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Chapter 1 
Introduction 

The cross-well electromagnetic (EM) method is a rapidly evolving geophysical 

technique that has recently experienced increased attention due to improvements in field 

instrumentation, computing power and methods of interpretation. The principal goal of 

this method is to obtain high resolution images of the subsurface electrical conductivity 

distribution from which vital information on geological structure, rock porosity, fluid 

saturation and fracture orientation can be deduced. In the oil patch this type of 

knowledge is extremely useful in determining reservoir heterogeneity and the amount of 

oil in situ. In environmental and engineering studies it can be used to estimate water 

quality, to monitor the subsurface position of contaminants and to characterize aquifer 

properties. 

One of the most promising areas for using cross well EM is the monitoring of 

processes which alter the physical properties of the subsurface. In enhanced oil recovery 

(EOR) projects, techniques such as steam injection, in situ combustion,water flooding 
and carbon dioxide injection are routinely employed to either mobilize hydrocarbons in 

heavy oil deposits and/or recover additional oil from depleted reservoirs (van Poolen 

and Associates Inc.,1980). Steam injection is also rapidly developing as an economically 
sound method of cleaning up hazardous waste and petroleum spills (Adenekan and 

Patzek, 1993). Unfortunately, due to reservoir complexity the injected fluid often does 

not migrate in the predicted direction. Thus by using cross-hole geophysics to more 

accurately define the reservoir conditions that exist between the wells we may be able to 
save both time and money. 

In this chapter we will review the electrical properties of rocks and how these 

properties can be altered by the injection of fluids. Next, geophysical techniques will be 
discussed which have been succesful in monitoring reservoir processes. Finally, I will 
summarize the research results are presented in each chapter of this thesis. 

1.1 Electrical properties of reservoir rocks 
It is well known that the electrical conductivity (and its reciprocal, the resistivity) of 

rocks is dependent on a wide variety of factors. As shown in Figure 1.1, the conductivty 

of naturally ocurring earth materials varies over several orders of magnitude. In 
sedimentary rocks the electric current flow is through the ionic pore fluid rather than 

through the rock matrix. Thus the conductivity is primarily dependent on the rock 
porosity, the fluid conductivity, the rock saturation, and to a lesser degree the formation 



temperature and pressure, the pore geometry and the wettability of the grains. An 

additional property that severly affects the bulk conductivity of sedimentary rocks is the 

percentage of clay minerals present in the rock matrix. This effect will be discussed more 

fully below. 

For an isotropic, fully saturated medium free of clay, Archie (1942) found an 
empirical relationship between the bulk conductivity of the rock (a,) ,the porosity of the 

rock (Q) and the conductivity of the pore fluid(o,). This relationship has come to be 

known as Archie's Law and is given by 

CT, = G,+". (1.1) 

Here n is a constant dependent on the rock matrix which in most cases takes on values 

between 1.8 and 2.2. 

The dependence of the rock conductivity on the fluid properties is immediately 

evident from this equation. Keller (1988) shows that the conductivity of water can vary 

over several orders of magnitude depending on its salinty (Figure 1.2). Fresh waters tend 

to be resistive while saline brines are very conductive. Oils on the other hand are 

resistive. Thus a 'clean' sand of constant porosity can exhibit conductivities which range 

over several orders of magnitude depending on the type of fluid that is present in its 

pores. The introduction of gas into the medium further complicates matters with equation 
1.1 becoming also dependent on the percentage of fluid saturation. 

If clays are present in the rock matrix, the relationship between the bulk rock 

conductivity and porosity becomes even more complicated (Waxrnan and Smits, 1968). 

This complexity arises from the presence of absorbed cations that are present on the 

surface of the clay particles. These cations diffuse into the pore fluid adjacent to the clay 

surface adding to the number of ions already present in solution and thus allowing the 

rock to carry a larger electric current (Ward and Fraser, 1967). This process accounts for 
the relatively high conductivty values of clays and shales as shown in Figure 1.1. In 

addition because clay minerals tend to exhibit a flat 'platy' shape when compared to the 
spherical grains found in clean sandstones, the geometry of the pores will also affect the 
bulk conductivity. 

Though the affects of the rock temperature are not as significant as those described 
above, Figure 1.3 demonstrates that increasing the temperature will result in more 

conductive fluid due to increased ion mobility. Therefore if the rock is fully saturated, 

higher temperatures will result in greater bulk rock conductivities. However, higher 

temperatures can also evaporate the pore fluid which decreases the saturation. Thus 
raising the temperature can in some cases increase the resitivity of the rock. 



The dependence of the bulk rock conductivity on the electrical properties of the pore 

fluid as described above is very useful for monitoring EOR processes. For example, the 

most commonly employed EOR process in heavy oil reservoirs involves the injection of 

hot water and steam into the pay zone. Increasing the temperature in this manner makes 

the oil less viscous thereby allowing for easier extraction. The process not only increases 

the temperature in the reservoir and surounding rocks, but as the fluid is pumped further 

into the formation it displaces resistive oil there by increasing the percentage of water 

saturation. If the injected water is saline it will increase the salinity of the formation. 

However if it is fresh, the water will tend to 'flush out' any saline pore fluid and thus 

decrease the salinity within the injection zone. 

Mansure and Meldau (1990) have hypothesized a model for such a flood (Figure 

1.4) and determined that the processes described above can cause changes in the bulk 

rock conductivity of an order or magnitude or greater. Figure 1.5 shows the ratio of the 

final-to-initial formation resitivities due to changes in salinity, temperature and water 

saturation. Thus if we are able to monitor the spatial variation of resitivity within the 

reservoir as a function of time, we will be able to deduce the progress of the steam front 

in the subsurface. Examples of geophysical methods used to monitor this and other types 
of reservoir processes will be discussed in the next section. 

1.2 Geophysical methods for reservoir process monitoring 
Because the process we are interested in monitoring involves either the injection or 

withdrawal of fluids and/or gases in a reservoir at depth, monitoring wells are often 

installed to track its progress. Unfortunately measurements of pressure, temperature and 

conductivity made within these wells are single point measurements which reflect 

properties of the reservoir only in the immediate vicinity of the hole. However, 

geophysiscs can be employed to fill in the gaps between wells. 
Surface geopysical techniques can provide high resolution imaging of changes within 

the reservoir if the injection zone is near the surface. Of the methods available, 3-D 
seismic monitoring has been extremely successful in detecting changes in both seismic 
velocities and amplitude attenuation (Greaves and Fulp, 1987, Robertson, 1989). Surface 
electromagnetic methods have showed some success in detecting conductivity changes at 
depth (Bartel, 1982, Bartel and Ranganayaki, 1989) and self-potential anomallies have 

been measured on the surface which can be correlated with oil field stimulation effects 

(Dorfman, et al., 1977). However, due to the small volume of rock affected by these 

processes and the depth at which they occur, surface methods often do not produce 

optimum resolution. 



If one borehole is available, the surface geophysical methods described above can be 

improved upon by employing surface-to-borehole techniques. Vertical seismic profiling 

(VSP) is routinely employed to achieve better resolution of reservoir properties than can 

be deduced from the surface (Hardage, 1985). Surface to borehole resistivity 

measurements have been exteremely succesful for environmental monitoring of 

contaminant injections (Bevc and Morrison, 199 1, Schenkel, 1991) and to determine the 

direction of groundwater flow (Sill and Sjostrom, 1990). However, attempts to use the 

same processes to monitor EOR in an oilfield have shown very limited sucess (Bevc, et 

al. 1989). Numerical modeling has shown that surface to borehole EM can detect changes 

caused by EOR processes as far as lOOm away from the instrument well (Spies and 

Greaves, 1991) and these types of mesurements have been made both in an oil field 

environment (Wilt and Ranganayaki, 1990) as well as in a shallow injection 

experiment(Hanson, et al. 1991). Methods for interpreting surface to borehole EM data 

are under development. 

If multiple bore-holes are available, then conductivity well logging before, during 

and after the injection process has been completed can yield useful estimates of the 
spatial variation in conductivity and of the changes that have occured within the 

reservoir. Ranganayaki, et al. (1992) show how the conductivity increases over time 

within a steam injection zone by running resitivity logs in several oil field wells before 

and during an EOR experiment. Newmark and Wilt (1992) found similar results in the 

simulated steam clean-up of a gasoline spill. Unfortunately to adequately sample the 

spatial changes in conductivity in this manner requires a large number of wells which can 

be extremely costly. 

To estimate the reservoir properties at depth between wells, cross-well geophysics 

can be employed. Seimic tomography has been very succesful in monitoring EOR 

produced changes with respect to time. Excellent examples of the seismic mapping of 
steam injection and in-situ combustion processes can be found in Bregman, et al. (1989), 

Justice, et al. (1989) and Paulsson, et al. (1992). Cross-well resistivity tomography has 

shown promise in monitoring both oil and environmental related steam injections 

(Beasley and Tripp, 199 1, Shima and Imamura, 199 1, Ramirez, et al, 1992) and Daily and 
Ramirez (1992) have found it useful for tracking the flow of ground water through the 

unsaturated zone. 
High frequency EM (f>lMHz) has also been useful in monitoring changes in 

reservoir properties between boreholes. Davis, et a1 (1979) reported on the changes in 

measured electromagnetic fields caused by an in situ coal gassification project. Daily 

(1984) and Laine (1987) describe variations in tomographic images of attenuation caused 



by an oil shale retort and steam flood, respectively. The benefit of working at these 

frequencies is that the EM fields obey the wave equation thus allowing techniques 

developed for seismic interpretation to be applied. Unfortunately, due to the extremely 

high attenuation rate of these fields in conductive media the boreholes must be fairly 

close together. Thus the high fkequncy method is unusable in conductive areas where the 

wells are tens to hundreds of meters apart. 

Because of the diffusive nature of lower frequency EM fields in conductive media 

where displacement currents are negligible, the audio frequency range has until recently 

largely been ignored. However, the work of Zhou (1989) showed that a low frequency 
analog to diffraction tomography is useful in determining the orientation of fractures in a 

fracture zone. Wilt, et al. (1991) have demonstrated that single frequency measurements 

can be made in oil wells separated by loom, while Wilt and Schenkel(1992) and Hanson, 

et al. ( 1991) have shown that these type of cross well measurements are useful in 

monitoring environmental injection processes. In this thesis methods will be developed 

to both model the audio frequency EM response to conductivity changes caused by these 

processes, and to interpret data collected in cross-well EM surveys. 

1.3 Scope of this research 
Although the word itself has appeared in the literature only within the last two 

decades, Worthington (1984) states that tomography has routinely been employed in 

geophysics since seismic surveys were first used to defme the location of salt domes in 

the 1920's. The basic idea behind tomography is to obtain a two dimesional image of a 

selected plane or 'slice' through a solid object. In some cases the process can be extended 

to three dimensions to obtain a volume image of the object. In geophysics this imaging 

process usually implies making measurements of the seismic or electromagnetic fields at 
multiple positions that are produced by sources at various other locations. Tomographic 
reconstruction tecniques are then applied to these data to produce images of earth 
properties such as seismic velocity and/or attenuation, electrical conductivity, dielectric 
constant, ect., from which subsurface geology can be inferred. 

Following the work of Wu and Toksoz (1987), Zhou (1989) developed a technique 
similar to seismic diffraction tomography to interpret crosswell electromagnetic data. 

The problem is simplified by applying either the weak scattering Born or Rytov 
approximations to the integral equations governing electromagnetic wave propogation. 

To be consistant with Wu and Toksoz, Zhou formulated the problem in the wave-number 
domain rather than in the space domain. Unfortunately this is where the similarity 



between seismic and electromagnetic tomography ends. Due to the diffusive nature of 

the EM fields in the frequency range that we are interested, the concept of geophysical 

ray tomography is invalid and thus raytracing, algebraic reconstruction, and filtered 

backprojection image reconstruction tecniques are invalid. Zhou dubbed this method 

electromagnetic diffusion tomography. 

In this thesis I build on the theoretical work found in Chapter 3 of Zhou and apply a 

cross-well EM imaging technique to data collected in an injection experiment. However, 

unlike Zhou I have developed the formulation in the space domain rather than the wave- 

number domain. The reason for this is three fold. First , the wavenumber domain 

formulation requires large numbers of evenly spaced source and receiver points which at 

this time is unfeasible. Second, the space domain formulation allows for easier forward 

modeling thus allowing us to iteratively find better estimates of the conductivity. Lastly, 

the space domain formulation allows for more complicated starting models than the 
wave-number domain formulation. These concepts will be discussed more fully in the 

proceeding chapters. 
In Chapter 2, I will develop the integral equation formulation for calculating the 

scattered electromagnetic fields resulting from inhomogeneities imbedded in an otherwise 
homogenous medium that are excited by a magnetic dipole source . To simplify the 

problem it is assumed that the scattering bodies are symmetric about the source dipole 

axis in an azimuthal direction. Next a perturbation method known as the Born 

approximation is applied (Morse and Feschbach, 1953) and a sensitivity function is 
derived. This function describes the sensitivity of a given source-receiver pair to points 

within the medium. The spatial variation of the sensitivity will be analized for both 

different source and receiver combinations as well as different operating frequencies. In 

addition it will be employed to compare the simple cylindrically symmetric 2-D geometry 

to more realistic model geometries. 
In Chapter 3, the Born approximation of the integral equations are investigated as a 

quick, numercial forward modelling scheme. The limitations of this approach are 

discussed as well as the benefit in computational time savings. Next, a more accurate 
iterative Born approximation is developed. Again its limitations are discussed and 
weighed against the savings in computing time. This solution is compared to both 

simpler one dimensional models to determine its accuracy and against more complicated 

two and three dimensional models to determine the usefulness of the cylindrically 

symmetric geometry. 
In Chapter 4 an imaging scheme is developed which applies the Born approximation 

to obtain an initial estimate of the conductivity distribution, and then applies the iterative 



Born series to obtain more accurate estimates of the conductivity. The resolution of the 

method as a function of frequency will be discussed and the effects of noise determined. 

EOR injection processes will be simulated with forward models and the resulting 
conductivity images analized for accuracy. The theory for a more complicated, one 

dimensional layered background model will be incorporated into the imaging scheme and 

then applied to field data collected by Wilt, et al. (1991). Finally as in the preceeding 

chapters we will use the 2D cylindrically symmetric imaging scheme on synthetic data 

generated with 3D models to determine the limitations of the simplified cylindrical 

geometry. 
Chapter 5 will describe a field experiment in which cross well EM data were collected 

to monitor the injection of electrically conductive salt water into an aquifer at depth. 

Estimates of the data quality will be derived and possible sources of error determined. 

The 2D imaging scheme will then be applied to the data and the resulting images 

interpreted. Finally, simple forward 3D models will be employed to determine if the 

images correspond to the observations. 
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Figure 1.2 Conductivity of solutions of various salts as a function of 
concentration. Temperature of 20 OC (Keller, 1998). 



Figure 1.3 - Conductivity of a solution of NaCl as a function of temperature and 
concentration (Keller, 198 8). 
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(Mansure and Meldau, 1990). 



Figure 1.5 - (a) Ratio of formation resistivity after a salinity change to initial 
resistivity. The saturation and temperature have been held constant. (b) Ratio of 
formation resistivity after a temperature change to initial resistivity. The 
saturation and salinity have been held constant. (c) Ratio of formation resistivity 
after a saturation change to initial resistivity. The temperature and salinity have 
been held constant (Mansure and Meldau, 1990). 



Chapter 2 
Two Dimensional Formulation for a Magnetic Dipole Source in a 

Conductive Whole Space 

The numerical formulation for the transverse electric (TE) electromagnetic response 

that is induced in a two dimensional (2-D) earth by an oscillating magnetic field is fairly 

trivial. Hohmann (1971) used an integral equation solution to investigate the use of a line 

source of alternating current on the surface of the earth for mineral exploration. Chang 

and Anderson (1984), Pai and Huang (1988) and Chew, et a1 (1991) developed solutions 

for a medium which is cylindrically symmetric about the transmitter borehole (Figure 

2.1) to model the effects of drilling mud invasion in thin beds. The former uses a finite 

element method, while the last two employ a Haskill matrix - mode matching scheme. 

Unfortunately, these three solutions were designed with borehole induction logging in 

mind rather than cross well measurements. Recently Zhou (1989) and Sasaki, et a1 

(1992) have developed forward modeling schemes to calculate the crosswell 

electromagnetic (EM) response of two dimensional, cylindrically symmetric conductors 

in an otherwise homogenous medium. The former uses an integral equation approach 

while the latter uses a finite element method. 

In this chapter the mathematical theory is developed for low frequency (f < 1MHz) 

electromagnetic scattering by two dimensional conductors that are cylindrically 

symmetric about the source dipole. This formulation, which provides the starting point 

for the imaging scheme given in Chapter 4, is very similar to that of Zhou (1989) except 

that it is developed in the space domain rather than the wave-number domain. To 

simplify the theory the Born approximation is applied. From these approximate equations 

sensitivity functions are derived which yield valuable information about how a given 

source-receiver pair senses the medium between and around the probes. These sensitivity 
functions are then analyzed for different source-receiver configurations to determine both 
how they vary with respect to the background induction number, and how they vary 

spatially. In addition the limitations of the cylindrical geometry are explored by 
comparing the 2-D cylindrical sensitivity functions to the those that result from 

employing a two and one-half dimensional (2 112-D) model. The space-domain 

conclusions will then be compared to the wave number domain analysis of Zhou(1989) 

and Zhou, et al. (1993). 



2.1 Mathematical formulation of the two-dimensional integral equation 
As shown in Figure 2.1, the region of interest is imbedded in an otherwise 

homogenous background medium of electrical conductivity GO. A magnetic dipole 

source which is harmonic in time is located at r=O, z=ztx on the axis of symmetry. If the 
anomalous conductivity , o(r,z), is distributed symmetrically about this axis then 

electric currents induced by the source can exist only in the azimuthal (6) direction. 

These currents in turn produce magnetic fields in the i and 5 directions which can be 

measured either within the transmitter borehole as is commonly done in electromagnetic 

well logging, or in a second borehole some distance away as is done for crosswell EM 

measurements. 

Because we are operating in a conductive medium at frequencies below a megahertz, 

displacement currents can be ignored (Ward and Hohman, p136). Using this quasi-static 

approximation, Maxwell's equations for the electric and magnetic fields in the frequency 

domain are given by 
V x H  = o E  +Js (2.1a ) 

and 
V x E  = -iopH 

where E and H are the total electric and magnetic fields respectively, JS is the source 
current density, o is the conductivity, o is the operating frequency in radians, p is the 

magnetic permeability which is assumed to be that of free space, and i = a. 
Because the electric field has only one component in the azimuthal or 6 direction, a 

scalar differential equation can be derived for Ee in cylindrical coordinates by taking the 

curl of equation 2.lb and combining it with equation 2.la. The resulting expression has 

the form 

where now Je represents the external source current flowing within the magnetic dipole. 
The object function O(r) is now defined as 

and the background wave number, ko to be 

ko = 4-iaoop . 
Substituting these two expressions into equation 2.2 and rearranging yields 



The total electric field in the inhomogenous medium (E$) is now decomposed into 
two parts. The first part, E$, is the field resulting from a magnetic dipole source 

operating in a homogenous background of conductivity GO. This background or primary 

electric field satisfies the scalar wave equation 

1 
V2 E$ - 7 E$ + k t  E! = iopJi 

r (2.6) 

and is given by the analytical expression (Ward and Hohrnann, 1988) 

where R = dr2 + (z - zk) and r and z define the point of interest. The second part, Ei is 

the scattered or secondary electric field resulting from anomalous currents which are 

induced in any conductivity inhomogeneities that are present in the region. The total 

electric field is simply the summation of these two separate parts, i.e.. 
E o = E $ + E t .  (2.8) 

Substituting this expression into equation 2.5 , rearranging terms and removing the 

primary field contribution yields a wave equation for the secondary electric fields, 

where the tern on the right represents the source induced or scattered currents within the 

inhomogeneities. This is the Helmholtz equation for the secondary fields written in 

cylindrical coordinates which can be solved using the Green's function formulation (Sena 
and Tokoz, 1990): 

E+(rm,ru) = E$(rm, re) - o,, j J ~ ( r ) ~ ( r ,  r u ) ~ ( r ~ , r ) d r d z .  (2.10) 
n 

In this expression the receiver lies at the point r r x  = (r=,~rx), the source dipole at 

ru = ( 0 , ~ ~ )  and the integration is over the entire region containing anomalous conductors. 

The Green's function, G ,  represents the electric field at rrx induced by a circular loop of 



current that is symmetric about the source dipole axis , passes through r, and satisfies the 

equation 

Ward and Hohmann (1988) show it to have the form of a first order Hankel transform, 

where y2 = h2 + kO2 and J~ (hr) is the first order Bessels function of the first kind. 

In the borehole environment, it is the magnetic fields (H) that we are interested in 

measuring rather than the electric fields . Thus an expression for the magnetic field 

equivalent to equation 2.10 must be developed. This is accomplished by taking the curl of 
the vector form of 2.10, i.e., V x ~i(ra,rk)dwith respect to the observation point m. 
This operation results in an integral equation for magnetic fields which is given by, 

H(ra, r t ~ )  = Hp (m, r ~ )  - o0 lJo(r)E+(r, r.)~, (ra, r)drdz . (2.13) 
n 

In equation 2.13, HP(rrx,rbr) is the primary magnetic field generated by a magnetic dipole 

source in a homogenous medium of conductivity GO which is given by 

(ktlX2-ikolX-l)?] 

(Ward and Hohmann, 1988) and G ,  (rl%, r)  is the is the Green's function which relates the 

induced current loop at a point r to the magnetic fields at the receiver location. Equation 
2.13 can be simplified by subtracting the primary field and decomposing the remaining 

vector equation into two scalar equations for the secondary horizontal and vertical 

magnetic fields. This results in the expressions 

and 



where the Green's functions are given by 

OD 

r 
G, (rm, r) = - j e-~l--~l h Jl (k) J l  ( k a ) d h  

20 

and 

and jo(km) and ~ ~ ( k )  are the zero-th and first order Bessel's functions of the first 

kinds, respectively. 

2.2 The Born approximation solution 
The relationship between H h d  the object function O(r) is nonlinear because Es is 

also dependent on O(r). Thus both the forward modeling and the estimation of the 

conductivity structure through inversion are nonlinear processes that require large 

amounts of computer time and memory so that only the simplest problems can be 

examined. Even a simple analysis of the field behavior nontrivial. 

These solutions however, can be simplified by assuming that the medium contains 

only weak scatterers. When this is true, O(r) is small and linearized versions of 2.15 and 

2.16 are obtained through the use of the Born approximation, Ee = EsP, which simply 

assumes that the field in the scatterer is equal to the primary field (Kong,1975): 

Hz (rm, rk) = - cro jj 0(r)E+~ (r, r a ) ~ ~  (rm, r)drdz (2.19) 
n 

and 

Hl (rm, r&) = - o0 /J O(r )hp  (r, r & ) ~ &  (rm, r)drdz. (2.20) 
n 

The linearity between the object function and the magnetic fields implies that the 

scattering currents within the inhomogeneities are small and that coupling between 

individual scattering currents can be neglected. Because this represents the first term in 

the Born series, I will refer to it at times as the first order Born approximation. The 

limits of this approximation will be discussed more fully in chapters 3 and 4. 



2.2.1 The Born Kernel 
Equations 2.19 and 2.20 relate small perturbations in the magnetic field, Hz and H: , 

to small perturbations in the model, ooO(r) = Ao, through the functions 

K, = EeP (r, r-)G, (r-, r)  (2.2 1 a) 

and 
K, = EeP (r, rtx)GH, (r-, r) (2.21a) 

which are dependent only on the background conductivity, 00, and the relative positions 

of the source, the receiver, and the location and dimensions of the region of interest. 

Thus the terms on the right hand side of equations 2.19 and 2.20 can be thought of as the 

Frechet' derivatives for a homogenous whole space model (Hohmann and Raiche, 1988) 

with the functions given in 2.21 representing the Frechet' kernels or sensitivity functions. 

Use of the Frechet' derivative in linear inverse theory dates back to the work of Backus 

and Gilbert (1968), and since that time these functions have been used quite extensively 

for EM inversion and sensitivity analysis (e.g. Parker,1977, Chave, 1985, E. Gomez- 

Trevino, 1987 and Spies and Habashy, 1992). 

Closer examination of equations 2.19 through 2.21 indicates that if the background 

conductivity,oo, is grouped with the Frechet' kernels in 2.21 rather than the object 

function ,i.e., 

the relationship between the perturbed fields and the integrated kernel is dimensionless. 
This allows us to present a sensitivity analysis for the cylindrical crosswell problem as a 
function of background induction number ( o p o , * ~ ~ )  where R is source-receiver 

separation, rather than as a function of specific models. Thus we can determine the 

corresponding sensitivity for any combination of frequency, conductivity and borehole 

separation. Because the function given in 2.22 is derived using the Born approximation, it 
will be referred to here after as the Born Kernel. 

2.3 Sensitivity analysis as a function of the background induction number 
The fnst sensitivity analysis has been done for the general crosswell model shown in 

Figure 2.2a. The transmitter and receiver are located at a depth z=0 in two separate 

boreholes located a distance R=rm apart. Because the value of the Born kernel is 

dependent not only on the source and receiver locations but also on the point of interest 

within the medium, it has been calculated at five different positions located on a line 

extending radially outward from the source toward the receiver. 



Figure 2.3a shows the amplitude of the W, Born kernel as a function of the 

background induction number, and the real and imaginary components of the kernel at 

two of the points has been plotted on the same scale in Figure 2.3b. Because the 

scattered fields at the receiver are proportional to these sensitivity functions, the primary 
magnetic field (Hf) has also been plotted in Figure 2.3a which allows us to compare the 

relative behavior of the primary and secondary fields. The abscissa of these graphs starts 

at an induction number of 0.01 because below this point the total field is almost equal to 

that of the free space value (Spies, 1992). The largest induction number used is 1000 as 

above this value the fields are difficult to measure because of attenuation (Deszcz- 

Pan, 1993). 

At this point an explanation is required to define how the kernel values on the 

ordinate have been normalized so that both axis are dimensionless. All values have first 

been divided by the free space magnetic field for the given source-receiver separation. 

This removes a 1 / R~ component from the kernel values and fully normalizes the primary 
field such that at low frequencies it is unity. However a there still exists a 1 / m2 in the 
Born kernel because the integration in r and z has not been completed. To remedy this 

matter the kernel values have arbitrarily been multiplied by the square of the source- 

receiver separation. The primary field has also been multiplied by this value so that it 

scales appropriately when compared to the kernel. 

Several important characteristics about the cylindrically symmetric geometry and its 
application to cross borehole studies can be derived from a Figures 2.3a and 2.3b. The 

linear increase in sensitivity amplitude with increasing induction numbers below 1.0 
indicates that we are in the near field. In this region the primary field dominates the 

secondary field which suggests that the response of small conductors will be 

unmeasurable. However the primary field is dominated by the real component while the 

scattered field is dominated by the imaginary. Thus even in this low induction number 
region anomalous conductors may be detected by measuring the quadrature alone . 

At an induction number of approximately 10, the kernel amplitude is maximum 
which indicates that this is the point at which the secondary fields will be most easily 

detected. In addition Figure 2.3b shows that the phase changes quite rapidly as the 
induction number is increased. Replotting the kernel as a function of source-receiver 
separation divided by skin depth (Figure 2.3~) shows that this region occurs when the 

receiver is approximately 2 to 6 skin depths away from the source. This figure can be 

used when designing a survey to maximize the measured response. 

At higher induction numbers the sensitivity falls off very rapidly implying a severe 

decrease in secondary field magnitude. However, the fact that the primary field 



amplitude decreases at even a quicker rate implies that this fall off is not due to a lack of 

sensitivity to the region but rather is the product of severe attenuation. 

A characteristic that is immediately apparent from these figures is the relative size of 

the kernel to the primary field. If the scatterer consists of a small cell of low contrast 

with respect to the background, the secondary fields will be at best two to three orders of 

magnitude less than the background field. However if the body is given some size andor 

a higher conductivity contrast then the scattered field is approximately equal to the kernel 

multiplied by area-object function product. Thus the difference between the primary and 

secondary fields becomes one order of magnitude or even less which is easily 

measurable. 

Some interesting properties of the secondary fields which are dependent on the 

scatterer location can be deduced from Figure 2.3. The most noticeable of these is that 

the sensitivity is much greater for points near the receiver than for points near the source. 

Spies and Habashy (1992) show that for two and one-half dimensional (2 112-D) and 
three dimensional (3-D) geology the sensitivity is reciprocal, or symmetric about a line 

drawn between the source and receiver, i.e. regions near the source and receiver have 
identical values. The disparity between these 2 112-D and 3-D cases and the 2-D 

cylindrical case is a function of the geometry that has been imposed on the problem. For 

the cylindrical case, a point near the transmitter forms a small ring of current about the 

axis of symmetry , while near the receiver the point forms a large ring of current. Thus 

unlike the 2 112-D and 3-D cases, the geometry produces sensitivities which are not 

reciprocal between the source and receiver. 
Another interesting phenomenon dependent on the location of the scattering body is 

the decreasing frequency at which the kernel peaks with increasing distance to the point 

of interest. This again is a function of the geometry imposed on the problem. The Green's 

function can be though of as a circular loop of wire which is exited by a dipole source at 
its center. West and Macnae (1991) give the induction number of such a loop to 

beoL 1 R where L is the inductance of the loop and R the resistance. For such a loop L 
is given by Romo and Whinnery (1953) to be 

where 1 is the radius of the loop and a is the radius of the wire. For a wire of given 
resistance per unit length R,, R is given simply as R = 2dRo. Thus, oL/R is 

proportional to wlnl and thus as the radius of the loop 1 is increased, the frequency w 
must decrease to keep the response at its peak. 



A third and very important characteristic that can be deduced from these sensitivity 

diagrams is that at low induction numbers (<I), the response from zones outside of the 

wells (for example the point at 1.25R) can produce secondary fields that are larger than 
those generated from region between the wells. This reemphasizes the benefit of 

operating in the range of 2 to 6 skin depths between wells. Unfortunately this also 

demonstrates a problem with making crosswell measurements in steel cased wells as 

suggested by Uchida, et al. (1991), and Newman (1992a) who determined that crosswell 

EM signals can be detected through casing as long as frequencies below lkHz are 

employed. This problem of being sensitive to regions outside the wells will be discussed 

in more detail later. 
To demonstrate that the behavior of the sensitivity function is relatively independent 

of the source - receiver geometry, the Born kernel has been calculated for the geometry 

shown in Figure 2.2b. In this case the receiver is a distance ~ = f i r x  to the left and 

below the source, and thus both horizontal and vertical components of the magnetic field 

will exist. Again the points of interest are located on a straight line between the source 

and receiver at the same intervals of 0.05*R7 0.50*R, 0.95*R, 1.05*R and 1.25*R as 

before. Figures 2.4a and 2.4b show that the behavior of the Born kernel for both the 
vertical and horizontal components is in general the same as when the source and 

receiver are at the same depth (Figure 2.3)with the sensitivity peaking when the 
transmitter and receiver are approximately 2 to 6 skin depths apart. 

One noticeable difference between the vertical and horizontal components of the 

kernel is in their relative sensitivities to the region outside the wells at induction numbers 

less than 1. The vertical component (Figure 2.4a) shows a relatively large sensitivity 

response when compared to the horizontal component (Figure 2.4b). This suggests that if 

we are going to make low frequency measurements through steel well casing as 
suggested by Uchida, et a1.(1991), it may be beneficial to use the horizontal component of 
the field rather than the vertical. 

In addition to the crosswell models, the Born kernel has been calculated for the in- 
hole case (Figure 2.2~). In addition to being useful for well log analysis and design 

(Barber, l992), the sensitivity plots (Figure 2.5) can be employed to examine the relative 
merits of using the back scartered response for improving image quality in crosswell 
tomography experiments (Zhou,1989). Although the sensitivity amplitude is much 

different compared to those for the crosswell models, the curves show the same general 

characteristics as noticed before with the response peaking at an induction number of 

approximately 10 and the frequency at which the kernel peaks decreasing as the radial 
distance to the scatterer increases. Notice that at low induction numbers, the sensitivity 



peaks between 0.25*R and l*R away from the borehole while at higher induction 

numbers the peak occurs closer to the borehole. This agrees well with induction log 

theory when lower frequencies are employed to sense further out into the medium. 

In general these Born kernel plots are very useful to determine how the sensing ability 

of a given source-receiver configuration changes with respect to induction number (or 

frequency). Though the magnitude of the Born kernel is not constant for different 

source-receiver configurations, the general behavior of the fields is. A general rule of 

thumb has been proposed which states that the peak response of an inhomogenous region 

for crosswell experiment will occur when the transmitter is 2 to 6 skin depths away 

from the receiver, and that for in-hole measurements the maximum sensitivity will never 
extend radially beyond the transmitter-receiver separation. Unfortunately these curves 

yield only limited information about the spatial characteristics of the Born kernel. Thus 

in the next section I will analyze the spatial variation of the Born kernel for constant 

induction numbers. 

2.4 Spatial sensitivity analysis 
Spies and Habashy (1992) showed how the Frechet' derivative can be employed in a 

spatial sensitivity analysis of the low frequency crosswell EM problem. The illustrations 
they present for a 3-D geometry are very useful for defining the region of the earth that a 

given source-receiver pair is sensitive to in a frequency range where the concept of ray 

paths is inappropriate. Although the sensitivity function they define is nonlinear in the 
anomalous conductivity o, it is essentially the 3-D Born kernel multiplied by a localized 

Nonlinear Operator (Habashy, et al., 1992) and normalized by the background 
conductivity GO. In the first part of this section I will analyze the spatial sensitivity of the 

vertical magnetic field at three distinct frequencies (and induction numbers) for the 

cylindrically symmetric crosswell geometry. The second part will consist of a 
comparison between these results and the 2 112-D sensitivity formulated by Spies and 
Habashy (1992). In the third part we will look at the sensitivity functions for the 
horizontal field and then in the fourth part examine these functions for the back scattered 
or in hole vertical magnetic fields. 

2.4.1 Spatial sensitivity of the vertical magnetic field for a 2-D cylindrical geometry 
The crosswell model employed in this spatial sensitivity analysis is shown in Figure 

2.6. In order to analyze the importance of vertical coverage or ofSset on target 
delectability and resolution, the spatial sensitivity distribution has been calculated for a 
single source and three different receiver locations representing aspect ratios ( d r x ) ,  or 



apertures of 0: 1 , 1 : 1 and 2: 1 . Three frequencies (lkHz, 10kHz and 100kHz) have been 

employed to illustrate the varying sensing capabilities of different frequencies. The low 

frequency of llcHz was chosen because below this point Figures 2.2 and 2.3 show the 

amplitude of the sensitivities, and thus the secondary fields to be several orders of 

magnitude less than that of the primary. The high frequency of 100kHz was chosen as 

above this point the field source field falls off very quickly with distance due to 

attenuation and the fields become difficult to measure. Although the model is defined for 

a specific background conductivity and source-receiver separation, the dimensionless 

relationship between the integrated Born kernel and the measured fields implies that the 
results will be identical for constant induction numbers o p o * ~ ~  and source-receiver 

configuration. 

