors. Figure 5.31 shows
that this is indeed the case, as for each image given in Figure 5.30 relatively large residual
errors exist at a source depth of 30m which corresponds to the injection zone. Thus it is
obvious that the cylindrically symmetric model can not accurately fit the 3-D data.

In order to determine if better resolution is attainable, the scheme was allowed to iterate
ten times on the scattered fields. The resulting images (Figure 5.32) again indicate
conductive anomalies within the injection zone for the data collected in EMNW and EMNE.
However, before coming to the conclusion that the extra iterations have improved both the
accuracy of the images to the north, it must be noted that the mean residual error is
approaching data noise level that was estimated in Section 5.3.3 and thus the increased
resolution in these images should be interpreted with caution.

In addition to the added resolution, the extra iterations seem to have improved the
accuracy of the solutions somewhat. When comparing Figures 5.32a and 5.32b to Figures
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5.30a and 5.30b, it appears as though the magnitude of the 3-D artifacts actually decreased.
However, this is not the case for the images of the cross well data collected in EMSE
(Figure 5.32c¢) and EMSW (Figure 5.32d) as these phenomenon seem to have increased
with the extra iterations. This decrease and increase of the image artifacts is also apparent
in the plots of the residuals. It is evident from comparing Figure 5.33 to Figure 5.31 that
for the images between INJ1 and the two northern wells, the magnitude of the errors at a
source depth of 30m decreases somewhat with the extra iterations. This is not true of the
images between INJ1 and the southern wells as the magnitude of these residuals remains
approximately the same.

To demonstrate that it is better to employ a layered background model rather than a
homogenous half space to image the Richmond data, the iterative Born scheme has again
been applied to the scattered fields that were measured in the EMNE well. However in this
example a half space with a conductivity of 0.054S/m has been employed. Figure 5.34
shows the results after five and ten iterations. Notice that in both images the artifacts below
the injection zone are more pronounced than those above it. In fact Figure 5.34b shows
part of the plume diffusing downward as well as outward. Thus although it may seem
unnecessary to employ a layered background model, incorporating it into the solution
seems to produce more accurate results.

In this section the scattered fields in a layered background model were used to image
the location of the injected plume. In terms of determining the direction in which the
injected body migrated, this method is much more time efficient than imaging the total field
data before and after injection. Unfortunately it has also been demonstrated that the two
different methods of recovering the scatterer location can differ in the horizontal extent of
the body between the wells. In the next section the iterative Born scheme will be applied
to some simple forward models simulating these scattered fields and the resulting images
compared to those of the real data to determine the accuracy of the experiment.

5.3.3 Simulation of the injection experiment

To crudely simulate the injection experiment, the thin sheet model that was used in
Chapters 3 and 4 was again employed. However the purpose here was not to find the sheet
model that best fit the scattered field data. Rather, the objective was to demonstrate that a
three dimensional body which is not symmetric about the source borehole can produce the
artifacts that were observed in the scattered field images of Section 5.4.2. In addition by
observing how the images differ for various sheet positions we can determine the
sensitivity of the cross well EM to the location of the plume in the Richmond Field Station

experiment.
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The models that were employed are shown on a map of the Richmond Field Station in
Figure 5.35. The depth of the horizontal sheet is 31.25 m and its conductance is 18.
Originally the dimensions were 10m by 10m as suggested by HW. Tseng (1993,
personnel communication) as he had found that a sheet of this size this provided an
adequate fit to the data. However initial attempts with this and other models indicated better
results occur when a sheet is used that is 12 m long in the east-west direction and 8.5m
wide in the north-south direction.

The scattered magnetic fields were calculated for models A, B and C in Figure 5.36 to
simulate a plume which is migrating to the north of the injection point by varying amounts
while staying symmetric an east-west direction. Model A in Figure 5.36 simulates a
minimum of northerly offset as suggested by Tseng, while model C represents the plume
migrating entirely to the north away from the injection well. In addition results have been
calculated for model D to simulate additional asymmetry to the west.

Unfortunately there are some serious differences between these simulations and the
injected salt water plume that limit how much information can be derived from this study.
The first major discrepancy is the shape of the sheet. Here the body of salt water is being
simulated as an infinitesimally thin, rectangular sheet of uniform conductivity. However
it is known from the borehole logs collected after the injection (Appendix D) that the plume
is at least 3m thick. In addition it is most likely not rectangular in shape but rather is some
type of smoothly curved, three dimensional body in which the conductivity is greatest near
the injection well and diffusively decreases outwards to the edges. A second major
difference between these simulations and the measured results is that the forward modeling
code does not allow for the two layer background models that were employed in section
5.4.2. Instead a uniform half-space model of 0.05S/m was employed. Finally, because of
numerical considerations, the scattered fields could not be calculated with the sources
within or in close proximity to the sheet. Thus instead of exactly imitating the data
collection process, results were calculated at 18.5 kHz for 23 source and 23 receiver
stations separated at 2.5 m intervals from 5Sm to 60m depth.

The first set of synthetic images simulate those of the cross well EM data measured
between INJ1 and EMNW. Figure 5.36 shows the results for models A, B and C after 5
iterations which should be compared to Figure 5.30a, while Figure 5.37 demonstrates the
results after 10 iterations which correspond to Figure 5.32a. Making the appropriate
comparisons suggests that models A and B offer reasonable approximations to the
observations while model C does not. Not only do the images of A and B recover the
position of the sheet in a manner that is similar to the EMNW images in Section 5.4.2, but
also the resistive artifacts just above the injection zone and the conductive "arms" extending
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off the end of the sheet are similar in appearance. The fact that the magnitude of the
reconstructed conductivity in these synthetic images is not as great as in those of the real
data may be a product of the sheet thickness, the cruder sampling of the synthetic data in
source position, and possibly a model conductance which is too low.

To determine the extent of the plume to the south, the results for models A, B and C
were calculated to simulate the measurements made between INJ1 and EMSE (Figure
5.35). Figure 5.38 shows the results after 5 iterations which can be contrasted against
Figure 5.30c, and in Figure 5.39 the 10 iterations images are given which should be
compared to Figure 5.32c. The characteristic that is immediately visible is that the model A
does not produce images that resemble those of the observed data at all. This is due to the
fact that this model extends far enough to the south so that the cylindrical symmetry at least
partially is obeyed. Thus the iterative Born scheme is able to reconstruct an image that
rather accurately recovers the horizontal limits of the sheet. Unfortunately as demonstrated
in Figures 5.30c and 5.32c this is not the case for the real data.

