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ABSTRACT

Traditional thermal stress analysis is based on an uncoupled approach in which the
thermal problem is solved on a fixed geometry, and the resulting temperatures are then
used to load a mechanical problem. In contrast, a fully coupled thermomechanical anal-
ysis solves the thermal problem on the deforming geometry and incorporates thermal
loads into the mechanical problem. Thermal contact, in which heat flow paths depend
on the mechanical deformations of adjacent surfaces, is a major component of many
fully coupled thermomechanical analyses. This paper describes the development of a
Lagrangian finite element thermomechanical contact methodology. The paper focuses
on the formulation and implementation of thermal contact in two dimensions. The
proposed approach accommodates arbitrarily large relative motions of contact surfaces,
fully unstructured meshes, pressure-dependent contact resistance, conduction across
small gaps, and approximate models for convection and radiation. The proposed ther-
mal contact formulation has been implemented in the Lawrence Livermore National
Laboratory public code PALM2D and has been used to solve a diverse set of ther-
momechanical problems. Examples illustrating the performance of this code on large
deformation thermomechanical problems are presented and discussed.

1. INTRODYCWION

Coupled thermomechanical effects arise in many physical problems where mechanical
deformation generates heat, where deformations are large, or where multiple bodies
come into contact and exchange heat across the interface. These problems are fully
coupled, in contrast to the classical thermal stress problem where the temperature field
drives the mechanical response but the mechanical response has no effect on the thermal
problem. Although numerical methods for the classical thermal stress problem have re-
ceived much attention over the years, much less consideration has been given to the fully
coupled problem. Further, the computational treatment of general thermomechanical
contact con<'itio.. in a finite element context has similarly received little attention. This
paper discussc  : efficient nonlinear finite element method for the fully coupled ther-



mormechanical problem, and highlights the development of a general thermomechanical
contact capability and fully adaptive solution algorithm.

Fully coupled thermomechanical problems arise in many areas of engineering. For
example, in the analysis of explosives containers subjected to fire environments, de-
formations may be sufficiently large that they affect the solution to the heat transfer
problem, thus requiring a coupled solution for accurate results. Similarly, the simula-
tion of metal forming manufacturing operations frequently requires the ability to include
heat generation by mechanical deformation and thermomechanical contact effects in the
analysis. For example, in the extrusion of metal parts, the large plastic deformations
can generate enough heat to cause thermal softening of the material, and evolving ther-
momechanical contact affects the cooling of the workpiece through heat transfer to the
die. These effects combine to produce temperature gradients in the workpiece which
strongly affect subsequent deformation patterns. Such metal forming process simu-
lations allow production operations to be optimized, and therefore reduce waste and
cost. These examples illustrate some of the diverse problem areas which require a fully
coupled thermomechanical analysis. )

The objective of this research was to develop a powerful thermomechanical contact
capability and an adaptive solution methodology for the solution of fully coupled ther-
momechanical problems. In addition, it was desirable to develop a numerical method
which was highly vectorizable to yield good performance using modern supercomputers
on real engineering analysis problems.

The outgrowths of this research have been implemented into the Lawrence Livermore
National Laboratory (LLNL) coupled thermomechanical code PALM2D [1]. The initial
version of PALM2D was based on the successful nonlinear heat transfer code TOPAZ2D
by Shapiro [2] and on the nonlinear solid mechanics code NIKE2D by Engelmann and
Hallquist [3], all developed in the Methods Development Group at LLNL. PALM2D
introduced an implementation of the staggered step formulation which integrates these
components to solve the fully coupled thermomechanical problem. The work described
herein has substantially extended the capabilities of PALM2D beyond those of the initial
version and has allowed the solution of new classes of interesting problems.

2. FORMULATION

This section describes the formulation of the adaptive staggered step approach to cou-
pled thermomechanical analysis with contact as implemented in PALM2D. First, the
governing equations are stated and the appropriate boundary conditions are given, high-
lighting the statement of thermomechanical contact conditions. The development of
semidiscrete matrix equations is then briefly outlined for both the energy equation and
the momentum equation. Next, a brief summmary of algorithms for the adaptive solution
of the nonlinear algebraic equations is presented. Finally, the coupling methodology
and its implementation is discussed in some detail.

2.1 The Momentuin Equation

The continuum equations of motion on a domain 2 may be wriiten
0ijj + bi = pily, (1)

where o,; is the Cauchy stress tensor, b; is the body force density per unit volume, p is the
mass density, and u; are the displacements. Superimposed dots denote differentiation
with respect to time, lower-case indices are assumed to range from one to three, and
repeated indices are summed.