For the sake of comparison the sensitivity values have all have been normalized in 

the same manner as given in Spies and Habashy(l992). The Born kernel is calculated at 

a constant interval of r and z, normalized by the total sensitivity which has been 

integrated over the region of interest, and then multiplied for display purposes by an 

appropriate constant which in this case was 1.5x104. The absolute values of the 

sensitivity are then converted to decibels and then the results plotted as positive and 

negative values of the real and imaginary components. Choosing an appropriate scaling 

factor allows us to plot the results over 3 orders of magnitude from 1 to 60 dB with the 

white space representing values 83dB or more below the integrated value. In addition, 
the small white 'lines' between areas of shading represent regions where that particular 

component of the sensitivity is undergoing a reversal of sign (i.e. a 180° phase shift). The 

position of these lines is independent of the scaling factor used. In all the results the 

arrow on the left represents the dipole source location and the arrow on the right the 

receiver location. Due to plotting considerations the sensitivity values at lkHz were 

calculated at 10m intervals while at 10kHz and 100kHz the interval was 5m. 
Figure 2.7 shows the sensitivities calculated at lkHz for aspect ratios of 0: 1, 1: 1, and 

2:l which correspond to a induction numbers of 0.8, 1.6 and 3.9, respectively. 

Comparing these induction numbers to those plotted on the abscissa in Figures 2.3 and 

2.4 show that this frequency lies on the low side of the Born kernel, that is we are 

operating in the near field. The most noticeable characteristics of Figure 2.7 that are also 

illustrated in Figures 2.3 and 2.4 are 1) the kernel is maximum near the receiver and 2) it 

is very sensitive to a large area outside of the interwell region. The size of the region that 

the various source-receiver combinations are sensitive to and the smoothly varying nature 

of the kernel suggest that imaging at this frequency will recover smooth, large scale 
features and provide good estimates of the average background conductivity. However 



the images at these low induction numbers will not have very good resolution. In 

addition, the sensitivity to the zone outside the wells implies that bodies in this region 

will produce anomalies that could be mistaken to originate from bodies located between 

the wells. Notice also that the sensitivities in the interwell region near the receiver have 

opposite signs compared to the region just outside the wells. Thus the effect of horizontal 

features near the receiver (for example layers) will be diminished (Spies and 

Habashy,1992). 

Some general conclusions can be made from Figure 2.7 about the horizontal and 

vertical resolution with respect to different array aspect ratios. For an aspect of 0:1 and 

induction number of 0.8 (Figure 2.7a), the imaginary component dominates the response. 

For a point of interest centered between the source and receiver, small changes (for 

example 10% of the separation) in both its horizontal and vertical position due not cause 
substantial changes in the sensitivity of this component. Though the real component is 

very sensitive at the central location do to a reversal in sign, the response from outside the 
interwell region will dominate any response originating between the wells. This 

demonstrates the low resolution of the 0: 1 aspect ratio m y  for this induction number. 

Increasing the aspect ratio to 1: 1 (Figure 2.7b) offers definite improvements to the 

resolution. Small changes in both the vertical and horizontal position of a point centrally 

located between the source and receiver cause measurable changes in both the real and 

imaginary sensitivities do to sign reversals in this region. Also the relative magnitude of 
the imaginary sensitivity compared to that of the real component has been reduced with 
the larger induction number. Increasing the aspect ratio to 2:l improves matters further. 

Small changes in the scatterer location between the source and receiver result in different 

sensitivity for both components which suggests an increase of resolution. In addition the 

increase of the induction number to 3.94 has produced real and imaginary components of 

almost the same amplitude which agrees well with the curves shown in Figure 2.3b. 
However, any increases in resolution due to larger aspect ratios must be weighed against 
the large sensitivity to zones outside the interwell region. 

Figure 2.8 shows the normalized Born kernel for a frequency of lOkHz (and 
induction numbers for the different aspect ratios of 8, 16 and 39 ) plotted on a scale which 
is twice that of Figure 2.7. The reduction in the area outside the wells being sensed is 

immediately noticeable when compared to Figure 2.7. Also, though the kernel still peaks 

near the receiver small maxima now appear near the transmitter. 

Further comparison of these plots to Figure 2.7 indicates that a substantial 

improvement in resolution has occurred with the increase in frequency and induction 

number. For the 0:l aspect ratio (Figure 2.8a), the area of constant sensitivity in the 



central region between the source and receiver has narrowed in the vertical direction 

indicating an in increase in the vertical resolution. However there is still a definite lack 

of resolution in the horizontal direction except near the source and receiver. Increasing 
the aperture to 1:l (Figure 2.8b) increases both the vertical and horizontal resolution 

significantly. Notice that a focused zone of sensitivity stretching almost directly between 

the source and receiver has developed in the real component, and that excellent vertical 

resolution exists in the imaginary component due to a sign reversal in the central region. 

Increasing the aspect ration to 2: 1 improves the horizontal resolution even further due to 

the almost vertical alignment of the sensitivity variations. Thus small horizontal 
position changes will cause fairly large changes in the measured fields. 

Increasing the frequency to lOOkHz such that the induction numbers for the three 

different aspect ratios are 80,160 and 390 once again reduces the area being sensed and 

thus improves the resolution. Figure 2.9 shows that the contribution from outside the 

wells has been reduced to almost nothing indicating that at these higher induction 

numbers we are primarily sensing the area directly between the transmitter and receiver. 

A very defined maximum sensitivity 'path' has developed between the source and receiver 

which is suggestive of a ray path and implies the use of ray theory and ray tracing to 

interpret the results. In addition a symmetry between the regions near the source and 

receiver is beginning to develop which will be discussed in more detail in the next 

subsection. 
Once again the increase in aperture causes an increase in horizontal resolution with 

very poor resolution at an aspect ratio of 0:l and very good resolution at an aspect ratio 
2:l. Also due to the formation of the previously mentioned 'ray path', there is 

considerable vertical resolution improvement for the 0: 1 aspect ratio compared to those 

at lower frequencies and induction numbers. 

Several conclusions can be made about the results presented above, the first being 
that single frequency (monochromatic) crosswell data should be collected at as high a 
frequency as possible to maximize resolution while minimizing the contribution of the 
zone outside the interwell region. This agrees well with Zhou's (1989) results who found 
that higher frequency data resulted in higher resolution images. However, the benefits of 
multiple frequency data should not be overlooked. Different frequencies sense the 
medium differently thus supplying additional information which can be used to better 

constrain the interpretation. This agrees well with the use of wave number domain 
coverage diagrams introduced by Zhou (1989) and Zhou, et al(1993). These diagrams 

show how the wave number spectrum of anomalous bodies are sampled by an EM array 

of multiple sources and receivers. Low frequencies are shown to sample low wave 



number components of the target shape and higher frequencies sample larger 

components. Thus with multiple frequencies we sample a larger portion of the target's 

wave number spectrum and thus better reconstruction of a conductivity image should 

result. Finally, the real and imaginary components sense the medium differently at 

different frequencies with the imaginary component dominating at low induction 

numbers. This suggests that the imaginary component alone can be used to image the 

medium through steel casing when using low frequencies as suggested by Uchida, et al. 
(1991). 

2.4.2 Comparison of the sensitivity for 2-D cylindrical and 2 112-D geometries 
Although the cylindrical geometry shown in Figure 2.1 crudely simulates current flow 

in the earth resulting from a VMD source, it is not very realistic as the earth does not 

often exhibit this type of symmetry about the dipole axis. In addition the cylindrical 

formulation accounts only for TE current flow and thus does not account for current 

crossing conductivity boundaries. A different geometry that can better approximate EM 

scattering in the inhomogenous region between two wells is the 2 1/2-D geometry. As 

shown in Figure 2.10, this geometry employs a VMD source but extends the earth 

infinitely in the 'y' direction. 

The sensitivity functions for the 2 1/2-D problem can be derived from the linear 

versions of the 3-D sensitivity functions given in Spies and Habashy (1992) which have 

the form 

for the vertical component sensitivity and 

for the radial or x component. In these expressions r,,r,and r, represent the distance 

from the origin to the receiver location , to the point at which the sensitivity is calculated, 

and to the source location, respectively and 3" and sTX are given by 

and 



It is easy to show that expressions 2.24 and 2.25 are simply the magnetic fields at the 
receiver produced by an electric dipole source at the point of interest, multiplied by the 

electric field at that same point resulting from an oscillating magnetic dipole at the 

source location. That is, the expressions given in 2.24 and 2.25 are simply the 3-D Born 
kernel divided by the background conductivity 0,. To calculate the 2 112-D sensitivity 

requires integrating these functions along the y axis from minus to positive infinity. The 

2 112-D sensitivity functions then become 

and 

where sRX and sT" are defined as above. Note, though these functions are not multiplied 
by o,, normalizing them by the total integrated sensitivity removes the dependence of 

this factor and thus these results can be compared to the Born kernel's in section 2.4.1. 
To compare the relative merits and drawbacks of the two different geometries I have 

calculated the 2 112-D sensitivity functions at the same three frequencies employed in the 
last subsection for the 0: 1 and 1: 1 aspect ratio models shown in Figure 2.6. Figure 2.11 

shows the 2 112-D sensitivities at 1kHz which should be compared to the cylindrical case 

in given Figures 2.7a and 2.7b. Though there are many differences in the two sets of 

plots, the general characteristics are the same. For both cases the imaginary component 
dominates the response and is less sensitive to regions outside the well compared to the 
real component, which is very sensitive to some distance outside this region. 

The most noticeable difference between the kernels for the two different geometries is 
that the 2 112-D sensitivities have sidelobes outside the interwell region near the 

transmitter as well as near the receiver. Thus one possible advantage of the cylindrical 
symmetry is that forward modeling requires smaller meshes due to the fact that the 

region on the negative side .of the source doesn't have to be accounted for. A second 

interesting comparison that was discussed earlier is the reciprocity of the 2 112-D 

geometry with respect to the source and receiver position. 



There are other, more subtle differences between the two geometries at this 

frequency. The vertical resolution for the 0: 1 aspect ratio may be better for the 2 112-D 

model due to the fact that a narrow band of high sensitivity extends all the way across 

from the source to receiver. However, because the regions near the source and receiver 
for the cylindrical geometry are not reciprocal, it may provide better horizontal 

resolution. This is especially evident in the real component which shows a sign reversal 

in the interwell region for both the 0:l and 1:l aspect ratios which is not present in the 2 
1/2-D sensitivity functions. However, as was mentioned in the last subsection any 

increased resolution in the real component for these low induction numbers is negated by 

the fact that it is sensitive to a large region outside the wells, and that the primary field 

dominates the in-phase response. 

The 2 112-D sensitivity functions for lOkHz are plotted in Figure 2.12. Again there is 

a general similarity between the cylindrical symmetry (Figures 2.8a and 2.8b) and the 2 
1/2-D geometry, especially in the region near the receiver. In fact these two sets of 

sensitivities show many more similarities when compared to the lkHz results. This 

suggests that as we go to higher frequencies, the geometry of the problem becomes less 

important and a greater proportion of the response comes from the region immediately 

between the source and receiver. In addition, these results imply that the response of 2 
1/2-D and cylindrically symmetric objects will be nearly identical in the region near the 

receiver . 
However, some noticeable differences still exist between the sensitivities for the two 

geometries. The vertical resolution for the 0: 1 aspect ratio is somewhat better for the 2 

1/2-D case as it shows a narrower region of maximum sensitivity, especially in the 

imaginary component. The cylindrical symmetry again shows slightly better horizontal 

resolution due to the non-reciprocal nature of points near the transmitter and receiver. 

The cylindrically symmetric sensitivities also show a sign reversal in the interwell 
region, in this case in the imaginary component for the 1:l aspect'ratio ( Figure 2.8b), 

which may tend to produce better resolution both horizontally and vertically. In general 
however, the differences between the two geometries are less significant at this 

frequency compared to 1lcHz. 
The 2 112-D sensitivity functions at lOOlcHz (Figure 2.13) show remarkable similarity 

to the cylindrical equivalents (Figure 2.9) for both the 0:l and 1:l aspect ratios. This 

similarity is especially evident in the red components which show almost no differences 

except immediately adjacent to the source. Noticeable differences do exist in the 
imaginary components, however even these have been reduced compared to those 
existing at lower frequencies. These results verify that at higher frequencies and for low 



conductivity contrasts, the scattering currents sensed by a crosswell EM array are the 
same whether the body is extended in the f direction or symmetric about the transmitter 

axis. Thus at this point it is hypothesized that at high frequencies 2 1/2-D data are 

interpretable assuming a cylindrically symmetric geometry. This independence of 
geometry also may explain why ray theory solutions like those proposed by Nekut (1992) 

and Stolarchyk (1992) work well at higher frequencies but not at lower. This concept will 

be investigated more thoroughly in the next chapter. 

2.4.3 Horizontal magnetic field sensitivity analysis 
Using wave number domain analysis Zhou (1993) showed that if we assume a 

cylindrical geometry and we have complete, continuous data in both boreholes with large 

aspect ratios, then use of both the horizontal and vertical magnetic fields is redundant. 

Thus his work focused on using the vertical magnetic fields to image the conductivity 

structure. In practice however, data are collected at discreet points over a smaller vertical 

distance than we would hope for (e.g.. Wilt, et al. 1991). Because of this, the horizontal 

magnetic field sensitivity plots have been examined to determine the benefits, if any, of 

measuring this component of the field. The model used in the sensitivity analysis is the 

same as Figure 2.6 with the HZ (vertical) receivers replaced with HI (horizontal) field 

receivers. 

Figure 2.14 shows the horizontal field sensitivity plotted for the three different aspect 

ratios at lkHz, and thus induction numbers of 0.8, 1.6 and 3.9. The most notable 
difference between these figures and those of the vertical field sensitivities (Figure 2.7) 

that was also evident in Figure 2.4 is that the horizontal component of the field is less 

sensitive to regions outside the wells. The simplest way to explain this is by analyzing 

the sidelobes that develop near the receiver. For the vertical field sensitivity, the 

sidelobes are oriented horizontally about the receiver as demonstrated in Figure 2.7. 
This tends to draw the sensitivity to the right of the receiver out into the region beyond 
the wells. However for the horizontal field sensitivity the side lobes are oriented 
vertically and thus more of the high sensitivity region lies between the wells. A second 
phenomenon is that the two components tend to compliment each other at these induction 
numbers. Regions of little or no vertical field sensitivity tend to coincide with regions of 
maximum horizontal field sensitivity and vice versa. 

Other benefits of measuring the horizontal field are determined by comparing the 

horizontal and vertical field sensitivities for each of the different aspect ratios separately. 

The most notable difference occurs for an aspect ratio of 0:l. When the source and 
receiver are in this configuration they are null coupled and thus the horizontal component 



(Figure 2.14a) is very sensitive to vertical changes in the conductivity. The figure also 

indicates that the horizontal component is sensitive to radial changes in position when the 

scatterer is not directly in line with the source and receiver. This suggests that for limited 

angle data, i.e. data collected using aspect ratios from 0: 1 up to 1: 1, we might get slightly 
better resolution by employing the horizontal component then from the vertical 

component. In addition, the fact that the source and receiver are null coupled means that 

the primary field will be absent for this configuration. Thus the only field measured will 

be the secondary fields of scatterers we wish to detect. 

As the aspect ratio increases to 1:l and 2:l the differences between the horizontal 

field sensitivity and vertical field sensitivity decrease. The sign reversals apparent in the 

vertical component for these larger aspect ratios (Figures 2.7b and 2.7~) do not appear in 

the horizontal component. This suggests that the gain in vertical resolution achieved by 

measuring the horizontal component at the 0:l aspect ratio may be lost at greater aspect 

ratios. However as can be seen from figures 2.14b and 2 .14~ the sensitivity to the 

horizontal position of a scatterer increases with increasing aspect ratio which is consistent 

with what we found in sections 2.4.1 and 2.4.2. 

Figure 2.15 shows the horizontal field sensitivities at 10kHz (corresponding to 

induction numbers of 8, 16 and 39). Comparing these to the vertical field sensitivities 

(Figure 2.8) indicates that many of the same comparisons exist that were found between 
the lkHz horizontal and vertical sensitivities. The horizontal component tends to be less 

sensitive to the region outside the wells, especially at larger aspect ratios. Again, because 

of the null coupling at an aspect ratio of 0: 1, the horizontal component (Figure 2.15a) is 

much more sensitive to vertical and horizontal changes in position compared to the 

vertical component (Figure 2.8a). However, notice that at these induction numbers the 

horizontal and vertical components no longer complement each other at larger aspect 

ratios. Instead we find that the zones of maximum horizontal and vertical field sensitivity 
tend to occupy the same region. This suggests that one of the two components becomes 
redundant at higher frequency and supports Zhou's conclusion on this matter. 

This redundancy becomes more apparent at 100kHz. Except for the 0:l aperture, 
there is very little difference between the horizontal field sensitivities (Figure 2.16) and 
the vertical field sensitivities (Figure 2.9). The maximum kernel values occupy the same 

regions except immediately adjacent to the receiver, and in both cases there is very little 

sensitivity to the region outside the wells. In addition, the regions of maximum 

sensitivity form patterns that resemble ray paths. Once again, because the horizontal 

component (Figure 2.16a) is significantly different for the 0: 1 aspect ratio compared to 
the vertical component (Figure 2.9a) , measuring both the horizontal and vertical 



components may be useful at this frequency for limited angle data. However, the above 

results show that measuring both magnetic field components at large aspect ratios may 

only be useful at lower frequencies. 

2.4.4 Spatial sensitivity analysis of the vertical magnetic field for in-hole geometries 
Zhou (1989) showed that improvements in image resolution can result from using in 

hole or back scattered data. Thus I have chosen to briefly examine the sensitivity 

functions for the source and receiver in the same borehole. As previously mentioned, this 

analysis has previously been used for well logging analysis and tool design (e.g.. 

Barber,1992) however here we are more concerned in its use to supplement crosswell 

data. 

The model used for this analysis is given in Figure 2.17. Two VMD's , a source and a 

receiver, are separated vertically by lOOm in a whole space of conductivity O.OlS/m. 

The same three frequencies of IkHz, 10kHz and 1 OOkHz have been used as previously. 

Again the dimensions of the problem can be normalized to the induction number of the 

background medium, which ultimately allows this analysis to be related to any scale by 

keeping this number constant. The induction numbers corresponding to the above 

frequencies are 0.8,g.O and 80, respectively. 

The vertical field sensitivities for all three frequencies have been plotted on the same 

scale in Figure 2.18. Immediately it is evident that with increasing frequency, less of the 

region is sensed by this source-receiver configuration. As predicted by figure 2.5a, as 

the frequency is increased upward from lkHz, the region of maximum sensitivity moves 

closer to the well. 
The benefit of using the in hole data with the cross well data for imaging is very 

evident from the spatial sensitivity plots. As a point is moved horizontally away from the 

well out into the medium, the sensitivity changes quite dramatically, especially at higher 
induction numbers. This added horizontal sensitivity explains why Zhou (1989) 

improved his crosswell images by incorporating the in-hole component with the crosshole 

fields. 
Another noteworthy phenomenon apparent in these plots is that the region of 

maximum sensitivity is controlled primarily by the source-receiver separation. In fact 

except for the low induction number case, that region doesn't extend out much past .5 to 

.75 times the source receiver separation. This rapid fall off of the sensitivity functions 

with radial distance explains why Zhou (1989) was able to image object edges near the 

borehole in his single hole inversions, but couldn't recover edges far away from the 

borehole. 



2.5 Summary 
To summarize this chapter, the Born kernel which results from applying the Born 

approximation to the integral equations governing EM propagation is a very useful tool 

for studying how well various source-receiver configurations and frequencies can be 

used to sense the conductivity structure in the region between two boreholes. At low 

frequencies both field components arise from a zone that is largely outside the region of 

interest between the source and receiver. However the horizontal component is less 

sensitive than the vertical to this unwanted region suggesting that it should be employed 

if measurements through casing are to be made as suggested by Uchida, et al(1991) and 

Newman (1992a). As the frequency is raised, the sensed region becomes more focused 

between the boreholes and the difference between the vertical and horizontal components 

response is reduced. In addition, it has been shown that at higher frequencies, the 

geometry of the target body is less important with a 2 112-D geometry producing almost 

the same sensitivity coverage as a 2-D cylindrical geometry, especially near the receiver. 

This topic will be investigated more thoroughly in the next chapter. 

Because the sensitivity functions are very useful in determining how well an array 

resolves a target body, comparisons can be made with the conclusions of Zhou(1989) 
who analyzed the problem with coverage diagrams in the wave number domain. The 

analysis in both domains indicates that there is greater resolution at higher frequencies, 

and that higher aspect ratios lead to better horizontal resolution. In addition it has been 

determined that the in-hole component of the vertical magnetic field offers additional 

horizontal resolution. However, although the both components of the magnetic field 

seem to be redundant for higher induction numbers and aspect ratios of 1: 1 and greater, 
the space domain sensitivity analysis indicates that the horizontal component may be 

very useful in supplementing the vertical component at lower frequencies and when only 

small aperture data is available. These characteristics will be examined again in Chaptet 
4. 
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Figure 2.1 - Cylindrical two dimensional (2-D) geometry for the crosswell problem. The 
inhomogenous body is cylindrically symmetric about the magnetic dipole axis. 
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Figure 2.2 - Models used to demonstrate the properties of the Born kernel. (a) Crosswell 
model with source and receiver at the same depth. (b) Crosswell model with receiver the 
same distance below and to the side of the source. (c) In hole with receiver directly 
below source. 
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Figure 2.3 - (a) The Born kernel at different points of interest and the primary magnetic 
field plotted as a function of background induction number for the model in Figure 2.2a. 
(b) The absolute values of the real and imaginary components of the Born kernel for two 
of the points shown in FI,oure 2.2a. (c) See following page. 
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Figure 2.3 - (Continued from previous page.) (c) The Born kernel at different points of 
interest and primary magnetic field plotted as a function of source-receiver separation 
normalized by skin depth for the model in figure2.2a. 
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Figure 2.4 - (a) The vertical components of the Born kernel at different points of interest 
and the primary magnetic field plotted as a function of the background induction number 
for the model in Figure 2b. (b) The horizontal components of the Born kernel at different 
points of interest and the primary magnetic field plotted as a function of the background 
induction number for the model in Figure 2b. 
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Figure 2.5 - The vertical components of the Born kernel at different points of interest and 
the primary magnetic field plotted as a function of the background induction number for 
the model in Figure 2c. 



Vertical Magnetic 
Dipole (VMD) Source 

OOm 

Point of Interest 

00 = .OlS/m 

Receivers 

Figure 2.6 - Model used for the the Born kernel crosswell sensitivity analysis. Two wells 
are located lOOm apart in a O.OlS/m whole space with a VMD source located in one 
borehole, and a vertical magnetic receiver in the other. The spatial sensitivties are 
calculated for three different receiver locations. The upper receiver position represents an 
aspect ratio or aperture ( d m )  of 0:1, the middle an aspect ratio of 1:l and the bottom 
an aspect ratio of 2: 1. 
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Figure 2.7 - lkHz Born kernel sensitivities calculated at 10m intervals for the model 
shown in Figure 2.6. (a) Aspect ratio = 0: 1, induction number =0.8. @) Aspect ratio =1: 1, 
induction number = 1.6. (c) See following page. 
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Figure 2.7 - (Continued from preceeding page). (c) Aspect ratio=2:l, induction 
number=3.9. 
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Figure 2.8 - lOkHz Born kernel sensitivities calculated at 5m intervals for the model 
shown in Figure 2.6. (a) Aspect ratio = 0: 1, induction number =8.0. (b) Aspect ratio = 1 : 1, 
induction number = 16. (c) See following page. 
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Figure 2.8 -(Continued from preceeding page.) (c) Aspect ratio = 2:1, induction 
number=39. 
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Figure 2.9 - lOOkHz Born kernel sensitivities calculated at 5m intervals for the model 
shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number =80. (b) Aspect ratio =1:1, 
induction number = 160. (c) See following page. 
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Figure 2.9 - (Continued from preceeding page) (c) Aspect ratio=2: 1, induction 
number=390. 
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Figure 2.10 - 2 112-D geometry for the crosswell problem. The inhomogenous body is 
infinate in the y direction and is is excited by a 3-D vertical magnetic dipole. 
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Figure 2.1 1 - lkHz Born kernel sensitivities calculated at 10m intervals for the 2 112-D 
equivalent of the model shown in Figure 2.6. (a) Aspect ratio = 0: 1, induction number 
=0.8. (b) Aspect ratio =1: 1, induction number = 1.6. 
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Figure 2.12 - lOkHz Born kernel sensitivities calculated at 5m intervals for the 2 1/2-D 
equivalent of the model shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number =8. 
(b) Aspect ratio =1:1, induction number = 16. 
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Figure 2.13 - 100kHz Born kernel sensitivities calculated at 5m intervals for the 2 112-D 
equivalent of the model shown in Figure 2.6. (a) Aspect ratio = 0: 1, induction number =80. 
(b) Aspect ratio =1: 1, induction number = 160. 
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Figure 2.14 - 1Wz Born kernel sensitivities for the horizontal field calculated at 10m 
intervals for the model shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number 
=0.8. (b) Aspect ratio =1: 1, induction number = 1.6. (c) See following page. 
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Figure 2.14 - (Continued from preceeding page) (c) Aspect ratio=2:l, induction 
number=3.9. 
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Figure 2.15 - lokHz Born kernel sensitivities for the horizontal field calculated at 5m 
intervals for the model shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number 
=8.0. @) Aspect ratio =1:1, induction number = 16. (c) See following page. 
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Figure 2.15 - (Continued from preceeding page). (c) Aspect ratio=2: 1, induction 
number=39. 
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Figure 2.16 - lOOkHz Born kernel sensitivities for the horizontal field calculated at 5m 
intervals for the model shown in Figure 2.6. (a) Aspect ratio = 0:1, induction number =SO. 
(b) Aspect ratio =1: 1, induction number = 160. (c) See following page. 



Real Imaginary 

Figure 2.16 - (Continued from preceeding page). (c) Aspect ratio=2:l , induction 
number=390. 
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Figure 2.17 - Model used for the the Born kernel in-hole sensitivity analysis. A VMD 
source is located in lOOm above the vertical magnetic receiver in the same borehole. The 
background conductivity is 0.0 1 Slm. 
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Figure 2.18 - Born kernel sensitivities for the vertical field calculated at 5m intervals for 
the model shown in Figure 2.17. (a) Frequency IkHz, induction number = 0.8. (b) See 
following page. (c) See following page. 
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Figure 2.18 - (Continued from preceeding page.) (b) Frequency lOkHz, induction 
number = 8.0. (c) Frequency lOOkHz, induction number =80. 



Chapter 3 
Forward Modeling with the First-Order Born and Born Series Approximations 

As mentioned in Chapter 2, electromagnetic modeling in two dimensions is a fairly 

simple process. For the cylindrically symmetric medium which is considered here an 

integral equation solution similar to that developed by Zhou (1989) is employed. 

However it will be shown that the forward problem involves the integration of Green's 

functions which involve the Hankel Transform. Because the Hankel transform can be 

associated with numerical instability under certain geometries, a stable Simpson's 

integration method will be developed to evaluate these integrals under these conditions. 

Even with the added stability of the Green's function calculations, the full integral 

equation formulation requires the inversion of a N X N full matrix where N is the 

number of cells in the model. Thus the computer simulation of large, complicated models 

is a time consuming and memory intensive process which limits the applicability of this 

method. To speed up this forward modeling process which will eventually be 

incorporated into the imaging scheme developed in Chapter 4, two approximate schemes 

will be analyzed. 

The first of these is the first order Born approximation that was introduced in the last 

chapter. The use of this approximation in a numerical forward modeling scheme will be 
demonstrated and the results compared to those calculated with the full forward 

modeling scheme. In this comparison, benefits in computational time savings will be 
contrasted against the limitations in accuracy. 

A Born series solution which utilizes higher order terms in the Born series will also 

be developed. This approximation provides for better accuracy than the first order Born 

formulation yet again does not require the inversion of a matrix. To ascertain its 

accuracy, this solution will be tested not only against the full integral equation solution 
but also against 1-D layered models. Comparisons will also be made against 2 112-D and 
3-D solutions to determine the usefulness and limitations of the cylindrically symmetric 
model. 

3.1 Mathematical formulation of the two-dimensional forward modeling scheme 
Although the integral equation modeling scheme employed in this work was 

originally developed by Zhou (1989), the formulation is included here for completeness. 

In the forward problem the object function (O(r)) is given and it is the total electric field 
within the medium (E4(r,rtx)in equation 2.10) that is unknown. In order to generate a 

set of linear equations appropriate for modeling, the region of interest is first discretized 



into N cells. If &(r,rh) and O(r) are assumed to be constant across each one of these 

cells, then a discrete form of equation 2.10 can be written as 

N 

r .  r .)dridzi E ~ , = E ~ , - G ~ C O ~ G ,  IG( ,, , (3.1) 
i=l i-th cell 

where the field point is the j-th cell and the integrals are evaluated over the i-th cell. 

Because there are N such equations for N unknowns, expression (3.1) can be written for j 

=I, 2,3, . . . , N in a matrix equation format (Hohmann, 1988) 

i~ = E, (3.2) 

where E and E, are N x 1 element vectors of the unknown total and the known primary 

fields respectively and the elements of the impedance matrix 2 are given by 

Z, = 6, - oo Oi jG(ri ,rj)dridzi 
i-th cell 

with 

1 for i = j 

ofor i*  j' 

After solving for E in equation 3.2 through inversion of the matrix 2, the secondary 

magnetic fields can be calculated using the discrete forms of equations 2.15 and 2.16 

which are given by 

for the radial field and 

for the vertical field. 

3.1.1 Integration of the Green's functions 

Recall from equation 2.12 that the electric field Green's function is given by a first 
order Hankel transform. Thus for a square cell of side A the integration is given by 



ria J, (hi ) 1 G(ri, r, )dridzi = -*j [ o j ; f l ~ - ~  dzi ][ril,2 dri J1(kj )da .  (3.7) 
i-th cell 0 z - A / 2  Y 1 

When zi = zj then the expression is singular and special care must be given to the 

integration. Luke (1962) shows that 3.7 can be integrated through the singularity to yield 

i o p x  " 
IG(ri,rj)dridzi = -- ![I - e-*12jv(h,r,,r2) JI (15 ) & 

i-th cell 2 o y2 
where 

H, and H, are the Struve functions of the first kind of orders 0 and 1 respectively, 

~ ~ ( h r r x )  and Jl(hr) are the zero-th and first order Bessel's functions of the first kinds, 

respectively, r, = ri + A / 2, and r, = ri - A / 2. For the non-singular cell, the integration 

results in the expression 

00 iwpr 
J ~ ( r ~ , r , ) d r ~ d z ~  = -- sign(z, - z,)J[e-~l~j-~zI- e - k j - ~ l ] ~ ( ~ , r , , r , )  JI (4) dA 

i-th cell 4 0 .i! 

where z, = zi + A / 2,  z, = zi - A 1 2, and the other quantities are defined the same as in 

equation 3.8. 

The expressions for the magnetic fields involve similar integration of the Green's 

functions given in 2.17 and 2.18. For the horizontal magnetic field it has the form 

7r- I GHr(ri,rrx)dridzi = - 1[1- e-~*~~]V(h,r,,r,) J ~ ( h r ~ )  
i-th cell 2 o Y 

for the singular cell and 

- 
7r 

JG,(ri, r, )dridzi = -sign(z, - zn) J [ e - ~ ~ z = - r ~  - e-~~z.-z, 1 ] ~ ( L r 1 , r 2 )  J~ da 
i-h cell ,4 0 Y 

(3.12) 
for the non-singular cell. For the vertical field the integration results in the expressions 



7t A. j ~ & ( r ~ , r ~ ) d r ~ d z ~  = -j[l- e-yA12]~(k1J2)  J0(ar=)7da 

i-th cell 2 O  

for the singular cell and 

(3.14) 

for the non-singular cell. 

3.1.2 Numerical instability of the Fast Hankel transform 

Inspection of the integrals given in equations 3.9 to 3.14 reveal that they have the 

form of Hankel transforms of zero and first order. To evaluate these numerically, a 

lagged convolution routine for fast Hankel transforms developed by Anderson (1982) can 
be employed in most instances. Unfortunately, Ryu, et al. (1970) showed that when a 

loop of current and the field point are located in the same horizontal plane, the numerical 

integration of expressions similar to (2.12) become extremely unstable. To determine if 
this instability exists when the loop of current is integrated over a cell of area A ~ ,  
expression 3.8 has been plotted at three different field points, r, as a function of current 

cell location ri . The current cell dimensions are 5m by 5m, the background conductivity 

is O.OlS/m, and the operating frequency is 5 kHz. Figure 3.1 shows that although the 

imaginary component is fairly stable, the real component tends to oscillate when the 
distance from the source to the current cell is large. Thus the fast Hankel transform can't 

be used to calculate the Green's function for the singular cell. 

3.1.3 Calculation of the Green's function using Simpson integration 
Because of the previously mentioned numerical instabilities, Zhou (1989) computes 

the Green's functions integrals using a Simpson integration method. Magnetic dipoles of 
unit moment are summed in a plane radially outward from the source to a radius r' . The 

summation of the electromagnetic fields produced by each individual dipole is the same 
as the field resulting from a current loop of radius r '  which is symmetric about the 

source axis. This summation of dipoles is repeated at discreet intervals of r' across a 
cross-sectional area to determine the fields resulting from a volume of current flowing in 

a 'doughnut' shaped cell. Although results calculated with this method have been shown 

to be accurate with comparisons to scale model data, it is a very time consuming process 

for all but the simplest models. To improve upon this approach a method has been 



developed that employs the 3-D Green's function for an electric dipole which is 

analytically integrated over a 3-D volume element. These elements are then summed in a 

circle about the source dipole axis to yield a value for the cylindrical Green's function. 

The result is just as accurate as that for Zhou's method while the computation is orders of 

magnitude faster. 