Synthetic data calculated with Models B and C produce images that more accurately
recover those resulting from the scattered field data measured between INJ1 and EMSE.
This conclusion has been reached by observing the resistive artifact that is reconstructed
within the injection zone . Figures 5.38b and 5.39b show that for model B this artifact is
not as well developed as in Figures 5.30c and 5.32c, while in the images of model C it is
too strong and close to the injection well (Figures 5.38c and 5.39c¢). Thus the conclusions
are that the best sheet model to fit the data collected between INJ1 and EMSE lies
somewhere between models B and C, and as expected, the plume is not migrating much to
the south but rather is primarily heading northward.

To verify that the conclusions deduced from the forward modeling experiments
presented above hold for all of the data collected in the experiment, models A,B and C were
again employed to simulate the two other sets of cross well data. The results for the
simulated measurements made between INJ1 and EMNE are given in Figures 5.40 and
5.41, and for those made between INJ1 and EMSW in Figures 5.42 and 5.43. Comparing
Figure 5.40 to 5.30b and Figures 5.41 to 5.32b indicate that a model somewhere between
A and B seems to offer the best approximation to the data collected in EMNE. Similarly
comparing Figure 5.42 to 5.30d and Figure 5.43 to 5.32d suggests that the south sheet
model that best fits the images of the EMSW data probably lies somewhere between models
B and C. Thus the conclusion is that out of these three models, model B seems to produce
the images which generally fits all of the data both to the north and to the south.

One problem that to this point has not been addressed is the fact that the images of the
salt water body that are present between INJ1 and EMNW ( Figures 5.30a and 5.32a) are
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more conductive than those for the body between INJ1 and EMNE (Figures 5.30b and
5.32b, respectively). In the simulations presented above this phenomenon was not present.
To determine if this effect could be produced by the plume moving asymmetrically towards
the west as well as the north, Model D in Figure 5.35 was employed to simulate the data
measured between INJ1 and both EMNW and EMNE. .

Figure 5.44 shows the images of this simulation after 10 iterations of the iterative Born
scheme. Comparing 5.44a to 5.37b indicates that offsetting the plume in this direction does
cause a slight increase in the reconstructed conductivity. However the scheme is also
tracking the edge of the plume as the conductive zone in Figure 5.44a is shown to extend
further out than in Figure 5.37b. A similar phenomenon is present when Figure 5.44b is
compared to 5.41b. Moving the sheet asymmetrically to the west not only results in a
reduction in magnitude of the reconstructed conductivity, but also the edge of the sheet is
not imaged as far out between the two wells. Thus the greater plume conductivity in that is
evident when Figure 5.32a is compared to 5.32b is probably not due to this type of
asymmetry. Unfortunately at this point we are unable to determine if this is caused by error
in the data or if the conductive water is migrating preferentially to the northwest.

There is a good deal of uncertainty about how much accurate information can be
derived from these simulations and how much credence can be given to these results. As
previously mentioned, this uncertainty is primarily caused by the fact that 1) the sheet is
infinitesimally thin while the plume is approximately 3m thick, 2) the models are
rectangular in shape which is not very realistic and 3) the synthetic data were not sampled at
the same source-receiver intervals as in the experiment. Because of these problems the
sheet model was not used in an exact, inverse sense. However there are some useful and
realistic conclusions that can be drawn from the simulations. First of all, the plume is
definitely migrating off to the north of the injection well with less than than 2m extension
towards the south. In addition the maximum northward extension is probably no greater
than 7 m. Finally, the fact that the nature of the images changes so dramatically as the
sheet was moved around suggests that the cross well scattered field data contains very high
resolution information about the plume location. Thus in order to more accurately recover
the true conductivity distribution within the plume, a three-dimensional inversion code
such as developed by Newman (1992) which uses all the data from all wells
simultaneously should be employed.

5.4 Summary
The 1992 Richmond Field experiment has proven that a salt water injection process can
be monitored using cross well electromagnetics. Although the cross well EM system
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performed well enough to detect the large changes caused by the salt water, there is definite
room for equipment improvement to alleviate problems with drift and system repeatability
that were observed. A long term repeatability analysis seems to indicate that at least part of
this problem may be due to some type of electrical leakage from the source tool. In
addition, if greater data accuracy is required then better methods of data calibration need to
be designed.

Even with these problems the data is of sufficient quality not only to detect the
presence of the salt water, but also to allow for the application of the iterative Bomn imaging
scheme. Results from this imaging process correlate well with previous experiments which
show the injected body to be moving off to the north -northwest rather than spreading
symmetrically about the injection well. Unfortunately, though the images of the total field
data provide valuable information about the plume location, they do not correlate very well
with the available conductivity logs and thus can not be used to accurately interpret the
geologic structure at the field station. This poor correlation between the images and the
logs is most likely due to the extremely 3-D nature of the conductivity distribution at this
site. Although the 3-D nature of the plume is also apparent in the scattered field images, the
size of the plume and the fact that the fields generated by it can be isolated make these types
of effects much easier to deal with. Finally, simple simulations with a thin, conductive
sheet model verify the conclusions of the general location of the plume, although the exact
boundaries can not be defined.
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Figure 5.1 - Location map for the building 300 well field at the Richmond Field Station.
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N

o

Q
1

[\

[@]

o
1

e

-

o

o
]

-]
7]
Y
/L

) 232

¥ o
o

~ &
o~ Vey

03 0.2 07 1.2 1.7 23 2.8 3.3 3.8 43 4.8
Amplitude Error (percent)

(a)

<
N
]
-

256

118

-3.1 -2.6 -22 -1.7 -1.3 0.8 -0.3 0.1 0.6 1 1.5
Phase Error (degrees)

(b)

217



Figure 5.4 - Histogram analysis of repeatability errors for EMSW data: (a) amplitude ,

