i ) he LAY

. Con 0 (e - - 40y

UCRL-JC-113296
PREPRINT

Stability of the Face-Centered-Cubic Phase of
Heavy Rare Gas Solids

Francis H. Ree
Yumi Choi

: This paper was prepared for submittal to the
: Proceedings of the Joint AIRAPT/APS Conference
Colorado Springs, CO
June 28-July 2, 1993

StP 03 €3
July 1993

This isa preprintofa paperintended for publicationin ajournal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

Sl

EOTHIE Do = S UNLINMIETED
DISTRIBUTION OF THIE CrO VUMMENT 1S UNLINIT




DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use
would netinfringe privately owned rights. Reference hereinto any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute orimply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.
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Our recent perturbation theory is applied to show that heavy rare gases solidify into a face-centered-cubic phase
over a large temperature range near the melting lines. We have investigated the static, harmonic, and anharmonic
contributions to the excess Helmholtz free energy and the stability to the face-centered-cubic phase. The observed
stability is due to thermal contributions in the Helmholtz free energy.

X-ray diffraction experiments have shown that
solid neon, argon, krypton, and xenon are in a face-
centered-cubic (fcc) phase up to their melting lines,
while helium freezes into a hexagonal close-packed
(hcp) phase (with a small temperature range where
the freezing to a fcc phase was recently observed).! In
contrast, available theoretical calculations predict
helium (at > 15 K) in a fcc phase and heavier rare gas
solids in a hep phase.23 Helium behaves differently
from the rest because of its highly quantum
mechanical nature and significant many-body
contributions in its interaction potential. We will
confine the present investigation to heavy rare gas
solids whose crystal structure has remained
unexplained for the last two decades.

The crystal stability is governed by the Helmholtz
free energy, A, which consists of the static, harmonic,
and anharmonic contributions:

A = Eg + A (harmonic) + A (anharmonic) , (1)

where Ey is the static lattice sum, and A (harmonic)
and A(anharmonic) are harmonic and anharmonic
contributions to A, respectively. Since the fcc and hep
crystals have the same first and second neighbor
lattice positions, Eg's for the two lattices differ by
interaction energies of higher neighbors.

The static energy for a physically reasonable pair
potential almost always favors the hcp phases over
the fcc phase. It is due to a small difference, E/NkT =
(Efce - Encp)/ Efce = -1x104 in the long-range attractive
interaction, but it contradicts the experimental
observation. To overcome the difficulty, Alder and
Paulson added a small bump to a pair potential near
the third neighbor lattice position.4 Strictly speaking,
such an artificial bump has no theoretical basis.
Salsburg and Huckaby showed that the harmonic

approximation stabilizes the fcc phase for argon.>
However, their careful calculation was limited to the
OK-density and depended sensitively on the second-
nearest-neighbor approximation. Effects of density
variation, higher-neighbor interactions, and
anharmcnic contributions to the crystal stability have
not been included in their work.

Several investigators have examined three- and
higher-body potentials as a possible cause for the
crystal stability. Bell and Zucker computed the static
energy difference including long-range many-body
forces.6 They concluded that the many-body forces
are not sufficient to account for the stability of the fcc
structure, although the hcp structure preference by
the two-body forces is diminished. Niebel and
Venables arrived at a similar conclusion (Ref. [2], p.
564).

A theory which can distinguish a small difference
(within 0.1%) in the Helmholtz free energy of the two
phases is required to resolve the crystal structure
problem mentioned above. We have recently
developed a perturbation theory (PT) of fluids and
solids”8 and the hard-sphere radial distribution
functions? for the fcc and hcp phases. The PT differs
from the conventional quasi-harmonic lattice
dynamics (LD) method in that the PT uses a short-
range harsh (hence, very anharmonic) potential as a
reference potential in contrast to the LD which
considers only the harmonic lattice vibrations. We
have previously shown that the PT gives reliable
results at low solid densities and high temperatures
(e.g., near melting line) where large anharmonic
contributions to thermodynamic quantities make the
LD less useful. The motivation of the present work is
to find out whether the PT can be applied to explain
the crystal stability of rare gas solids and also to
evaluate their melting properties. In this work, we



show that the PT indeed predicts the observed fcc
phase stability for heavy rare gas solids.