In the full 3-D problem, Hohmann (1988) shows that the integral equation 

formulation for EM problems involves calculating a Green's function which is a tensor 

rather than a scalar. Matters are further complicated by the fact that each component of 

this tensor contains both an inductive or vector component which results from current 

sources, and a scalar component resulting from charge sources. Fortunately it has been 

determined that because the cylindrical problem exhibits pure TE propagation in which 

there are only induced current elements, there are no charge sources generated at 

boundaries and thus the scalar component can be ignored. 
The inductive component of the 3-D electric field Green's function at a point r, due to 

a current source at rk is given by Hohmann (1975) to be 

Becasue the integration of this function over a volume is independent of the volume 
shape, a cubic cell of side Acan be replaced with a sphere of volume which makes the 
integration analytic. When the field point, r,, is inside the sphere the singularity can be 

integrated through to obtain 

where a is th 

imp 
J'g(rkyr,)flk = -- [(ikoa + 1 ) ~ " "  - 11 

k-th cell k? 

e radius of the sphere. Similarly when r, is outside the sphere, 

lr  j -rk 1 
Jg( rkJ , ) f lk  = - [sin(koa) - k,a cos(k,a)] . 

k-th cell ko31r, - rkl 

Simpson integration of these 3-D functions to replace a cylindrical cell of current is 

illustrated in Figure 3.2. The 'doughnut' is divided up into a number of segments of 
volume and the radius of an equivalent spherical volume is determined. The 



contribution of the 'starting cell' in ~ i ~ u r e  3.2 is computed first. The summation of cells 

then proceeds in both a clockwise and counter clockwise direction with the contributions 
from both 2 and jl components of the secondary currents calculated. This process is 
continued until the angle 0, is approximately 180° and a volume less than 2-D3 remains 

at the point furthest away from the field point. The volume of this 'left over' cell is 

calculated, the radius of the equivalent volume sphere is determined and its contribution 

added to the sum. The resulting equation has the form 

(N-1)12 SG dridzi = g(r,,r,) sWce, + ~[cos(gk)g( rk , r j )  + ~ i n ( @ ~ ) g ( r ~ , r , )  (3.18) 
i-rh cell k=l 

where g(ri,rj),, is calculated using equation 3.16 if it is singular and 3.17 otherwise, 

g(rk,r,) and g(rk,rj),, are calculated using equation 3.17, and N is the total 

number of whole cells with volume A3 . The magnetic field Green's functions are 

calculated in the same manner with the expressions having the form 

1 
jgHr(rk,rrr)dVk =- sin(koa)-koacos(koa)] (3.19) 

k-tk cell 

for the radial field and 

1 

k-th cell 

for the vertical field. 
This method of calculating the cylindrical Green's functions has been verified by 

comparing it to both the fast Hankel transform as well as Zhou's numerical summation 
of magnetic dipoles. A comparison of this method to the fast Hankel transform for the 
singular cell is shown in Figure 3.3. Notice that the 3-D Simpson integration method 
avoids the erroneous oscillations present in the fast Hankel transform results. For a non- 

singular cell the difference between the results produced by the two methods is almost 

negligible. Comparisons of this method to Zhou's method again show almost identical 

results for both singular and non-singular cells. In fact the only major difference between 

the different methods of calculating the Green's function for the non-singular cell is the 

computational time involved. The 3-D Simpson integration is 3 to 5 times quicker than 
the fast Hankel transform and at least 2 orders of magnitude faster than Zhou's method. 



This fact alone allows significantly more difficult models to be calculated and thus for the 

remainder of this thesis this schema for the remainder of this thesis to calculate the 

Green's functions. 

3.2 Forward modeling with the first order Born approximation 
In his thesis, Zhou(1989) compared images of the conductivity distribution resulting 

from synthetic data that were calculated with the first order B o n  approximation to 

images of data generated with the full forward solution. For the low contrast models 

employed in that work, the two images were almost identical. In this section a forward 

modeling algorithm will be developed which employs the first order Born approximation 

as developed in the last chapter and these approximate results compared to those 

calculated with the full solution. This new work will thoroughly analyze the limits of the 

Born approximation as a forward modeling scheme and determine the point at which it 

fails. 

The approximate magnetic fields are calculated using the linearized forms of 
equations 3.5 and 3.6. Once again, this is accomplished by replacing Ee,, which is 

dependent on Oj, with 6,' which depends only on the background conductivity. The 

resulting expressions have the form 

for the radial secondary field and 

for the vertical field where Eo,' is calculated at the center of the j 'th cell using equation 

2.7. 
As mentioned in Chapter 2 the fxst order Born approximation is only valid when 

weak scattering occurs within the medium. Habashy, et al. (1992) show that the 
definition of weak is not only dependent on the conductivity contrast between the body 
and the background medium, but also the size of the scattering body and the operating 

frequency. Under these conditions it was also shown by Zhou (1989) that the error is on 

the order of the perturbation in the background wave number times the distance the wave 

travels in the anomalous material. Thus the usefulness in the Born approximation is 
dependent on the anomalous induction number, A G W ~ S  = 2 0  S / tj2 where S is the cross- 



sectional area of the inhomogeneities that are present in the medium and 6 is the skin 

depth of the background medium. 
To illustrate this concept the models shown in Figure 3.4 are employed. Four 

different bodies of square cross sectional area are located at different positions between 

two wells. The secondary vertical magnetic fields have been calculated using the full 

integral equation solution given in equations 3.1 through 3.6 and compared to the 

approximate Born solution given in expression 3.22. The mean phase and amplitude 

errors of the approximate fields and the standard deviation of these errors are listed in 
Table 3.1 as a function of the model and its anomalous induction number ( AoopS). The 

horizontal components of the scattered fields were also computed and the errors between 

the first order Born and full solutions determined. However because these errors were 

found to be of the same magnitude and to exhibit the same characteristics as the vertical 

field errors, they have not been included here. 
The validity of the Born approximation in these results is clearly related to the 

magnitude of the scattering body's induction number. For a mean error of less than one 

percent, the induction number of the object must be less than approximately 0.02. It is 

also evident from the relatively small values of standard deviation that the magnitude of 

the error is fairly independent of the source and receiver position. 

By multiplying the x axis of the Born kernel plots given in Figures 2.3 through 2.5 by 

the object function O(r) the kernel can be plotted as a function of anomalous body 

induction number rather than the background induction number. The kernel function that 
results from using the parameters of model 2 in Figure 3.4 is shown in Figure 3.5. 
Comparing this plot to the results in Table 3.4 indicates that the point at which the error 

reaches 1% occurs just below the peak of the kernel. Below this value the mean error 

decreases linearly with the kernel as the induction number is decreased, while above it 
the error increases with the induction number in a nonlinear matlner. Thus it can be 
assumed that this is the point at which mutual interaction of the scattering currents must 
start being accounted for. 

Though the error is dependent primarily on the size of Ao, there is some reliance on 
the magnitude of the contrast between the body and the background (ado,), or in other 
words in terms of the object function AoJoo. To demonstrate this Model 2 in Figure 3.4 

has again been employed with different background conductivities and object functions. 

Table 3.2 shows that although the errors for constant induction numbers are within the 

same order of magnitude, they are definitely larger when the contrast is greater. This 

coupled with the fact that the error is dependent on the position of the body with respect 
to the source well indicates that the value of AoopS=0.02 should be used only as an 



approximate rule of thumb when determining at which point the Born approximation 

becomes invalid. 
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Table 3.1 - Error of first order Born approximation for the different models shown in 
Figure 3.4. 'Mean' refers to the calculated mean error for all source -receiver 
combinations and 'Stand. Dev. ' the standard deviation of the errors about the mean. 

9% Amplitude Degrees Phase 
Error Error 

Mean I Stand. Mean I Stand. 

Table 3.2 - Error of first order Born approximation for different background 
conductivities and conductivity contrasts. The model employed is Model 2 in Figure 3.4. 
'Mean' refers to the calculated mean error for all source -receiver combinations and 
'Stand. Dev. ' the standard deviation of the errors about the mean. 



To illustrate that these results hold for resistive bodies as well as conductors, i.e. 

bodies in which the conductivity is less than that of the background, Model 2 in Figure 

3.4 has again been employed with the values listed Table 3.3. Comparing this to Tables 

3.1 and 3.2 it is evident that the mean error is almost identical for conductive and restive 
bodies as long as the magnitudes of A o  and oo are the same. However there is a definite 

difference in the response of equations 3.21 and 3.22 for conductors and resistors. As the 
anomalous body becomes more conductive relative to the background, Aoloo goes to 

infinity and thus the Born approximation will at some point break down. However as the 
conductivity goes to zero, i.e. a perfect resistor, A o / o o  goes to -1 which doesn't 

necessarily cause the approximate solution to fail. This implies that the first order Born 

approximation will work better for calculating the response of resistors than for 

conductors. This also demonstrates why inductive methods are insensitive to resistive 

bodies which is a point that will be discussed more fully in the next chapter 

n % Amplitude 11 Degrees Phase I/ 

Table 3.3 - Error of fnst order Born approximation for a resistive body of different 
conductivity in a background of various conductivities. The model employed is Model 2 
in Figure 3.4. 'Mean' refers to the calculated mean error for all source -receiver 
combinations and 'Stand. Dev. ' the standard deviation of the errors about the mean. 

3.3 The Born series approximation 
Equations 3.1 through 3.4 demonstrate how a linear system of equations can be set up 

to solve for the internal electric fields (E+)within a scattering body. An alternative 

approach is to assume that Ee can be expanded in a Born, or Neumann series of the form 

(Kong, 1975) 
( 0 )  ~ a = Z ~ r n  . 

n=o 
(3.23) 

If this holds true than the electric field can be solved for iteratively. The schema for 

doing this is developed here. 
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The first term in the Born series is given by the first order Born approximation, i.e., 

i=l i-rh cell 

the second term by 

i=l i-rh cell 

and so on with the N'th term having the form 

i=l i-lh cell 

The process is repeated until convergence occurs at which time E;' is substituted in 

equations 3.5 and 3.6 to calculate the magnetic fields at the receiver. The advantage of 

this method over the full forward solution is that no matrix inversion i s  required and thus 
very large models can be computed more efficiently. This advantage as well as the 

disadvantages of the method are discussed more fully below. 

3.3.1 Theoretical limitations of the Born series approach 
Although the Born series approach provides a more accurate alternative to the first 

order Born approximation, it will not work if the series expansion of the internal electric 

field does not converge. To determine if and under what conditions it diverges let's 

consider a body consisting of a single cell. In this case, N=l for the summations given in 

equations 3.24 through 3.26. The first order tern of the scattered field is given by 

where the c represents the position and dimensions of the single cell. The second order 
term is obtained by substituting this in 3.25: 



Similarly the third order term is found to be 

and so on. The function within the square brackets on the right hand side of equation 3.29 

is now recognizable as a geometric series. Thus the Nth term in the series can be 

written as 

If N==, the infinite series will converge to 

1 + Ao, JG(ri,rj)drcdzc 
C 

if and only if (Swokowski,l979) 

(Note: This the equivalent 2-D form of the 3-D non-linear operator developed by 
Habashy et al. (1993).) Thus if this value is greater than or equal to 1 then the series 

diverges and the Born series approximation can not be used to calculate the 

electromagnetic fields in the medium. In addition, because the integral of the Green's 
function given in equations 3.8 and 3.10 has an op term out front and the integration is 

over some area S, the limitations of this approximation are once again primarily 

dependent on the anomalous induction parameter ( AowN = 2 0  S 16') of the body. Thus 

expression 3.32 gives us a method to determine when the series expansion is valid. 



3.3.2 Comparison of the Born series method to the full integral equation solution 
To demonstrate the use and limitations of the Born series approach the model shown 

in Figure 3.6 which consists of a body of tabular cross section centrally located between 

two wells is employed. (Notice that the model employed here is larger than those used to 

test the validity of the first order Born approximation in Section 3.2. As it will be 

demonstrated, this is due to the fact that the Born series is a more accurate approximation 

and thus can handle models with much larger anomalous induction numbers than can the 

first order Born approximation.) The operating frequency and the dimensions of the body 

have been fixed and the conductivity varied to yield five different anomalous induction 

numbers. The first model is a fairly low contrast model , while model 5 represents a case 

in which the Born series solution fails. Once again, because the mean amplitude and 

phase errors in the vertical and horizontal scattered magnetic fields exhibited the same 

characteristics, only results for the vertical component are presented here. 

The mean error between the series and full solutions at each iteration are displayed 

for each of the five models in Figure 3.7. In addition to the magnetic field errors, the 
change in the internal electric fields between iterations has been plotted. The iterative 

process was terminated in each case when the amplitude of these electric fields changed 

less than 0.5% from one iteration to the next. The standard deviation of the error about 

the mean was also calculated but like for the fust order Born approximation, it was 2 to 3 
orders of magnitude below the mean. Thus in order to make the following figures easier 

to understand the standard deviations have not been included. 
The results in Figure 3.7 show that for induction numbers less than or equal to one, 

the Born series scheme works extremely well. Initial tests with these small models have 

shown that when the Born series converges very quickly (under 5 iterations) this solution 

is at least three times faster than the full solution. This is due to the fact that the matrix 

inversion in the full solution requires 1/3N3 to N3 calculations where N is the number of 
unknowns (h-ess, et al, 1986). However the Born series solution involves only IN2 
operations where I is the number of iterations. Thus when I is small, the Born series 
solution is much faster. This will be very important for the conductivity imaging process 
described in the next chapter. 

It is evident from the slower series convergence of models 3 and 4 that the Born series 

solution is beginning to fail. Model 4 represents approximately the largest induction 

number (2.4) for which the Born series converges. Comparing this to the results listed in 

Tables 3.1 through 3.3 indicates that the this approximate solution is able to accurately 

calculate the electromagnetic fields for anomalous induction numbers two orders of 
magnitude greater than that of the first order Born approximation. 



The Born series does not converge for model 5. Assuming that the body in Figure 3.6 

can be thought of as a single cell allows us to estimate -Ao,jG(r,,rj)dr,dz, I c 

yielding a 

value of 1.33. Because this is larger than 1.0 , as determined by expression 3.32 the Born 

series fails to converge. 
The above calculation verifies the mathematical cause for the divergence. To 

determine the physical significance of this, the electric fields have been calculated on a 

profile across the block shown in Figure 3.8 with the full integral equation solution . 
Figure 3.9 shows the total and scattered field amplitudes and the phase difference 
between the primary and total fields as a function of cell location. As the conductivity of 

the block is increased, the scattered field also increases while the total electric field 

becomes smaller. Comparing the results for models 4 and 5 indicates that the series 

diverges when the scattered electric field in the block becomes larger than the total field. 

Expression 3.30 can not converge when this happens because during the n'th iteration a 

value is present in the right hand side that is larger than for the n-l'th iteration and thus 

the magnitude of the left-hand side grows larger with each iteration. Incidentally this 

coincides with the point at which the phase difference between the primary and 

secondary fields well exceeds 45 degrees. 

As it was determined in Section 3.3.1, the magnitude of the Green's function in 

expression 3.31 is primarily a function of the size of the object as well as the operating 

frequency and therefore the convergence of the series is strongly dependent on the 

anomalous induction number of the body. To demonstrate this the size and conductivity 

of the block is held constant and the frequency varied to produce the error analysis shown 

Figure 3.10. Next the size of the block was varied while the frequency-conductivity 

product was held constant (Figure 3.11) and these results are shown in Figure 3.12. As 

predicted both these Figures show that as the induction number of the body becomes 
larger than 1, the Born series begins to diverge. 

The rate at which series converges is also dependent on the position of the body, 
especially for induction numbers greater than 1. This is illustrated with the models shown 
in Figure 3.13. A block with AoopS=1.6 is placed in three different positions and the 

errors between the full and Born seriessolutions calculated at each iteration. Figure 3.14 
shows that as the body gets closer to the receiver well, the solution takes longer to 
converge. This agrees well with the sensitivity diagrams in the last chapter which 

showed that the most sensitive regon is directly adjacent to the receiver borehole. 
Although from equation 3.32 it is apparent that it is primarily the difference (Ao,) 

rather than the ratio (o,Joo) between the anomalous and background conductivities that 



dominates the behavior of the Born series, the magnitude of the conductivity ratio does 

have some influence on the convergence. To illustrate this the model shown in Figure 3.6 
has again been employed. With Ao held constant at 0.99 S/m, background conductivities 

of 1.0, 0.1, 0.01 and 0.001 S/m have been employed which varies o,accordingly. The 

results in Figure 3.15 show that as the background conductivity is decreased and thus the 

contrast increased, the series takes longer to converge. (Notice that only the internal 

electric fields have been plotted here. This is because if the magnetic field errors are 
included, the illustrations become very congested and difficult to comprehend.) The 

reason for this becomes evident when the singular cell Green's function is calculated for 

the same background conductivities and operating frequency as given in the model. It is 

evident figure 3.16 that as the background conductivity increases and thus the ratio 

decreases, the amplitude of this integrated function also decreases and thus expression 

3.32 becomes easier to satisfy. 
Finally to prove that the series converges in approximately the same manner for 

bodies that are less conductive than the background, i.e. resistive bodies, as it does for 
conductive bodies, the model shown in Figure 3.17 has been employed. The target in the 
first example has a conductivity of O.OlS/m and is embedded in a background of l.OS/m, 

while the second employs a target of conductivity O.lS/m embedded in a lO.OS/m 
background. The results shown in 3.18 are very similar to those given in Figures 3.7, 

3.10 and 3.12 with the convergence of the series being dependent on the magnitude of 
Ao. 

3.4 Comparison of the 2-D cylindrically symmetric model to other models 
Though the two dimensional, cylindrically symmetric model is computationally 

efficient and useful in describing some situations, useful geological models often require 
either more complicated 2 112-D and/or 3-D geometiies or sometimes simpler 1-D 
layered geometries. In Chapter 2 a spatial sensitivity analysis showed that cross well 
electromagnetic measurements are very sensitive to the geometry and to the length extent 

of an anomalous body in the direction perpendicular to the plane containing the wells. 
However, it was also determined that the sensitivity to this region is decreased as the 
background induction number is increased. To tie these ideas in with those developed in 

this chapter, the Born series solution developed for a 2-D cylindrically symmetric 

medium will be compared to 1-D, 2 1/2-D, and 3-D models. 



3.4.1 Comparison to 1-D horizontally layered models 
In theory, the cylindrically symmeuic integral equation solution can be used to 

compute the response of horizontal layers by extending the radius of the slab (r) to 

infinity. However due to numerical errors and limits on computer memory there are 

limitations of how large and complex the model can be. In addition, because the Born 

series approximation can only can be used to model bodies of finite induction number, at 

some point with increasing slab radius, frequency, conductivity and/or layer thickness the 

series will become divergent. 

To both demonstrate the limitations of the Born seriessolution as well as illustrate 

certain properties that were revealed in the sensitivity analysis of Chapter 2, the model 
shown in Figure 3.19 is employed. A 20m thick layer of conductivity 0, is located in a 

whole space of conductivity GO. Two 120m deep wells are separated by lOOm and both 

penetrate the layer. The vertical magnetic field calculations for the layered model were 

made, for source and receiver intervals of 10m, with a 1 -D solution written by Lee (1 988) 
which is based on a method originally published by Stoyer (1977). To simulate the layer 

with the cylindrically symmetric model, a 20m thick slab was extended out to a radius of 

L. Different frequencies, conductivities and slab radii (L) have been employed and the 
errors between the two solutions computed. The results of this analysis are listed in Table 

3.4 for a conductive layer, and Table 3.5 for a resistive layer. 

Several things are evident from these results. As expected, the Born series converges 

as long as the induction number of the radial slab is small. At higher frequencies and 

large contrasts, more iterations are needed. Raising the frequency and thus the 
background induction number while keeping L constant causes the mean amplitude and 

phase errors in the scattered field to decrease. This phenomenon was discussed in Chapter 

2 and is caused by a decrease in sensitivity of the array to the region outside of the well 

with increasing induction number. In fact the mean error at 100 kHz is less than 10% in 
amplitude and 5 O  in phase without extending the layer beyond the receiver well at all. 

The 1% amplitude error at lower frequencies indicates that the cylindrically 

symmetric solution is accurate and can be used to calculate the EM response of layered 

media. Unfortunately, these results also demonstrate that the cylindrical slabs equivalent 
to the layers inherently have large anomalous induction numbers ( AoopS). In addition, 

the inability of the amplitude error to converge to less than 3% at 100 kHz indicates the 
integral equation solution might be exhibiting some numerical instabilities which will be 

discussed in more detail below. Both conclusions suggest that in order to more accurately 

and effectively determine the effects of smaller inhomogeneities, the layer response 



should somehow be removed from the model . A method for doing this which employs a 

layered background model will be developed in the next chapter. 
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0.33 
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0.87 
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0.12 
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1.9 

Table 3.4 - Error between the Born series approximation and the 1-D solution for a 
conductive layer. The model employed is given in Figure 3.19 with a background 
conductivity of O.Ols/m. 'N' is the number of iterations the series takes to converge, 
'Mean' refers to the calculated mean error for all source -receiver combinations and 
'Stand. Dev. ' the standard deviation of the errors about the mean. 

Table 3.5 - Error between the Born series approximation and the 1-D solution for a 
resistive layer. The model employed is given in Figure 3.19 with a background 
conductivity of O.Ols/m. 'N' is the number of iterations the series takes to converge, 
'Mean' refers to the calculated mean error for all source -receiver combinations and 
'Stand. Dev. ' the standard deviation of the errors about the mean. 
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As the standard deviations in Tables 3.4 and 3.5 indicate, the error is not consistent 

for any source - receiver combination but rather varies depending on their position. In the 

previous sections when the first order and Born series approximate solutions were 

compared to the full integral solution this was not the case. In those comparisons the 

models that were employed exhibited the same 2-D cylindrically symmetric geometry, 

they were discretized in the same manner and were calculated using the approximately 

the same theory. Because of this, the standard deviation of the errors about the mean 

were 2 to 3 orders smaller than the mean error itself. Here a 1-D modeling scheme 

that employs impedance matching at boundaries (S toyer, 1977) is being compared to a 2- 

D integral equation solution and thus the errors exhibit a wider distribution. 

To illustrate how the error is distributed for the first and fourth models listed in Table 

3.4, the error between the full integral equation solution and the Born series 

approximation is shown in gray scale format as a function of source position on the x axis 

and receiver position on the y axis. The first model represents a poor fit and the resulting 

errors are shown in Fi,oure 3.20. Notice that the maximum error occurs when the source 

is far away from the layer. This can be contrasted to a better fitting model in which the 
calculated mean error between the two solutions was 1%. Figure 3.21 shows that the 

maximum errors occur when both the source and receiver are within the layer. The 

same type of error distribution exists at other frequencies, and for different layer 

conductivities which suggests that the integral equation solution exhibits numerical 

problems when the both the source and receiver are located within the layer. These could 

be caused by discretization which is too coarse near the source and receiver. On the 
other hand, the 1-D solution is designed to calculate the total fields in the medium. 

Recalculating the mean error of the total vertical magnetic field for the best fitting 

conductive layer models as shown in Table 3.6 demonstrates that the results actually fit to 

under 1% amplitude and O S O  phase. Thus it is unclear which method is numerically 
more stable, and in fact there may be inconstancies present in both computational 

methods which are causing the errors between the two solutions. 



n Scattered Field )I Total Field 11 

Table 3.6 - Scattered and total field error between the Born series approximation and the 
1-D solution . The model employed is given in Figure 3.19 with a background 
conductivity of O.Ols/m. 'N' is the number of iterations the series takes to converge and 
the amplitude and phase errors are the mean error.. 

3.4.2 Comparison to 3-D sheet models 
In general the earth is not cylindrically symmetric about the source dipole axis but 

r 2 x l ~ 3  
2~103 
1x104 
lX1@ 

rather exhibits a three dimensional geometry. An excellent description of 3-D modeling 
techniques can be found in Hohmann (1988). Unfortunately up until a few years ago 

these modeling programs required a super computer to calculate the response for all but 
the simplest models. However due to recent advances in computing power, many of 
these programs can now be run on desktop computers. We have found the integral 

equation solution developed by Newman and Hohman (1988) to be very useful, though it 

is time consuming for larger models and high frequencies. Druskin (1992) has developed 
a super fast finite difference scheme which unfortunately is not readily available. Because 

of the computational time required by the former and the lack of availability of the latter, 

a thin sheet algorithm originally written by Wiedelt (1981) and modified by Zhou (1989) 

for the cross hole geometry is employed to compare simple 3-D models to the 

cylindrically symmetric formulation. 
To determine how well the cylindrical solution can approximate a simple 3-D body, 

the model shown in Figure 3.22 is used. The scattered vertical magnetic fields have been 
calculated for a 40m by 40m conductive sheet located between two boreholes as shown. 
In the first model the sheet is located symmetrically about the source borehole. For this 

case the 2-D and 3-D formulations should match very well. The sheet is then moved 
progressively further away from the source borehole. For the 2-D model this corresponds 
to the enlargement of a ring of conductive material. The calculations were made at three 
different frequencies; 1 kHz , 10 kHz and 100 kHz. The results of this test in terms of the 

mean amplitude and phase error, and their standard deviations are given in Table 3.7. 
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When the sheet is located symmetrically about the source borehole (x, =0), the error 

between the two solutions is less than 5% in all cases. This once again verifies the 

validity of the Born series approximate solution. The fact that the error gets larger as the 

frequency is raised may be indicating that higher frequencies are slightly more sensitive 

to the shape of the body, or that one or both of the solutions is breaking down at higher 

frequencies. 

I'able 3.7 - Error between the 2-D Born series approximation and the 3-D thin sheet 
solution for the models shown in Figure 3.22. 'xCirkfers to the location of the center of 
the sheet away from the source borehole, 'Mean' refers to the calculated mean error for 
all source -receiver combinations and 'Stand. Dev. ' the standard deviation of the errors 
about the mean. The labels at the top refer to calculations made at 1,10 and 100 kHz. 

As the sheet is moved off center to x, =10m and 20m, the error between the two 

solutions at 1 and 10 kHz quickly increases. This is likely due to current channeling 

effects that dominate the 3-D response at low frequencies. At 100 kHz however, the 
solutions match fairly well. At this frequency with the sheet centered at x, =10m the 

mean error is approximately the same as it was for the centered sheet, and for x, =20m the 

average amplitude error is only 10%. As the body is moved even further out into the 

medium (x, =50.0, 80.0 and 100.0 m) the mean error at the lower frequencies continues to 
increase, maximizing when the sheet is symmetric about the receiver. Though the error 

also increases at 100 kHz, the average amplitude error is never larger than 40% even 

when the body surrounds the receiver borehole. 
The above results confirm the analysis completed in section 2.4.2 where it was 

determined in that section that as the frequency is raised, the sensitivity for a given 

source-receiver pair becomes less dependent on the model geometry that is imposed upon 



the problem. At 100 kHz the array will be less sensitive than lower frequencies to the 
edges of the 3-D body that are located at y = +20 m,  and thus the error between the two 

solutions will also be less. This will be discussed more fully in the next subsection. 

When the sheet is located close to the source borehole, the standard deviation of the 

errors about the mean tends to be 5 to 10 times less than mean error itself. Though not as 

good as the standard deviations observed Section 3.3, this is definitely better than those 

observed in the comparison with the 1-D solution. However, as the sheet is moved out 

away from the source borehole, the magnitude of the standard deviation increases with 

respect to the mean such that when the sheet is symmetric about the receiver, the average 

error and its variation are on the same order of magnitude. 
Because of the relatively large standard deviations in the cases described above, the 

distribution of the error is plotted as a function of source and receiver location, the 

location of the sheet, and frequency, in the gray scale format developed in the last 

subsection. Figure 3.23 shows the error between the 3-D and cylindrical models for x, 

=20.0m and a frequency of 1 kHz, and Figure 3.24 the same model with the frequency of 

100 kHz. At the lower frequency (Figure 3.23), the best fit occurs when the source is far 

from the sheet and the receiver is near it. This contrasts sharply with Figure 3.24 which 

shows that at 100 kHz the maximum error occurs with the source and receiver in this 

same configuration and the minimum error between the two solutions occurs when both 

the source and receiver are fairly close to the sheet. These two figures can in turn be 

compared to the error plots for the sheet that is symmetric across the receiver borehole. 

For both the low frequency (Figure 3.25) and the higher frequency (Figure 3.26) the 

minimum error occurs when the receiver is close to the sheet. 

The error plots presented in Figures 3.23 through 3.26 do show different 

characteristics depending on the locatibn of the body. For the imaging process described 

in the next chapter, a least squares minimization technique is used to fit the data to the 
image. If the image fits the data very well, the errors should be randomly distributed. The 

appearance of patterns like those displayed in these figures might indicate the presence of 

structure in the earth that the model employed in the imaging routine can not account for. 
Thus the use of this error analysis will be discussed more thoroughly in the next chapter. 

3.4.3 Comparison to 2 112-D sheet models 
In Chapter 2 the cylindrically symmetric geometry was compared to the 2 1/2-D 

geometry by calculating the sensitivity functions for the two different geometries. To 

verify the conclusions of that comparison a 2 112-D body is approximated with an 

extended version of the thin sheet models shown in Figure 3.27. The three bodies are 



20m across and extend 300m in the direction perpendicular to the cross well plane. 

Again three frequencies were employed and the error between the two solutions 

calculated (Table 3.8). 

Table 3.8 - Error between the 2-D Born series approximation and the 2 112-D 
approximation with the thin sheet solution for the models shown in Figure 3.27. 'xCt 
refers to the location of the center of the sheet away from the source borehole, 'Mean' 
refers to the calculated mean error for all source -receiver combinations and 'Stand. Dev. ' 
the standard deviation of the errors about the mean. The labels at the top refer to 
calculations made AR 1,10 and 100 kHz. 

x, 
, (m) 
10.0 
50.0 
90.0 

These results compliment well the conclusions drawn in section 2.4.2. The mean 

error is greatest when the body is near the source. The sensitivity diagrams indicated that 

the worst correlation between the two geometries occurs at these locations. When the 
sheet is centrally located both the mean error, and in the 100 kHz case, the standard 

deviation about the mean, are minimized. As the sheet is moved close to the receiver 
well, the mean error and standard deviation increase. However, once again the higher 

frequencies result in a smaller mean error. These results validate the spatial sensitivity 
analysis accomplished in Chapter 2 and prove that at low frequencies, a given source - 
receiver pair is very sensitive to the geometry of a scattering body outside of the interwell 
region and that this phenomenon is diminished by operaring at higher frequencies. 

3.5 Summary 
In this chapter the benefits and drawbacks of both the Born and Born series 

approximations have been demonstrated as have the limitations of the cylindrically 

symmetric model. The first order Born approximation is computationally very simple but 

limited to modeling anomalous bodies whose anomalous induction numbers are relatively 

small. The Born series approximation can be used to accurately calculate the response of 

scatterers with anomalous induction numbers two orders of magnitude greater than those 
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that can be treated with the fxst order approximation and it is considerably faster than the 

full integral equation solution. 

General rules have been developed to determine when both of these approximations 

degenerate to an unacceptable level of accuracy. These rules are based on the anomalous 
induction number of the scattering body which is defined as AoopS = 2 0  S / a2and is 

dimensionless. The first order Born approximation has been found to be accurate to 1% 
for AoopS 1 0.02 while the Born series approximation converges for all AoopS 12.0. 

The cylindrically symmetric model has been demonstrated to be very useful for 

modeling cross well EM problems. The computation of the Hankel transforms that 

constitute the Green's function can be unstable. Fortunately a Simpson integration 

method for a 3-D Green's function seems to eliminate this problem. The cylindrical 

geometry works rather well in modeling 1-D layered media although numerical errors 

exist when the source and receiver are within the anomalous layer. A comparison 

between the cylindrically symmetric models and 2 112-D and 3-D models shows that at 

higher frequencies the measurements are less sensitive to the dimensions of the 

conductivity anomaly outside of the plane containing the two wells. The effects of these 

geometries on an imaging scheme employing the cylindrical geometry will be discussed 

more fully in Chapter 4. 
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Figure 3.1 -The electric field Green's function (Expression 3.8) calculated numerically at 
three different field points as a function of the current cell location. The abscissa 
represents the radial distance from the origin to a 5m by 5m cell that contains of a unit 
amp of current flowing in the angular direction about the origin. (a) Real component. @) 
Imaginary component. 
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Figure 3.2 - Illustration of Simpson integration of 3D volume elements to produce a 
cylindrically symmetric Green's function that has been integrated over the cross sectional 
area of the cell. 
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Figure 3.3 - Comparison of the 3D Simpson integration and the fast Hankel Transform 
method of calculating the cylindrical Green's function . Results have been calculated at 
two different field points as a function of the current cell location. The abscissa represents 
the radial distance from the origin to a 5m by 5m cell that contains one ampere of current 
flowing in the azimuthal direction about the origin. The current cell and the field point 
are both located at z=0 and thus the integration is over the singular cell. 
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Figure 3.4 - Model used to analize the limits of the Born approximation as a forward 
modeling scheme. Two lOOm deep wells are separated by lOOm in a 0.01 Slm whole 
space. Sources and receivers are located at 10m intervals within the wells. Models 1,2 
and 3 are 5m by 5m, and model 4 (the shaded square) is 10 m by 10 m. The models were 
discreetized into l m  by l m  cells and the secondary vertical magnetic fields calculated for 
each source-receiver pair. 
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Figure 3.5 - The Born kernel for model 2 in Figure 3.4 plotted as a function of the 
anomalous induction number of the body. The line marks the point at which the error of 
the Born approximation for model 2 is 1 % with the error increasing to the right. 
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Figure 3.6 - Model used to analize the limits of the Born series approximation as a 
forward modeling scheme. Two lOOm deep wells are separated by lOOm in a 0.01 S/m 
whole space. 11 sources and receivers are spaced at 10m intervals within the wells and 
the operating frequency is 1000 Hz. A conductive block of varying conductivity is 
situated in the center of the array. The body was discreetized into 50 2m by 2m cells and 
the secondary vertical magnetic fields calculated for each source-receiver pair. 
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Figure 3.7 - Mean error in the scattered vertical magnetic field between the Born 
seriesand full solutions, and the mean change in the internal electric fields from one 
iteration to the next for the models shown in Figure 3.6 as a function of the iteration 
number. (a) Mean amplitude error and difference in percent. (b) Mean phase error and 
difference in degrees. 
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Figure 3.8 - Model used to analize the electric fields in the body at the limit of the Born 
series approximation. A conductive block of varying conductivity is situated in the 
center of the array and the electric field is calculated in10 cells across the blocks center . 
A vertical magnetic dipole source operating at 1000 Hz is located at the same depth as 
the body. 'Model #' refers to the models listed in Figure 3.6. 
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Figure 3.9 - The electric field behavior across the conductive block shown in Figure 3.8. 
~hYe model numbers refer to the block conductivities listed in Figure 3.6. (a) The total 
and scattered electric field amplitude as a function of cell location. (b) The phase 
difference between the total and primary electric fields as a function of cell location, 
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Figure 3.10 - Mean error in the scattered vertical magnetic field between the Born series 
and full solutions, and the mean change in the internal electric fields from one iteration 
to the next. Model 2 in Figure 3.6 has been employed with 3 different operating 
frequncies and the results plotted as a function of iteration number. (a) Mean amplitude 
error and difference in percent. (b) Mean phase error and difference in degrees. 
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Figure 3.11 - Model used to analize the limits of the Born series approximation as a 
forward modeling scheme. Two lOOm deep wells are separated by lOOm in a 0.01 S/m 
whole space. 11 sources and receivers spaced at lorn intervals within the wells and the 
operating frequency is 1000 Hz. A conductive block of varying size is situated in the 
center of the array. The body was discreetized into 2m by 2m cells and the secondary 
vertical magnetic fields calculated for each source-receiver pair. 
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Figure 3.12 - Mean error in the scattered vertical magnetic field between the Born series 
and full solutions, and the mean change in the internal electric fields from one iteration 
to the next for the different models shown in Figure 3.11 as a function of the iteration 
number. (a) Mean amplitude error and difference in percent. (b) Mean phase error and 
difference in degrees. 
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Figure 3.13 - Models used to analize the position dependence of the Born series 
approximation. Two lOOm deep wells are separated by lOOm in a 0.01 S/m whole space. 
A conductive block is located at three different positions from the source well. The two 
wells contain 11 sources and receivers spaced at 10m intervals and the operating 
frequency is 1000 Hz. Each body was discreetized into 50 2m by 2m cells and the 
secondary vertical magnetic fields calculated for each source-receiver pair. 
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Figure 3.14 - Mean error in the scattered vertical magnetic field between the Born series 
and full solutions, and the mean change in the internal electric fields from one iteration 
to the next for the models shown in Figure 3.13 as a function of the iteration number. (a) 
Mean amplitude error and difference in percent. (b) Mean phase error and difference in 
degrees. 
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Figure 3.15 - The mean change in the internal electric fields from one iteration to the 
next for Model 2 shown in Figure 3.6 with differnt background conductivities as a 
function of the iteration number. (a) Mean amplitude difference in percent. (b) Mean 
phase difference in degrees. 
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Figure 3.16 - The amplitude of the electric field Green's Function for a 5m by 5m 
singular cell located in a background of variable conductivity and centered 45m from the 
source borehole. THe amplitude has been plotted as a function of frequency. 
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Figure 3.17 - Model used to analize the limits of the Born series approximation as a 
forward modeling scheme for resistive bodies. Two lOOm deep wells are separated by 
lOOm in a whole space of conductivity 00. 11 sources and receivers are spaced at 10m 
intervals within the wells and the operating frequency is 1000 Hz. A resistive block of 
varying conductivity is situated in the center of the array. The body was discreetized into 
50 2m by 2m cells and the secondary vertical magnetic fields calculated for each source- 
receiver pair. 
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Figure 3.18 - Mean error in the scattered vertical magnetic field between the Born series 
and full solutions, and the mean change in the internal electric fields from one iteration 
to the next for the models shown in Figure 3.16 as a function of the iteration number. (a) 
Mean amplitude error and difference in percent. (b) Mean phase error and difference in 
degrees. 
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Figure 3.19 - Model used to compare the Born series solution for cylindrical geomeny to 
a 1D layer. (a) The layered model. Two 1OOm deep wells are separated by 120m in a 
whole space of conductivity GO. For the conductive layer model, GO =O.OlS/m. For the 
resistive model oo=O.lS/m. A 20m thick layer of varying conductivity extends to 
infinity in the horizontal directions. The two wells contain 13 sources and receivers 
spaced at 10m intervals. (b) The cylindrically symmetric model. All dimensions are 
identical to the layered model except the slab extends horizontally outward from the 
source well to a radius of L. 
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Figure 3.20 - Misfit error between thelD layered solution (Lee,1988) and 2D cylindrical 
integral equation solution employing the Born series approximation for the first model 
listed in Table 3.4. The errors have been plotted as a function of source and receiver 
location. (a) Amplitude error as a percentage of the 1D amplitude. (b) Phase difference 
between the two results. 
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Figure 3.21 - Misfit error between thelD layered solution (Lee,1988) and 2D cylindrical 
integral equation solution employing the Born series approximation for the fourth model 
listed in Table 3.4. The errors have been plotted as a function of source and receiver 
location. (a) Amplitude error as a percentage of the 1D amplitude. (b) Phase difference 
between the two results. 
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Figure 3.22 - Models used to compare the Born series olution with cylindrical geometry 
to a 3D thin sheet model. (a) Side view of the thin sheet model. (b) Plan view of the thin 
sheet model. Two lOOm deep wells are separated by lOOm in a whole space of 
conductivity O.OlS/m. A 40m by 40m thick of thin sheet of conductance 0.2s is located 
with its center at yc =O and xc at Om, 10m, 20m, 50x11 80m and 100m. The two wells 
contain 11 sources and receivers spaced at lorn intervals. The sheet is discretized into 
4m by 4m cells and the scattered vertical magnetic field calculated for each source- 
receiver pair. The three different sheets in b indicate models with xc =Om, xc =50m and 
xc =loom. (c) Continued on next page. 