The continuum boundary T can be divided into a boundary I'pyyy where displace-
ments are prescribed, a boundary I'ysr where surface tractions are prescribed, and a
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Figure 1. Discretization of the contact boundary showing the gap function g, the
“effective one-dimensional conduction element,” and the interface element area 4.

boundary I'asc where mechanical contact conditions apply. Conditions on the boundary
may be written as

u; = ui(z,t) on T'yy, (2)

where u} is a given function, or
oijn; =ti(x,t)on Ty, 3)
where t}(z,t) is a given function and n; denotes the outward surface normal vector, or
oijnin; = tn(z) on Tme, (4)

where ¢y is the normal surface traction (negative in compression) arising from the
contact of two bodies. To define the mechanical conditions on I'p ¢, it is convenient to
introduce a gap function gy which is the “distance” between a point on one body and
its closest point projection on another, as shown in Figure 1. The mechanical contact
conditions can then be written

in(z) L0, (5)
gN(Z) b 0, (6)
tn(z)gn(z) = 0. (7)

Thus, the normal traction t) is nonzero only when the gap gn is zero, and conversely,
the gap gn is greater than zero only when the normal traction ty is zero.
In addition, initial conditions on velocity

ii(z,0) = do(z) Ve € Q (8)

must be specified for dynamic problems.



2.2 The Energy Equation

For an anisotropic solid, the energy equation on a continuum domain Q may be written
(kT3 )i + QT + QM = peT, (9)

where T is temperature, k;; is the thermal conductivity tensor, QT is the volumetric rate
of heat generation from thermal sources, Q™ is the volumetric rate of heat generation
from mechanical sources, p is the material density, and ¢ is the heat capacity.

The solid has a boundary I" which can be divided into a boundary 'y where tem-
peratures are prescribed, a boundary I'rp where heat flux is prescribed, and a boundary
I'rc where flux conditions such as convection, radiation, and interface conduction de-
pend on the position of the body relative to other bodies.

Conditions on I'rr and I'rr may be written as:

Specified temperature:

T= T'(z,t) on I'rp, (10)

where T is a given function, z is a position vector in Q, and t is time, or

Specified surface heat flux:

gini = —¢*{(z,t) on Irp, (11)
where ¢° is a given function, ¢; are components of the heat flux vector, and n; are
components of the outward surface normal vector.

Conditions on I'r¢c may be written as the sum of several heat flux contributions,

gini = gcF + gc1 + qri + 4RF, (12)

where gcF is the heat flux due to natural or forced convection, gcr is the heat flux due
to interface conduction, grs is the heat flux due to interface radiation, and gqrr is the
heat flux due to far-field radiation. The boundary conditions on I'r¢ are schematically
depicted in Figure 2.

Convection:

gcr = hcp(T ~Te) on’ I'rc, (13)
where hcr is the convective heat transfer coefficient and 7, is the free-stream temper-
ature. Motivated by the discussion in [8], the specific form of hcr has been chosen to
be

hcr = k(gn)hcr(=2,t, TYT - T,)*, (14)
which can characterize various types of free convection for nonzero exponents a. Multi-
plier k(gn) has the effect of stopping or slowing convective heat transfer when adjacent
bodies come close or touch and thereby inhibit the convective transfer process. The
function k(gn') is defined as

1 o if gv 2 dyunr
x(gn) = rei—doe) i deut < 9N < dgun (15)
if gv < deus,

where dyyi and d.y: are empirically determined distances. Thus, when another body
approaches I'rc closer than d.yq, then it is assumed that boundary layer interaction
prevents significant convective fluid motion and the convective flux is set to zero. When
an approaching body is farther away than djuy, then boundary layer interaction is
assumed negligible and the full convective heat flux is used in the computation. For
approach distances between dyy;; and d.y:, a linear interpolation is used as represented
in (15).
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Figure 2: Schematic depiction of the thermal boundary conditions.

Interface conduction:

gcr = hei(Ta = Th) on Trc, (16)

where T, and T} represent the surface temperature of body a and body b, respectively.
The specific form of conductance hc; depends on whether two adjacent bodies are in
contact. When bodies are in contact (t5 < 0), the conductance h¢y is 2n empirically
based function of contact pressure and temperature,

hcr = hei(tn,T), (17)

and depends on such things as material properties and the shape and distribution of
surface asperties (i.e., surface roughness). When two adjacent bodies are not in contact
(tv = 0), but are close to one another, heat is (potentially) conducted across the
interface through the medium filling the gap and thus

her = her(gn,t). (18)
Generally, conductance across the interface will diminish as the bodies move away from

one another, perhaps dropping off as ’LN in simple cases.