(b) phase.
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Figure 5.9 - EMNW data prior to injection. Each line on the receiver axis represents an
individual profile of continuous data in transmitter depth. (a) Amplitude. (b) Phase.
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Figure 5.11 - EMNW secondary fields calculated by subtracting the preinjection data from
the postinjection data. Each line on the receiver axis represents an indivdual profile of
continuous data in transmitter depth. (a) Amplitude of the scattered field. (b) Phase
difference between the post and pre injection data.
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Figure 5.12 - EMNE data prior to injection. Each line on the receiver axis represents an
individual profile of continuous data in transmitter depth. (a) Amplitude. (b) Phase.
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Figure 5.13 - EMNE data after the injection. Each line on the receiver axis represents an
individual profile of continuous data in transmitter depth. (a) Amplitude. (b) Phase.
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Figure 5.16- EMSE data after the injection. Each line on the receiver axis represents an
individual profile of continuous data in transmitter depth. (a) Amplitude. (b) Phase.
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Figure 5.18 - EMSW data prior to injection. Each line on the receiver axis represents an
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Figure 5.19- EMSW data after the injection. Each line on the receiver axis represents an
individual profile of continuous data in transmitter depth. (a) Amplitude. (b) Phase.
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Figure 5.20 - EMSW secondary fields calculated by subtracting the preinjection data from
the postinjection data. Each line on the receiver axis represents an indivdual profile of
continuous data in transmitter depth. (a) Amplitude of the scattered field. (b) Phase
difference between the post and pre injection data.



Distance (m) Distance (m)
0 5 10 15 20 0 5 10 15 20

0.16
0.15
0.14
0.13
0.12
0.11
0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

10 10

20 20

30

Depth (m)
Depth (m)

40 40

Conductivity (S/m)

50 — 50 —]

60 60
(a) (b)

Figure 5.21 - Images of the Richmond cross well data collected between INJ1 and EMNW plotted with the conductivity
well logs. The left hand axis (x=0m) represents well INJ1 while the right hand axis (x=20) represents well EMNW. (a)
Images of the preinjection data and well logs. Mean residual error after 10 iterations=1.93¢e-7 A/m. (b) Images of the
postinjection data and well logs. Mean residual error after 10 iterations=1.82e-7 A/m.
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Figure 5.22 - Residual amplitude error between the Richmond cross well data collected
between wells INJ1 and EMNW, and the calculated results for the images in Figure 5.21.
The errors have been plotted as a function of source and receiver depth. (a) Residuals for
the preinjection image given in Figure 5.21a. (b) Residuals for the postinjection image
given in Figure 5.21b.
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Figure 5.24 - Residual amplitude error between the Richmond cross well data collected
between wells INJ1 and EMNE, and the calculated results for the images in Figure 5.23.
The errors have been plotted as a function of source and receiver depth. (a) Residuals for
the preinjection image given in Figure 5.23a. (b) Residuals for the postinjection image
given in Figure 5.23b.
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figure 5.25- Images of the Richmond cross well data collected between INJ1 and EMSE plotted with the conductivity
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Figure 5.26 - Residual amplitude error between the Richmond cross well data collected
between wells INJ1 and EMSE, and the calculated results for the images in Figure 5.25.
The errors have been plotted as a function of source and receiver depth. (a) Residuals for
the preinjection image given in Figure 5.25a. (b) Residuals for the postinjection image
given in Figure 5.25b.
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Figure 5.27- Images of the Richmond cross well data collected between INJ1 and EMSW plotted with the conductivity
well logs. The left hand axis (x=0m) represents well INJ1 while the right hand axis (x=20) represents well EMSW. (a)
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Figure 5.28 - Residual amplitude error between the Richmond cross well data collected
between wells INJ1 and EMSW, and the calculated results for the images in Figure 5.27.
The errors have been plotted as a function of source and receiver depth. (a) Residuals for
the preinjection image given in Figure 5.27a. (b) Residuals for the postinjection image
given in Figure 5.27b.
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Figure 5.29 - Difference in conductivity between the post- and pre-injection images of the cross well data collected
at the Richmond Field station. (a) Changes in the images of data collected between wells INJ1and EMNW.
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Figure 5.30 - Images of the scattered magnetic field data collected at the Richmond Field Station. The two layer
background models that were employed are given in Table 5.6. (a) Image of the data collected betwenn wells INJ1 and
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Figure 5.30 (Continued from previous page) - (c) Image of the data collected between wells INJ1 and EMSE. Mean
residual error after 5 iterations=6.47e-8 A/m. (d) Image of the data collected between wells INJ1 and EMSW. Mean
residual error after 5 iterations=1.38¢-7 A/m.
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Figure 5.31 - Residual amplitude error between the scattered magnetic field data
measured in the Richmond cross well experiment and the calculated results for the
images in Figure 5.30. The errors have been plotted as a function of source and receiver
depth. (a) Residuals for the image given in Figure 5.30a of data collected between INJ1
and EMNW. (b) Residuals for the image given in Figure 5.30b of data collected
between INJ1 and EMNE. (c) Continued on next page.
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Figure 5.31 (Continued from previous page) - (c) Residuals for the image given in
Figure 5.30c of data collected between INJ1 and EMSE. (d) Residuals for the image
given in Figure 5.30dof data collected between INJ1 and EMSW.
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Figure 5.32 - Images of the scattered magnetic field data collected at the Richmond Field Station. The two layer
background models that were employed are given in Table 5.6. (a) Image of the data collected betwenn wells INJ1 and
EMNW. Mean residual error after 10 iterations=1.03e-7 A/m. (b) Image of the data collected betwenn wells INJ1 and
EMNE. Mean residual error after 10 iterations=5.36e-8 A/m. (c) Continued on next page.

6v<¢



Distance (m) Distance (m)

0 5 10 15 20 25 0 5 10 15 20
10- 0.2
0.18
20 - 0.16 _
014 E
2
o~ 012 >
E 30- =
< 0.1 g
Q.
3 0.08 £
. @)
40 0.06
0.04
50 0.02
0
60

(c) (d)
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Figure 5.33 - Residual amplitude error between the scattered magnetic field data
measured in the Richmond cross well experiment and the calculated results for the
images in Figure 5.32. The errors have been plotted as a function of source and
receiver depth. (a) Residuals for the image given in Figure 5.32a of data collected
between INJ1 and EMNW. (b) Residuals for the image given in Figure 5.32b of
data collected between INJ1 and EMNE. (c) Continued on next page.
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Figure 5.39- Images of the Richmond Field Station simulation shown in Figure 5.35 for the INJ1-EMSE cross well pair.
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Chapter 6
Discussion and Recommendations for Future Research

6.1 Discussion

The use of cross well electromagnetic (EM) probes to image the conductivity
structure of the subsurface has been investigated for frequencies less than 1 MHz. This
analysis is based on nonlinear integral equations which govern the electromagnetic fields
generated by inhomogeneities imbedded in an otherwise homogenous earth. A
sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and
it is assumed that the scattering bodies are azimuthally symmetric about the source dipole
axis (Figure 2.1). The use of this model geometry reduces the 3-D vector problem to a
more manageable 2-D scalar form.