Figure 3.22 (Continued) (c) Plan view of the cylindrically symmetric models 
corresponding to the sheet models shown in b. The conductive rings are 0.5m thick in the 
and their conductivity is 0.4S/m. To simulate a thin sheet the rings have been discretized 
into a single layer of 0.5m by 0.5m cells. 
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Figure 3.23 - Misfit error in the scattered vertical magnetic field between the 3D thin 
sheet solution (Zhou,1989) and the 2D integral equation solution employing the Born 
series approximation for the center of the sheet at xc =20m and a frequency of 1 kHz. The 
errors have been plotted as a function of source and receiver location. (a) Amplitude 
misfit in percentage of the thin sheet amplitude. (b)Phase difference. 
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Figure 3.24 - Misfit error in the scattered vertical magnetic field between the 3D thin 
sheet solution (Zhou,1989) and the 2D integral equation solution employing the Born 
series approximation for the center of the sheet at xc =20m and a frequency of 100 kHz. 
The errors have been plotted as a function of source and receiver location. (a) Amplitude 
misfit in percentage of the thin sheet amplitude. (b)Phase difference. 
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Figure 3.25 - Misfit error in the scattered vertical magnetic field between the 3D thin 
sheet solution (Zhou,1989) and the 2D integral equation solution employing the Born 
series approximation for the center of the sheet at xc =loom and a frequency of 1 kHz. 
The errors have been plotted as a function of source and receiver location. (a) Amplitude 
misfit in percentage of the thin sheet amplitude. (b)Phase difference. 
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Figure 3.27 - Models used to compare the 2D cylindrical solution to the 2 1/2D solution. 
The thin sheets extend out of the page 150m in both directions. Two lOOm deep wells are 
separated by lOOm in a 0.01 S/m whole space. The two wells contain 11 sources and 
receivers spaced at 10m intervals. The sheets have been discretized into 3.3m by 6.6m 
cells and the scattered vertical magnetic fields calculated for each source-receiver pair. 
For the cylindrically symmetric models, rings of conductivity were discreetized into 0.5m 
by 0.5m cells. 



Chapter 4 
Electromagnetic Conductivity Imaging using an Iterative Born Approach 

Electromagnetic imaging refers to the process of directly converting measured 

electromagnetic fields to a spatial distribution of electrical. conductivity. Ideally this process 

takes place without the involvement of any a priori model. The results are then presented 

graphically to yield an image or picture of the distribution for visual interpretation by the 

eye. 
Most of the previous research involved frequencies greater than 1 MHz because of the 

similarity between high frequency electromagnetic (HFEM) wave propagation ih dielectrics 

and seismic propagation in acoustic media (e.g. Howard et al., 1983, Laine, 1987, Habashy 

and Mittra, 1987 and Sena and Toksoz, 1990). This similarity allows techniques which 

have previously been developed for seismic analysis to be applied to interpretation of the 

electrical structure of the earth. Unfortunately, because electrically conductive media are 

highly attenuating, good results can only be obtained when the background is extremely 

resistive or the boreholes are extremely close together. In many cases these requirements 

render HFEM methods impractical. 

In order to propagate electromagnetic energy tens to hundreds of meters through 

conductive rocks, frequencies lower than 100 kHz must be employed. At these frequencies 

the EM fields act in a diffusive rather rhan a wave like manner. Zhou (1988) and Zhou et 

al. (1992) showed that a diffusion analog of seismic diffraction tomography (Devany, 
1984, Wu and Toksoz, 1987) can be developed for these lower frequency fields by 

applying either the Born or the Rytov approximation. Although the resulting images 

recover the geometry of the heterogeneities remarkably well, it was demonstrated in 

previous chapters that for the Born approximation to be valid the scattering region (i.e. the 

induction number of the body) must be electrically small . Unfortunately in the earth this 
condition is often violated. 

In order to account for greater conductivity perturbations, larger scattering bodies, and 
higher operating frequencies, an iterative Born inversion technique can be used. In this type 
of scheme the total electric fields in the medium are calculated at each iteration with some 
type of forward modeling. Chew and Chuang (1984) propose an iterative distorted Born 
approach to invert for a one dimensional profile using either a point or line source. In this 

approach the unperturbed field values in a background medium of anomalous electric 

conductivity and dielectric are used (Kong, 1975), i.e., the Green's functions used to 

calculate the primary field are altered. Habashy et al. (1986) apply this technique to a 
dipole source and a receiver in the same hole to recover the radially varying profile 



parameters. Sena and Toksoz (1990) propose an iterative Born approach which doesn't 
alter the Green's function to simultaneously recover the conductivity and dielectric from 

cross well data in radially varying media. Unfortunately though all of these cases assume 

either a 1-D or 2-D cylindrical geometry, they all employ frequencies greater than 1 MHz. 

The first published use of the an iterative Born inversion in the audio frequency range is 

given in Barthes and Vasseur (1978) who apply it as the first step in an iterative scheme to 

recover the conductance of a thin sheet imbedded in a layered half-space. More recently 

similar methods have been developed for the low frequency cross-well case. Newman 
(1992b) employs full 3-D modeling at each iteration to update the internal electric fields. 

Although the forward calculations are robust, the overall inversion process is extremely 

time and memory intensive. A much quicker method employing the second term in the 

Born series is developed by Alurnbaugh and Momson (1993). Unfortunately the simplicity 

of the 'second-order Born approximation' renders the routine only slightly more accurate 

than the first-order scheme of Zhou et a1 (1993). Torres-Verdin and Habashy (1993) 

propose a scheme that utilizes a 'non-linear localized operator' to approximate the electric 

fields in the medium. This routine not only proves to be time efficient but is also fairly 

robust at lower frequencies. 

In this chapter an electromagnetic conductivity imaging scheme will be developed that 

employs the Born series approximation developed in Chapter 3 to calculate the electric 

fields at each iteration. The resolution of the method will be demonstrated as function of 

the frequency and the magnitude of the conductivity perturbation. Layered earth models 

and data will be examined and a 1-D layered background model is incorporated into the 

theory. An injection of conductive material at depth will be crudely simulated and the 

results imaged to determine the usefulness of cross well EM in monitoring the progress of 

such a process. This same model will be employed to determine the robustness of the 

imaging scheme by including various amounts of noise. Finally, in the last section the 
limits of the cylindrically symmetric model will be analyzed by imaging synthetic data 
calculated for a 3D sheet. 

4.1 Formulation of the Iterative Born inversion scheme 
The iterative imaging scheme developed in this thesis is essentially a two step process. 

The first step employs a least squares inversion technique to estimate the anomalous 

conductivity distribution, while the second step applies forward modeling to calculate the 

scattered elecmc fields within the anomalous zone. Because this forward modeling is 

accomplished using the Born series approximation that was analyzed in Chapter 3, the 

discussion here will focus on the least squares inversion process. A flow chart of the 



imaging algorithm is given in figure 4.1, and periodic references will be made to it for 

clarification. 

Before the imaging process is initiated, only the background conductivity is assumed to 

be known. Thus the initial image is constructed by employing the first order Born 

approximation. The discreet, approximate equations for the scattered magnetic fields are 

given by 

j=1 j-ti cell 

for the radial or horizontal field and 

N 

H:, = 0 ,E@; I ~ , , d r ~ d z  (4.2) 
j=1 j-th cell 

for the vertical field where i designates the i'th source-receiver pair, j designates the j'th 
cell, and 0, is the object function to be solved for. All of the terms on the right hand side 

other than Oj are assumed to be known and can be grouped into what was referred to in 

Chapter 2 as the sensitivity function, i.e. 

KH = c0 E4' (r, rh)GH (rrx, r)  . 
Integrating over the j'th cell and writing this in discreet form yields 

Notice that this sensitivity equation can also be thought of as the weighring for the j'th 
pixel and i'th source-receiver combination. Using this formulation for kV we can write 4.1 

and 4.2 as 

where now d, is the measured scattered field data for i'th source-receiver pair. Rewriting 

this in matrix form yields 

D=KO' (4.6) 

where D is an M element vector of the measurements, K is the N by M sensitivity or 

weighting matrix relating the geometry of the model to the transmitter-receiver positions, 

and 0' is an N element solution vector. We can solve this set of linear equations for 0' by 

a least squares method in which we minimize the squared error function defined as 



The scheme employed to do this is discussed more fully below. 

Because the sensitivity matrix is initially calculated using the first order Born 

approximation, solving for 0' using yields a first order image of the conductivity 

distribution. To improve on this solution, the scattered electric field generated by 0' is 

calculated and included with the primary field in expression (4.4) to provide a better 
estimate of the total electric field Thus the updated form of k ., is given by 

k Y =c0(E+'ij +W,) J~,,~dr,dz, (4.8) 
j-th cell 

where Ed,. are the secondary electric fields calculated using the Born series approximation 

given in Equations (3.24) through (3.26). 
After the total electric fields have been determined for the region containing Of, the 

magnetic fields generated by them are calculated for each source-receiver combination and 

the m a n  residual error is determined. This error is defined by the expression 

where d, is the i'th data point, mi is the magnetic field that is calculated from O'for the 

i'th source-receiver pair, and n is the number of data points. If Er(n) is equal to or less than 

some predetermined noise level, then the scheme is terminated. However if the error is 

greater than the noise level, then the whole process (equations 4.5 through 4.9) repeated 

iteratively until Er(n) either approaches ,the estimated noise level or converges to a 

minimum. 

4.4.1 The smoothest least squares inversion technique 
Unfortunately, the inversion of electromagnetic data is generally non-unique. The 

problem is further complicated by the presence of noise in the data which can cause the 

inversion process to become unstable and oscillations appear in the solution. To solve for 
the conductivity structure (0') while reducing uncertainties and instabilities in the solution, 

the inversion needs to be regularized (Tikhonov and Arsenin,l977) which results in a 

smooth rather than oscillatory image of the object function. The method employed here 

minimizes the error function 



where Ah and A, are matrices representing a discretization of the first derivative in the 

horizontal and vertical directions, respectively, and the X's are the associated Lagrangian 

multipliers which control the degree of smoothness. 
The greater the X's are in equation (4.10) the smoother the resulting image will be. 

Unfortunately the choice of what value to use for h is not an exact science. Too small a 

value for h will result in an image that has good resolution but may contain oscillations. 

Because the earth is in general smoothly varying, a high resolution image containing sharp 

boundaries and rapidly varying conductivities may be an unreasonable representation of the 
structure. On the other hand if the value for h is too large then the solution will be 

unreasonably smooth resulting in lower resolution than is provided by the data. An image 

which is too smooth will be evident from the relatively large magnitude of Er(n). 

In order to balance these two extremes a smoothest inversion technique similar to that 

used by Constable, et a1 (1987), Park and Van (1991) and Sena and Toksoz (1990) is 
employed. In this type of inversion h is relatively large for the first iteration which assures 

both a very smooth solution and a mean residual error (Er(n)) that is greater than the 
estimated noise level. At each successive iteration h is decreased which provides for 

greater resolution and also a smaller Er(n). The process is continued until Er(n) either 

approaches the estimated noise level or reaches a minimum value. At this point the iterative 

scheme is terminated because if it were to continue, noise would be controlling the added 

resolution. 

Imaging the data in this manner provides the choice of the smoothest model which best 

fits the data to the accuracy with which it was measured. However, unlike for the schemes 
discussed in the references above, here h is not determined by s (0')  or some eigenvalue 

criterion. Rather h is decreased at each iteration by a constant amount which insures that 

the resolution is continually improving while the smoothest model is not overshot (Torres- 
Verdin, 1993, personnel communication). 

The above regularization process greatly enhances the stability of the inversion. 
However the solution can be further stabilized by solving (4.10) subject to the constraints 

where Li and Ui are the lower and upper bounds of the solution, respectively. These 
bounds help to enhance solution stability and resolution greatly (Stark, 1987), ensure a 



reasonable solution, and for the cross well imaging case can easily be derived from 

borehole logs. 

Because of the ease with which the quadratic programming technique (Gill et al. ,198 1, 

Lawson and Hanson, 1974) handles linear bounding constraints, this method has been 

chosen as the least squares inversion scheme to solve for a best fitting solution. To get the 

least square error functional into quadratic form ,equation (4.10) must first be expanded 

which yields 

where A;fA,and A;A, are the smoothing matrices which are more fully defined in 

Appendix A. Because the last term on the right hand side is not dependent on the object 

function, it can be moved to the left hand side such that 

Solving for an 0' that minimizes this expression subject to the linear bounding constraints 

given above constitutes the quadratic programming problem. The particular subroutine 

employed here is VE04A in the HARWELL mathematical program library (Hopper, 

1979). 

4.2 Image resolution of the Iterative Born imaging scheme 
One of the most important properties of any imaging system is its resolving power or 

resolution , i-e., how well can it form distinct images of adjacent features in the medium 

that is being probed. For example in seismic imaging the resolution is defmed by Raleigh 

quarter-wavelength criterion (Sherrif and Geldart, 198 1). Two neighboring bodies will be 

imaged as separate objects as long as this criterion is met. Because no comparable measure 

has yet been formulated for the audio frequency EM method, Zhou et al. (1993) and 

Alumbaugh and Morrison (1993) employed models that consist of two single cells 

separated by some distance L. Though the models are fairly subjective and unrealistic, the 

resolution can be defined by how well the method images the two separate bodies with 

respect to their separation and the operating frequency. 

This type of analysis will be incorporated in this section. However, in addition to 

defining the resolution in terms of frequency and separation, the difference between 

horizontal and vertical resolution will be examined as will the effect of the conductivity 

contrast. An improvement in resolution through a data weighting scheme will be 



attempted, and the consequences of noise determined. The end result of this analysis will 

be a general description of the imaging characteristics for cross well EM with respect to this 

range of parameters, and in particular the iterative Born scheme developed here. 

The general model configuration used in this section is shown in Figure 4.2. The 200 
m deep wells are separated by 100 m in a 0.01 S/m whole space with 21 sources and 21 

receivers spaced at 10 m intervals. This yields a vertical magnetic field measurement for a 

total of 441 source - receiver combinations. To save computing time, the imaging region 

was limited to one-half of the area between the wells and the anomalous conductivity 

distribution is located near the center of this zone. The frequencies employed are 1 kHz, 10 

lcHz and 100 kHz which correspond to the low induction number side of the Born kernel 

(Figure 2.3), the peak of the kernel, and the high induction number side of the kernel peak 

, respectively. 
In most of the examples given below the scattering bodies are more conductive than the 

background medium. Thus except in the examples where it is explicitly noted, positivity 

constraints have been imposed upon the solution. These constraints imply that the solution 

must always be more conductive than the background. As mentioned in section 4.1 these 

types of constraints ensure both maximum resolution and stability in the imaging process. 

In any experiment the measured data will always contain some type of noise. In the 

cross well experiments discussed below, the magnitude of the measured total field falls off 
with increasing source-receiver separation. Assuming that the noise is a function of the 

dynamic range of the system implies that the noise-to-signal ratio will be smallest when the 

source and receiver are at the same depth and the signal is strong, and it will become 

progressively greater as the source and receiver are moved further apart. To incorporate 

this phenomena into the analysis presented here, random Gaussian noise with a variance 

that is some percentage of the maximum total field amplitude at that frequency has been 

added to the synthetic data. In this section the variance of the noise is 0.001% of the 
maximum total field amplitude unless otherwise noted. Although this may seem to be an 

unreasonably small magnitude for the noise, it was needed due to the small amplitude of the 
scattered fields at 1 kHz for the models examined below. 

In order to statistically compare one image to another, two different values will be 

calculated. The frst is the mean residual error (Er(n) in Figure 4.1) which is described in 
Equation 4.9 above. This value describes how well the data fits the image and determines 

when the iterative Born inversion is terminated. To describe how well the image recovers 

the input model used to calculate the synthetic data, the total model error (TME) is also 
computed. This value is defined here to be the ~2 enor between the final image and the 
model over all the cells in the imaging region. After the ~2err0r  is calculated it  is 



normalized by the integral over the perturbations from the background conductivity in the 

input model such that the final form is given by 

where 0 3 s  the image conductivity for the i'th cell, C T ~  is the model conductivity for the 

i'th cell and N is the number of cells or pixels in the image. It must be pointed out that 

although this total model error may be a statistically sound description of the image, its 

definition of image quality does not always coincide with the visual definition, and thus it 

must be used with caution. Examples of where it could be considered to fail will be given 

below. 

4.2.1 Image resolution versus frequency for low contrast models 
In this section the horizontal and vertical resolution will be analyzed in terms of the 

operating frequency. Figure 4.3a shows the first model which will be refened to as the 
low contrast-vertical resolution model. Two 5m by 5m square bodies are located near the 

center of the interwell region and are separated by L25m. The conductivity of the bodies 
is 0.02 S/m which is twice that of the background. Note, the polygonal shape of the two 

bodies in Figure 4.3a is a function of the software used to plot the images (DeltaGraph 

Professional for Macintosh, 1991). Because the software automatically smoothes between 

adjacent points using a spline, single celled bodies are distorted into this polygonal shape. 

This distortion becomes less of a problem as more cells are added to the anomalous bodies. 

Figures 4.3b through 4.3d yield valuable information about the vertical resolution of 

the method. At 1 kHz the two bodies are not separately defined and the conductivity is not 
recovered. This is due to the small magnitude of the scattered fields which in general are 
less than 0.1% of the total field. Because of these relatively insignificant values, the 
residual error between the calculated image results and the input data rapidly converges to 
the noise level. In contrast to this low frequency result, the images at 10 kHz and 100 lcHz 

are quite sharp and precisely define the location of the two bodies. Though the difference 

is difficult to visually detect, the total model error indicates that the 100 kHz image is 

statistically better than the 10 kHz result. Thus at least for this low contrast example, the 

resolution increases with frequency. 

In Figure 4.4 the horizontal resolution is examined for the low contrast case. Once 

again the lowest frequency exhibits poor resolution due to the small magnitude of the 



scattered fields. For this example the 1 kHz secondary fields at maximum are no more than 

0.2% of the total field. At 10 JsHz the resolution is excellent with the position of the two 

cells recovered exactly. However notice that the TME is approximately twice that of the 
value for the low contrast-vertical example. This is a statistical affirmation that, because the 
measurements are made in vertical boreholes on each side of rather than all around the 

anomalous region, the horizontal resolution in worse than the vertical resolution. This 

same conclusion falls out of the wave number domain analysis by Zhou, et al. (1993) who 

show that the horizontal resolution is a function of the vertical coverage of the data. 

At 100 kHz the imaging scheme develops problems in uniquely reconstructing the two 

cells (Figure 4.4d). Instead of resolving two separate bodies most of the conductivity is 

lumped into the center of the region with "ghosts" appearing on either side. To determine 

if this is a data sampling problem or an error in the algorithm, several variations of the 

model were calculated. Images were reconstructed using synthetic data with finer source 

and receiver sampling intervals to avoid aliasing, with the boreholes extended to provide 

greater vertical coverage, and with the cell size decreased in the imaging region to avoid 

numerical problems. Though none of these methods worked, a data weighting scheme 

discussed in subsection 4.2.3 did show some success. However as it will again be 

demonstrated below there does exist a loss of resolution at 100 kHz which may be the 

result of high frequency numerical instabilities. 

4.2.2 Image resolution versus frequency for high contrast models 
To examine the effects of higher conductivity contrasts on image resolution, the same 

model geometry shown in Figures 4.3 and 4.4 is employed. However the conductivity of 

the single cell anomalies is 0.1 S/m which corresponds to a contrast of 10 to 1 or a 

conductivity difference of 0.09 Slm. Figure 4.5 shows the results for the high contrast- 

vemcal resolution model, and Figure 4.6 the high contrast-horizontal resolution model. 
A comparison of the images shown in figures 4.5b and 4.6b to the equivalent images in 

the previous section (Figures 4.3b and 4.4b) indicates that the horizontal and vertical 
resolution at 1 kHz has improved both visually and statistically. This is primarily due to 
the fact that the scattered fields generated by the high contrast model at this frequency are an 
order of magnitude greater than those for the low contrast model. Thus a less smooth 

solution is required in order to fit the data to the desired noise level. This demonstrates that 
resolution is not only a function of the background conductivity, but also of the difference 

in conductivity between the background and the scatterer. 

As demonstrated by Figure 4 . 5 ~  the vertical resolution at 10 kHz remains 
approximately the same whether a low or high contrast model is employed. Visually the 



same seems to be true for the horizontal resolution. Figure 4 . 6 ~  distinctly shows the 

presence of two separate bodies of approximately the correct conductivity and position. 

However both the mean residual error and the total model error indicate that at least 

statistically this is a lower quality image. The large errors result from the body on the right 

hand side being misplaced one position to the left when compared to the model and 

illustrate the problem of using these statistical properties to define resolution. 

Unfortunately they do not take into account slight mispositioning errors or differences in 

amplitude. 

At 100 kHz the images for both of the high contrast models (Figures 4.5d and 4.6d) are 
distorted in the horizontal direction. In addition, the relatively large mean residual errors 

indicate that the iterative Born scheme is finding it difficult to fit the data to the desired 

noise level. Because the anomalous induction numbers for these models as defined in 

Chapter 3 are near the break down point of the Born series approximation, this lack of 

horizontal resolution may be due to inaccurate forward modeling. Another possible source 

of instability is the inductive coupling between the two bodies which becomes larger as the 

conductivity and frequency increase. This mutual coupling may make it difficult for the 

imaging routine to distinguish the two separate bodies. 

4.2.3 A data weighting scheme to improve horizontal resolution 
As mentioned in section 4.2.1 several attempts were made to improve the horizontal 

resolution at 100 kHz for the low contrast - horizontal resolution model (Figure 4.4d). One 

possible source of error can be directly observed in the data amplitudes. From minimum to 

maximum source - receiver offsets these values change over five orders of magnitude. In 

Chapter 2 it was demonstrated that the horizontal resolution is controlled by the long offset 

data, i.e. when the source and receiver are separated by a large vertical distance. Thus 

because the data controlling the horizontal resolution are five orders of magnitude smaller 
than the near offset data, the inversion process is dominated by the larger values and thus 
has diffkulty correctly recovering the horizontal position of the bodies. This effect is not 
as evident at lower frequencies because the fields do not fall off as quickly with increasing 

source-receiver separation. 
The solution to this problem is to weight each source-receiver combination equally, that 

is, give each datum the same importance. Two simple methods of accomplishing this are to 

normalize the scattered fields by either the theoretical primary (background) field , or the 

measured total field. The advantage of using the total field is that it contains measurement 
noise. Thus normalizing by this value will not weight the noise present in the long offset 

data to the degree that the theoretical primary field does (Torre~-Verdin,1993,personnel 



communication). 

The results of weighting the data at 100 kHz for the low contrast-horizontal resolution 

model (Figure 4.4a) are shown in Figure 4.7. In these examples no random noise was 

added to the data for reasons that will be evident shortly. Though the resolution is not of 

the quality that exists in the 10 kHz results (Figure 4.4c), these images certainly show 

improvement over the unweighted results given in Figure 4.4d. Applying the same 

weighting to the 100 H z  data in both of the high contrast models given in the last section 

improved the image quality somewhat. However there was not enough improvement to 

warrant showing the results here which again suggests the existence of some type of high 

frequency numerical instability. 

A major concern when weighting the data in this manner is that the process also 

weights upward the noise that is in the long offset data. Thus when the noise is 

comparable to or larger than the signal, the weighting will have negative effects. This is 

illustrated in Figure 4.8 where 0.01% random noise has been added to the synthetic data. 

Without any normalization the noise has little effect on the resulting image (Figure 4.8a) . 
However Figures 4.8b and 4 . 8 ~  show that by emphasizing the noise at large offsets serious 

image degradation results. As shown in Figure 4.9 the scheme can not converge to a 

reasonable solution as is illustrated by plotting the mean data error at each iteration. 

To this point the image resolution of the iterative Born scheme has been demonstrated 

in terms of different operating frequencies and conductivity contrasts. Lower frequencies 

do not yield very good resolution simply because the scattered fields are very small. High 

frequencies offer the best results in some cases, but due to severe attenuation much of the 

data which contains the horizontal resolution information is unusable. In addition at high 

frequencies and conductivity contrasts the scheme exhibits some type of numerical 

instability which suggests that it is at its induction number limit. The best trade off between 

image resolution and numerical stability occurs for data collected in the induction number 

region near the peak of the Born kernel. In all of the examples given above, the 10 kHz 

images recovered both the conductivity and position of the dual scatterers extremely well. 

Therefore this frequency alone will be employed in the next section to determine the 

resolving power of the method with respect to the separation of the two scatterers. 

4.2.4 Image resolution with respect to target separation 
In this section the resolution will be analyzed with respect to the separation of the 

bodies. The same general geometries employed in the models above will be used with the 

operating frequency fixed at 10 kHz. 

Figure 4.10 shows the first example which is for the low contrast-vertical resolution 



model shown in Figure 4.3. It is clear from these images that the vertical resolution is 

excellent both visually and statistically for low contrast anomalies. Even when the two 

bodies are only one cell width apart, i.e. when the center-to-center separation 'L' is 10m, 

the image shows two separate maxima in the right locations separated by a lower 

conductivity region. Comparing these results to the high contrast examples (Figure 4.1 1) 

indicates that a greater conductivity contrast results in lower resolution. In these examples 

the imaging scheme is unable to properly determine the correct position of the anomalies 

when L=15m, and for L=10 m the conductivity is all lumped together at the center point 

between the two cells. Because of the cylindrical symmetry imposed upon the problem the 

two bodies can be thought of as rings or loops about the source axis. The loss in resolution 

for this high contrast model may be the result of increased mutual coupling between the two 

loops as they are brought closer together. 
The horizontal resolution is also examined as a function of scatterer separation. As was 

demonstrated in Sections 4.2.1 and 4.2.2 the resolution is worse in this direction compared 

to that in the vertical. Figure 4.12 indicates that for the low contrast-horizontal resolution 

case the two separate bodies are not defined even for L=15 m while for L=10 the 

conductivity pattern is reconstructed as a single blob at the center of the imaging region. 

Although the horizontal resolution seems to improve visually with increasing conductivity 

contrast, statistically the results shown in Figure 4.13 are worse that those in Figure 4.12. 
Thus once again there is disagreement between the visual and statistical descriptions of 

image quality. 
In this section the resolution as a function of target separation has been demonstrated. 

The vertical resolution has again been demonstrated to be better than the horizontal 

resolution for lower conductivity contrasts. In some cases larger conductivity contrasts 

seem to degrade image quality while in others the resolution seems to improve. Because all 
of the examples to this point have dealt with electrically conductive anomalies, a model 
containing both resistive and conductive bodies will be examined before moving on to more 
realistic models. 

4.2.5 Resolution of adjacent conductors and resistors 
A more difficult model to reconstruct is shown in Figure 4.14a. Two blocks of 

identical geometrical dimensions but of opposite conductivity contrast with respect to the 

background are separated by lorn in a O.OlS/m medium. Because of the size of the blocks, 

the scattered magnetic fields generated by them are almost an order of magnitude greater 
than those produced by the single cell anomalies presented in previous sections. Thus the 
random noise added to the synthetic data has been increased to 0.01% of the maximum total 



the source and receiver are at the same depth. Because these sensitivity functions describe 

the weighting of points within the medium in relation to each other, those points at which 

the sensitivity is large will have more importance in the inversion process. Thus not only 

does the manner in which the data are weighted have to be considered with respect to 

resolution and noise, but the method in which the model cells are weighted must be 

understood in order to properly interpret the final image. 

In Section 3.4 the benefit of plotting the error between the 1-D solution and the 2-D 

Born series approximation as a function of source and receiver depth was demonstrated. If 

geometrical patterns appear in these error plots then some type numerical problem exists in 

the 2-D cylindrical model. The major source of error in simulating 1-D media was 

determined to be edge effects caused by terminating the mesh too close to the receiver 
borehole rather than extending it horizontally outward. The same type of analysis is 

provided here to verify that none of these types of errors exist in the imaging process. 

In Figure 4.17 the amplitude errors between the synthetic input data and the image 

results (Figure 4.16) calculated with the Born series approximation have been plotted. For 

both 1 kHz and 10 kHz the errors are randomly distributed as a function of source and 

receiver position. This verifies that the mesh extends far enough horizontally to eliminate 

any edge effects. This type of analysis will be applied in future sections to determine 

whether the data being reconstructed is of 2-D or 3-D origin. 
In Figure 4.18 the resolution of a resistive layer is examined. Again the model consists 

of a single layer, however the conductivity in this case is ten times less than that of the 

background. To provide maximum stability and resolution in the solution for this particular 

model, negativity constraints have been imposed on the object function which requires the 

anomalous conductivity to be less than that of the background. 

At 1 kHz (Figure 4.18b) the image is again very smooth and lacks spatial resolution of 

the layer boundaries. In fact it would be difficult to determine from this result that a layered 
structure exists. At 10 kHz the resolution is again much better (Figure 4.18~). However 
the similarity between the maxima within the layer and the sensitivity functions described in 

Chapter 2 still exist. A method to remedy this problem is demonstrated in the next 

subsection. 

4.3.2 Imaging with the horizontal magnetic field 
In section 2.4.3 it was determined from a cross-well sensitivity analysis that at 

frequencies on the low induction number side of the Born kernel, the horizontal field 

contains additional information that is not provided by the vertical field. To determine the 
benefits of measuring both the radial and vertical components, the horizontal magnetic 



fields have been calculated for the model shown in Figure 4.16a. Images have been 

reconstructed using this component exclusively as well as both components 

simultaneously. Plots of the residual e m s  between the input data and the calculated image 

results have not been included here because they exhibit the same random nature as shown 

in Figure 4.17. 

As Figure 4.19a shows there is a definite improvement in image quality at 1 kHz using 

the horizontal rather than the vertical fields. Comparing this image to that in Figure 4.16b 

demonstrates that the vertical boundaries of the layer are much better defined and the 

conductivity is more accurately recovered . These results agree well with the sensitivity 

analysis performed in Chapter 2 where a comparison between the horizontal and vertical 

fields indicated that the horizontal component is less sensitive to the region outside of the 

wells and more sensitive to the vertical position of a body. However the greater magnitude 

of the scattered horizontal fields when compared to the scattered vertical fields is at least 
partially responsible for this increase in resolution. Because of these larger magnitudes the 

radial component is less susceptible to measurement noise, and thus less smoothing is 

required for the inversion scheme to converge to the desired residual error. This difference 

in magnitude of the two different scattered field components becomes more apparent when 

both the horizontal and vertical fields are employed simultaneously. Figure 4.19b shows 
that only minor differences exists between it and Figure 4.19a suggesting that the radial 

component is dominating the inversion process. 

Though the sensitivity analysis in Chapter 2 did show some differences between the 

horizontal (Figure 2.15) and vertical (Figure 2.8) components of the magnetic field at 10 

kHz, they were not as large as those at 1 kHz. This becomes apparent when comparing the 

image reconstructed from the 10 kHz horizontal fields (Figure 4.19~) to that resulting from 

the inversion of the vertical fields ( Figure 4.16~). Subtle differences, such as the different 

locations of the maxima within the conductive layer, do exist between the two images, but 
in general the two images have very similar characteristics. However as shown in Figure 
4.19d imaging with both components simultaneously yields quite spectacular results. 
Rather than reconstructing a high conductivity zone with localized maxima, the scheme has 

reconstructed a layer in which the high conductivity region extends horizontally across the 
whole image. The only conductivity gradients that exists occur in the vertical direction. 
Thus it can be implied that by using both components each pixel between the two wells is 

being weighted equally. Unfortunately, because no horizontal component data have been 

collected in any of the crosswell experiments to date, the routine incorporation of this 
component will be left for now as a topic for future research. 



4.3.3 Imaging of data collected at the Devine test site 
Since 1989 researchers from Lawrence Berkeley Laboratory, Lawrence Livennore 

National Lab and U.C. Berkeley have jointly been involved in the development of a cross 

well EM system. The initial field test of this system was conducted in September of 1990 at 

British Petroleum's Devine test site near Devine, Texas (Wilt, et al., 1991). The purpose of 

the test was to prove system viability by collecting a set of cross well data that was 

repeatable to 1%. In this section the iterative Born imaging scheme will be applied to these 

data and the resulting images analyzed in terns of resolution and data quality. 