Interface radiation:

grr = hri(gn, TYT,} - Ty) on Trc, (19)

where hgpy is the interface radiation coefficent. Radiative heat transfer takes place
between surfaces of adjacent bodies. When bodies are close together, coefficient hg;
can be determined based on the same considerations as radiation between two parallel
planes.

Far field radiation:

grr = hrr(z, T,1)(T, — T%) on Trg, (20)



where hgF is the far-field radiation coefficient which may be a function of position, time,
or temperature, and Ty, is the exchange body temperature. The coefficient hgp char-
acterizes the effect of geometric view factor, emissivity, and reflectivity on the amount
of radiative heat transfer between boundary I'r¢ and a far away body.

In order to properly handle the case where one body is initially close to another
body so that interface radiation dominates, and subsequently moves far away so that
far field radiation dominates at a later time, a linear interpolation from g¢gr; to grr
based on distance gy is postulated. The interfaceé (near-body) radiative mechanism
is considered dominant when two bodies are closer than a given distance dy.qr, the
far-field radiative mechanism is considered dominant when two bodies are farther apart
than a given distance dy4r. In an analogous way to that described above for convection,
linear interpolation based on the distance gn is used to find the radiative heat flux
contribution for dp.qor < gn < djqr.

In addition, for transient problems, temperature initial conditions of the form

T(x,0) = To(z) Vz € Q (21)

must be specified.

2.3 Matrix Equations

The weak forms of the momentum equation and the energy equation are constructed
separately using standard techniques. After introducing a spatial finite element dis-
cretization this results in a set of second order and first order nonlinear ordinary differ-
ential equations in time. This process is briefly outlined below.

Momentum equation:

Constructing the weak form of the momentum equation (1), using boundary conditions
(2) - (4), and spatially discretizing the resulting equations using finite elements yields
a coupled system of second order ODEs of the form

Mii + F™(u,4,T) = P(u,b,t,T), (22)

where M is a mass matrix, F'™ is an internal nodal force vector, P is an external
nodal force vector, u is a vector of nodal displacements, and T is a vector of nodal
temperatures. )

Note that, in general, both the internal nodal force vector F*"' and the external
nodal force vector P*** are functions of temperature T. In addition, the excernal nodal
force vector P contains contributions from mechanical boundary conditions and loads
as well as from contact pressure arising from the contact of two or more bodies.

For “quasistatic” analysis, @ = 0 in (22), but the equations may still be time-
dependent if viscous effects are incorporated into F"', such as from a rate-dependent
constitutive equation. For the special case where F*"* is not explicitly time-dependent,
then (22) is a set of nonlinear algebraic equations to be solved at each load step of an
incremental approach. For time-dependent analysis, (22) may be discretized in time
using the Newmark-£ time integration scheme. This results in a similar set of nonlinear
algebraic equations which must be solved at each time or load step.

Energy equation:

Similarly, constructing the weak form of the energy equation (9), using boundary con-
ditions (10) - (12), and using a finite element spatial discretization yields a coupled
system of first order ODEs of the form

CT +G"™(T) = R(T,Q",Q" 1), (23)



where C is a capacitance matrix, T is a vector of nodal temperatures, G is a vector
of internal nodal heat fluxes, R is a vector of external nodal heat fluxes which also
includes contributions from internal heat generation, Q7 is a vector of element thermal
heat generation rates, and QM is a vector of element mechanical heat generation rates.

If steady-state conditions are assumed, then T = 0 in (23) and a nonlinear algéebraic
equation is obtained. This equation is then solved using an incremental approach de-
scribed in the following section. If transient thermal effects are considered, the ODEs
(23) are discretized in time using the midpoint rule, again yielding a nonlinear algebraic
system to be solved at each time step.

2.4 Thermomechanical Contact

The contact algorithms presented herein are based on a slave node on master segment
concept. Search algorithms are used to find the closest point projection of a slave node
onto a master segment, as shown in Figure 1.

The external nodal forces arising from mechanical contact are derived using a penalty
or augmented Lagrangian approach for the enforcement of the inequality cunstraints
(5)-(7). The details of this procedure are discussed in [9] and are not repeated here.