To further simplify the theoretical formulation, the first order Born approximation
which is the first term in the Born series, has been applied to linearize the integral
equations. The resulting approximate equations are extremely useful in analyzing
different aspects of cross well EM imaging. The kernel of the linearized equations can be
employed to study the sensitivity of various source-receiver configurations and
operating frequencies to the conductivity structure between and around the boreholes.
Fast forward modeling schemes can be developed using the first order Born
approximation and/or the more accurate Born series approximation. In addition the
linearized equations can be used as a first step in an iterative, nonlinear inversion
technique to image the conductivity structure between the boreholes.

The sensitivity analysis has shown that certain characteristics of the cross well EM
problem are dependent only upon the configuration of the source-receiver array that is
employed (Figures 2.7 through 2.9). Moving both the source and receiver at the same rate
downward in the wells such that the tools are always at the same depth results in good
vertical resolution but poor horizontal resolution. In order to increase the resolution in
the radial direction, various vertical separations or offsets between the source and
receiver must be employed. Additional horizontal resolution can be obtained by making
measurements with both the source and receiver in the same hole (Figure 2.18).

These are the only general characteristics of cross well EM imaging that are
independent of the operating frequency and the properties of the medium. However,
because of the diffusive nature of the fields in the frequency range that we are working,
the majority of the remaining analysis can be accomplished in terms of two dimensionless
parameters. The first is the background induction number of the medium which is given
as owp! 2 where © is the background conductivity, ® is the frequency of operation, W is
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the magnetic permeability of free space and /! is the source-receiver separation.
Developing the sensitivity analysis in terms of this parameter allows for experimental
design and optimization with only a minimal amount of a prior information. For
example, if the borehole separation is known and an estimate of the background
conductivity is available, the appropriate frequency can be predicted to operate the
system such that it is optimal for imaging purposes.

The second dimensionless parameter has been termed the anomalous induction
number of the scattering body which is defined as Acw{S where AG is the conductivity
contrast between the background and the body, S is the cross sectional area of the
scattering body, and the other terms are defined as above. This parameter is useful in
defining the limits of the approximate forward modeling scheme. The first order Born
scheme has been found to be accurate for anomalous induction numbers less than 0.02
while the Born series converges for AcwuS less than 2.0.

For low background induction numbers( cwu! 2 <10), the sensitivity analysis
indicates that the secondary fields are small in magnitude when compared to the primary
field (Figure 2.3). Because of this, the scattered fields generated by an inhomogeneity
will be difficult to measure unless the dimensions of the scattering body are large. The
problem is further complicated by the high sensitivity of a given source-receiver pair to
regions outside the interwell zone (Figures 2.7 and 2.11). This phenomenon makes data
analysis difficult for two reasons. First, the region being considered as a possible source
for the anomalous fields must not only include the interwell zone but also a large volume
surrounding the wells. The second factor involves the geometry of the inhomogenous
region. As demonstrated in Tables 3.7 and 3.8, models with a 2-D cylindrical symmetry,
2 1/2D models and 3-D models yield drastically different results even though their cross-
sectional area in the plane containing the wells is identical. Thus even though both the
first order Born and Born series approximate modeling schemes work extremely well for
these low induction numbers, the proper model geometry must be chosen to even
crudely interpret the data.

‘When combined the low induction number phenomena described above result in low
resolution images. For example Figures 4.3b and 4.4b show that not only is the spatial
resolution poor but the conductivity is not accurately recovered. In addition if the data are
generated by a body which does not obey the cylindrical geometry, artifacts can result in
the images which may lead to misinterpretation. The resolution can be improved
somewhat if the fields are measured very accurately, and if the horizontal rather than
vertical field component of the field is employed (Figure 2.14).

At background induction numbers greater than 50, the problems described above are
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dramatically reduced. A given source-receiver pair detects only a "ray path” like region
located immediately between the probes and the sensors are much less sensitive to the
third dimension outside of the image plane (Figure 2.9). Thus the fields that are
generated by an inhomogeneity between the wells will be independent of whether the
body exhibits a 2-D cylindrical, a 2 1/2-D, or a 3-D geometry. In addition, the scattered
fields are on the same order of magnitude as the primary fields which allows the signals
of interest to be more easily detected in the presence of noise (Figure 2.3). When all of
these factors combined result in excellent image resolution of the region between the
wells (Figures 4.3d and 4.44).

There are however two major drawbacks at the large induction numbers that limit the
usefulness of the imaging scheme developed in this thesis. The first drawback is
attenuation at high frequencies. Because the EM fields are attenuated much quicker at
high induction numbers than at low induction numbers, the long vertical offset data
needed for the horizontal resolution is not measurable within the dynamic range of any
system that has been designed to date. The second major factor is that the Born series
solution fails easily at these large induction numbers and thus can not be employed for
quick forward modeling within the inversion scheme (Figure 3.10).

Between the background induction numbers values of 10 to 50 liesa region in which
the problems that are present at lower and higher values are minimized. Not only are the
scattered fields within an order of magnitude of the primary fields, but the rate of
attenuation is still low enough so that the large vertical offset data are
measurable(Figure 2.3). Although the sensitivity functions in this range lack the "ray
path" quality that is apparent at higher induction numbers, the sensitivity of a given
source-receiver pair is far more focused between the wells than at lower induction
numbers (Figure 2.8). The Bormn series converges rather quickly in this range of induction
numbers and thus provides for quick forward modeling. All of these factors result in
excellent image resolution in the presence of noise (Figures 4.3c and 4.4c), and thus this
seems to be the optimal region in which to employ the iterative Born imaging scheme.
The only notable exception to this rule of thumb occurs when the medium is three
dimensional in which case the imaging scheme fails to accurately recover the structure
because of the appearance artifacts (Figures 4.38 and 4.40).