The Devine site was chosen as a system testing ground primarily because of the simple 

1-D layered geology that exists there as well as the general lack of cultural noise (Wilt et al. 

,1991). The subsurface consists of flat lying, alternating layers of sand, shale and 

limestone which can be correlated from one well log to another. A conductivity log from a 

well surveyed in the experiment is given in Figure 4.20. The low conductivity zone that 

extends from approximately 600 to 630m depth consists of limestone, and it is this layer 

that was selected to be the target of the experiment. 

The cross well EM survey was conducted at an operating frequency of 512 Hz between 

two PVC cased wells separated by lOOm . While the receiver was held in a fixed position 

the source was slowly raised upward from a depth of 670m to 550m. Measurements were 

made at approximately 0.9m source intervals yielding a nearly continuous profile of data 

versus source depth. The receiver was then moved to a new position and the process 

repeated. This resulted in a data set consisting of 128 source locations for each of the 13 

receiver depths shown in Figure 4.20. 

An initial interpretation of the data was accomplished by fitting a layered earth model to 

the data in a least squares sense (Deszcz Pan ,1993). The resulting eight layer model for 

one of the receiver profiles is plotted with the conductivity well log in Figure 4.20. In 

addition the same least squares program was used to determine the best fitting whole space 
conductivity , which was found to be 0.35Slm (Deszcz Pan, personnel communication). 
Employing this value with an operating frequency of 5 12 Hz yields a background induction 
number of 14. Comparing this to Born kernel plotted in Figure 2.3 indicates that the 
system is operating near the peak in sensitivity which should provide for both image 
resolution and numerical stability. Thus this data set should provide an excellent test for the 

iterative Born inversion scheme presented here. 
Due to computer limitations only half of the data (64 source by 13 receiver 

combinations) were employed in the imaging process. Because the measurements were 
made of the total vertical magnetic field, the scattered field data required by the iterative 

Born scheme were again calculated by subtracting the theoretical primary fields that would 



exist in a whole space with a conductivity of 0.35S/m. Note that although these primary 

fields were calculated using the same analytic expression as employed in Section 4.3.1, 

here the background conductivity was unknown and thus an average or best fitting 

background conductivity had to be determined prior to applying the imaging scheme. The 

mesh was constructed from 800 5m by 5m cells extending vertically from 5 10m to 7 10m, 

and horizontally from 0 to 150m. A lower bounding constraint of 0.1 S/m was imposed 

upon the solution, and the noise was estimated from measurements of repeatability to be 

approximately 0.5% to 1% of the maximum field amplitude(Wilt, et al, 1991). 

The results of the Devine data inversion after 4 and 6 iterations of the iterative Born 

scheme are plotted in Figure 4.21. Smoothed versions of the conductivity log ( Figure 

4.20) have been included next to each of the cross well images for comparison. Not only 

has the scheme defined the existence of the resistive zone between the more conductive 

layers, but the general trend is suggestive of a 1-D structure. Considering that the iterative 

Born imaging scheme is derived from theory which assumes small isolated scatterers 

rather than large slab like bodies, these results can be considered to be very good. 

There do however exist serious deviations from the layered conductivity structure 

exhibited in the smoothed well log. The resistive zone is thicker near the receiver borehole 
while the conductive layers are imaged as maxima near the source well. To determine if 
these deviations from layered structure are due to poor quality data, limitations of the 
imaging scheme, or a combination of the two, synthetic results were calculated for the eight 
layer model shown in Figure 4.20 using the same source and receiver depths as the data. 
The imaging scheme was then applied to these synthetic data with 0.5% noise added. 

The resulting images after 4 and 6 iterations have been plotted in Figure 4.22 along 

with the eight layer model. Comparison of these results to Figure 4.21 indicates that 

although the same general structure is recovered, the synthetic data images are more 

suggestive of a layered medium. The resistive zone exhibits a fairly constant thickness 
across the region between the boreholes and the conductivity maxima above and below this 

zone are not as prominent as in the image of the real data. Because the geology at the site is 
known to be 1-D, these results suggested that the noise in the field data may not be random 
but rather is correlated and have a magnitude greater than 1.0%. 

To determine the characteristics of the noise present in the Devine data, both the ratio in 

total field amplitude and the phase difference between the field data and theoretical results 
have been calculated. Figure 4.23 shows the results plotted for each receiver position as a 

function of source depth. For the profiles with the receiver above 602m in depth, the 
amplitude ratio remains fairly constant at about 0.95 to 0.97. However for receiver depths 

greater than 617m this ratio is approximately 1.0. A similar change is apparent in Figure 



4.23b with the mean phase difference decreasing with increasing receiver depth. Because 

the fields in a layered medium exhibit reciprocity with respect to source and receiver depth, 

and because the mean error between the real and synthetic data changes in a logical 

progression as a function of receiver depth, it is evident that a systematic drift occurred 

over time which was not accounted for. 

To verify that this drift could cause the non-one dimensional distortions that are present 

in the images given in Figure 4.21, each receiver profile of the data was corrected with the 

mean amplitude and phase errors between the data and the layered model. After the 

corrections in Table 4.1 had been applied a second attempt was made to image the data. 

Though the "corrected" images in Figure 4.24 are not identical to the model images given 

in Figure 4.22, they are a significant improvement over the originals shown in Figure 4.23. 
Thus it can be concluded that a serious a drift error exists in the Devine data which needs to 

be removed in order to meet the initial data quality standards of 1 %. 

Receiver 
Depth (m) 

564 

Table 4.1 - Corrections applied to the Devine data set for each reciver profile. 

Amplitude 
Correction 

1.06 

To determine if the residual errors between the input data and the calculated results for 
the image could be used to detect this drift, the errors have been plotted as a function of 
source and receiver depth for both the original and corrected images in Figure 4.25. Notice 
that for the residuals of the uncorrected data (Figure 4.25a) a large error occurs when both 
the source and receiver are at approximately 610m depth, i.e., when the two are close to or 

inside of the resistive zone. This same error distribution does not exist in the corrected data 

errors (Figure 4.25b). Although certain receiver profiles have larger mean errors than 

others, the distribution is much more random suggesting that the cylindrical symmetry fits 

Phase 
Correction (Deg) 

5.7 



the data. Thus to a certain degree the lack of data quality is indeed present in the residuals. 

In this section we have analyzed the frs t  cross well data set collected with the 

Lawrence Livermore Laboratory / Lawrence Berkeley Laboratory cross well EM system. 

A systematic drift has been found in the data which was not accounted for in the calibration 

phase. Not only does this drift produce distortions in the cross well images, but it is also 

evident in the plot of the residual errors. In the next section the theory will be developed to 

account for layered media, and an example of how this could employed in improving the 

quality of the Devine images will be given. 

4.3.4 Theoretical formulation for a 1-D layered background model 
To this point the imaging scheme has been formulated assuming that the region of 

interest is an isolated zone of anomalous conductivity lodged in an otherwise homogenous 
whole space of conductivity GO. This homogenous whole space serves as the background 

model for which the primary fields and Green's functions are calculated. However there 

are many instances where a different background model is appropriate. For instance, near 

the surface of the earth, the earth-air interface causes distortions of the electric field which 

are not accounted for by a whole space model. Another example which will be considered 

in the next chapter relates to monitoring reservoir processes in a layered media. In these 
cases the scattered fields resulting from the layers can dominate the response of the 

changes caused by the process. In addition the large magnitude of these fields coupled with 

the fact that the mesh has to be extended horizontally past the receiver well to account for 

layers causes the routine to need considerably more time to converge than if just the small 

volume affected by the process was being imaged. These types of problems can sometimes 

be overcome by incorporating a 1-D layered half space as the background model. 

The theoretical formulation for a layered background has been used quite extensively in 

3-D integral equation modeling to limit the mesh size and thus reduce the computational 
time involved (e.g. Wannemaker, et al., 1984, Newman and Hohman, 1988). To 
formulate the 1-D background model for the 2-D cylindrical geometry being considered 
here, the impedance concept originally introduced by Wait (1970) for plane waves and later 

modified for dipoles by Stoyer (1977) and loops by Wait and Hill (1980) will be 
employed. Because the derivation is fairly lengthy, it is given in Appendix B and only the 
results are presented here. 

The geometry employed is shown in Figure 4.26. The source is either a vertical 
magnetic dipole, or a horizontal current loop of cross sectional area A ~ ,  centered at z=-d, 

r=O in layer 0. As before the i axis is oriented downwards, with the origin situated 

directly beneath the source at the base of this layer. N layers are located below the source 



and M layers above with n and -m being semi infinite. Each layer is considered 
homogenous and isotropic with a conductivity of oi . 

Because of the cylindrical symmetry imposed upon the model, the problem exhibits 

pure TE excitation which simplifies the theory considerably. The electric fields within the 

source layer resulting from a vertical magnetic dipole of unit moment can be expressed as 
the sum of the field that exists in a whole space of conductivity o0 and the fields that are 

reflected by the layer boundaries. The final expression has the form 

where E: is the primary electric field given by expression 2.7 , Uo(h) and Do(h) 

represent the reflected upgoing and downgoing components which are given by 

eYod + rl e-Yod 

Do (1) = hr-1 e - 2 y ~ h ~  TE 
TE 

Yo 
1 - f 1  e-2Yoho 

T E T E  

and 

and y: = h2 + ko2. If the source and receiver are located in the upper semi-inf~te half 

space then downgoing component can not exist and thus Do(h) = 0. Similarly if the 

source layer is the semi-infinite basal half space then Uo(h) = 0 . 
In equations 4.16 .and 4.17, r k  represents the reflection coefficients at the i=-1 and i 

=1 interfaces which are given by 

where Ki has the form 

and Zi is the input impedance (Wait,1970) at the i 'th interface. This value is solved for 

recursively from the n'th layer upward, or the m'th layer downward, to the interface of 
interest. For the region below the source layer Zi is given by 





and 

y d  (yi+,-yi)= U, (1) = T ~ D , + ~  (h)e-(yi+yi+"" + T,+[U,+, (h) + 6(i + 1)-e ]e (4.27) 
Yo 

where the T' s are given by 

The magnetic fields generated by the vertical magnetic dipole source can be derived by 

taking the curl of equations 4.15 through 4.27 with respect to the point of interest. 
Fortunately, the expressions for U, (h) and D, (h) remain the same as given above. The 

only differences in the formulations for the electric and magnetic fields appear in equations 

(4.15) and (4.22). Thus the expression for the vertical component of the magnetic field is 

given by 

while the horizontal component is given as 

In these expressions Hi and H: are the primary magnetic fields existing in a whole space 
of conductivity oo and are given by equation (2.14), and 6(i)  is the Dirac delta function for 

the source layer. 

Similar expressions can be developed for the integrated forms of the Green's functions 
that were derived in Section 3.1. The electric field Green's function in a layered medium 
has the form 
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JG= = G(i)JG(rj;rk)drjdzj -- sign(=, - z, ) J [u, (h)[eyiz2 - eyizl] (4.3 1) 
j' rh cell j 4 o 

where i designates the layer containing the point of interest, j indicates the source-cell 

across which the current is being integrated, k refers the cell containing the point of interest 
and V(h,r,,r,) is calculated using expression (3.9). The fxst integral on the right hand 

side of (4.31) represents the whole space term which is evaluated using expression (3.8) if 
(z, + z,) / 2 = d, i.e. if the cell is singular, and equation (3.10) otherwise. The 
expressions for U i ( h )  and Di (1) are almost identical to those given above except they must 

be evaluated at d= z, and d= z, and then differenced to account for the integration in i . For 

example, equation (4.16) becomes 

ey0z2 - eYozl + rl (e-Yozz - 
h r-l e-2Yoho D,(h) = - TE 

TE 1 - r-l e - 2 ~ ~ h ~  e-yozl ) (4.32) 
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when the integration is completed. Because the change is trivial, the remaining integrated 
forms of Ui (h) and D, (h) will not be written out explicitly here. 

The expressions for the magnetic field Green's functions are given by expressions 

similar to equation (4.31). The vertical magnetic Green's function has the form 

iopn OD 

I G ~  = S(i)JG,(r,;r,)dr,dz, -- sign(z, - z, ) 1 [u, (h)[eyizz - eyizl] 
jT th cell i 4 o 

where the first integral on the right hand side is calculated using either expressions (3.13) 
or (3.14) depending on the singularity of the cell over which the integration is taking place. 
Similarly, the horizontal magnetic field Green's function is given by 

iwpn DD 

JG; = 8(i)jG=(rj;rk)dr,dzj -- sign(z, - zk)j[~,(l)[eyi'2 - eyizl] 
j' rh cell j 4 o 

+D, (h)[e-yiz2 - e7izl]]v(h, r,, r,) h J, (hr,)dh 

where now the first term on the right is calculated using either (3.1 1) or (3.12). 



To demonstrate how a layered background model can be used to improve image 

resolution of the iterative Born technique, the synthetic data calculated for the eight layer 

Devine model (Figure 4.20) have again been employed. Figure 4.27a shows the image 

after 1 1 iterations with 0.5% amplitude noise added to the data. Notice that although the 

resolution of the layers in the upper part of the section is better than shown in Figure 4.22, 

the resistive layer does not extend across the region between the two wells and the zone 

from 630111 to 670m suggests the existence of two dimensional structure. 

The 2-D structure appearing in the lower part of the section is at least partly caused by 

the presence of a resistive layer in the model starting at 670m just below the bottom point 

of the survey region and extending downwards (Figure 4.20). Remember that the 

estimation of the scattered fields first involves finding the best fitting background 

conductivity that minimizes the sum of the scattered field amplitudes. The theoretical 

primary fields are then calculated for each source-receiver combination using this 

background conductivity and then subtracted off of the total field. Because of this 

procedure a layer immediately below the imaging region will generate secondary fields that 
are measurable when the source and receiver are in the lower part of the section. Thus 

because a lack of vertical source-receiver coverage exists in this region, the imaging scheme 

will experience problems determining if these anomalous fields are within or outside of the 

interwell zone. 

To reduce these effects a three layer background model is employed. The first layer has 

a conductivity of 0.5 Slm and extends to 5501x1 depth while the lower layer of conductivity 

0.125 S/m starts at 670m and extends to infinity. The imaging region lies between these 

two layers and has a conductivity of 0.35 Slm. Because the scattered fields are calculated 

by subtracting the primary field generated by this model, the effects of the lower layer 

should be removed. Figure 4.27b shows that this is indeed the case as the zone between 

630m and 670 m depth appears to be fairly homogenous and flat lying. In addition the 
resistive layer from 600m to 630m extends almost the entire distance between the two 
wells. 

In this section the theory has been presented which allows a layered background 
model to be incorporated into the iterative Born imaging scheme. Though the primary 
motivation for this is to account for the earth-air interface in the experiment described in 
Chapter 5, the benefits of using this type of model have been demonstrated using a 
simulation of the Devine field experiment. In the next section models which simulate 

reservoir processes such as steam injection and contaminant disposal will be analyzed to 

determine how well we can monitor their progress using cross well EM imaging. 



4.4 Imaging changes caused by reservoir processes 
As mentioned in Chapter 1, one of the most promising applications of crosswell EM is 

the monitoring of changes in reservoir properties that are caused by some type of injection 

process. If these changes can be tracked with respect to time, then the position and 

progress of the steam, water or gas front can be determined. In Chapter 5 an experiment 

in which electrically conductive salt water is injected into an aquifer will be analyzed. In 

this section, the ground work for this analysis will be developed by examining how well 

the iterative Born scheme can image a body whose size and/or position is changing. 

Because the theory for the iterative Born scheme assumes symmetry about the source 

borehole, this analysis will focus on examples in which the injection occurs at some depth 

within the transmitter well. The first set of examples assume that the injected plume 

expands symmetrically about the borehole such that the cylindrical geometry criterion is 

obeyed. Different amounts of noise will be added to the synthetic data, and the resulting 

images analyzed to determine the data accuracy that is required in order to accurately map 

the plume. In the second half of this section, problems associated with an asymmetrical 

plume will be addressed and a method to determine the validity of the 2-D geometry 

analyzed. 

4.4.1 Imaging an expanding, symmetric body 
When gas or fluid is injected into a reservoir at depth, it is sometimes assumed that the 

permeability of the injection zone is radially homogenous. In this scenario, the resulting 

plume spreads symmetrically about the injection zone, expanding horizontally at the same 

rate in all directions as the process continues. To analyze this ideal case and determine how 

well the iterative Born scheme can image such a process, the 2-D integral equation solution 

is employed to calculate the response of tabular bodies such as the one shown in Figure 

4.28a. The simulated plume is ten times more conductive than the 0.01 S/m background 

which coincides with the conductivity contrast encountered in the experiment described in 

Chapter 5. The plume is 10m thick and results have been calculated for plume radii of 20, 

30,40 ,50 and 60 m. Again 21 source and receiver positions have been employed with a 

sampling interval of 10m. Initially a frequency of 10 kHz will be used due to the stability 

and resolution of the imaging scheme at the associated induction number. 

Figure 4.28 shows the resulting images for different plume radii assuming that the 

measurements are accurate to 1 % of the maximum total field. Resolution in both the vertical 

and horizontal directions is excellent, although the radial extent of the bodies is slightly 

distorted. In addition, the conductivity of the injection zone has been recovered almost 

exactly. Notice that for a radius of 60m the image is starting to develop conductivity 



maxima similar to those observed in the 1-D layered images that were discussed in section 

4.3.1. 
Figure 4.29 shows the results when 5% random noise is added. Although the plume is 

still very prominent, the image resolution has degraded substantially. Both the radial and 

vertical boundaries of the plume are less well defined although the quality improves as the 

plume radius increases. The conductivity has not been recovered as accurately as above, 

and the maxima within the plume are now more prominent. Adding 10% random noise 

causes a further reduction in image quality (Figure 4.30). However, the fact that the 

general location and size of the plume can be recovered with this much added noise 

indicates that the imaging method is quite robust. 

Because the cylindrically symmetric model has been employed to compute the input 

data, the residual errors between this input and the results calculated for the image should 

be randomly distributed with respect to the source and receiver depth. In Figure 4.31 the 

residual errors for two of the images in Figure 4.28 have been plotted. Because the input 

data contain 1 % added random noise, the error distribution does not exhibit any type of 
pattern that would imply a non symmetrical geometry. Figure 4.32 shows the resulting 

residuals when 10% is added to the input. Comparing these plots to those given in Figure 

4.31 indicates that the extra noise simply causes an amplitude shift in the errors while 

leaving the basic random distribution the same. 

To illustrate that low frequency data can provide excellent resolution as long as they are 

accurate, the simulation above has been repeated at an operating frequency of 1 kHz with 
0.1% added noise. The results given in Figure 4.33 reveal that the resolution is 

comparable to that at 10 kHz ( Figure 4.28 ) although the convergence to the final solution 

is slower. This demonstrates the possibility of imaging the conductivity structure trough 

steel casing by making low frequency measurements as suggested by Uchida et al. (1991) 
and Newman (1992a). However it also indicates a need for measurement accuracy which 
probably has not yet been attained. 

The analysis above demonstrates the use of the iterative Born imaging scheme to image 
a body that is expanding symmetrically in a radial direction over time. The trade off of 
resolution versus measurement noise has been discussed and it has been demonstrated that 
low frequency measurements can provide excellent resolution as long as the data is of high 
quality. Unfortunately aquifers and reservoirs tend to be extremely inhomogenous in terms 

of permeability and thus the injected matter rarely obeys the cylindrically geometry. This 

problem will be addressed in the next section where the ability of the 2-D imaging scheme 

to reconstruct 3-D data will be analyzed. 



4.4.2 Imaging a 3-D body 
To this point the imaging scheme has only been applied only to examples where the 

medium exhibits a cylindrical symmetry about the source well. In Chapter 3 the 2-D 

cylindrical solution was compared to a 3-D solution using models with identical cross- 

sectional areas. It was determined in this analysis that as the operating frequency and thus 

the background induction number is increased, the measurements become less sensitive to 

the third dimension of the body outside of the interwell plane. In this subsection the extent 

to which the iterative Born imaging scheme can be used to reconstruct a three dimensional 

inhomogeneity simulating an asymmetrical injection will be examined. These results will in 

turn be applied to analyze the experiment described in Chapter 5. 
The model employed in this study consists of a 40m long by 40m wide conductive 

sheet located at 95m depth as shown in Figure 4.34a. The sheet is symmetrically 

positioned in the direction in and out of the page, however its position can vary 

horizontally. In order to demonstrate some interesting properties that exist at high 

frequencies, the conductance of the sheet has been kept rather low (0.2s) so that the Born 

series approximation will not be violated. Because of the relatively small secondary fields 

generated by this body at 1 kHz, only 0.1% amplitude noise has been added to the 

synthetic data. As in section 4.2 the results are presented at 1 M-Iz , 10 kHz and 100 kHz, 

and positivity constraints have been imposed to stabilize the solution. 

Figure 4.34 shows the first example in which the sheet is symmetric about the source 

borehole. Because of this symmetry the 3-D effects will be minimized. As expected from 

earlier results the image at 1 kHz (Figure 4.34b) is very smooth with poor definition. The 

resolution is much improved at 10 kHz and 100 kHz (Figures 4 . 3 4 ~  and 4.34d, 

respectively). At both of these frequencies the horizontal extent of the sheet and its 

conductance are recovered almost exactly. The validity of fitting this particular 3-D sheet 

with a cylindrical model is demonstrated by plotting the residual amplitude errors between 

the input data and the calculated image results. Figure 4.35 indicates that a random error 

distribution exists at each frequency which suggests a 2-D geometry in the target. 

It will be demonstrated below that moving the center of the sheet off of the source 

borehole axis results in a 3-D "bias" in the residual errors. Even though the smoothest 

inversion approach employed here results in a gradual decrease in the mean residual error 

with each iteration, the bias prevents this error from converging to the level of the added 

noise. Thus because of this lack of convergence, the imaging scheme does not know when 

to terminate. This illustrates a problem with decreasing the regularization parameter by a 

constant amount at each iteration. To avoid this dilemma in the analysis presented below, 

the program was terminated at the same iteration at which convergence was reached in the 



symmetric example given above (Figure 4.35). This was done so that the same amount of 

smoothing is applied in each example. 

The first asymmetric case is that in which the sheet is displaced 10% of the interwell 

separation towards the receiver (Figure 4.36). At 1 kHz the reconstructed image indicates 

that the body has been displaced horizontally. However notice that compared to Figure 

4.34b there is a degradation in the vertical resolution and it is difficult to define the leading 

edge of the sheet. Although the vertical resolution is good at 10 kHz, the horizontal 

resolution has been degraded. Rather than extending the conductive region continuously 
out to 30m, the imaging routine has produced an artifact at 1=60rn. Finally, as predicted 

by the analysis in Chapter 3, the 100 kHz image resolves the position of the sheet 

extremely well with very little image distortion resulting from 3-D effects. 

The residual errors for these images are plotted in Figure 4.37. Notice that the errors 

with the largest amplitude are concentrated at a source depth that is equal to that of the 

sheet. This effect is the previously mentioned 3-D bias and at 10 kHz it is so strong that it 

completely masks the random residual errors resulting from the added noise. As might be 

expected the bias is minimized at 100 kHz. Because these plots indicate when the scheme is 
having problems fitting the data, they are useful for determining how well the images 

represent the true subsurface structure. 
Moving the sheet horizontally another 10% such that the center is displaced 20m off 

center causes further degradation in the lower frequency images. As demonstrated by 

Figure 4.38b 1 kHz data can barely resolve the sheet at all. At 10 kHz (Figure 4.38~) the 

artifact at r=60m has grown in magnitude such that it is as large as the main section near 

the injection hole. In addition the vertical resolution has been decreased. Again at 100 k-Hz 
the image recovers both the location and conductivity of the sheet very well. However 

plotting the residual errors (Figure 4.39) indicates strong 3D effects even 'at this highest 

frequency . This implies that even though the image is reconstructed remarkably well, the 
three dimensionality of the sheet is still being detected and can not be accounted for by the 
2-D geometry. 

When the sheet is placed at the center between the two wells (Figure 4.40), the imaging 
procedure fails almost completely at the two lowest frequencies. At 1 kHz a very diffuse 
region of slightly greater than background conductivity is recovered while at 10 kHz a 
delta function is reconstructed at the location of the previously described artifact. 
However, the 100 kHz image still correctly identifies both the position and conductivity of 

the body, even though the sheet is located relatively far away from the injection well. 

Notice that the residual errors plotted in Figure 4.41 do not indicate the presence of 3-D 

structure as clearly as those given in Figures 4.37 and 4.39 above. This indicates that a 



thorough analysis of these plots may be required to avoid missing this type of problem. 

The next example (Figure 4.42a ) involves displacing the sheet 10% to the left of the 

source bore hole which demonstrates how the iterative Born scheme reacts when the plume 
moves away from the receiver. Again the 3-D nature of the data causes the scheme to 
completely fail at lower frequencies. Nothing is seen at 1 kHz while at 10 kHz two small 

artifacts are formed near the source borehole just above and below the sheet. And once 

again at 100 kHz the imaging process resolves the correct position and conductivity of the 

sheet (Figure 4.43d). As expected the residual errors indicate the presence of a large 3-D 

bias at all three frequencies ( Figure 4.44 ). 

As previously mentioned, the above results have incorporated positivity constraints to 

stabilize the inversion and provide better resolution. In many cases however, such as the 

experiment described in the next chapter, these constraints are unrealistic. To determine 

the degree of resolution that is possible when positivity is not imposed on the solution, 

three of the models given above are imaged with the constraints removed. Unfortunately, 

due to the instability of the scheme at higher frequencies, solution convergence was 

unattainable at 100 kHz. Thus the following images are reconstructed only for the 1 kHz 

and 10 kHz data. Because the residual amplitude errors have been found to display the 

same type of distribution as those presented above, they will not be plotted for these 

examples. 
Figure 4.44 shows the images for the axially centered sheet shown in Figure 4.34a. 

Although the position of the sheet has been recovered, relaxing the positivity constraints 

has resulted in a serious loss of resolution, especially at 10 kHz. Where as the conductivity 

was reconstructed almost exactly in Figure 4.31c, the value recovered here is much less. 

The images of the sheet when it is offset 10m toward the receiver well (Figure 4.36a) 

are shown in Figure 4.45, and the results for a -lOm offset as shown Figure 4.42a are 

given in Figure 4.46. In both cases there is a loss of resolution compared to when 
positivity constraints are imposed. No definition is apparent at 1 kHz and at 10 kHz the 
shape of the sheet is severely distorted. In addition large 'side lobes' or regions of 

conductivity both greater than and less than the background have formed around the edges 
of the plume. The presence of these sidelobes will be employed in the analysis presented in 

the next chapter. 

4.5 Summary 
An imaging scheme has been developed which employs an iterative Born approach to 

reconsmct the conductivity structure from cross well EM data. The scheme assumes 2-D 

cylindrical symmetry and uses the Born series approximation developed in Chapter 3 as a 



forward modeling scheme to calculate the electric fields existing in the region between the 

wells. This forward modeling allows the sensitivity matrix to be updated which results in 

more accurate images. To find a model which best fits the data in a least squares sense, a 

quadratic programming routine has been employed. The solution is stabilized through 

regularization and by applying a smoothest model inverse approach. Positivity constraints 

can also be used to further stabilize the solution and provide for better resolution. 

A resolution analysis incorporating single cell scatterers has shown that the 

resolution in the cross well scenario is better in the vertical direction than in the horizontal. 

At higher frequencies the resolution tends to decrease with increasing conductivity contrast, 
while at lower frequencies the opposite is true. The former conclusion results from 

numerical instability of the iterative Born scheme while the latter conclusion is a function of 

the signal strength. The best trade off between resolution and stability seems to occur 

when the background induction number is somewhere between 10 and 50. 
Images of synthetic data calculated for a layered model indicate that the horizontal 

component of the field may be very useful in the reconstruction process. At lower 

frequencies it was found to yield higher quality images that the vertical field. In addition it 

was demonstrated that a simultaneous inversion using both components can produce better 

results than either component by itself. An analysis of field data collected at Devine, Texas 

has shown that a systematic drift is present. Although the scheme is very robust in terms of 
random noise, it has been demonstrated to be very sensitive to this type of correlated noise. 

Simple simulations of reservoir injections have indicated that cross well EM imaging 
can track changes in a reservoir over time. However it has also been determined that at 
frequencies on the low induction number side the Born kernel, any deviation in the medium 

from a 2-D cylindrically symmetric geometry can cause severe artifacts in the images. 

Fortunately the degree to which the medium is three dimensional can be estimated by 

plotting the residual errors between the input data and the numerical results calculated from 
the image. In the next chapter all of the tools that have been developed in this chapter will 
be applied to a salt water injection experiment at the Richmond Field Station test site in 
Richmond, California. 
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Figure 4.1 - Flow chart of the iterative Born imaging scheme. NSR refers to the estimated 
noise level, and nmax refers to the maximum number of iterations set by the user. 
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Figure 4.2 - Model and imaging configuration employed in section 4.2. Two 200 m deep 
wells are seperated by lOOm in a 0.01 Slm whole space. 21 sources and 21 receivers are 
spaced at 10m intervals yielding 441 vertical magnetic field calculations at each frequency. 
The imaging area is lOOm by lOOm and has been divided into 400 5m by 5m square cells. 
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Figure 4.3 - Low contrast-vextical resolution model and images as a function of frequency. 
(a) Model with results calculated fot 21 source and receiver positions spaced at 10m 
intervals from 0 to 200m depth. The added noise is 0.001% of the maximum total field 
measured at each frequency. (b) 1 H z  image. Mean residual error after 23 iterations= 
1.0e-5. Total model error=9.3e-1. (c) lOkHz image. Mean residual error after 25 
iterations=l.Oe-5. Total model erro~1.4e-2. (d) 100kHz image. Mean residual error after 
30 iterations=l. le-5. Total model erroc 5.3e-5. 
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Figure 4.4 - Low contrast-horizontal resolution model and images as a function of 
frequency. (a) Model with results calculated for 21 source and receiver positions from 0 to 
200111 depth. The added noise is 0.001% of the maximum total field measured at each 
frequency. (b)l kHz image. Mean residual error after 27 iterations =1.02e-5. Total model 
enor=8.le-1. (c) 10 kHz image. Mean residual error after 25 iterations =1.03e-4. Total 
model error = 2.2e-2. (d) 100 kHz image. Mean residual error after 20 iterations =2.90e- 
4. Total model error=1.9. 
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(c) (a 
Figure 4.5 - High contrast-vertical resolution model and images as a function of frequency. 
(a) Model with results calculated at 21 source and receiver position from 0 to 200m depth. 
The added noise is 0.001% of the maximum total field measured at that frequency. (b) 
lkHz image. Mean residual error after 28 iterations = 1.04e-5. Total model error= 3.4e-1. 
(c) 10 kHz image. Mean residual error after 30 iterations = 1.03e-5. Total model 
error=1.3e-2. (d) 100 kHz image. Mean residual error after 28 iterations = 4.6e-3. Total 
model error=3.4. 
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Figure 4.6 - High contrast-horizontal resolution model and images as a function of 
frequency. (a) Model with results calculated at 21 source and receiver positions at 10m 
intervals from 0 to 200m depth. The source borhole is at Om and the added noise is 0.001% 
of the maximum total field measured at each frequency. (b)l kHz image. Mean residual 
error after 26 iterations = 1.02e-5. Total model error= 6.4e-1. (c) 10 kHz image. Mean 
residual error after 23 iterations = 2.15e-4. Total model error = 1.07. (d) 100 kHz image. 
Mean residual error after 11 iterations=1.02 Total model error= 2.1. 
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Figure 4.7 - 100 kHz images of the model shown in Figure 4.4a with no added noise. The 
inversion was terminated when the mean misfit a~~roached  0.01% of the total field. (a) 
Image primary field weighting. Mean residual ;&or after 15 iterations=g.Oe-5. ~ 0 t h  
model error=9.9e-1. (b) Image for the total field weighting. Mean residual error after 15 
iterations =9.0e-5. Total model error=l.O. 
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Figure 4.8 - 100 kHz images of the model shown in Figure 4.4a with O.Ol%added 
random noise. The inversion was terminated when either the mean data error approached 
0.01% of the total field or converged to a minimum. (a) Image with no weighting applied. 
Mean residual error after 25 iterations r=l.le-5. Total model error=l.6. (b) Image for 
primary field weighting. Mean residual error after 25 iterations=4.0e-3. Total model 
error=2.7. (c) Image for the total field weighting. Mean residual error after 25 iterations 
=6.2e-3. Total model error-4.3. 
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Figure 4.9- Convergence rate for the inversion results given in Figure 4.8 
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Figure 4.10 - Low contrast-vertical resolution model and images as a function 'L'. These 
results can be compared to those in Figure 4 . 3 ~  in which L 2 5 .  (a) Model for L25m with 
results calculated for 21 source and receiver positions from 0 to 200m depth. The added 
noise is 0.001% of the maximum total field. (b) Image for L=20m. Mean residual error 
after 26 iterations=l.Oe-5. Total model error=3.7e-2 (c) Image for L=15m. Mean residual 
error after 27 iterations=g.ge-6. Total model erroI'e: 2.3e-3. (d) Image for L=lOm. Mean 
residual error after 25 iterations=l.Oe-5. Total model error=2.0e-1. 
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Figure 4.1 1 - High contrast-vertical resolution model and images as a function 'L'. These 
results can be compared to those in Figure 4 . 5 ~  in which L=25. (a) Model for L=25m with 
results calculated for 21 source and receiver positions from 0 to 200m depth. The added 
noise is 0.001 % of the maximum total field. (b) Image for L=20m. Mean data error after 31 
iterations=1.4e-5. Total model error=2.3e-2. (c) Image for L=15m. Mean data error after 
25 iterations =3.5e-5. Total model error=1.39. (d) Image for L=lOm. Mean data error 
after 20 iterations =1 Se-5. Total model error=l .O. 
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Figure 4.12 - Low contrast-horizontal resolution model and images as a function 'L'. 
These results can be compared to those in Figure 4 . 4 ~  in which L=25. (a) Model for L=25 
with results calculated for 21 source and receiver positions from 0 to 200m depth. The 
added noise is 0.001% of the maximum total field. (b) Image for L=20m. Mean residual 
error after 26 iterations=l.Oe-5. Total model error=1.4e-1. (c) Image for L=15m. Mean 
residual error after 24 iterations=l.Oe-5. Total model error=l.l. (d) Image for L=lOm. 
Mean residual error after 23 iterations=l .Oe-5. Total model error=8.0e-1. 
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Fi,oure 4.13 - High contrast-horizontal resolution model and images as a function 'L'. 
These results can be compared to those in Figure 4 . 6 ~  in which L=25. (a) Model for 
L=25m with results calculated for 21 source and receiver positions from 0 to 200m depth. 
The added noise is 0.001% of the maximum total field. (b) Image for L=20m. Mean 
residual error after 27 iterations=1,8e-5. Total model error=8.4e-1. (c) Image for L=15m. 
Mean residual error after 22 iterations=1.4e-5. Total model enor=1.23. (d) Image for 
L=lOm. Mean residual error after 17 iterrations =1.2e-5. Total model erro-6. le- 1. 
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Figure 4.14- Model consisting of both a conductor and resistor in close proximity and 
images as a function of frequency. (a) Model with results calculated at 21 source and 
receiver positions at 10m intervals from 0 to 200m depth. The added noise is 0.01% of the 
maximum total field measured at each frequency. (b)l kHz image. Mean residual error 
after 20 iterations =1.00e-4. Total model error=7.8e-1. (c) 10 kHz image. Mean residual 
error after 18 iterations=9.9e-5. Total model error = 5.8e-1. (d) 100 kHz image. Mean 
residual error after 16 iterations =l.66e-4. Total model error= 6.8e- 1. 
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Figure 4.15 - Images of the conductor-resistor model shown in Figure 4.14a. The imaging 
scheme was terminated when the mean data error was a minimum for at least two of the 
frequencies. (a)Three frequency image with no weighting and 0.01 % added noise. Total 
model error after 15 iterations =5.2e-1. (b) Three frequency image with weighting and no 
noise. Total model error after 15 iterations = 1.8e-1. (c) 100 lcHz image with weighting 
and no noise. Total model misfit after 12 iterations = 2.2e-1. (d) Three frequency image 
with weighting and 0.01% noise. Total model error after 10 iterations = 4.3e-1. 
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Figure 4.16 - Conductive layer model and images for two frequencies. (a) Model with 
results calculated for 21 source and receiver positions from 0 to 200m depth. The added 
noise is 1.0% of the maximum total field measured at each frequency. (b)l kHz image. 
Mean residual error after 11 iterations=l.Oe-2 (c) 10 kHz image. Mean residual error 
after 12 iterations= l.0e- 1. 
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Figure 4.17 - Residual amplitude errors between the input data and the calculated results for 
the images as a function of source and receiver location. The errors have been normalized 
by the maximum value of the total field in the input data. (a) Residual errors for the 1kH.z 
image in Figure 4.16b. (b)Residual errors for the lOkHz image in Figure 4.16~. 
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Figure 4.18 - Resistive layer model and images for two frequencies. (a) Model with results 
calculated for 21 source and receiver positions from 0 to 200m depth. The added noise is 
1.0% of the maximum total field measured at each frequency. (b)l kHz image. Mean 
residual error after 1 1 iterations =l.Oe-2. (c) 10 kHz image. Mean residual error after 1 1 
iterations=l .Oe-2. 
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Figure 4.19 - Images of the model shown in Figure 4.16a reconstructed using the 
horizontal magnetic fields. (a) 1 lcHz image using the horizontal magnetic fields. Mean 
residual error after 12 iterations =l.Oe-2 (b) 1 H z  image using both the horizontal and 
vemcal magnetic fields. Mean residual error after 12 iterations=l.Oe-2. (c) 10 kHz image 
using the horizontal magnetic fields. Mean residual error after 13 iterations =l.Oe- 1. (d) 10 
lcHz image using both the horizontal and vertical magnetic fields. Mean residual error after 
13 iterations =l.Oe-1. 
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Figure 4.20 - Electrical conductivity log from a well used in the cross borehole EM 
experiment at the British Petroleum Devine test site near Devine, Texas. Included with the 
log is the best-fitting eight layer model. The "source logging interval" and "receiver depths" 
refer to the interval over which the source was moved and the discreet receiver locations 
employed in the cross well experiment, respectively. 