The nodal heat fluxes arising from thermal contact are found by assuming one-
dimensional heat conduction between the slave node and the closest point on the mas-
ter segment in a manner similar to that discussed in the excellent paper by Zavarise,
Wriggers, Stein, and Schrefler, [6]. An average tributary area A, shown in Figure 1, is
computed for the slave and master node pair and is used to compute the total heat flux
across the contact surface. Some care must be used in the computation of this average
area for the case in which one or both sides of the interface is sharply curved.

2.5 Solution Algorithms and Coupling

A “staggered step” approach is used to achieve the thermomechanical coupling in an
efficient and versatile setting for use with adaptive solution methods. In this approach,
thermal calculations are performed on the geometry calculated at the end of the previous
step. The resulting temperature field is then used in the mechanical calculations to
find the updated geometry and stress fields. The thermal problem and the mechanical
problem are each solved using an implicit formulation, although an explicit formulation
could be used for either component with only minor changes to the coupling algorithm.
At each time step, a set of nonlinear algebraic equations is generated for the thermal
problem, and another set is generated for the mechanical problem. These two systems of
nonlinear equations are individually solved using a linearization and iteration procedure.

The alternative to the staggered step formulation is a fully implicit coupling, wherein
all thermal and mechanical unknowns are assembled into one large, nonlinear algebraic
system of equations. These equations are then solved simultaneously for the updated
thermal and mechanical response variables. The fully implicit formulation enjoys more
robust time stability properties than does the staggered step formulation, but requires
substantially more computer memory and execution time, and is somewhat less flexible
with adaptive methods. Further, time stability has not been observed to be a difficulty
for the engineering problems studied thus far, and the technology for fully implicit cou-
pling may not exist for some coupled thermomechanical-chemical problems of interest.

It is often desirable to use different step sizes in the thermal and mechanical solu-
tion procedures due to differing physical time constants. For example, during a phase
change the thermal properties of a material may evolve very rapidly, and thus a very
small thermal time step must be used. It is often possible to use a much larger me-
chanical step size and still obtain an accurate solution to these problems. Conversely,
a large deformatioa problem may require relatively small mechanical steps while toler-
ating quite large thermal steps in achieving a solution. The staggered step approach



facilitates “substepping” within either the thermal or mechanical step to accommodate
these problems. Frequently, these regimes are intermingled and occur during different
stages of the same problem. 1t is therefore highly desirable to have an adaptive solution
methodology which can automatically adjust the thermal aiid mechanical step sizes,
based on given criteria, to obtain a solution.

The staggered step formulation in PALM2D is interfaced with the adaptive solution
control language ISLAND {5] to incorporate adaptive time steps and solution procedures
for the thermal and mechanical problems. ISLAND, Interactive Solution Language for
an Adaptive Nike Driver, is a solution control language which allows the flexible speci-
fication of adaptive solution procedures. Adaptivity may be based on evolving solution
quantities such as incremental change in temperature, strains, or strain rates, or on past
iteration convergence behavior. ISLAND in PALM2D may change the time step size for
either the thermal or mechanical problem, may alter the iterative solution algorithm,
or may back up (in solution time) in case of nonconvergence and retry the next step
with altered solution cont:»] parameters. ISLAND in PALM2D can also be used to con-
trol boundary conditions and loads based on the evolving solution. This capability can
be used to solve coupled thermomechanical problems subjected to external constraints,
such as maintaining target strainrates in a superplastic forming problems.

2.6 Implementation

This section briefly outlines the solution procedures as implemented in PALM2D. In
the following, subscripts refer to time step number, and it is assumed for simplicity that
substepping is not used. The extension of these ideas to accommodate substepping is
straightforward but notationally intensive.

For both the steady state and transient cases, the nonlinear algebraic system for the
thermal problem arising from (23) is solved by an incremental Newton-Raphson itera-
tion procedure to find the nodal temperature vector Ty, assuming that all quantities
at time t,, are known. During this solution procedure, all spatial integrals and deriva-
tives in (23) are evaluated on the most recent geometry #,, and incorporate the current
mechanical volumetric rate of heat generation QY. The mechanical contact conditions
are held constant throughout the thermal step, and therefore the gap parameter appear-
ing in the thermal contact equations is also constant. This assumption facilitates the
use of a consistent linearization of the energy equation in the iterative solution process.

Similarly, the nonlinear system for the mechanical problem arising from (22) is solved
by a linearization and iteration procedure for the displacement vector u,,, assuming
that all mechanical quantities at time ¢, are known and thermal quantities at time
tn41 are known. Our experience has indicated that often quasinewton methods, such
as BFGS, offer cost-effective solutions to (22). A complete discussion of the nonlinear
solution procedures in PALM2D and NIKE2D is given by Engelmann and Whirley in
[5], and their implementation is discussed in [4].