The use of cross well EM to map the conductivity structure between two wells was
verified with two field experiments. The analysis of the data collected at the Devine,
Texas geophysical test site showed that the method recovers the general geologic
structure (Figure 4.21). In this particular case it was demonstrated that the resulting
image reproduces a low pass filtered version of the conductivity well log. Unfortunately
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it was also demonstrated that a drift error is present in this data which was not removed
in the initial data processing.

The data collected during the injection experiment at the Richmond field station
provided a more interesting case. Comparisons of the measurements before and after the
injection definitely show the presence of the electrically conductive salt water.
Unfortunately noise with a non-Gaussian distribution was again found to be present in the
calibrated data, however the nature of this noise suggests that it was caused by some type
of electrical leakage from the transmitter tool. |

The images that result from the iterative Born inversion of the Richmond data are
very useful for interpreting the hydrologic heterogeneity of the aquifer at depth.
Unfortunately the three dimensional nature of the geology at Richmond makes high
resolution imaging of the background structure with the cylindrical scheme impossible.
However, the crude cylindrical symmetry provided by the injected plume allows for the
subsurface changes caused by the experiment to be approximately mapped. Although
artifacts are present in the results, images resulting from 3-D thin-sheet models have
shown these same type of features. By analyzing these how these artifacts change from
well to well, the direction of plume migration has been defined to be to the north-
northwest with very little extension to the south.

6.2 Recommendations for future research
The analysis in this thesis has concentrated almost exclusively on the cross well
method of probing the subsurface. However there are often situations in which only a single
well, or possibly no wells, are available for use in a geophysical survey. Thus the first task is
to extend the analysis developed here to other source-receiver configurations such as those
provided by surface-to-borehole and surface-to-surface arrays. Different sources such as
electric dipoles, long lines of current, and large loop sources need to be examined, as do the
pros and cons of measuring both the electric and magnetic fields. This analysis should
incorporate the coverage diagram concept presented by Zhou (1989) in addition to the
sensitivity diagrams and the image resolution tests employed here to examine the different
types of array configurations. ‘
It was determined that for background induction numbers greater than approximately
30, the fields resulting from a scattering body become less and less dependent on the third
~dimension of the body outside of the image plane. Unfortunately it was also determined that
the Born series approximation fails to converge at these high induction numbers. Thus to
take advantage of the benefits of imaging at these high induction numbers, a more accurate
forward modeling scheme must be incorporated into the iterative Born scheme. Although the
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imaging code will run considerably slower, the use of the cylindrical geometry should still be

much quicker than employing a 2 1/2-D or 3-D geometry.
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A second improvement to the 2-D cylindrical imaging code will involve better

incorporation of a priori knowledge into the solution. Currently the scheme allows upper and

lower bounding constraints and a layered space background model to be applied. Both of

these have been shown to improve image accuracy. However valuable information present in
borehole conductivity logs and any surface conductivity measurements can currently only be
employed in a qualitative manner to interpret the images. The incorporation of these data to

constrain the solutions near the boreholes and/or along the surface should significantly

improve the accuracy and resolution of the resulting images.

At lower induction numbers where the Born series does converge, the 2-D
cylindrically symmetric scheme has been demonstrated to be extremely susceptible to
artifacts caused by 3-D geology. This phenomenon is due to the fact that simple model
geometry does not allow for electric current flow perpendicular to conductivity
boundaries. In order to at least partially account for this phenomenon while still
assuming a two dimensional medium, an imaging code that employs the 2 1/2-D
geometry will need to be developed. This code and the 2-D cylindrical scheme should
then be compared against each other to determine the benefits and limitations of the
respective geometries in recovering two dimensional images of 3-D conductivity
distributions. Although codes employing this 2 1/2-D geometry have previously been
developed (e.g. Torres-Verdin and Habashy, 1993, and Wang and Chew, 1992), for this
comparison the same least squares inversion technique should be employed so that the
only differences in the resulting images are caused by the model geometry. ‘

Along these same lines, simple 3-D inversion codes should be examined as a final
step in the imaging process. It is obvious from the results presented in Chapter 5 that at
lower induction numbers there is valuable 3-D information present in the data that the 2-
D imaging codes can not handle. However, although the 2-D images contain artifacts,
they do provide reasonable results which can be used to constrain a 3-D inversion. Thus
simple 3-D inversion codes should be developed which incorporate the 2-D images as
starting models and as constraints to provide more accurate estimates of the conductivity
distribution.

In Chapter 4 it was demonstrated that multiple frequency data can be employed to
produce better image resolution than single frequency results. However it was also
demonstrated that the data must be weighted properly in order for these results to be
obtained. Because the schemes that were employed here give too great of a weight to the
noise present in the large offset data, different weighting schemes must be examined
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such that wide band data can be more routinely incorporated. In addition, two
dimensional, multiple frequency imaging of data generated by 3-D structures must be
examined to determine the benefits and limitations of this approach.
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Appendix A
Definition of the Smoothing Matrices

The formulation for the smoothing matrices that are employed to regularize the
iterative Born scheme is identical to that given in Zhou (1989). Although described as a
smoothest model approach, the method that is employed here actually is a flatrest model
type of regularization. The difference between the two methods is that the flattest
approach involves minimizing the first derivative between adjacent cells in the model
while the smoothest model minimizes the second derivative (Menke, 1984).

Recall from Chapter 4 that the function we wish to minimize is given by

s(0)-2D"D=07T(K'K+A,ATA +A ATA Y)O'-2D'K"O'T  (A-1)

v v v
where O' is the object function that we are solving for, D is the data vector, K is the
sensitivity matrix, A, and A, are matrices representing a discretization of the first

derivative in the horizontal and vertical directions, respectively, and the A's are the
associated Lagrangian multipliers which control the degree of flatness. Thus ATA,
represents the square of the first derivative in the horizontal direction which is given in
matrix form as

H 0 0 - 0]
0 H O 0
ATA,=|0 O

H .- 0 (A-2)

where H has the form

(A-3)

In these equations K is the number of cells, or unknowns in the horizontal direction and
L the number in the vertical direction. Similarly the square of the first derivative in the
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vertical direction, ATA_, has the matrix form

viTy?