Distance (m) 
0 20 40 60 80 100 

Distance (m) 

Figure 4.21 - Image of the Devine data after different number of iterations. 64 sources 
were employed from 548 to 672 m depth with the 13 receiver locations show in Figure 
4.21. A smoothed version of the conductivity well log is plotted in gray scale format at the 
right of each image. (a) Image after 4 iterations. Mean residual error=0.96%. (b) Image 
after 6 iterations. Mean residual error= 0.65%. 
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Figure 4.22 - Images of the synthetic data calculated for the 8 layer model given in Figure 
4.21 with 0.5% random noise added. 64 sources were employed from 548 to 672 m 
depth with the 13 receiver locations shown in Figure 4.21. The model is plotted in gray 
scale format to the right of each image. (a) Image after 4 iterations. (b) Image after 6 
iterations. 
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Figure 4.23 - Comparison of the Devine data to the theoretical fields calculated for the 
eight layered model shown in Figure 4.20. The results have been plotted in terms of the 
receiver depth. Receivers in the upper part of the section are represented as a thin black 
line, receivers in the 'drift zone' as a thick gray line, and receivers near the bottom as a 
dashed line. (a) Devine data amplitude normalized by the model amplitude. (b) Phase 
difference between the Devine data and the model results. 
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Figure 4.24 - Images of the corrected Devine data after a different number of iterations. 
64 sources were employed from 548 to 672 m depth with the 13 receiver locations show 
in Figure 4.21. A smoothed version of the conductivity well log is plotted in gray scale 
format to the right of each image. (a) Image after 4 iterations. Mean residual 
error=0.87%. (b) Image after 6 iterations. Mean residual error= 0.57%. 
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Figure 4.25 - Residual amplitude errors between the input data and the calculated results 
for the images as a function of source and receiver depth. the errors have been normalized 
by the maximmum value of the total field in the input data. (a) Residual errors for the 
image of the uncorrected Devine data in Figure 4.21b. (b) Residual errors for the image 
of the corrected Devine data in Figure 4.23b. 
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Figure 4.26 - Vertical magnetic dipole and a horizontal loop of current imbedded in a 
stratified medium. Both the dipole and loop are at a distance z=-d above the base of the 
source layer (z=0) and are centered radially at r=O. 
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Figure 4.27 - Images of the synthetic data calculated for the 8 layer model given in 
Figure 4.20 using two different background models. 64 sources are evenly spaced from 
550 to 670 m with 13 receivers spaced as shown in Figure 4.21 and 0.5% random noise 
have been added to the data. (a) Image using the whole space model with a conductivity 
of 0.33Slm. Mean residual error after 11 iterations=O.50%. (b) Image using 3 layered 
background model. Mean residual error after 10 iterations=0.50%. Layer 1 has a 
thiclmess of 550 m and a conductivity of 0.5SIm. Layer 2 has a thickness of 120m and a 
conductivity of 0.35 Slm. Layer 3 extends downward from 670111 to infinity and has a 
conductivity of 0.125 Slm. 
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Figure 4.28 - Injected plume model and 10 kHi images for different plume radii (rp). 
The images were reconstructed using results calculated at 21 source and receiver 
positions spaced at 10m intervals from 0 to 2OOm depth. The added noise is 1.0% of the 
maximum total field and the bracket in each image indicates the radial extent and width 
of the body (a) Model for rp=30m. (b) Image for rp=20m. Mean residual enor after 17 
iterations = 1.0%. (c) Image for rp=30m. Mean residual enor after 18 iterations = 1.0%. 
(d) Image for rp=40m. Mean residual error after 17 iterations = 1.0%. (Continued on 
next page) 
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Figure 4.28 - (Continued from previous page) (e) Image for rp=50m. Mean residual 
error after 19 iterations = 1.0% (f) Image for rp=60m. Mean residual error after 19 
iterations = 1.0%. 
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Figure 4.29 - Injected plume model and 10 kHi images for different plume radii (rp). 
The images were reconstructed using results calculated at 21 source and receiver 
positions spaced at 10m intervals from 0 to 200m depth. The added noise is 5.0% of the 
maximum total field and the bracket in each image indicates the radial extent and width 
of the body (a) Model for rp=30m. (b) Image for rp=20m. Mean residual error after 13 
iterations = 5.0%. (c) Image for rp=30m. Mean residual error after 13 iterations = 5.0%. 
(d) Image for rp=40m. Mean residual error after 14 iterations = 5.0%. (Continued on 
next page) 
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Figure 4.29 - (Continued from previous page) (e) Image for rp=50m. Mean residual 
error after 15 iterations = 5.0% ( f )  Image for rp=60m. Mean residual error after 15 
iterations = 5.0%. 
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Figure 4.30 - Injected plume model and 10 lcHz images for different plume radii (rp). 
The images were reconstructed using results calculated at 21 source and receiver 
positions spaced at 10m intervals from 0 to 200m depth. The added noise is 10.0% of the 
maximum total field and the bracket in each image indicates the radial extent and width 
of the body (a) Model for rp=30m. (b) Image for rp=20m. Mean residual error after 9 
iterations = 10.1%. (c) Image for rp=30m. Mean residual emor after 10 iterations = 
10.1 %. (d) Image for rp=40m. Mean residual error after 11 iterations = 10.1%. 
(Continued on next page) 



Distance (m) 
0 20 40 60 80100 

200 - 
(el 

Distance (m) 

Figure 4.30- (Continued from previous page) (e) Image for rp=50m. Mean residual error 
after 12 iterations = 10.1% (0 Image for rp=60m. Mean residual error after 12 iterations 
= 10.1%. 
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Figure 4.31 - Residual amplitude error between the input data and the calculated results 
for images given in Figure 4.28 as a function of source and receiver depth. The errors 
have been normalized by the maximum value of the total field in the data. (a) Residual 
errors for the image given in Figure 4.28b. (b) Residual errors for the image given in 
Figure 4.28e. 
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Figure 4.32 - Residual amplitude error between the input data and the calculated results 
for images given in Figure 4.30 as a function of source and receiver depth. The errors 
have been normalized by the maximum value of the total field in the data. (a) Residual 
errors for the image given in Figure 4.30b. (b) Residual errors for the image given in 
Figure 4 . 3 0 ~  
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Figure 4.33 - Injected plume model and 1 kHz images for different plume radii (rp). 
The images were reconstructed using results calculated at 21 source and receiver 
positions spaced at 10m intervals from 0 to 200111 depth. The added noise is 0.10% of the 
maximum total field and the bracket in each image indicates the radial extent and width 
of the body. (a) Model for rp=30m. (b) Image for rp=20m. Mean residual misfit after 24 
iterations = 0.10%. (c) Image for rp=30m. Mean residual error after 25 iterations = 
0.10%. (d) Image for rp=40m. Mean residual error after 26 iterations = 0.10%. 
(Continued on next page) 
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Figure 4.33- (Continued from previous page) (e) Image for rp=50m. Mean residual error 
after 12 iterations = 0.10%. (0 Image for rp=6Om. Mean residual error after 12 iterations 
= 0.10%. 
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Figure 4.34- Centered 3D sheet model and images as a function of frequency. (a) 401x1 by 
40m sheet model of conductance 0.2s which is centered both in the x and y directions 
about the source borehole. Results have been calculated for 21 source and receiver 
positions spaced at 10m intervals from 0 to 200m depth. The added noise is 0.1% of the 
maximum total field at each frequency. (b) 1 kHz image. Mean residual error after 11 
iterations=O.lO%. (c) 10 kHz image. Mean residual error after 19 iterations = 0.10%. 
(d) 100 kHz image. Mean residual error after 25 iterations = 0.12%. 
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Figure 4.35 - Residual amplitude error between the input data and the calculated results 
for the images in Figure 4.34 plotted as a function of source and receiver depth. The 
errors has been normalized by the maximum value of the total field in the data. (a) 
Residual errors for the lkHz image given in Figure 4.34b. (b) Residual errors for the 10 
H z  image given in Figure 4.3G. -(c) ~esid<al errors for ide 100 kHz image given in 
Figure 4.34d. 
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Figure 4.36- 3D model with the sheet offset from the source well by +10m and the 
resulting images as a function of frequency. (a) 40m by 40m sheet model of conductance 
0.2s centered in the y direction (in and out of the page) about the source borehole. 
Results have been calculated for 21 source and receiver positions from 0 to 2001x1 depth at 
10m intervals. The added noise is 0.1% of the maximum total field at each frequency. (b) 
1 kHz image. Mean residual error after 1 1 iterations=O. 17%. (c) 10 kHz image. Mean 
residual error after 19 iterations = 0.49%. (d) 100 kHz image. Mean residual error after 
25 iterations = 0.13%. 
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Figure 4.37 - Residual amplitude error between the input data and the calculated results 
for the images in Figure 4.36 plotted as a function of source and receiver depth. The 
errors has been normalized by the maximum value of the total field in the data. (a) 
Residual errors for the 1kHz image given in Figure 4.36b. (b) Residual errors for the 10 
kHz image given in Figure 4.36~. (c) Residual errors for the 100 kHz image given in 
Figure 4.36d. 
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Figure 4.38- 3D model with the sheet offset from the source well by 20m and the 
resulting images as a function of frequency. (a) 40m by 40m sheet model of conductance 
0.2s centered in the y direction (in and out of the page) about the source borehole. 
Results have been calculated for 21 source and receiver positions from 0 to 200111 depth at 
10m intervals. The added noise is 0.1% of the maximum total field at each frequency. (b) 
1 H z  image. Mean residual enor after 11 iterations=0.37%. (c) 10 kHz image. Mean 
residual error after 19 iterations = 1.1%. (d) 100 kHz image. Mean residual error after 
25 iterations = 0.24%. 
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Figure 4.40- 3D model with the sheet offset from the source well by 50m and the 
resulting images as a function of frequency. (a) 40x11 by 40m sheet model of conductance 
0.2s centered in the y direction (in and out of the page) about the source borehole. 
Results have been calculated for 21 source and receiver positions from 0 to 200x31 depth at 
lorn intervals. The added noise is 0.1% of the maximum total field at each frequency. (b) 
1 lcHz image. Mean residual error after 1 1 iterations=O. 17%. (c) 10 kHz image. Mean 
residual error after 19 iterations = 0.27%. (d) 100 kHz image. Mean residual error after 
25 iterations = 0.12%. 
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Figure 4.41 - Residual amplitude error between the input data and the calculated results 
for the images in Figure 4.40 plotted as a function of source and receiver location. The 
errors have been normalized by the maximum value in the data. (a) Residual errors for 
the 1kHz image given in Figure 4.40b. (b)Residual errors for the 10 kHz image given in 
Figure 4.40~. (c) Residual errors for the 100 kHz image given in Figure 4.40d. 
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Figure 4.42- 3D model with the sheet offset from the source well by -lOm and the 
resulting images as a function of frequency. (a) 40m by 40m sheet model of conductance 
0.2s centered in the y direction (in and out of the page) about the source borehole. 
Results have been calculated for 21 source and receiver positions from 0 to 200111 depth at 
lorn intervals. The added noise is 0.1% of the maximum total field at each frequency. (b) 
1 kHi image. Mean residual error after 11 iterations=0.18%. (c) 10 kHz image. Mean 
residual error after 19 iterations = 0.29%. (d) 100 kHz image. Mean residual error after 
25 iterations = 0.21 %. 
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Figure 4.43 - Residual amplitude error between the input data and the calculated results 
for the images in Figure 4.42 plotted as a function of source and receiver location. The 
errors have been normalized by the maximum value in the data. (a) Residual errors for 
the llcHz image given in Figure 4.42b. (b)Residual errors for the 10 kHz image given in 
Figure 4.42~. (c) Residual errors for the 100 kHz image given in Figure 4.42d. 
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Figure 4.44- Images of the centered sheet model given in Figure 4.34a with no positivity 
constraints imposed. (a) 1 kHz image. Mean residual error after 8 iterationsa. 10%. (b) 
10 kHz image. Mean residual error after 15 iterations = 0.10%. 
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Figure 4.45- Images of the lorn offset model given in Figure 4.36a with no positivity 
constraints imposed. (a) 1 kHz image. Mean residual error after 8 iterations=0.19%. (b) 
10 kHz image. Mean residual error after 15 iterations = 0.43%. 
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Figure 4.46- Images of the -lOm offset sheet model given in Figure 4.42a with no 
positvity constraints imposed. (a) 1 kHz image. Mean residual error after 8 
iterations=0.13%. (b) 10 kHz image. Mean residual error after 15 iterations = 0.39%. 



Chapter 5 
The Richmond Field Station Cross Well EM Experiment 

Beginning in 1988, a series of salt water injection experiments were conducted at the 

University of California Richmond Field Station test site to evaluate the use of different 

geophysical methods for monitoring the injection process and for determining the geometry 

of the resulting plume. The first set of experiments involved surface-to-borehole resistivity 

measurements and were conducted in February of 1988 and 1989 (Bevc and Morrison , 

1992). Approximately 25,000 gallons of 1.0 S/m salt water were pumped into a 3 m 
thick, 30 m deep, flat lying aquifer. Resistivity measurements were made both before and 

after injection with current electrodes above, in, and below the aquifer, and with potential 

electrodes spaced at 5m intervals along the surface in lines radiating outward from the 

injection well (INJ in Figure 5.1). These experiments were useful in determining the 

migration path of the salt water, but no inversion of the data was attempted to determine the 

geometry of the injected plume. 
In the spring of 1991 cross borehole electromagnetic (EM) measurements were made 

by Lawrence Berkeley Laboratory and Lawrence Livermore Laboratory personnel to track 
a similar volume of injected salt water. About 36,000 gallons of water were employed in 

this experiment and cross-borehole EM data were collected both before and after the 

injection. The test employed two observation boreholes EMNE and EMSW (Figure 5.1) 

separated by 50rn and approximately equidistant from the injection well (INJ). The EM data 

were collected at a frequency of 18,800 Hz using a tool spacing of 0.2 m from the surface 
to a depth of 85 rn in the EMSW well. The receiver station spacing was 5 m starting at the 

surface and extending to a depth of 85 m. 

The primary conclusion from this experiment was that the salt water slug provided an 

excellent target for cross borehole EM. The maximum difference between magnetic field 
measurements made before and after injection was more than ten percent in amplitude 

which was easily detectable with the cross well system. However attempts to interpret the 
data using both an imaging scheme developed by Zhou (1989) and by fitting the results 
with a simple 3-D "block" model in a layered host (Tripp, 1991 personal communication) 
were unsuccessful. These problems in interpretation were primarily caused by the 
complexity of the Richmond geology, i.e., the surrounding medium is neither a 

homogenous whole space or one-dimensionally layered, and the salt water body not a 

tabular block. Rather, the salt water plume appears to be an irregular three-dimensional 

zone of varying salt concentration that followed the existing high permeability network 

around the injection zone. 



Although the 1991 experiment at the Richmond field station was a technical success and 

yielded a quality set of data, the geometry of the experiment does not conform to the 

cylindrical symmetry required for the iterative Born inversion scheme developed in the last 

chapter. Thus a second more involved cross well experiment was initiated in 1992, the 

design of which centered around providing this 2-D geometry by placing the source in the 

injection hole and the receivers in monitoring wells. In the following sections the geology 

of the Richmond Field station will be described and the experimental procedure will be 

outlined. Next a detailed description of the data is given which includes descriptions of the 
calibration process, a simple noise analysis, and general observations about what 

information the raw data yields. In the final section of this chapter the measurements will 

be interpreted by applying the imaging routine to both the field data and numerical models 

simulating the experiment. 

5.1 Geology of the Richmond Field Station test site 
The Richmond field station is located in a light industrial area which lies about six 

miles north of the University of California at Berkeley campus. The well field (Figure 5.1) 

is located in an open area approximately 400m north of San Francisco Bay. The upper 30- 

35 m of the site consists of unconsolidated alluvium, chiefly muds and silts interbedded 

with layers of sand and gravel of variable thickness. Below the unconsolidated sediments 

lies a basement of sandstone and shale, most likely from the Cenozoic Great Valley 

formation. A more complete description of the site geology including some well correlation 

is provided by Pouch (1987). 

Figure 5.2 shows the EM induction logs for wells EMSW and EMNE together with 
stratigraphic logs derived from well cuttings. The logs were obtained in two wells that are 

50.2 m apart and suggest that individual layers cannot be easily correlated over large 

distances at Richmond. Pouch (1987) found that a few of the layers, in particular some 
water-bearing sands and silts, could be traced across the field but that they varied 
considerably in thickness. He suggested that the sediments were deposited in a 
fluvial/deltaic environment with some of the individual sands deposited in channels. 

The logs also show that the basement rock is variable. In four of the five wells that 
penetrated basement, the rock type was a very hard sandstone. In well EMNE, however, 
this basal unit is a softer, finer grained rock consisting predominantly of shale. This 
variation might represent a basement fault or possibly a stratified basal section with a steep 

dip. 
Estimates of the conductivity distribution can also be made from these logs. The clays 

and silts, which constitute the majority of the overburden, range from 0.05 to 0.2 S/m, 



while the coarser grained sand and gravel units tend to be more resistive (0.03 to 0.08 

S/m). In the basement rocks the conductivity tends to drop substantially. The sandstones 

are often less than 0.0 1 S/m while the shales range between 0.0 15 and 0.025 S/m. 
The variability in rock type, and hence the variability in conductivity that exists over 

short distances at Richmond illustrates the geologic complexity that made a simple 
interpretation of the 1991 data impossible. In order to get a better handle on the situation 

several new wells were drilled in early 1992, including a new injection well (INJ1) which 

allows the source to be placed within the injected plume. The hope was that by doing this, 

the geometry would crudely simulate the cylindrical symmetry used in the iterative Born 

inversion scheme, thus simplifying the interpretation. The description of this experiment, 

including measurements that were made in addition to the cross well EM, is given in the 

following section. 

5.2 The 1992 Richmond Field Station experiment 
The 1992 salt water injection experiment at Richmond proceeded in much the same 

manner as the previous experiments where cross hole EM data was collected both before 

and after the saline fluid was injected. The field system used in the experiment is described 

by Wilt et al. (1993) and is included in Appendix C. 
The baseline cross hole EM data were measured in May, 1992 after an initial system 

set-up and debugging session. Four cross hole data sets were collected with the transmitter 

in the central well (INJ1) and the receiver tool deployed in each of the four EM observation 

holes. A frequency of 18.5 kHz was employed using a transmitter tool spacing of 0.5 m 

from the surface to a depth of 60 m. Receiver stations were separated by 5 m starting at 5 

m depth and extending down to 55 m in each of the four observation holes. This yielded 

1 11 source positions at 1 1 receiver depths for each cross well pair. 

After the baseline EM data were collected a set of EM induction and water conductivity 
logs were made in each of 12 boreholes near the injection well (These can be found in 
appendix D). Just after these measurements were completed a volume of water was 
pumped into a 100,000 gallon holding pond and mixed with salt until the water 
conductivity reached 1 S/m. This fluid was then injected into a 3 m thick gravel aquifer 
through a perforated zone that extends from 26 m to 30 m depth in borehole INJ1. A rate 
of 10 gallons per minute was maintained for about 4 days yielding a total injected volume 

of approximately 50,000 gallons. This is 50 percent greater than that used in the 1991 

experiment. Assuming a porosity of 30 percent, the injected water would sweep a 

cylindrical space 3 m high and 8 m in radius. Immediately following the termination of the 
injection process well INJl was flushed with fresh water to remove the conductive salt 



water from the length of the borehole. A second set of cross hole EM, induction log and 

water conductivity data were then collected during a four week period in June following 

the injection. 

After the post-injection measurements were made, fluid was pumped out of well INJl 

until the water conductivity was restored to the pre experiment background value. The toral 

volume drawn out was 300,000 gallons which is about 6 times the amount injected. The 

pumping began on July 6 at a rate of 20 gallons per minute and lasted for 12 days. Water 

levels in the wells open to the aquifer were monitored during this period to better 

understand the hydrology of the site (Appendix E). After a two week period to allow the 

ground water level to recover to its original position, an attempt was made to repeat the 

baseline EM measurements in the EMNE well. Unfortunately, due to instrument problems 

the data quality was much poorer than in May and thus this data was not retained. In all, 

the experiment was conducted over a period of three months. 

In Table 1 a summary is given of the cross well electromagnetic data collected in this 

experiment. The induction logging and borehole water conductivity data and results are 
listed in Appendix D and the water level draw-down data collected during the pumping out 

phase are given in Appendix E. 

Table 5.1 - Summary of the cross well EM data collected in the 1992 Richmond Field 
Station experiment. Each cross well data set consists of 18.5 kHz measurements made at 
1 11 source positions for 1 1 receiver depths. 

As described in Table 1, ten sets of cross-well data were collected with the transmitter 
in INJl and the receiver in each of the four surrounding EM wells. Four of these data sets 
were collected before injection and six after injection. The two extra sets were collected 
after injection in order to estimate the system noise. A fuI1 description of the data 

Post Injection 
June 1992 
yes (2 sets) 
yes (2 sets) 

yes 
yes 

processing, estimates of the noise and qualitative descriptions of the data are given in the 

following sections. 

Pre Injection 
May 1992 

yes 
yes 
yes 
yes 

Source Well 

INJ 1 
INJ 1 
INJ 1 
INJ 1 

Receiver Well 

N W  
SW 
NE 
SE 



5.2.1 System verification 
As mentioned in the Section 5.2, considerable time was spent before the data collection 

to verify that the system was operating correctly. Three tests were employed for this 

purpose; 1) noise tests without the source connected, 2) repeatability tests, and 3) a 

reciprocity test. The noise test without the source operating was accomplished by shorting 

the transmitter cable at the cable head, capping it to waterproof it and lowering this shorted 

cable down the well. Once the ground loops had been eliminated from the system, the 
voltage measured by the receiver during this procedure did not exceed 30 yV, which 

corresponds to 3.7 x 10-9 A/m and is less by one order of magnitude than the smallest 

signal measured with the transmitter operating. In addition this signal did not vary by more 
than a few pV as the cable was lowered down the well. 

During the system set up and ground loop elimination, profile repeatability 

measurements were done to check the system stability. These tests involved fixing the 

receiver at some point and then collecting data as the source was moved down the well. 

The measurements were then repeated either immediately after the source was returned to 

the surface, or overnight, and the errors between the two sets of measurements calculated. 

The final repeatability tests before the experiment began were done overnight from April 30 

to May 1 and over the weekend from May 1 to May 4 with the transmitter in INJl and the 

receiver in EMNE at 5m depth. In both of these cases the amplitude and phase repeated to 

approximately 1% and lo, respectively. Repeatability measurements like this were also 

made periodically during the experiment to verify that the system was operating properly. 

The reciprocity measurements provided the final system check. This involved 

collecting two sets of cross hole measurements with the transmitter and receiver each at 15 

m, 30 m and 45 m depth. This yields a total of nine source-receiver combinations. The first 

set of measurements were done with the transmitter in the INJl well and the receiver in 

EMNE. The two system elements were then physically interchanged for the second set of 

measurements such that the source was in EMNE and the receiver in INJ1. The reciprocity 

principle states that measurement at point A due to a source at point B should be identical if 

the points of the source and of the measurement are interchanged. Because this involves 

breaking down and moving the transmitter and receiver systems to opposite wells, errors 

at least twice that of the repeatability errors were expected. 

Reciprocity results measured on May 1 are given in Table 5.2. Notice that except for 

the two points of maximum source - receiver separation, the results are very good. These 

results coupled with the repeatability measurements suggested that the ground loops had 

been eliminated and thus the system was stable enough for the experiment to proceed. 



Table 5.2 - Reciprocity errors calculated for the test conducted on May 1, 1992 at the 
Richmond Field Station with the cross borehole EM system. 

5.2.2 Data processing and system calibration 
Because the receiver output is in Volts rather than units of magnetic field (A/m), the 

system must be calibrated before the data can be analyzed. This calibration process 

consists of determining an amplitude and phase constant, which when applied to the data 
convert the observed voltages to magnetic field intensity, H, per unit dipole moment. 

These two constants were determined after the post-injection measurements had been 
completed. Unfortunately both an amplitude and phase tare were noticed between the May 

and June measurements, and thus corrections had to be applied to tie the two data sets 

Degrees Phase 
Error 

0 . 1  
1 . 3  
-1 .4  - 0 .1  
0 . 1  
0 . 7  

together. 
Since the rocks at the Richmond Field station test site are fairly conductive, calibrating 

the system at the operating frequency without including the earth response is rather 

difficult. In addition, because the geology is relatively complex, determining the calibration 

constants by comparing the raw data to simple layered earth models may yield erroneous 

results. To minimize these problems a dual frequency method was employed to determine 
the amplitude calibration. The first frequency (100 Hz) is low enough so that the earth 
response is minimal at the transmitter-receiver separation employed (20 to 25 m). The 

% Amplitude 
Error 

0 . 6  
1 . 4  
- 7 . 8  
1 . 9  
0 . 1  
- 1.5 

Depth of Tool 
in INJl (m) 

1 5  
30 
45  
1 5  
30 
4 5  

second frequency is the operating frequency of 18.5 kHz at which the earth response is 

large. 
The first step in the amplitude calibration is to determine the transfer function, or 

sensitivity of the receiver coil at each of the frequencies. This was accomplished by placing 

the receiver coil in a calibration solenoid and using a Hewlett Packard spectrum analyzer to 

Depth of Tool 
in EMNE (m) 

1 5  
15  
1 5  
3 0  
30  
30  

determine the transfer function over a wide frequency band. The receiver sensitivity was 

found to be 640 V/(A/m) at 100 Hz and 722 V/(A/m) at 18.5 kHz. The phase shift of the 



receiver coil at 18.5 kHz, which is used to determine the phase calibration constant, was 

also determined at this time. 

The second step in the amplitude calibration is to determine the moment of the 

transmitter coil. This involved measuring the 100 Hz field that resulted from placing the 

transmitter at the top of INJl and the receiver in EMNW well. The voltage measured at'the 

receiver was first converted to the equivalent magnetic field by applying the sensitivity 

constant determined above. Because the 100 Hz field 20 m away from the transmitter is 

not very sensitive to the conductivity distribution between the two wells, the magnetic field 
per unit dipole moment can be estimated using an analytic solution for the magnetic fields 

produced by a dipole source in a layered half-space. The program developed by Lee 

(1988) was again employed for this purpose. 

The magnetic dipole moment is determined by dividing the measured field by this 

calculated field. In this case the moment/unit current (m ,) was found to be approximately 

12.2 m2 and was calculated using the formula 

where V~ioo and Iloo are the voltage in the receiver coil and current in the transmitter 

during the 100 Hz measurements, Hloo is the calculated 100 Hz magnetic field per unit 
moment at the receiver location, and TIOO is the receiver coil transfer function at 100 Hz. 
The total amplitude calibration constant then takes the form 

1. CAL = 
I18.5~ T18.5~ mt 

where I18.s~ is the current in the aansrnitter during the data collection and Ti8.5~ is the 

receiver coil transfer function at 18.5 kHz. This constant (CAL) is used to convert the 
amplitude of the observed voltage to the amplitude of the magnetic field per unit transmitter 

moment. 
The above formula assumes that the transmitter moment per unit current is identical at 

100 Hz and 18.5 kHz. To verify this, we measured the voltage generated in a small loop 

placed around the transmitter coil at the two frequencies. These measurements were made 

with the center of the transmitter coil 80 cm below the surface of the earth and 1 m below 

the loop of wire which was wound around the INJl casing. For a sinusoidal transmitter 



current this voltage is equal to the mutual inductance between the loop and the transmitter 

multiplied by the transmitter current-frequency product, i.e. 

where Mit is the mutual inductance, It is the current in the transmitter coil and is the 

angular frequency. Because the mutual inductance is dependent only on the geometrical 

relationship between the two coils, it is directly proportional to the transmitter moment. 

Thus if it is determined that the mutual inductance is constant at the two frequencies, then it 

can be implied that the moment per unit current is also constant. When this test was 

performed at Richmond it was found that the mutual inductance at the two frequencies 
varied only by 3.3% , thus verifying the constant moment / unit current assumption. 

However this value also indicates that the calibration is only good to 3% and that calibrating 

the data in this manner will introduce non-random e m r  into the measurements. 

Determining the phase calibration constant was relatively simple compared to that of the 

amplitude. The phase shift in each component of the system was first measured separately 

with the lock-in amplifier. The total phase calibration correction was then determined by 

summing all these individual phase shifts. This process was checked by referencing 

various combinations of the system components to a calibration coil of known phase shift 
placed immediately adjacent to the transmitter. The value obtained by summing the phase 

of the individual components was found to be within lo of the value measured with the 

calibration coil. 

As mentioned in the introduction of this section, a tare was noticed between the May 

and June data. To properly tie both sets of data together, the calibration constants were 

adjusted appropriately. We determined that the June data was of better quality compared to 
the May data as the error calculated between repeat measurements was less after the 
injection of the salt water. To verify this we kept the calibration constant for the June data 
the same for each of the wells. The calibration for the May data was then varied on a well 
to well basis such that for points with both the source and receiver at either the top or 
bottom of the well away from the injection zone, the average misfit between the May and 

June data was within approximately 2% amplitude and 1 degree phase. As shown in Table 

3, the May phase calibration constants increase in the order that each data set was collected 

which seems to verify our hypothesis of system instability. The final check was to 

compare the resulting May calibration constants to those determined from a layered earth 

inversion routine developed by Deszcz-Pan (1992, personal communication) to ensure that 
they are correct. The final constants used to calibrate each set of data are given below. 



Table 5.3 - Calibration constants to convert the measured voltages to magnetic field. The 
units for the amplitude calibration are X 10-4 (Amps/m)Nolts and for the phase calibration 
are in degrees. 

5.2.3 Error analysis and data quality 
During the experiment, profiles for a given receiver position were repeated at the 

beginning of each day and whenever a new well was started to ensure that the system was 

operating properly. In general an average of 2% amplitude error and lo phase difference 

were considered good stability bounds for the system. Due to time considerations 

however, greater amplitude errors were often considered acceptable if the phase was stable 

and vice versa. In addition it was noticed that the quality of the data decreases in a 

clockwise fashion from the EMNW well (best) to the EMSW well (worst). This is based 

not only on repeat error analysis but also on the secondary field calculations which are 
presented later. To determine the distribution of and the types of errors and noise present 

in the measurements, extra sets of post injection data were collected in the EMNW and 

EMSW wells 5 days and 2 weeks after the original data, respectively. 

The overall mean error and standard deviation between the original and repeat 

measurements were the first statistics to be calculated. In order to compare the data for 

two wells which are located different distaqces away from INJl , the errors are presented 

in percent amplitude and degrees phase. Table 5.4 shows that both the mean error and 

standard deviation are greater for the EMSW repeat surveys compared to those done in the 

EMNW well. These larger errors may be due in part to the greater distances between INJl 
and EMSW, and the larger time separation between repeats. Histograms for the two sets of 

repeatability errors have also been plotted. As shown in Figures 5.3 and 5.4 the 

distribution is skewed about the mean rather than being equally distributed. 
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Table 5.4 - Mean repeatability error between the two sets of post injection data collected 
between INJl and EMNW, and INJl and EMSW. The two sets of data involving EMNW 
were collected 5 days apart and the data involving EMSW two weeks apart. 

Degrees Phase % Amplitude Degrees Phase 

Mean Error 2.26 

Standard 
Deviation 

To better understand the origin of the noise, two additional sets of statistical 

calculations were made. The first set involved calculating the mean error and the standard 

deviation with the transmitter and receiver at approximately the same level but at different 

depths below the surface. To get a mean error at each depth, the results for ten 

transmitter positions within + 2.5m of the receiver depth were averaged. The differences 

were calculated in terrns of magnetic field rather than relative (percent) amplitude so that 

errors present in both the real and imaginary components as well as amplitude and phase 

could be calculated and compared. 