3. APPLICATIONS

The new version of the LLNL public code PALM2D described herein has been used to
solve a variety of coupled problems at LLNL.

3.1 Thermal Contact Example

In order to illustrate the behavior of the various thermal contact boundary conditions
in a simple context, the two body thermomechanical problem shown in Figure 3 was
solved with PALM2D. The top and bottom three inch square blocks are given initial
temperatures of 1000° and 0°, respectively, and the temperature of the gas in the gap
region is 200°. The temperature of the bottom surface of the bottom block is prescribed



(b)

17
J

(d)

(s)

(c)

Figure 3: Geometric sequence of motion showing the onset of contact, sliding
motion, and separation.

to be 0°, and the temperature of the top surface of the top block is prescribed to be
1000°. The sides of the blocks are insulated. Initially separated by a two inch gap, the
blocks are first moved into contact, and then pressed into one another. Next, the top
block is slid across the bottom block, while maintaining the contact pressure, until it
slips off the bottom block and elastically rebounds.

Figure 4 shows the temperature at several points on the lower block as a function of
time. The vertical lines in the figure serve to delineate the various contact regimes. The
interface conduction is assumed to be both gap and pressure dependent to illustrate this
flexibility. For times between 0 and 2500, the blocks have only convective heat transfer
with the gas in the gap region, and reach a thermal equilibrium. Gap conduction
becomes active at ¢ = 2500 and increases until ¢ = 10,000, when the blocks come
together. The heat transfer rate into the lower block, and thus its temperature, is
increasing during this process. Contact pressure increases between times of 10,000
and 12,500, and further increases the heat transfer rate. Sliding motion occurs from
t = 12,500 to t = 15,000, when the top block slides off of the bottom block. During
this sliding, the leftmost part of the bottom block first loses contact with the warmer
top block, begins losing heat to the gas by convection, and thus cools first. The middle
and right top locations on the bottom block are subsequently exposed, and thus begin
the cooldown process at successively later times as shown by the dotted and dashed
lines in the figure. The top block remains stationary for ¢ > 15,000 and temperatures
in the lower block return to thermal equilibrium with the gas, exchanging heat only
through convection. This example demonstrates the lower block first attaining thermal
equilibrium, next being perturbed from equilibrium by contact with a moving hot block,
and finally returring to equilibrium once the hot block has passed.
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Figure 4: Temperature at left, center, and right top edge of lower block as a
function of time. Note the dramatic influence of thermal contact conditions
on the temperature variations.

3.2 Solidification Analysis

The second example is a solidification analysis performed at LLNL. The objective of
this simulation was to determine the shrinkage and residual stresses in an aluminum
melt as it solidified in a steel can. The axisymmetric finite element model] is shown
in Figure 5. Mechanical loads arising from gravity were included, as were radiation
and convection heat transfer on the top surface of the melt and the outside surface of
the can. Thermomechanical slidelines were defined between the aluminum and steel.
Interface conduction was enabled across the slideline with a gap and pressure dependent
conductance.

The melt was given an initial temperature of 940° K, slightly above Ty, = 933°
K. The can cools by exchanging heat with its environment, and the molten aluminum
solidifies and shrinks by 6.6% (by volume). This shrinkage causes the aluminum to
pull away from the can wall, diminishing ‘urther heat transfer across the interface. A
time sequence of heat flux vector plots at Jour stages of the solidification is shown in
Figure 6. The early stage plot shows that heat is flowing smoothly from the melt into the
can wall all along the boundary since the aluminum is initially in contact. Subsequent
figures show the melt solidifying and pulling away from the can wall. Aluminum initially
separates from the can wall at the top, and then “unzips” progressively further down
the can wall until, at the final stage, contact is retained only in the corner region. This
simulation is representative of a fully-coupled problem, and the importance of a general
thermomechanical contact boundary is clear.

4. SUMMARY

This paper has presented a general thermomechanical contact formulation including
aspects of pressure and gap dependent interface conduction, convection in gap regions,
and interface radiation. The concepts were presented in the context of a staggered step
approach for the solution of fully coupled thermomechanical problems. An effective
adaptive solution strategy for the resulting equations was outlined and discussed. The
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thermomechanical contact algorithms and adaptive solution methodologies have been
implemented into the LLNL public code PALM2D. The application of PALM2D to
a simple slider problem and a solidification problem were discussed to illustrate the
performance of the proposed formulation in actual engineering applications.
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