(1 -1
-1 2I
ATA =] 0 -I
0 0

where I is the identity matrix given by

1 0
01
I=/0 O

(A-4)

(A-5)
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Appendix B
Derivation of the Layered Space Background Model

The method employed here to derive the theoretical formulation for the 1-D
layered model containing either a magnetic dipole or large loop source follows that of
Stoyer (1977) and Wait and Hill (1980). The reader is referred to Figure 4.26 which
shows the geometry of the problem.

The starting point for the derivation is Maxwell's equations as given in equation
2.1;

VxH = 6E +Js (B-1)
and
VXE =-iouH (B-2)

where E is the electric field, H is the magnetic field and Js is the applied source
distribution. In order to formulate a general solution that can handle both dipole sources
as well as the Green's functions which consist of large loops of current, J: takes the form

Jo =, =18 - a)h (B-3)

where I is the current flowing in the loop source, a is the radius of the loop and 8(r - a)is
the Dirac delta function. Thus for a magnetic dipole source, a is set equal to zero.

The general solution for the fields can be written in terms of the magnetic Hertz
potential ,IT, (Stoyer, 1979). The electric fields are given in terms of this potential as

E =-iopV xII" (B-4)
while the magnetic fields have the form
H=TI" + V(V-II™) (B-5)
where k. is the wave number in the medium given by
k* = —icwp. (B-6)

The solutions given in Equations B-4 and B-5 are derived such that the Hertz potential in
each layer satisfies the relation
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(V2 + I = 8(1)3(r - a)8(z - d)I (B-7)

where the subscript i refers to the i'th layer. Wait and Hill (1980) show that the problem
can be further simplified due to the cylindrical symmetry. If the model obeys this
geometry, then II_ contains only a vertical component and thus Equations B-4 and B-§

become
. oII™
E¢ = l(D[lT, (B-S)
11"
H = B-9
' oroz (B-9)
and
0
H.=(3 +kDIIT. (B-10)

In addition this assumption allows for equation B-7 to be expanded and simplified;

(-l-—g-r—a- +—§-2— + k?)rI‘?‘ =3(1)d(r-a)d(z -~ d)I. (B-11)
ror or o9z2 7

Wait (1970) has shown that the solution to equation B-11 is a zero order inverse Hankel
transform which is given by

e = —%—T[B(i)e’”""'Ui(k)ey‘"+D;(K)e'y‘“] Lika) (Ar)an (B-12)
) .

13

where Jo(Ar) and Ji(Aa) are the zero-th and first order Bessel's functions of the first
kinds, respectively, and U,(A) and D,(A) represent the reflected upgoing and
downgoing components of the EM wavefield in the i'th layer. Notice that if we consider

the case of the magnetic dipole source of unit moment we can use a small argument
approximation to let 2J;(Aa)/Aa =1 and thus expression B-12 becomes

1

" = _if[a(i)e-hlﬁdl + Ui(;\,)eYiz + Di(?\.)e*y*"] AJO (Ar)dA. (B-13)
41y Y;

1
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Equation B-9 can also be integrated in r and z over a cell of dimensions A? to

yield equations for the integrated Green's function. The resulting expressions have the

form
" = -%T[a(l)[l - e-ylA/z] + Ui(x)[e'h(zk-»-A/z) - e‘n(zk—A/2)] (B-14)
0
JolAr
+Di(7\.)[e‘7*(zr+“2> —e i —A/Z)]]v(y\_’rk +A/2,r, ~A/ 2)# dh
if zx = z, i.e. if the cell is singular, and
" = —%sign(zk +A/2-z )T[S(i)[e-mr LT prilay —a/2ed] 4 (B-15)
0
Ui (}\_)[e‘h(zk +A/2) _. ey,(zk-AIZ)] + Di(l)[e"’“”‘”m - e—yi(zk—Alz)]] .
JolAr
V(A1 +A/2,r, —-A/2) ;(Y )dx

for the non-singular cell where the subscript k indicates the cell across which the current
is being integrated, and v(A,r, +A/2,r, —A/ 2) is calculated using expression (3.9).
These three expressions combined with equations B-8 through B-10 account for any
source field and/or Green's function that will be encountered in a medium that obeys the
cylindrical symmetry.

The solutions for U,(A) and D,(A)come from solving the boundary conditions of
tangential E and H at each of the layer interfaces. Assuming that the magnetic
permeability in each layer is equal to that of free space, the tangential electric field
boundary condition is given by

1" (z,) = 1™, (z,) (B-16)
where z; designates the depth of the interface between the two layers. Similarly the
tangential magnetic field boundary condition is given as

d 0

gni (z)= -a;Hm(z‘-)- (B-17)

Notice that although expressions B-8 and B-9 both contain partial derivatives with
respect to 1, these types of derivatives are not present in Equations B-13 and B-14. This
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is due to the fact that the derivative with respect to r involves only the zero'th order
Bessel's function , the solution of which is given as dJ (x)/dx = - J,(x). Taking this
derivative on each side of equations B-16 and B-17 yields identical results in r, and thus
they cancel each other out.

The last step in the derivation is to define conditions at infinity. In the lower half
space there can be no upgoing component and thus U, (A) = 0. Similarly in the upper

half space there can be no down going component which yields D__(A)=0. Thus the
boundary conditions given in expressions B-16 and B-17 are solved from the layer
containing the source to the point of interest with these conditions imposed upon the
problem to yield the expressions given in Section 4.3.4.
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Appendix C
The LLNL/LBL Cross Well EM System

The contents of this appendix are condensed from a paper submitted for
publication by Wilt et al. (1993). The measurement system consists of two modules. The
transmitter section includes a transmitter solenoid, a current source to drive it, and a
winch and cable system to allow for a downhole deployment of the source. The receiver
module consists of a commercial sensor attached to an armored cable, one stage of
surface amplification and filtering and a commercial synchronous detector. Data is logged
using a desktop computer. The modules are connected only via electrically isolated
cables. A requirement of the instrumentation from each module is that it be locally
grounded, have its own power supply and be electrically isolated from the other module.
Such grounding and isolation is vital for the elimination of stray currents and ground
loops that degrade data quality.