I -0.81 

1.40 

As shown in Figures 5.5 and 5.6, both the mean error and standard deviation show no 

correlation to the tool depth below the surface. This indicates first of all that the noise is not 

dependent on the length of cable down hole, i.e. the cable is not leaking. In addition, the 

errors do not seem to be caused by surface noise as the magnitude of this type of error 

would decay with increasing transmitter-receiver depth as the noise is attenuated by the 

earth. 
The repeatability errors have also been calgulated as a function of source-receiver 

separation to determine if the noise is truly random as suggested by the above results. 
Again the results were calculated for the real and imaginary components as well as 
amplitude and phase. Due to the geometry of the experiment, there are a larger number of 
data at smaller transmitter-receiver separations than at larger separations. This problem in 

itself may introduce some error to this analysis. 
The results given in Figures 5.7 and 5.8 indicate that the noise is not constant with 

increasing source-receiver separation. Rather, from the closest separation to a source- 

receiver separation of 45m the error decreases at approximately the same rate as the 

magnetic source field. For source-receiver separations greater than 45 m the error stabilizes 
at about 1x10-8 A/m which suggests that this value represents the system noise floor. 

3.30 

0.92 

-1.09 

2.18 1 3 1  



These results coupled with those above strongly imply that some type of electrical leakage 

from the transmitter tool is occurring which is contaminating the results. Unfortunately the 

source of this leakage has not been located and thus this effect can not be decoupled from 

the data. Because of this the noise level is probably higher than the system noise floor, and 

thus here it is estimated to be approximately 5 ~ 1 0 - ~  Alm. 

5.2.4 Data presentation and description 
In order to present all the data measured in the cross well experiment simultaneously, 

they have been plotted in gray scale format as a function of source and receiver position. 

Notice that this is the same format employed to analyze the residual errors in Chapter 4. 

Presenting the data in this manner allows the continuity between profiles to be checked and 

also allows for the detection of any changes that occur due to the injection. Unfortunately 

because the receiver stations are spaced rather far apart (5 m), the interpolation between 

data points is greater in this direction than in that of the source. Because of this distortions 

can occur which are not properties of the data but rather are errors generated by the plotting 

routine. 

Figures 5.9 and 5.10 show the EMNW data sets before and after injection, 

respectively. In both cases the data are smoothly varying both along each individual 

proffie and in between the individual lines. In addition the amplitude is maximum along the 

. diagonal which coincides with the source and receiver being at the same depth. Both of 

these properties tend to imply that the system is operating properly and thus the data is of 

good quality. 

Although the magnitude of the changes is not spectacular, comparing the two sets of 

data indicates that the injection causes changes in both amplitude and phase when the 

source is at a depth of 30m, i.e. when the transmitter is in the plume. These changes 

become much more apparent if we calculate the secondary fields resulting fkom the 

introduction of the plume. This is a simple process which involves subtracting the fields 

measured before the injection from those measured after injection. Figure 5.1 l a  shows the 

amplitude of the scattered fields measured in the EMNW well, and in Figure 5.11b the 

phase differences between the post and pre injection fields have been plotted. In both cases 

a fairly large anomaly is present at a source depth of 30m . The fact that this anomaly is 

several times larger than the noise estimates developed in the last section suggests that the 

EMNW data are of sufficient quality to be used in the iterative Born imaging scheme. It is 

easy to see that by calculating the scattered fields in this manner, the changes caused by the 

plume can be isolated which may lead to a more robust initial interpretation than would 



result by using the total fields. In addition this shows the benefit of making measurements 

over time when trying to monitor injection processes. 

The cross well data set collected in the EMNE well show similar characteristics when 

compared to those measured in E m .  The pre and post injection measurements given in 

Figures 5.12 and 5.13, respectively, are smoothly varying which again implies fairly good 

data quality. However the magnitude of the fields measured in the EMNE well are about 

half those measured in EMNW. In addition the phase has been in general rotated by -30 

degrees. These differences are caused not by very inhomogenous geology but rather by the 

interwell separation being 25m for the EMNE measurements compared to 20m for the 

EMNW data. The additional 5m results in a greater attenuation of the fields. 

The scattered fields measured in the EMNE well that resulted from the injected body are 

plotted in Figure 5.14. These exhibit the same type of character as the fields measured in 

EMNW ( Figure 5.1 1) except that once again the magnitude has been halved. Because the 

secondary fields plotted in these figures exhibit similar properties, a rough, initial 

interpretation can be made that the injected water seems to be heading at least partially in a 

northern direction. 

As mentioned earlier, the data quality appeared to decrease in a clockwise fashion from 

the EMNW well to the EMSW well. This problem is not apparent in the pre and post 

injection data collected in the EMSW well. Figures 5.15 and 5.16 show that the EMSE 

data exhibit approximately the same character as those data collected in the EMNW well 

(Figures 5.9 and 5.10). This should be the case as both wells are located approximately 

20m from the source bore hole. However the secondary fields in the two wells that result 

from the injection are very different. Notice that the scattered field amplitudes (Figure 

5.17a) are much less in the EMSE data than those measured in the EMNW well (Figure 

5.1 la). In addition a .second anomalous zone is apparent when both the source and receiver 

are at depth. The differenced phase data indicate even larger discrepancies. Whereas 
Figure 5.1 1b shows a phase anomaly for the EMNW data that displays a pattern similar to 

that displayed by the amplitude, the scattered phase measured in the EMSE well (Figure 
5.17b) is much different, with the maximum occurring when the receiver furthest from the 
injection zone rather than at the same level. 

The scattered field quality seems to be even worse for the data collected in the EMSW. 
Again the pre and post injection data as shown in Figures 5.18 and 5.19, respectively, 

seem to be of good quality. However the scattered fields plotted in Figure 5.20 indicate 
very little response to the injection process. In fact these results are fairly close to the 

repeatability noise level that was estimated in the last section. 



The scattered fields measurements in each of the wells can be combined to produce an 

initial interpretation. The fact that the anomalies in the northern wells are much greater than 

those to the south indicates that the majority of the water is migrating to the North. This 

interpretation agrees fairly well with that of Bevc and Momson (1992). Some migration 

may be occuning to the southeast, however the almost negligible anomaly observed in the 

southwest data indicates very little injection in this direction. In order to more accurately 

determine how far the plume is migrating in each direction, the iterative Born imaging 

scheme will be employed in the next section to image the conductive salt water body. 

5.3 Interpretation of data 
One of the prime considerations of the Richmond '92 experiment was to produce a data 

set in which the geology, to a first order, exhibits a geometry suitable for the 2-D inversion 

routine. However, because the Richmond geology consists of interbedded conductive 

shales and sands overlying a more resistive basement, the plume can't be interpreted as 

being injected into a homogenous half-space. There are two different methods of 

approaching the problem. The fust is to image the entire conductivity structure between the 

two wells both before and after injection, and then compare the two images to determine 

what changes have occurred due to the injection. The second approach is to image only the 

scattered fields resulting from the injected body using a layered background model which 

approximately mimics the conductivity structure. Both of these methods are employed 

below to determine the position of the plume. In addition these images are compared to 

theoretical results using the sheet model in order to determine the accuracy of the process 

for this experiment. 

5.3.1 Imaging the total field data 
The first step in inverting the total field data before and after injection is to determine an 

average background conductivity. As was done for the Devine images, this value was 

determined by finding the conductivity that minimizes the sum of the residual errors 

between the data and the fields that would exist in a homogenous half space. The residual 

errors in turn are then the scattered fields to which the imaging process is applied. The 

background conductivities that were employed for each cross well pair are given in Table 

5.5 along with the corresponding background induction number for that interwell 

separation. 

As shown in Figure 2.3a the induction numbers listed in Table 5.5 indicate that the 

system is operating on the low induction number side of the Born kernel. In Chapter 4 it 

was demonstrated that at these low induction numbers, the iterative Born scheme 



experiences problems converging to the estimated noise level. This is the result of a bias 

which is produced when trying to fit 3-D data to a 2-D cylindrically symmetric model. Thus 

because the conductivity distribution at Richmond exhibits a three dimensional behavior 

(Pouch,1986), we can expect that the solution will experience difficulty in converging to 

the noise levels that were estimated from the repeatability errors. Because of this, the 

results given in this section were obtained by arbitrarily terminating the scheme after 10 

iterations. It will be seen that this provides adequate resolution of the injected plume while 

also exhibiting artifacts due to the three dimensional nature of the conductivity. 

Table 5.5 - Background conductivities employed to image the Richmond field station 
cross well data. The corresponding background induction numbers have also been 
included. 

Cross Well Pair 
(See Figure 5.1) 

INJl - EMNW 
INJl - EMNE 
INJl - EMSE 
INJl - EMSW 

It was also demonstrated in Chapter 3 that at the lower induction numbers, a given 

source-receiver pair is fairly sensitive to the region outside of the wells. To avoid edge 

effects, the mesh was extended horizontally to a distance twice that of the interwell 

separation, and also from the surface to a depth of 80m. A cell size of 2m by 2m was 

employed which yields a mesh of 800 to 1000 cells depending on the interwell separation. 

To account for the earth-air interface, the layered background model (Section 4.3.4) was 

employed to calculate the fields and Green's functions for a uniform half space. Because 
of the computer time and memory involved in these computations, only 56 source 
positions were incorporated at lm intervals with the 11 receiver locations. This yields a 
total of 616 data points. 

Figure 5.21 shows the images obtained by inverting the pre- and post-injection data 
collected in the EMNW well. For comparison these have been plotted with the conductivity 

logs measured in each of the wells (The well logs are plotted graphically in appendix D). 
Notice that the images do recover the general structure of conductive sediments overlying a 
more resistive basement. Thus as was demonstrated with the Devine data the imaging 

scheme recovers a smoothed version of the well logs. In addition comparing the two 

Interwell 
Separation ,I 

(m) 
2 0 . 0  
2 5 . 0  
19 .6  
2 5 . 0  

Background 
Conductivity, 

Oo (SJm) 
0 .051  
0 .054  
0 .057  
0 .064  

Induction Number 
( 0 0 ~ ~ 1  2, 

3 . 0  
4 . 9  
3 . 2  
5 . 8  



images definitely shows the conductivity changes at a depth of 30m near the source well 

that are caused by the injection of the conductive salt water. A method to better resolve the 

extent of this plume will be examined below. 

A closer examination of the logs in Appendix D indicates the three dimensional nature 

of the subsurface. Even the logs for INJl and EMNW that are given in Figure 5.21 do not 

correlate to each other particularly well. The 3-D nature of the subsurface and thus the cross 

well data manifests itself as artifacts in the 2-D images. Although the contact between the 

conductive sediment and the resistive basement is shown in the logs to exhibit a slight dip, 

it is clearly not as severe as the cross well image in Figure 5.21a shows it to be. In 

addition the image shows a large conductor at a depth of 25m near the receiver well which 

is not apparent in the well log. Because the well logs correlate so poorly with the images, 

these results should not be considered to be high resolution images of the subsurface. 

Rather, the safest conclusion that can be made is that at least a portion of the injected water 

is migrating in a north-westem direction. 

The three dimensional effects are also apparent in the residual errors. Figure 5.22 

shows a non-random distribution in the errors with respect to the source and receiver 

depth. As was demonstrated in Section 4.4 this type of behavior suggests that there is a 3- 

D component in the data. The residuals are especially large when both the source and 

receiver are in the basement. This implies that the iterative Born scheme is finding it 

especially hard to fit the basement region with a cylindrical model. In Figure 5.22a large 

errors exist when the receiver is at 40 m and the source is between 30 and 40m. This 

corresponds to the previously described contact between the conductive sediments and 

resistive basement, and further emphasizes that the image of the dipping contact is most 

likely incorrect. In contrast the post injection residuals show a slightly different character 

in this region. Figure 5.22b shows substantial residuals for all receiver locations whenever 

the source is at 30m depth. Realizing that this is the depth of injection and comparing this 
with the residual plots given in Section 4.4.2 indicates that the plume itself is exhibiting a 
three dimensional nature which the imaging scheme can not account for. Thus some 
caution must be must be taken when interpreting the edges of the injected body from the 
images. 

The images of the cross well the data collected between INJl and the EMNE well are 
given in Figure 5.23. These results demonstrate many of the same characteristics as those 
given in Figure 5.21. The general structure of conductive sediments overlying resistive 

basement is recovered, and a comparison of the pre- and post- injection images indicates 

the appearance of a conductive body near the source well after injection. Again this 
indicates that at least some of the salt water is migrating in this direction. However there 



exists a poor correlation between the well logs and the images which again suggests that the 

imaging scheme is having problems fitting a cylindrical model to the data. 

The residual errors plotted in Figure 5.24 do indicate that there is a 3-D nature to the 

data. Again the largest magnitude errors occur when both the source and receiver are at 

depth suggesting that the basement is very inhomogenous. This inhomogenous nature is 

present in the logs for these two wells, with the basement in EMNE being approximately 

twice as conductive as that in INJl (Figure 5.23a). In addition notice that large residuals 

exist at a source depth of 30m in the pre-injection residuals that are not present in the post- 

injection plots. This suggests that either the introduction of the salt water imposes more of 

2-D geometry on the medium, or that the post-injection data is of better quality. In either 

case it seems apparent that the post-injection image (Figure 5.23b) may be a more accurate 

representation of the subsurface between INJl and EMNE than the pre-injection image in 

Figure 5.23a. 
In general the images of the cross well data collected in the EMSE and EMSW wells 

(Figures 5.25 and 5.27, respectively) display the same characteristics as those collected in 

the wells to the north. A conductive section overlies a more resistive basement and the 
correlation between the logs and the images is fairly poor. As before the cylindrical 

symmetry of the irna-ging scheme has problems imaging the 3-D geometry which is present 

in the data. In fact Figure 5.26 shows that for the southeast data the maximum residual 

errors line up along the diagonal. The fact that the iterative Born scheme always 

experiences problems fitting the data when the source and receiver are at the same depth 

suggests that the geology between these two wells is extremely complex. Although the 

residuals for the EMSW images (Figure 5.28) also tend to line up along the diagonal, the 

pattern is not nearly as strong as that shown in Figure 5.26. 
Although the images of the data collected to the north and south show the same general 

characteristics, one major difference does exist. The results for the southern wells do not 
indicate a drastic change between the pre- and post-injection images within the injection 
zone. In both cases the region of interest is slightly less conductive after injection. These 

results are similar to those in Figure 4.46b which demonstrates that when a 3-D sheet is 

offset in the direction away from the receiver well, resistive artifacts are formed in the 
images. Thus, even though the images in Figures 5.20 through 5.27 probably do not 
represent the true conductivity distribution between the wells, they do yield valuable 
information about the injection process. It is apparent that the water is moving a northerly 
direction which coincides both with the results of Bevc and Morrison (1992) and the data 

analysis presented earlier in this chapter. 



The direction of migration and possibly even the horizontal extent of the plume become 

more apparent if the difference in conductivity between the post- and pre-injection images 

are plotted. This is a simple process of subtracting the values in each cell of the pre- 

injection image from those in the post injection image. Figure 5.29 leaves little doubt that 

the water is heading primarily in a northern direction. Both of the images of the data 

collected in the northern wells (Figures 5.29a and 5.29b) show large positive changes in 

conductivity within the injection zone. In addition notice that the imaged plume for the 

EMNW data seems to be slightly larger and more conductive than that for EMNE. This 

tends to agree with the results of Bevc and Monison (1992) who showed that when the 

injection occurred in INJ, the plume trended in a northwest rather than northern direction. 

However, the greater differences in conductivity in one direction may be an artifact of the 

imaging routine, and this possibility will be discussed in the following sections. 

Also present in each of the images given in Figure 5.29 are negative changes in 

conductivity. Although these could represent resistive water displacing conductive water 

within the injection zone, they are more likely 3-D artifacts of the 2-D imaging scheme 

similar to those observed in the images of section 4.4.2. Again the presence of these types 

of artifacts will be discussed in the next section. 

In this section the iterative Born scheme has been applied to the total-vertical- magnetic 

field data collected at the Richmond Field Station in order to image the subsurface 

conductivity structure. It has been determined that although the general geologic structure 

is recovered, the 2-D model employed by the imaging scheme experiences problems in 

fitting the data to the estimated noise level. This is most likely due to the three dimensional 

nature of the conductivity structure combined with the relatively low operating frequency. 

This inability to fit the data accurately results in the creation of artifacts which don't agree 

with the well logs. However it has also been demonstrated that by observing the changes 

in conductivity between the pre- and post-injection images, the general migration direction 

of the plume can be determined. In the next section a method for imaging the location of 

the plume will be discussed which is not as time and memory intensive. 

5.3.2 Imaging the scattered field data 
The second method of imaging the injected body involves inverting on the scattered 

fields that are generated by the plume, i.e. those fields that are given in Figures 5.1 1,5.14, 

5.17 and 5.20. However, because the geology of the Richmond Field station consists of 

conductive sediments overlying a resistive basement, it isbe inappropriate to simulate the 

injection as occurring in a homogenous half space. Rather, a two layer background model 

can be introduced using the theory outlined in Section 4.4.4. The conductivities of the 



layers as well as the depth of the interface were obtained using a least squares inversion 

technique on the pre-injection data (Deszcz-Pan, 1993, personnel communication). The 

two layer background models that were employed are listed as a function of the cross well 
data set in Table 5.6. 

Table 5.6 - Two layer background models employed to image the scattered fields. 

The mesh parameters were identical to those used in Section 5.4.1 except for one major 

difference. Because the body that is generating the scattered fields is confined to the region 

between the wells, the mesh does not need to be extended as far horizontally or vertically. 

Thus for the two data sets that were collected between wells 20m apart, the mesh was 10 

cells wide and 30 cells deep to cover the 20m by 60m region between. In the two other 

cases where the bore holes are separated by 25m, the mesh width was 12 cells. Again the 

cell size was 2m by 2m. 

This reduced mesh size combined with the smaller magnitude scattered fields results in 

a much quicker run time. For the images given in Section 5.4.1, the CPU time needed to 

calculate the Green's functions and electric fields for each source-receiver-cell combination, 

and then iterate 10 times to produce an image, was approximately 1000 to 1200 minutes on 

a Silicon Graphics, Inc. IRIS INDIGO workstation. In addition, to produce both pre- 
injection and post-injection images the iterative sequence was repeated. Therefore the time 
needed to produce each of the images given in Figure 5.29 was approximately 1600 to 
2000 CPU minutes. However when the scattered rather than total magnetic fields are 
employed a final image of the plume is produced in less than 100 CPU minutes. This time 

savings is the product of two factors: 1) a lower computing time because fewer cells are 
present in the mesh and 2) the Born series converges quicker because the magnitude of the 
scattering body is much smaller. Although this imaging method results in a less accurate 
description of the overall conductivity distribution, it does produce a fairly accurate 
description of the plume in a much more time-efficient manner. 

Layer 2 
Conductivity 

(S/m) 
0.0043 
0.0045 
0.0150 
0.0041 

Layer 1 
Thickness (m) 

34.0 
36.0 
38.0 
38.0 

Cross Well Pair 
(See Figure 5.1) 

INJ1- EMNW 
INJ1- EMNE 
INJ1- EMSE 
INJ 1 - EMSW 

Layer 1 
Conductivity 

(S/m> 
0.073 
0.079 
0.067 
0.076 



The scattered field images that result after five iterations are shown in Figure 5.30. 

Notice that these results compare very well to the "differenced" images in Figure 5.29. 

Images of the data collected between INJl and the two wells to the north (Figures 5.30a 

and 5.30b) indicate the presence of large conductors in the zone of interest, while those to 

the south (Figures 5 .30~ and 5.30d) show very little response at all. Thus again the 
conclusion is that the plume is heading in a northerly direction. 

There are however significant differences between these images and those given in 

Figure 5.29. Figures 5.30a and 5.30b show that to the north most of the conductive 

material is confined within the injection zone. However these images also contain "arms" 

which extend upwards from the plume. It will be shown in the next section that these are 

artifacts which can be attributed to 3-D nature of the conductivty distribution. Artifacts are 

also present in the images of the data collected in the southern wells (Figures 5.30~ and 

5.30d) but they are less well defined. In fact these show much less response compared to 
the corresponding difference images given in Figures 5.29~ and 5.29d. 

A possibly more significant difference between the two set of results is that the 

scattered field image of the data collected in the EMNE well (Figure 5.30b) shows the 

plume to be extending out further horizontally than that of the difference image (Figure 

5.29b). Unfortunately due to the complexity of the geology it is extremely difficult and time 

consuming to accurately model the Richmond Fields Station experiment before and after the 

injection and thus simulate the process that produces the differenced images. Because of 

this it was not determined which of these two methods of reconstructing the geometry and 

conductivity of the plume is more accurate. 

If the aforementioned artifacts are due to a plume geometry that is three dimensional, 

then these effects should also be present in plots of the residual errors. Figure 5.31 shows 

that this is indeed the case, as for each image given in Figure 5.30 relatively large residual 

errors exist at a source depth of 30m which corresponds to the injection zone. Thus it is 
obvious that the cylindrically syrnmemc model can not accurately fit the 3-D data. 

In order to determine if better resolution is attainable, the scheme was allowed to iterate 
ten times on the scattered fields. The resulting images (Figure 5.32) again indicate 

conductive anomalies within the injection zone for the data collected in EMNW and EMNE. 
However, before coming to the conclusion that the extra iterations have improved both the 
accuracy of the images to the north, it must be noted that the mean residual error is 

approaching data noise level that was estimated in Section 5.3.3 and thus the increased 

resolution in these images should be interpreted with caution. 

In addition to the added resolution, the extra iterations seem to have improved the 
accuracy of the solutions somewhat. When comparing Figures 5.32a and 5.32b to Figures 



5.30a and 5.30b, it appears as though the magnitude of the 3-D artifacts actually decreased. 

However, this is not the case for the images of the cross well data collected in EMSE 

(Figure 5.32~) and EMSW (Figure 5.32d) as these phenomenon seem to have increased 

with the extra iterations. This decrease and increase of the image artifacts is also apparent 

in the plots of the residuals. It is evident from comparing Figure 5.33 to Figure 5.31 that 
for the images between INJl and the two northern wells, the magnitude of the errors at a 

source depth of 30m decreases somewhat with the extra iterations. This is not true of the 

images between INJl and the southern wells as the magnitude of these residuals remains 

approximately the same. 

To demonstrate that it is better to employ a layered background model rather than a 

homogenous half space to image the Richmond data, the iterative Born scheme has again 

been applied to the scattered fields that were measured in the EMNE well. However in this 

example a half space with a conductivity of 0.054Slm has been employed. Figure 5.34 

shows the results after five and ten iterations. Notice that in both images the amfacts below 

the injection zone are more pronounced than those above it. In fact Figure 5.34b shows 

part of the plume diffusing downward as well as outward. Thus although it may seem 

unnecessary to employ a layered background model, incorporating it into the solution 

seems to produce more accurate results. 

In this section the scattered fields in a layered background model were used to image 

the location of the injected plume. In terms of determining the direction in which the 

injected body migrated, this method is much more time efficient than imaging the total field 

data before and after injection. Unfortunately it has also been demonstrated that the two 

different methods of recovering the scatterer location can differ in the horizontal extent of 

the body between the wells. In the next section the iterative Born scheme will be applied 

to some simple forward models simulating these scattered fields and the resulting images 

compared to those of the real data to determine the accuracy of the experiment. 

5.3.3 Simulation of the injection experiment 
To crudely simulate the injection experiment, the thin sheet model that was used in 

Chapters 3 and 4 was again employed However the purpose here was not to find the sheet 
model that best fit the scattered field data. Rather, the objective was to demonstrate that a 
three dimensional body which is not symmetric about the source borehole can produce the 
artifacts that were observed in the scattered field images of Section 5.4.2. In addition by 

observing how the images differ for various sheet positions we can determine the 

sensitivity of the cross well EM to the location of the plume in the Richmond Field Station 

experiment. 



The models that were employed are shown on a map of the Richmond Field Station in 

Figure 5.35. The depth of the horizontal sheet is 31.25 m and its conductance is 1s. 
Originally the dimensions were 10m by 10m as suggested by H.W. Tseng (1993, 

personnel communication) as he had found that a sheet of this size this provided an 
adequate fit to the data. However initial attempts with this and other models indicated better 

results occur when a sheet is used that is 12 m long in the east-west direction and 8.5m 

wide in the north-south direction. 

The scattered magnetic fields were calculated for models A, B and C in Figure 5.36 to 

simulate a plume which is migrating to the north of the injection point by varying amounts 

while staying symmetric an east-west direction. Model A in Figure 5.36 simulates a 

minimum of northerly offset as suggested by Tseng, while model C represents the plume 

migrating entirely to the north away from the injection well. In addition results have been 

calculated for model D to simulate additional asymmetry to the west. 

Unfortunately there are some serious differences between these simulations and the 

injected salt water plume that limit how much information can be derived from this study. 

The first major discrepancy is the shape of the sheet. Here the body of salt water is being 

simulated as an infinitesimally thin, rectangular sheet of uniform conductivity. However 

it is known from the borehole logs collected after the injection (Appendix D) that the plume 

is at least 3m thick. In addition it is most likely not rectangular in shape but rather is some 

type of smoothly curved, three dimensional body in which the conductivity is greatest near 

the injection well and diffusively decreases outwards to the edges. A second major 

difference between these simulations and the measured results is that the forward modeling 

code does not allow for the two layer background models that were employed in section 

5.4.2. Instead a uniform half-space model of 0.05S/m was employed. Finally, because of 

numerical considerations, the scattered fields could not be calculated with the sources 

within or in close proximity to the sheet. Thus instead of exactly imitating the data 
collection process, results were calculated at 18.5 kHz for 23 source and 23 receiver 
stations separated at 2.5 m intervals from 5m to 60m depth. 

The fxst set of synthetic images simulate those of the cross well EM data measured 
between INJl and EMNW. Figure 5.36 shows the results for models A, B and C after 5 
iterations which should be compared to Figure 5.30a, while Figure 5.37 demonstrates the 

results after 10 iterations which correspond to Figure 5.32a. Making the appropriate 
comparisons suggests that models A and B offer reasonable approximations to the 

observations while model C does not. Not only do the images of A and B recover the 
position of the sheet in a manner that is similar to the EMNW images in Section 5.4.2, but 

also the resistive artifacts just above the injection zone and the conductive "arms" extending 



off the end of the sheet are similar in appearance. The fact that the magnitude of the 

reconstructed conductiviry in these synthetic images is not as great as in those of the real 

data may be a product of the sheet thickness, the cruder sampling of the synthetic data in 

source position, and possibly a model conductance which is too low. 

To determine the extent of the plume to the south, the results for models A, B and C 
were calculated to simulate the measurements made between INJl and EMSE (Figure 

5.35). Figure 5.38 shows the results after 5 iterations which can be contrasted against 

Figure 5.30c, and in Figure 5.39 the 10 iterations images are given which should be 

compared to Figure 5.32~. The characteristic that is immediately visible is that the model A 
does not produce images that resemble those of the observed data at all. This is due to the 

fact that this model extends far enough to the south so that the cylindrical symmetry at least 

partially is obeyed. Thus the iterative Born scheme is able to reconstruct an image that 

rather accurately recovers the horizontal limits of the sheet. Unfortunately as demonstrated 

in Figures 5.30~ and 5.32~ this is not the case for the real data. 

Synthetic data calculated with Models B and C produce images that more accurately 

recover those resulting from the scattered field data measured between INJl and EMSE. 

This conclusion has been reached by observing the resistive artifact that is reconstructed 

within the injection zone . Figures 5.38b and 5.39b show that for model B this artifact is 

not as well developed as in Figures 5 .30~ and 5.32c, while in the images of model C it is 

too strong and close to the injection well (Figures 5 .38~  and 5.39~). Thus the conclusions 

are that the best sheet model to fit the data collected between INJl and EMSE lies 

somewhere between models B and C, and as expected, the plume is not migrating much to 
the south but rather is primarily heading northward. 

To verify that the conclusions deduced from the forward modeling experiments 

presented above hold for all of the data collected in the experiment, models A,B and C were 

again employed to simulate the two other sets of cross well data. The results for the 
simulated measurements made between INJl and EMNE are given in Figures 5.40 and 
5.41, and for those made between INJl and EMSW in Figures 5.42 and 5.43. Comparing 
Figure 5.40 to 5.30b and Figures 5.41 to 5.32b indicate that a model somewhere between 
A and B seems to offer the best approximation to the data collected in EMNE. Similarly 
comparing Figure 5.42 to 5.30d and Figure 5.43 to 5.32d suggests that the south sheet 
model that best fits the images of the EMSW data probably lies somewhere between models 

B and C. Thus the conclusion is that out of these three models, model B seems to produce 
the images which generally fits all of the data both to the north and to the south. 

One problem that to this point has not been addressed is the fact that the images of the 

salt water body that are present between INJl and EMNW ( Figures 5.30a and 5.32a) are 



more conductive than those for the body between INJl and EMNE (Figures 5.30b and 

5.32b, respectively). In the simulations presented above this phenomenon was not present, 

To determine if this effect could be produced by the plume moving asymmetrically towards 

the west as well as the north, Model D in Figure 5.35 was employed to simulate the data 

measured between INJ1 and both EMNW and EMNE. 
Figure 5.44 shows the images of this simulation after 10 iterations of the iterative Born 

scheme. Comparing 5.44a to 5.37b indicates that offsetting the plume in this direction does 

cause a slight increase in the reconstructed conductivity. However the scheme is also 

tracking the edge of the plume as the conductive zone in Figure 5.44a is shown to extend 

further out than in Figure 5.37b. A similar phenomenon is present when Figure 5.44b is 

compared to 5.41b. Moving the sheet asymmetrically to the west not only results in a 

reduction in magnitude of the reconstructed conductivity, but also the edge of the sheet is 

not imaged as far out between the two wells. Thus the greater plume conductivity in that is 

evident when Figure 5.32a is compared to 5.32b is probably not due to this type of 

asymmetry. Unfortunately at this point we are unable to determine if this is caused by error 

in the data or if the conductive water is migrating preferentially to the northwest. 

There is a good deal of uncertainty about how much accurate information can be 

derived from these simulations and how much credence can be given to these results. As 

previously mentioned, this uncertainty is primarily caused by the fact that 1) the sheet is 

infinitesimally thin while the plume is approximately 3m thick, 2) the models are 

rectangular in shape which is not very realistic and 3) the synthetic data were not sampled at 

the same source-receiver intervals as in the experiment. Because of these problems the 

sheet model was not used in an exact, inverse sense. However there are some useful and 
realistic conclusions that can be drawn from the simulations. First of all, the plume is 

definitely migrating off to the north of the injection well with less than than 2m extension 

towards the south. In addition the maximum northward extension is probably no greater 
than 7 m. Finally, the fact that the nature of the images changes so dramatically as the 

sheet was moved around suggests that the cross well scattered field data contains very high 

resolution information about the plume location. Thus in order to more accurately recover 

the true conductivity distribution within the plume, a three-dimensional inversion code 

such as developed by Newman (1992) which uses all the data from all wells 
simultaneously should be employed. 

5.4 Summary 
The 1992 Richmond Field experiment has proven that a salt water injection process can 

be monitored using cross well electromagnetics. Although the cross well EM system 



performed well enough to detect the large changes caused by the salt water, there is definite 

room for equipment improvement to alleviate problems with drift and system repeatability 

that were observed. A long term repeatability analysis seems to indicate that at least part of 

this problem may be due to some type of electrical leakage from the source tool. In 
addition, if greater data accuracy is required then better methods of data calibration need to 

be designed. 

Even with these problems the data is of sufficient quality not only to detect the 

presence of the salt water, but also to allow for the application of the iterative Born imaging 

scheme. Results from this imaging process correlate well with previous experiments which 

show the injected body to be moving off to the north -northwest rather than spreading 

symmetrically about the injection well. Unfortunately, though the images of the total field 

data provide valuable information about the plume location, they do not correlate very well 

with the available conductivity logs and thus can not be used to accurately interpret the 

geologic structure at the field station. This poor correlation between the images and the 

logs is most likely due to the extremely 3-D nature of the conductivity distribution at this 

site. Although the 3-D nature of the plume is also apparent in the scattered field images, the 

size of the plume and the fact that the fields generated by it can be isolated make these types 

of effects much easier to deal with. Finally, simple simulations with a thin, conductive 

sheet model verify the conclusions of the general location of the plume, although the exact 

boundaries can not be defined. 
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Figure 5.1 - Location map for the building 300 well field at the Richmond Field Station. 
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Figure 5.3 - Histogram analysis of repeatbility enors in EMNW data: (a) amplitude , 
(b) phase. 
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Figure 5.4 - Histogram analysis of repeatability errors for EMSW data: (a) amplitude , 
(b) phase. 
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Figure 5.5 - Error analysis for EMNW repeats with the transmitter and receiver at the same level: 
(a) real component, (b) Imaginary component , (c) amplitude and (d) phase. 
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Figure 5.6 - Error analysis for EMSW repeats with the transmitter and receiver at the same level: 
(a) real component, (b) Imaginary component , (c) amplitude and (d) phase. 
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Figure 5.9 - EMNW data prior to injection. Each line on the receiver axis represents an 
individual profile of continuous data in transmitter depth. (a) Amplitude. (b) Phase. 



Figure 5.10 - EMNW data after injection. Each line on the receiver axis represents an 
individual profde of continuous data in transmitter depth. (a) Amplitude. (b) Phase. 
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Figure 5.1 1 - EMNW secondary fields calculated by subtracting the preinjection data from 
the postinjection data. Each line on the receiver axis represents an indivdual profile of 
continuous data in transmitter depth. (a) Amplitude of the scattered field. (b) Phase 
difference between the post and pre injection data. 



Figure 5.12 - EMNE data prior to injection. Each line on the receiver axis represents an 
individual profile of continuous data in transmitter depth. (a) Amplitude. (b) Phase. 



Figure 5.13 - EMNE data after the injection. Each line on the receiver axis represents an 
individual profile of continuous data in transmitter depth. (a) Amplitude. (b) Phase. 
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Figure 5.16- EMSE data after the injection. Each line on the receiver axis represents an 
individual profile of continuous data in transmitter depth. (a) Amplitude. @) Phase. 



Figure 5.17- EMSE secondary fields calculated by subtracting the preinjection data from 
the postinjection data. Each line on the receiver axis represents an indivdual profile of 
continuous data in transmitter depth. (a) Amplitude of the scattered field. (b) Phase 
difference between the post and pre injection data. 
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Figure 5.18 - EMSW data prior to injection. Each line on the receiver axis represents an 
individual profile of continuous data in transmitter depth. (a) Amplitude. (b) Phase. 