C1 Transmitter section

A schematic diagram of the cross hole transmitter system is given in Figure C-1.
Although a down hole oscillator is preferred, simplicity of assembly dictated that the
initial prototypes of the transmitter be powered from the surface. The source used in the
Richmond experiment was built around a ferrite core. This is the preferred material for
induction coils at frequencies greater than 5 kHz because it is essentially nonconductive
thereby eliminating eddy current losses. Making use of readily available material, a
tubular core was constructed from of a large number of stacked 1.27 c¢m thick ferrite
(Cornell type XYZ) toroids. The resulting tube has an outside diameter of 4.4 cm and a
length of 197 cm. The diameter of the inner void space is 1.91 cm. The core was wound
with 125 turns to maximize the output at 18 kHz and has an inductance of about 2 mH.
In order to attain the required moment of about 100 A-m? a current of 3.5 A was used.
The effective relative magnetic permeability for this core is about 150. This minimizes
inductive losses in the core such that only about 125 watts of power are needed to drive
the resonant transmitter circuit. These power requirements can be easily met by using an
ordinary laboratory signal generator coupled to a Crown model 610 power amplifier.

To move the source within the boreholes a lightweight portable electrical winch
that holds 200 m of cable was employed. This lightweight winch and coil may be easily
moved by two people and are convenient to use in shallow applications such as those
encountered at Richmond. The transmitter depth and rate of movement are monitored
with a wheel-driven encoder/counter. In addition to providing depth information, this
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encoder pulse also serves as a data acquisition trigger at the receiver.

The transmitter current is monitored with an inductive-type current meter
connected to the source output. This analog record of the current is sent to the receiver
via an isolated line where it is used as a phase reference. Note that the current is only
roughly proportional to the source moment due to the non linearity of the core material.
Therefore calibration corrections such as those derived in Section 5.3.2 are relied upon to
determine the source moment from the transmitter current measurement.

C2 Receiver section

Signals are detected at the receiver using a vertical-axis custom-designed borehole
coil (Electromagnetic Instruments, BH-8). This receiver coil is an ultrasensitive device
(maximum sensitivity of 10" Teslas), operable in the frequency range from 1-100,000
Hz. The tool is housed in a pressure vessel designed for depths up to 2 km. Detected
signals are amplified within the coil then transmitted to the surface up a logging cable. At
the surface they are further amplified and filtered before input to the receiver van (Figure
C-2). In the van all instruments are controlled from a desktop computer via the GPIB
interface. The computer can adjust instrument gains and sensitivities as well as select
sample and averaging rates for the logging system.

Data logging in the computer is triggered by the depth-encoder pulses originating
at the transmitter winch. The computer counts the incoming pulses until one
corresponding to a pre-selected measurement depth is received. When this occurs the
computer reads the transmitter current data from a digital voltmeter connected to the
inductive current probe, and magnetic field data from the lock-in detector. The lock-in
detector uses the transmitter current wave form as a reference signal and detects receiver
signals in-phase and out-of-phase. It is a very effective device for accurately
discriminating low level signals in a noisy background. The spectrum analyzer depicted
in Figure C-2 is used as a debugging tool as well as to calibrate system components.

C3 Cross-Borehole Logging

A particular borehole segment is logged by moving the transmitter coil upwards at
a fixed rate while the receiver remains stationary in another borehole. Although
equivalent information could be collected by moving the receiver coil while the
transmitter is fixed, doing so results in very noisy data due to the motion of the sensitive
detector in the earth's magnetic field. The source coil is typically moved at a rate of 3-5m
/minute. This allows sufficient time for signal averaging but is still a reasonable rate for
data collection. Data is collected at approximately 1.5 cm intervals within a logging
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span. However the data are stored by the computer only at 0.5m intervals with these
values consisting of seven readings that are averaged as the transmitter moves past.
Typically the source well is logged over a depth interval that is 1.5-2.0 times the
separation between boreholes as this is a minimum interval required for tomographic
reconstruction (Zhou, 1989). Due to time considerations only 10-15 receiver stations are
employed to cover the depth interval traversed by the transmitter.
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Appendix D
The Richmond Well Field and Borehole Logs

This appendix summarizes the well logging information that was obtained during
the 1992 Richmond field station experiment. Table A1 provides information on the well
field at Richmond Field Station which is shown in Figure 5.1. Through February, 1992
14 wells have been drilled in the 10 acre field west of building 300. These wells were
drilled in four separate episodes beginning in 1986.

The first nine wells were drilled in 1986 for a borehole-to-surface resistivity
experiment (Bevc and Morrison, 1991). Wells INJ and EXT (not shown in Figure 5.1)
are opened through steel-screening to a gravel aquifer at 26-30 m. This screened interval
is also used an electrode. There are also two other steel electrodes in each well located 10
m above and below the screened interval. Wells OBS1-6 are plastic-cased observation
wells opened only at the bottom of the 30 m casing. These wells were designed for water
level measurements although they have also been used as geophysical observation wells.

Wells EMNE and EMSW, which straddle the injection well INJ, were added in
1989 in order to make crosshole EM measurements. These wells are separated by 52 m
and penetrate to a depth of 90 m making them the deepest wells in the field. They are
sealed at the bottom and are not open to the formation at any point.

In 1990 wells CAS1 and CAS2 were drilled at the southern end of the field (not
shown in Figure 5.1) and cased with steel. These wells are designed for experiments
involving measurements through steel casing. At this same time two 30m deep wells
(RES1 and RES2) were drilled and a series of downhole electrodes grouted in place for
the purpose of making crosshole resistivity and MMR measurements. Eight resistivity
electrodes, spaced at 3 m intervals, are emplaced in each of these wells beginning at a
depth of 9 m.