Figure 5.19- EMSW data after the injection. Each line on the receiver axis represents an 
individual profile of continuous data in transmitter depth. (a) Amplitude. (b) Phase. 
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Figure 5.20 - EMSW secondary fields calculated by subtracting the preinjection data from 
the postinjection data. Each line on the receiver axis represents an indivdual profile of 
continuous data in transmitter depth. (a) Amplitude of the scattered field. (b) Phase 
difference between the post and pre injection data. 
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Figure 5.21 - Images of the Richmond cross well data collected between INJl and EMNW plotted with the conductivity 
well logs. The left hand axis (x=Om) represents well INJl while the right hand axis (x=20) represents well EMNW. (a) 
Images of the preinjection data and well logs. Mean residual error after 10 iterations=1.93e-7 Alm. (b) Images of the 
post injection data and well logs. Mean residual error after 10 iterations=1.82e-7 Alm. 
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Figure 5.22 - Residual amplitude error between the Richmond cross well data collected 
between wells INJ1 and EMNW, and the calculated results for the images in Figure 5.21. 
The errors have been plotted as a function of source and receiver depth. (a) Residuals for 
the preinjection image given in Figure 5.21a. (b) Residuals for the postinjection image 
given in Figure 5.21 b. 
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Figure 5.24 - Residual amplitude error between the Richmond cross well data collected 
between wells INJ1 and EMNE, and the calculated results for the images in Figure 5.23. 
The errors have been plotted as a function of source and receiver depth. (a) Residuals for 
the preinjection image given in Figure 5.23a. (b) Residuals for the postinjection image 
given in Figure 5.23b. 
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figure 5.25- Images of the Richmond cross well data collected between INJl and EMSE plotted with the conductivity 
well logs. The left hand axis (x=Om) represents well INJl while the right hand axis (x=20) represents well EMSE. (a) 
Imagse of the preinjection data and well logs. Mean residual error after 10 iterations=4.97e-7 A/m. (b) Images of the 
post injection data and well logs. Mean residual error after 10 iterations=5.04e-7 A/m. 
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Figure 5.26 - Residual amplitude error between the Richmond cross well data collected 
between wells INJl and EMSE, and the calculated results for the images in Figure 5.25. 
The errors have been plotted as a function of source and receiver depth. (a) Residuals for 
the preinjection image given in Figure 5.25a. (b) Residuals for the postinjection image 
given in Figure 5.25b. 
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Figure 5.27- Images of the Richmond cross well data collected between INJl and EMSW plotted with the conductivity 
well logs. The left hand axis (x=Om) represents well INJl while the right hand axis (x=20) represents well EMSW. (a) 
Images of the preinjection data and well logs. Mean residual error after 10 iterations=9.39e-8 Alm. (b) Images of the 
post injection data and well logs. Mean residual error after 10 iterations=8.6le-8 Alm. 
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Figure 5.28 - Residual amplitude error between the Richmond cross well data collected 
between wells INJl and EMSW, and the calculated results for the images in Figure 5.27. 
The errors have been plotted as a function of source and receiver depth. (a) Residuals for 
the preinjection image given in Figure 5.27a. (b) Residuals for the postinjection image 
given in Figure 5.27b. 
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Figure 5.29 - Difference in conductivity between the post- and pre-injection images of the cross well data collected 
at the Richmond Field station. (a) Changes in the images of data collected between wells INJland EMNW. 
(b) Changes in the images of data collected between wells INJland EMNE. (c) Continued on next page. 
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Figure 5.29 (Continued from previous page) - (c) Changes in the images of data collected between wells INJ1 and 
EMSW. (d) Changes in the images of data collected between wells INJland EMSE. 
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Figure 5.31 - Residual amplitude error between the scattered magnetic field data 
measured in the Richmond cross well experiment and the calculated results for the 
images in Figure 5.30. The errors have been plotted as a function of source and receiver 
depth. (a) Residuals for the image given in Figure 5.30a of data collected between INJl 
and EMNW. (b) Residuals for the image given in Figure 5.30b of data collected 
between INJl and EMNE. (c) Continued on next page. 
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Figure 5.31 (Continued from previous page) - (c) Residuals for the image given in 
Figure 5.30~ of data collected between INJl and EMSE. (d) Residuals for the image 
given in Figure 5.30dof data collected between INJl and EMSW. 
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Figure 5.32 - Images of the scattered magnetic field data collected at the Richmond Field Station. The two layer 
background models that were employed are given in Table 5.6. (a) Image of the data collected betwenn wells INJ1 and 
EMNW. Mean residual error after 10 iterations=l.O3e-7 A/m. (b) Image of the data collected betwenn wells INJl and 
EMNE. Mean residual error after 10 iterations=5.36e-8 A/m. (c) Continued on next page. 
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Figure 5.33 - Residual amplitude error between the scattered magnetic field data 
measured in the Richmond cross well experiment and the calculated results for the 
images in Finure 5.32. The errors have been  lotted as a function of source and 
reczver dep& (a) Residuals for the image g i 6 n  in Figure 5.32a of data collected 
between INJl and EMNW. (b) Residuals for the image given in Figure 5.32b of 
data collected between INJl and EMNE. (c) Continued on next page. 
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Figure 5.33 (Continued from previous page) - (c) Residuals for the image given in 
Figure 5 . 3 2 ~  of data collected between INJl and EMSE. (d) Residuals for the image 
given in Figure 5.32dof data collected between INJl and EMSW. 
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Figure 5.35 - Location map for the building 300 well field at the Richmond Field Station 
showing the location of the thin sheet models used to simulate the injected plume. The 
sheet is 12m by 8.5m,. has a conductance of 1.0s and is buried at 30m depth. Models 
A,B, and C represent different amounts of plume offset to the North. Model D is 
identical to model B except that it is offset by lm to the west. 
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Figure 5.37 - Images of the Richmond Field Station simulation shown in Figure 5.35 for the INJ1-EMNW cross well 
pair. A background conductivity of 0.05 Slm was employed and the iterative Born scheme was terminated after 10 
iterations. (a) Image for model A. (b) Image for model B. (c)Image for model C. 
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Figure 5.38 - Images of the Richmond Field Station simulation shown in Figure 5.35 for the INJ1-EMSE cross well 
pair. A background conductivity of 0.05 S/m was employed and the iterative Born scheme was terminated after 5 
iterations. (a) Image for model A. (b) Image for model B. (c)Image for model C. 
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Figure 5.41 - Images of the Richmond Field Station simulation shown in FIgure 5.35 for the INJ1-EMNE cross well 
pair. A background conductivity of 0.05 Slm was employed and the iterative Born scheme was terminated after 10 
iterations. (a) Image for model A. (b) Image for model B. (c)Image for model C. 
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Figure 5.42 - Images of the Richmond Field Station simulation shown in Figure 5.35 for the INJ1-EMSW cross well 
pair. A background conductivity of 0.05 Slm was employed and the iterative Born scheme was terminated after 5 
iterations. (a) Image for model A. (b) Image for model B. (c)Irnage for model C. 
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Figure 5.44 - Images of the model D Richmond Field Station simulation shown in Figure 5.35 for the INJ1-EMNW and 
INJ1-EMNE cross well pairs. A background conductivity of 0.05 Slm was employed and the iterative Born scheme was 
terminated after 10 iterations. (a) Image for the INJ1-EMNW simulation. (b) mage for the INJ1-EMNE simulation. 



Chapter 6 
Discussion and Recommendations for Future Research 

6.1 Discussion 
The use of cross well electromagnetic (EM) probes to image the conductivity 

structure of the subsurface has been investigated for frequencies less than 1 MHz. This 

analysis is based on nonlinear integral equations whch govern the electromagnetic fields 

generated by inhomogeneities imbedded in an otherwise homogenous earth. A 
sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and 

it is assumed that the scattering bodies are azimuthally symmetric about the source dipole 

axis (Figure 2.1). The use of this model geometry reduces the 3-D vector problem to a 

more manageable 2-D scalar form. 
To further simplify the theoretical formulation, the first order Born approximation 

which is the first term in the Born series, has been applied to linearize the integral 

equations. The resulting approximate equations are extremely useful in analyzing 

different aspects of cross well EM imaging. The kernel of the linearized equations can be 
employed to study the sensitivity of various source-receiver configurations and 

operating frequencies to the conductivity structure between and around the boreholes. 

Fast forward modeling schemes can be developed using the first order Born 

approximation and/or the more accurate Born series approximation. In addition the 

linearized equations can be used as a first step in an iterative, nonlinear inversion 

technique to image the conductivity structure between the boreholes. 
The sensitivity analysis has shown that certain characteristics of the cross well EM 

problem are dependent only upon the configuration of the source-receiver array that is 

employed (Figures 2.7 through 2.9). Moving both the source and receiver at the same rate 

downward in the wells such that the tools are always at the same depth results in good 
vertical resolution but poor horizontal resolution. In order to increase the resolution in 

the radial direction, various vertical separations or offsets between the source and 

receiver must be employed. Additional horizontal resolution can be obtained by making 
measurements with both the source and receiver in the same hole (Figure 2.18). 

These are the only general characteristics of cross well EM imaging that are 

independent of the operating frequency and the properties of the medium. However, 
because of the diffusive nature of the fields in the frequency range that we are working, 

the majority of the remaining analysis can be accomplished in terms of two dimensionless 

parameters. The first is the background induction number of the medium which is given 
as ow@ 2 where o is the background conductivity, o is the frequency of operation, p is 



the magnetic permeability of free space and 1 is the source-receiver separation. 

Developing the sensitivity analysis in terms of this parameter allows for experimental 

design and optimization with only a minimal amount of a prior information. For 

example, if the borehole separation is known and an estimate of the background 

conductivity is available, the appropriate frequency can be predicted to operate the 

system such that it is optimal for imaging purposes. 

The second dimensionless parameter has been termed the anomalous induction 
number of the scattering body which is defmed as Aooj~S where A o  is the conductivity 

contrast between the background and the body, S is the cross sectional area of the 

scattering body, and the other terms are defined as above. This parameter is useful in 

defining the limits of the approximate forward modeling scheme. The frs t  order Born 

scheme has been found to be accurate for anomalous induction numbers less than 0.02 
while the Born series converges for AoopS less than 2.0. 

For low background induction numbers( oopl 2 <lo), the sensitivity analysis 

indicates that the secondary fields are small in magnitude when compared to the primary 

field (Figure 2.3). Because of this, the scattered fields generated by an inhomogeneity 

will be difficult to measure unless the dimensions of the scattering body are large. The 

problem is further complicated by the high sensitivity of a given source-receiver pair to 

regions outside the interwell zone (Figures 2.7 and 2.1 1). This phenomenon makes data 
analysis Hicul t  for two reasons. First, the region being considered as a possible source 
for the anomalous fields must not only include the interwell zone but also a large volume 

surrounding the wells. The second factor involves the geometry of the inhomogenous 

region. As demonstrated in Tables 3.7 and 3.8, models with a 2-D cylindrical symmetry, 

2 112D models and 3-D models yield drastically different results even though their cross- 

sectional area in the plane containing the wells is identical. Thus even though both the 

first order Born and Born series approximate modeling schemes work extremely well for 
these low induction numbers, the proper model geometry must be chosen to even 
crudely interpret the data. 

When combined the low induction number phenomena described above result in low 
resolution images. For example Figures 4.3b and 4.4b show that not only is the spatial 
resolution poor but the conductivity is not accurately recovered. In addition if the data are 

generated by a body which does not obey the cylindrical geometry, artifacts can result in 

the images which may lead to misinterpretation. The resolution can be improved 
somewhat if the fields are measured very accurately, and if the horizontal rather than 

vertical field component of the field is employed (Figure 2.14). 

At background induction numbers greater than 50, the problems described above are 



dramatically reduced. A given source-receiver pair detects only a "ray path" like region 

located immediately between the probes and the sensors are much less sensitive to the 

third dimension outside of the image plane (Figure 2.9). Thus the fields that are 

generated by an inhomogeneity between the wells will be independent of whether the 

body exhibits a 2-D cylindrical, a 2 112-D, or a 3-D geometry. In addition, the scattered 

fields are on the same order of magnitude as the primary fields which allows the signals 

of interest to be more easily detected in the presence of noise (Figure 2.3). When all of 

these factors combined result in excellent image resolution of the region between the 

wells (Figures 4.3d and 4.4d). 

There are however two major drawbacks at the large induction numbers that limit the 

usefulness of the imaging scheme developed in this thesis. The first drawback is 

attenuation at high frequencies. Because the EM fields are attenuated much quicker at 

high induction numbers than at low induction numbers, the long vertical offset data 

needed for the horizontal resolution is not measurable within the dynamic range of any 
system that has been designed to date. The second major factor is that the Born series 

solution fails easily at these large induction numbers and thus can not be employed for 

quick forward modeling within the inversion scheme (Figure 3.10). 

Between the background induction numbers values of 10 to 50 lies a region in which 

the problems that are present at lower and higher values are minimized. Not only are the 

scattered fields within an order of magnitude of the primary fields, but the rate of 

attenuation is still low enough so that the large vertical offset data are 

measurable(Figure 2.3). Although the sensitivity functions in this range lack the "ray 

path" quality that is apparent at higher induction numbers, the sensitivity of a given 
source-receiver pair is far more focused between the wells than at lower induction 

numbers (Figure 2.8). The Born series converges rather quickly in this range of induction 

numbers and thus provides for quick forward modeling. All of these factors result in 
excellent image resolution in the presence of noise (Figures 4 . 3 ~  and 4,4c), and thus this 
seems to be the optimal region in which to employ the iterative Born imaging scheme. 

The only notable exception to this rule of thumb occurs when the medium is three 
dimensional in which case the imaging scheme fails to accurately recover the structure 
because of the appearance artifacts (Figures 4.38 and 4.40). 

The use of cross well EM to map the conductivity structure between two wells was 

verified with two field experiments. The analysis of the data collected at the Devine, 

Texas geophysical test site showed that the method recovers the general geologic 

structure (Figure 4.21). In this particular case it was demonstrated that the resulting 

image reproduces a low pass filtered version of the conductivity well log. Unfortunately 



it was also demonstrated that a drift error is present in this data which was not removed 

in the initial data processing. 

The data collected during the injection experiment at the Richmond field station 

provided a more interesting case. Comparisons of the measurements before and after the 

injection definitely show the presence of the electrically conductive salt water. 

Unfortunately noise with a non-Gaussian distribution was again found to be present in the 

calibrated data, however the nature of this noise suggests that it was caused by some type 

of electrical leakage from the transmitter tool. 

The images that result from the iterative Born inversion of the Richmond data are 

very useful for interpreting the hydrologic heterogeneity of the aquifer at depth. 

Unfortunately the three dimensional nature of the geology at Richmond makes high 

resolution imaging of the background structure with the cylindrical scheme impossible. 

However, the crude cylindrical symmetry provided by the injected plume allows for the 

subsurface changes caused by the experiment to be approximately mapped. Although 

artifacts are present in the results, images resulting from 3-D thin-sheet models have 

shown these same type of features. By analyzing these how these artifacts change from 

well to well, the direction of plume migration has been defined to be to the north- 

northwest with very little extension to the south. 

6.2 Recommendations for future research 
The analysis in this thesis has concentrated almost exclusively on the cross well 

method of probing the subsurface. However there are often situations in which only a single 

well, or possibly no wells, are available for use in a geophysical survey. Thus the first task is 

to extend the analysis developed here to other source-receiver configurations such as those 

provided by surface-to-borehole and surface-to-surface arrays. Different sources such as 

electric dipoles, long lines of current, and large loop sources need to be examined, as do the 
pros and cons of measuring both the electric and magnetic fields. This analysis should 
incorporate the coverage diagram concept presented by Zhou (1989) in addition to the 
sensitivity diagrams and the image resolution tests employed here to examine the different 

types of array configurations. 
It was determined that for background induction numbers greater than approximately 

50, the fields resulting from a scattering body become less and less dependent on the third 
dimension of the body outside of the image plane. Unfortunately it was also determined that 

the Born series approximation fails to converge at these high induction numbers. Thus to 

take advantage of the benefits of imaging at these high induction numbers, a more accurate 

forward modeling scheme must be incorporated into the iterative Born scheme. Although the 



imaging code will run considerably slower, the use of the cylindrical geometry should still be 

much quicker than employing a 2 112-D or 3-D geometry. 

A second improvement to the 2-D cylindrical imaging code will involve better 

incorporation of a priori knowledge into the solution. Currently the scheme allows upper and 

lower bounding constraints and a layered space background model to be applied. Both of 

these have been shown to improve image accuracy. However valuable infomation present in 

borehole conductivity logs and any surface conductivity measurements can currently only be 

employed in a qualitative manner to interpret the images. The incorporation of these data to 

constrain the solutions near the boreholes and/or along the surface should significantly 

improve the accuracy and resolution of the resulting images. 

At lower induction numbers where the Born series does converge, the 2-D 

cylindrically symmetric scheme has been demonstrated to be extremely susceptible to 
artifacts caused by 3-D geology. This phenomenon is due to the fact that simple model 

geometry does not allow for electric current flow perpendicular to conductivity 

boundaries. In order to at least partially account for this phenomenon while still 

assuming a two dimensional medium, an imaging code that employs the 2 112-D 

geometry will need to be developed. This code and the 2-D cylindrical scheme should 

then be compared against each other to determine the benefits and limitations of the 

respective geometries in recovering two dimensional images of 3-D conductivity 
distributions. Although codes employing this 2 1/2-D geometry have previously been 
developed (e.g. Torres-Verdin and Habashy, 1993, and Wang and Chew, 1992), for this 

comparison the same least squares inversion technique should be employed so that the 

only differences in the resulting images are caused by the model geometry. 

Along these same lines, simple 3-D inversion codes should be examined as a final 

step in the imaging process. It is obvious from the results presented in Chapter 5 that at 

lower induction numbers there is valuable 3-D information present in the data that the 2- 
D imaging codes can not handle. However, although the 2-D images contain artifacts, 
they do provide reasonable results which can be used to constrain a 3-D inversion. Thus 
simple 3-D inversion codes should be developed which incorporate the 2-D images as 
starting models and as constraints to provide more accurate estimates of the conductivity 
distribution. 

In Chapter 4 it was demonstrated that multiple frequency data can be employed to 

produce better image resolution than single frequency results. However it was also 

demonstrated that the data must be weighted properly in order for these results to be 

obtained. Because the schemes that were employed here give too great of a weight to the 

noise present in the large offset data, different weighting schemes must be examined 



such that wide band data can be more routinely incorporated. In addition, two 

dimensional, multiple frequency imaging of data generated by 3-D structures must be 

examined to determine the benefits and limitations of this approach. 
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Appendix A 

Definition of the Smoothing Matrices 

The formulation for the smoothing matrices that are employed to regularize the 

iterative Born scheme is identical to that given in Zhou (1989). Although described as a 

smoothest model approach, the method that is employed here actually is aflattest model 

type of regularization. The difference between the two methods is that the flattest 
approach involves minimizing the f i s t  derivative between adjacent cells in the model 

while the smoothest model minimizes the second derivative (Menke, 1984). 

Recall from Chapter 4 that the function we wish to minimize is given by 

s(O' ) - ~ D ~ D  = aT (KTK + X,A;A, + X,A~A,)O' - 2 ~ ~ ~ ~ 0 ' ~  (A-1) 

where 0' is the object function that we are solving for, D is the data vector, K is the 
sensitivity matrix, A, and A, are matrices representing a discretization of the first 

derivative in the horizontal and vertical directions, respectively, and the X's are the 
associated Lagrangian multipliers which control the degree of flatness. Thus A ~ A ,  

represents the square of the first derivative in the horizontal direction which is given in 

matrix form as 

where H has the form 

In these equations K is the number of cells, or unknowns in the horizontal direction and 

L the number in the vertical direction. Similarly the square of the fust derivative in the 



vertical direction, ATA,, has the matrix form 

where I is the identity matrix given by 



Appendix B 
Derivation of the Layered Space Background Model 

The method employed here to derive the theoretical formulation for the 1-D 

layered model containing either a magnetic dipole or large loop source follows that of 

Stoyer (1977) and Wait and Hill (1980). The reader is referred to Figure 4.26 which 

shows the geometry of the problem. 

The starting point for the derivation is Maxwell's equations as given in equation 

2.1; 

V X H  = oE +Js (B-1) 

and 
V x E  =-ioyH (B-2) 

where E is the electric field, H is the magnetic field and Js is the applied source 

distribution. In order to foxmulate a general solution that can handle both dipole sources 
as well as the Green's functions which consist of large loops of current, JS takes the form 

where I is the current flowing in the loop source, a is the radius of the loop and 6(r - a)is 

the Dirac delta function. Thus for a magnetic dipole source, a is set equal to zero. 

The general solution for the fields can be written in terms of the magnetic Hertz 
potential , II, (Stoyer, 1979). The electric fields are given in terms of this potential as 

while the magnetic fields have the form 

where k. is the wave number in the medium given by 

The solutions given in Equations B-4 and B-5 are derived such that the Hertz potential in 

each layer satisfies the relation 



where the subscript i refers to the i'th layer. Wait and Hill (1980) show that the problem 

can be further simplified due to the cylindrical symmetry. If the model obeys this 
geometry, then Urn contains only a vertical component and thus Equations B-4 and B-5 

become 

and 

In addition this assumption allows for equation B-7 to be expanded and simplified; 

l a  a a2 (--r- + - + k:)n; = 6(i)6(r - a)&z - d)I. (B- 1 1) 
r ar  ar az2 

Wait (1970) has shown that the solution to equation B-11 is a zero order inverse Hankel 

transfom which is given by 

where j o (hr )  and j l ( h )  are the zero-th and first order Bessel's functions of the f rs t  
kinds, respectively, and Ui(h) and Di(h) represent the reflected upgoing and 

downgoing components of the EM wavefield in the i'th layer. Notice that if we consider 
the case of the magnetic dipole source of unit moment we can use a small argument 
approximation to let 2 J, (h)/h = 1 and thus expression B-12 becomes 

1 -  h lTy = -- J [6(i)e-yilz+di + U, (h)eTiZ + D, ( ~ ) e - ~ ~ ' ]  - Jo (Xr)dh. 
4n o 

(B- 13) 
Yi 



Equation B-9 can also be integrated in r and z over a cell of dimensions A2 to 

yield equations for the integrated Green's function. The resulting expressions have the 

form 

(B- 14) 

if zk = Z, i.e. if the cell is singular, and 

for the non-singular cell where the subscript k indicates the cell across which the current 
is being integrated, and v(h,rk + A / 2,rk - A / 2) is calculated using expression (3.9). 

These three expressions combined with equations B-8 through B-10 account for any 

source field and/or Green's function that will be encountered in a medium that obeys the 

cylindrical symmetry. 
The solutions for Ui (h) and Di (A) come from solving the boundary conditions of 

tangential E and H at each of the layer interfaces. Assuming that the magnetic 

permeability in each layer is equal to that of free space, the tangential electric field 

boundary condition is given by 

where zi designates the depth of the interface between the two layers. Similarly the 
tangential magnetic field boundary condition is given as 

Notice that although expressions B-8 and B-9 both contain partial derivatives with 
respect to r, these types of derivatives are not present in Equations B-13 and B-14. This 



is due to the fact that the derivative with respect to r involves only the zero'th order 
Bessel's function , the solution of which is given as dJ,(x) l dx = - J , ( x ) .  Taking this 

derivative on each side of equations B-16 and B-17 yields identical results in r, and thus 

they cancel each other out. 

The last step in the derivation is to define conditions at infinity. In the lower half 
space there can be no upgoing component and thus U,(h) = 0. Similarly in the upper 

half space there can be no down going component which yields D-,(h)=O. Thus the 

boundary conditions given in expressions B-16 and B-17 are solved from the layer 

containing the source to the point of interest with these conditions imposed upon the 

problem to yield the expressions given in Section 4.3.4. 



Appendix C 
The LLNLILBL Cross Well EM System 

The contents of this appendix are condensed from a paper submitted for 

publication by Wilt et al. (1993). The measurement system consists of two modules. The 

transmitter section includes a transmitter solenoid, a current source to drive it, and a 

winch and cable system to allow for a downhole deployment of the source. The receiver 

module consists of a commercial sensor attached to an armored cable, one stage of 

surface amplification and filtering and a commercial synchronous detector. Data is logged 

using a desktop computer. The modules are connected only via electrically isolated 

cables. A requirement of the instrumentation from each module is that it be locally 

grounded, have its own power supply and be electrically isolated from the other module. 

Such grounding and isolation is vital for the elimination of stray currents and ground 

loops that degrade data quality. 

C1 Transmitter section 
A schematic diagram of the cross hole transmitter system is given in Figure C-1. 

Although a down hole oscillator is preferred, simplicity of assembly dictated that the 

initial prototypes of the transmitter be powered from the surface. The source used in the 
Richmond experiment was built around a ferrite core. This is the preferred material for 
induction coils at frequencies greater than 5 kHz because it is essentially nonconductive 

thereby eliminating eddy current losses. Making use of readily available material, a 

tubular core was constructed from of a large number of stacked 1.27 cm thick ferrite 

(Cornell type XYZ) toroids. The resulting tube has an outside diameter of 4.4 cm and a 

length of 197 cm. The diameter of the inner void space is 1.91 cm. The core was wound 

with 125 turns to maximize the output at 18 kHz and has an inductance of about 2 mH. 
In order to attain the required moment of about 100 ~ - m ~  a current of 3.5 A was used. 
The effective relative magnetic permeability for this core is about 150. This minimizes 
inductive losses in the core such that only about 125 watts of power are needed to drive 

the resonant transmitter circuit. These power requirements can be easily met by using an 

ordinary laboratory signal generator coupled to a Crown model 610 power amplifier. 

To move the source within the boreholes a lightweight portable electrical winch 

that holds 200 m of cable was employed. This lightweight winch and coil may be easily 

moved by two people and are convenient to use in shallow applications such as those 
encountered at Richmond. The transmitter depth and rate of movement are monitored 

with a wheel-driven encoderlcounter. In addition to providing depth information, this 



encoder pulse also serves as a data acquisition mgger at the receiver. 

The transmitter current is monitored with an inductive-type current meter 

connected to the source output. This analog record of the current is sent to the receiver 

via an isolated line where it is used as a phase reference. Note that the current is only 

roughly proportional to the source moment due to the non linearity of the core material. 

Therefore calibration corrections such as those derived in Section 5.3.2 are relied upon to 

determine the source moment from the transmitter current measurement. 

C2 Receiver section 
Signals are detected at the receiver using a vertical-axis custom-designed borehole 

coil (Electromagnetic Instruments, BH-8). This receiver coil is an ultrasensitive device 

(maximum sensitivity of Teslas), operable in the frequency range from 1-100,000 

Hz. The tool is housed in a pressure vessel designed for depths up to 2 km. Detected 
signals are amplified within the coil then transmitted to the surface up a logging cable. At 

the surface they are further amplified and filtered before input to the receiver van (Figure 

C-2). In the van all instruments are controlled from a desktop computer via the GPIB 
interface. The computer can adjust instrument gains and sensitivities as well as select 

sample and averaging rates for the logging system. 
Data logging in the computer is triggered by the depth-encoder pulses originating 

at the transmitter winch. The computer counts the incoming pulses until one 

corresponding to a pre-selected measurement depth is received. When this occurs the 
computer reads the transmitter current data from a digital voltmeter connected to the 

inductive current probe, and magnetic field data from the lock-in detector. The lock-in 

detector uses the transmitter current wave form as a reference signal and detects receiver 

signals in-phase and out-of-phase. It is a very effective device for accurately 

discriminating low level signals in a noisy background. The spectrum analyzer depicted 
in Figure C-2 is used as a debugging tool as well as to calibrate system components. 

C3 Cross-Borehole Logging 
A particular borehole segment is logged by moving the transmitter coil upwards at 

a fixed rate while the receiver remains stationary in another borehole. Although 

equivalent information could be collected by moving the receiver coil while the 

transmitter is fxed, doing so results in very noisy data due to the motion of the sensitive 

detector in the earth's magnetic field. The source coil is typically moved at a rate of 3-5 m 

/minute. This allows sufficient time for signal averaging but is still a reasonable rate for 

data collection. Data is collected at approximately 1.5 cm intervals within a logging 



span. However the data are stored by the computer only at 0.5m intervals with these 

values consisting of seven readings that are averaged as the transmitter moves past. 

Typically the source well is logged over a depth interval that is 1.5-2.0 times the 

separation between boreholes as this is a minimum interval required for tomographic 

reconstruction (Zhou, 1989). Due to time considerations only 10-15 receiver stations are 
employed to cover the depth interval traversed by the transmitter. 







Appendix D 
The Richmond Well Field and Borehole Logs 

This appendix summarizes the well logging information that was obtained during 

the 1992 Richmond field station experiment. Table A1 provides information on the well 

field at Richmond Field Station which is shown in Figure 5.1. Through February, 1992 

14 wells have been drilled in the 10 acre field west of building 300. These wells were 

drilled in four separate episodes beginning in 1986. 
The first nine wells were drilled in 1986 for a borehole-to-surface resistivity 

experiment (Bevc and Morrison, 1991). Wells INJ and EXT (not shown in Figure 5.1) 

are opened through steel-screening to a gravel aquifer at 26-30 m. This screened interval 

is also used an electrode. There are also two other steel electrodes in each well located 10 

m above and below the screened interval. Wells OBS1-6 are plastic-cased observation 

wells opened only at the bottom of the 30 m casing. These wells were designed for water 

level measurements although they have also been used as geophysical observation wells. 

Wells EMNE and EMSW, which straddle the injection well INJ, were added in 

1989 in order to make crosshole EM measurements. These wells are separated by 52 m 

and penetrate to a depth of 90 m making them the deepest wells in the field. They are 

sealed at the bottom and are not open to the formation at any point. 

In 1990 wells CASl and CAS2 were drilled at the southern end of the field (not 

shown in Figure 5.1) and cased with steel. These wells are designed for experiments 

involving measurements through steel casing. At this same time two 30m deep wells 

(RES1 and RES2) were drilled and a series of downhole electrodes grouted in place for 

the purpose of making crosshole resistivity and MMR measurements. Eight resistivity 

electrodes, spaced at 3 m intervals, are emplaced in each of these wells beginning at a 
depth of 9 m. 

The most recent set of boreholes (INJ1, EMNW and EMSE) were added in 1992 

for the present salt water monitoring experiment. Each of these wells are 70m deep, 

capped at the bottom and are open to the aquifer at 30m depth. 



Borehole 

OBSl 
OBS2 
OBS3 
OBS4 
OBS5 
OBS6 
nuJ 
EXT 

EMNE 
EMSW 
RESl 
RES2 
CASl 
CAS2 

EMNW 
EMSE 
INJ1 

Year 
Drilled 

1986 
1986 
1986 
1986 
1986 
1986 
1986 
1986 
1990 
1990 
1990 
1990 
1990 
1990 
1992 
1992 
1992 

Casing 

4" PVC 
4" PVC 
4" PVC 
4" PVC 
4" PVC 
4" PVC 
6" PVC 
6" PVC 
6" PVC 
6" PVC 

- 
- 

4" steel 
4"steel 
6"PVC 
6"PVC 
6"PVC 

Open 
Interval 
(m) 

at bottom 
at bottom 
at bottom 
at bottom 
at bottom 
at bottom 

26-30 
26-30 

no open int 
no open int 
no open int 
no open int 
at bottom 
at bottom 

26-30 
26-30 
26-30 

Remarks 

depth=20m 

grouted 
grouted 

steel-cased 
steel-cased 

Table D l  - Richmond Field Station well field. 

D l  Borehole induction logs 
Baseline borehole induction resistivity logs were recorded in most of the boreholes at 

Richmond during April 1992 using a Geonics model EM-39 logging instrument. The 

induction logs that were collected are listed as a function of the well location in table D-2 
and are plotted in Figure D- 1. Measurements were made at 0.05 m increments as the tool 

was moving upwards in the borehole. Although five of the wells are drilled to depths of 

70 m or more, the induction logs were limited to a depth of 50 m by the length of the 

available logging cable. Several logs were done twice and typically these repeated to 

within 5 percent. 
A second set of logging data was collected in June, 1992 after the salt water was 

injected. The only significant difference that was observed was in well INJl which is the 
salt water injection well. Figure D-2 shows both the pre- and post-injection logs that 
were measured in this well. The difference between the two logs indicates a change in 
resistivity due to the salt water in the vicinity of the injection well. The largest decrease is 

observed in a 4 m thick sandy-gravel aquifer at a depth of 26-30 m, where the well is 

perforated. In this zone the rock has decreased in resistivity from 15 ohm-m to 3.5 ohm- 

m. A second, thinner zone where the resistivity is different is present from 23 to 25 m 
depth. These two zones of low resistivity zone around well INJl are surprisingly large 

and suggests that the unconsolidated silts and sands have a fairly high permeability. 



INJ 
EXT 

EMNE 
EMSW 
RESl 
RES2 
CASl 
CAS2 

EMNW 
EMSE 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
no 
no 
no 
no 
no 
no 
no 
Yes 
Yes 
yes 

borehole 
OBSl 

Table D2 - List of the logging data collected during the 1992 Richmond experiment. 

Ind logs ( Water conduct 

I 

Except for well INJl we observed no significant changes in well log resistivity 

due to salt water injection. This includes well INJ, which is located only 5 m northeast of 
well INJ1. However there were variations noticed in the borehole fluid conductivity at 

depths from 26-30 m (see next section) which suggest that any perturbations in the 

resistivity of the open interval (26-30 m) in this well were most likely obscured by the 

presence of steel screening. Notice that no significant changes in resistivity were 
observed from 23 m to 25 m depth as had been in borehole INJ1. 

D2 Borehole fluid conductivity logs 
In addition to the induction logs we also measured the conductivity of the borehole 

water before and after salt water injection. These measurements are designed to improve 
the tracking of the salt water and also to provide knowledge of the in-situ groundwater 

conductivity. 

In Figure D-14 the borehole water conductivity profiles measured after the injection 

are plotted for seven of the wells. Of these seven, high conductivity water (=I S/m) was 

found in only two of the wells, INJl and INJ. Both these profiles show the water 



conductivity increasing towards the bottom of the well with values that approach the 

conductivity of the injected fluid. Because salt water is more dense than fresh water, this 

sort of stratification was expected with the salt water occupying the basal layer. (Note: 

the higher conductivity in INJ when compared to INJl is due to INJl being flushed out 

with fresh water after the injection was completed.) In all other wells the groundwater 

conductivity was the same before and after injection (= O.OgS/m). 











resisitivlty (ohm-m) 

Figure D2 - Pre- and post-injection resistivity well logs collected in well INJ1. 



Water Conductivity (Slm) 

0.0 0.2 0.4 0.6 0.8 1 .O 

.. ." . - INJ - EMSE - OBS 1 

--- - 
OBS 6 

Figure D3 - Water conductivity measured on June 10, 1993 in seven of the boreholes at 
the Richmond Field Station. 



Appendix E 
Well Drawdown Data 

To withdraw the 50,000 gallons of salt water that were injected in May, water was 

pumped out of INJl starting at 11:OO am on July 6, 1992 and continuing until 1: 15 PM on 

July 28, 1992. During the withdrawal approximately 3 18,000 gallons was removed with 

the pump fixed in the well at 40 m depth and the pumping rate held at 10 gallons per 

minute. Water level measurements were made in eight of the boreholes open to the 

aquifer by Hung Wen Tseng and Peter Persoff starting immediately after the pumping 

began and continuing throughout the salt water extraction. These measurements were 

made to determine the hydrologic characteristics of the site and are plotted as a function 

of time in Figure B 1. 
To ensure that the salt water had been completely withdrawn, the electrical 

conductivity of the water pumped out of INJl was monitored with a conductance meter. 

The conductivity as a function of time is plotted in Figure B2 with the drawdown data 
from the INJ borehole. At the conclusion of the pumping the conductivity of the 

extracted water approached 0.076 S/m. Water conductivities measured in borehole OBS4 

ranged from 0.068 S/m at the water table to 0.072 S/m at the bottom of the well. 

Because this well is 36 m from INJl and did not experience a large drawdown, it was 

determined that the conductances measured here are representative of the original values. 

Therefore we concluded that all of the injected salt water had been extracted. 

Two conclusion were made from this pumping test. The first is that drawdowns 

in the boreholes to the south of INJl were much smaller than those to the north. This 

suggests that the aquifer is more conductive to the north and thus the injected plume 

moved in a northerly direction. The second conclusion is that EMNW and OBS6 have 
the largest drawdowns compared to the other boreholes except INJ. This indicates that 

EMNW and OBS6 have better hydrologic connection with INJl than the other wells that 

are open to the aquifer. 
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