The most recent set of boreholes (INJ1, EMNW and EMSE) were added in 1992
for the present salt water monitoring experiment. Each of these wells are 70m deep,
capped at the bottom and are open to the aquifer at 30m depth.
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Year Open
Borehole Depth(m) Drilled Casing Interval Remarks
(m)
OBS1 30 1986 4"PVC atbottom | depth=20m
OBS2 30 1986 4"PVC at bottom
OBS3 30 1986 4"PVC at bottom
OBS4 30 1986 4"PVC at bottom
OBSS5S 30 1986 4"PVC at bottom
OBS6 30 1986 4"PVC at bottom
INJ 40 1986 6" PVC 26-30
EXT 40 1986 6" PVC 26-30
EMNE 950 1990 6" PVC no open int
EMSW 950 1990 6" PVC no open int
RES1 30 1990 - no open int grouted
RES2 30 1990 - no open int grouted
CAS1 30 1990 4" steel atbottom | steel-cased
CAS2 30 1990 4"steel at bottom steel-cased
EMNW 70 1992 6"PVC 26-30
EMSE 70 1992 6"PVC 26-30
INJ1 70 1992 6"PVC 26-30

Table D1 - Richmond Field Station well field.

D1 Borehole induction logs

~ Baseline borehole induction resistivity logs were recorded in most of the boreholes at
Richmond during April 1992 using a Geonics model EM-39 logging instrument. The
induction logs that were collected are listed as a function of the well location in table D-2
and are plotted in Figure D-1. Measurements were made at 0.05 m increments as the tool
was moving upwards in the borehole. Although five of the wells are drilled to depths of
70 m or more, the induction logs were limited to a depth of 50 m by the length of the
available logging cable. Several logs were done twice and typically these repeated to
within 5 percent.

A second set of logging data was collected in June, 1992 after the salt water was
injected. The only significant difference that was observed was in well INJ1 which is the
salt water injection well. Figure D-2 shows both the pre- and post-injection logs that
were measured in this well. The difference between the two logs indicates a change in
resistivity due to the salt water in the vicinity of the injection well. The largest decrease is
observed in a 4 m thick sandy-gravel aquifer at a depth of 26-30 m, where the well is
perforated. In this zone the rock has decreased in resistivity from 15 ohm-m to 3.5 ohm-
m. A second, thinner zone where the resistivity is different is present from 23 to 25 m
depth. These two zones of low resistivity zone around well INJ1 are surprisingly large
and suggests that the unconsolidated silts and sands have a fairly high permeability.
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borehole Ind logs Water conduct
OBS1 yes yes
OBS2 yes yes
OBS3 yes yes
OBS4 yes yes
OBSS yes yes
OBS6 yes yes
INJ yes yes
EXT no no
EMNE yes no
EMSW yes no
RES1 no no
RES2 no no
CAS1 no no
CAS2 no no
EMNW yes yes
EMSE yes yes
INJ1 yes yes

Table D2 - List of the logging data collected during the 1992 Richmond experiment.

Except for well INJ1 we observed no significant changes in well log resistivity
due to salt water injection. This includes well INJ, which is located only 5 m northeast of
well INJ1. However there were variations noticed in the borehole fluid conductivity at
depths from 26-30 m (see next section) which suggest that any perturbations in the
resistivity of the open interval (26-30 m) in this well were most likely obscured by the
presence of steel screening. Notice that no significant changes in resistivity were
observed from 23 m to 25 m depth as had been in borehole INJ1.

D2 Borehole fluid conductivity logs

In addition to the induction logs we also measured the conductivity of the borehole
water before and after salt water injection. These measurements are designed to improve
the tracking of the salt water and also to provide knowledge of the in-situ groundwater
conductivity.

In Figure D-14 the borehole water conductivity profiles measured after the injection
are plotted for seven of the wells. Of these seven, high conductivity water (=1 S/m) was
found in only two of the wells, INJ1 and INJ. Both these profiles show the water
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conductivity increasing towards the bottom of the well with values that approach the
conductivity of the injected fluid. Because salt water is more dense than fresh water, this
sort of stratification was expected with the salt water occupying the basal layer. (Note:
the higher conductivity in INJ when compared to INJ1 is due to INJ1 being flushed out
with fresh water after the injection was completed.) In all other wells the groundwater
conductivity was the same before and after injection (= 0.08S/m).
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Figure D1 - Borehole resistivity logs for the wells at the Richmond Field Station that were measured on April 2,
1993. (a) Log of well INJ. (b) Log of well INJ1. (c) Log of well EMNW. (d) Continued on next page.
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EMSE. (g) Continued on next page.
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OBS 6.

S6C



296

resisitivity (ohm-m)

000}

ol

02

depth (m)

0¢

perforatad zone

oy
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Figure D3 - Water conductivity measured on June 10, 1993 in seven of the boreholes at
the Richmond Field Station.



Appendix E
Well Drawdown Data

To withdraw the 50,000 gallons of salt water that were injected in May, water was
pumped out of INJ1 starting at 11:00 am on July 6, 1992 and continuing until 1:15 PM on
July 28, 1992. During the withdrawal approximately 318,000 gallons was removed with
the pump fixed in the well at 40 m depth and the pumping rate held at 10 gallons per
minute. Water level measurements were made in eight of the boreholes open to the
aquifer by Hung Wen Tseng and Peter Persoff starting immediately after the pumping
began and continuing throughout the salt water extraction. These measurements were
made to determine the hydrologic characteristics of the site and are plotted as a function
of time in Figure B1.

To ensure that the salt water had been completely withdrawn, the electrical
conductivity of the water pumped out of INJ1 was monitored with a conductance meter.
The conductivity as a function of time is plotted in Figure B2 with the drawdown data
from the INJ borehole. At the conclusion of the pumping the conductivity of the
extracted water approached 0.076 S/m. Water conductivities measured in borehole OBS4
ranged from 0.068 S/m at the water table to 0.072 S/m at the bottom of the well.
Because this well is 36 m from INJ1 and did not experience a large drawdown, it was
determined that the conductances measured here are representative of the original values.
Therefore we concluded that all of the injected salt water had been extracted.

Two conclusion were made from this pumping test. The first is that drawdowns
in the boreholes to the south of INJ1 were much smaller than those to the north. This
suggests that the aquifer is more conductive to the north and thus the injected plume
moved in a northerly direction. The second conclusion is that EMNW and OBS6 have
the largest drawdowns compared to the other boreholes except INJ. This indicates that
EMNW and OBS6 have better hydrologic connection with INJ1 than the other wells that
are open to the aquifer.
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Figure E1 - Drawdown in the eight boreholes open to the aquifer during the saltwater extraction
that was conducted from July 6 to July 26, 1992. The water was being pumped from well INJ1.
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