The PT divides a pair potential, V(r), into the
reference, V(r), and perturbation, W(r), potentials.
Details of the separation scheme are given Refs. 8 and
10. The division of the potential is made optimum so
that, when the configurational Helmholtz free energy
(A) is expanded as a perturbation series, the
inclusion of the reference (Ap and first-order
perturbation (Ap) contributions, together with the
first-order quantum correction (Aqm) for atomic mass
of m, is sufficient to yield accurate results at high
temperature; i.e.,

A=Ag +A1+Aqm. : (2)

In Eq. (2) Agis the Helmholtz free energy of the
hard-sphere reference system.8 Its expression requires
the entropy constant of hard-spheres, Sy at the close-
packed density. The value of Sy (fcc) is -0.24Nk,11
while Sp (hep) is evaluated from the difference, AS =
So(fec) - So(hep) = 0.002Nk .12 Expressions for Aj and
Agm are given Refs. 10 and 13.

Evaluation of Ay [Eq. (17), Ref. 9] requires a
knowledge of the hard-sphere diameter, d, and the

hard-sphere radial distribution function, g (r/d). Our -

calculations employ the Weeks-Chandler-Andersen
formula for d.14 For the fluid g(r/d), a reliable
analytic fit is available.15 For the solid g(r/d), we use

accurate expressions which we developed recently.13
The present work utilizes the Lennard-Jones (LJ)

potential,
V(r) = 4¢e [(ofr) 12 - (olr)6] , 3)

where parameters € and o for heavy rare gas solids
are summarized in Ref. 13. The L] potential
parameters should provide accurate thermodynamic
properties in the range of pressure and temperature
where experimental melting data are available, i.e.,
from the triple point to at least 1 GPa.13 For higher
pressure data, we use the exponential-6 (exp-6)
potential. Figure 1 shows that the L] potential fits the
low pressure datal013 and exp-6 potential fits the
high pressure data.10

To investigate the crystal stability, it is instructive
to consider a difference of the free energies between
the fcc and hep phases,

AA = A (fco) - A(hep) , 4

for the total as well as each of the three contributions
(i.e., static, harmonic, and anharmonic) to A. For this
purpose, we made separate LD calculations to
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Figure 1. Melting lines of neon, argon, krypton, and
xenon. Solid line = Lennard-Jones potential; dashed line
= exp-6 potential; circle = experimental data [Ref. 16].

evaluate A (harmonic). Differences between the PT
and LD data in turn provide the anharmonic
contribution. We will denote these differences as
AA (total), A A (static), AA (harmonic), and
AA (anharmonic). Figure 2 shows AA's for neon with
and without quantum correction along the melting
line. As the quantum correction, Aqm is negligible for
argon, krypton, and xenon, their AA's fall onto the
classical calculation. AA (static) is nearly constant and
has a positive sign. However, it is about one fifth of
the thermal contributions, AA(thermal) =
AA (harmonic) + AA (anharmonic), bott of which are
negative. As a result, AA (total) is small < 0.1% of A)
but negative, implying that these solids will
crystallize into a fcc phase (instead of a hep phase). It
is in agreement with experiment described earlier.
Note that, even if the magnitudes of A (anharmonic)
and A (harmonic) are significantly different,
AA (harmonic) and AA (anharmonic) are similar in
size. It demonstrates importance of the anharmonic
contribution to the crystalline stability. The quantum
corrected AA (anharmonic), hence, AA (total), is
lower than the classical value by a small amount
(about 0.001NT ). The enhanced stability of the fcc
phase for neon is due to the quantum mechanical
contribution to AA (anharmonic).

The magnitude of AA (total) decreases with
temperature. A similar tendency is also seen in
experimental data. It led Niebel and Venables? to
suggest that the thermally excited lattice vibration



will tend to destabilize the fcc crystal. Figure 2 shows
that the anharmonic component, AA (anharmonic),
increases markedly with temperature and it, rather
than AA (harmonic), is largely responsible for
destabilizing tendency.
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Figure 2. Static, harmonic, anharmonic contributions
to the Helmholtz free energy difference, [A ( fcc) -
A (hcp)]/NKT, along the melting lines of neon with
quantum and classical calculations.

In summary , the statistical mechanical results
obtained in this work show that the crystal stability in
the neighborhood of the melting lines of heavy rare-
gas solids is due to the thermal contribution to A
rather than the static lattice energy sum. It is
worthwhile to emphasize that the PT considers full
harmonic and anharmonic contributions to A. The
calculation only requires an effective pair potential
that can reliably describe thermodynamic properties.
Such an “off the shelf” potential (e.g., as used in this
work) can be found in the literature within a limited
(T, P) range of applicability.

The PT is based on the first-order perturbation
correction, Ay, in the high-temperature perturbation
expansion. Hence, its range of applicability is limited
to temperatures above kT/e = 0.8. It is expected to
become less reliable at lower temperatures. However,
our calculations for argon at 1 atm show that the PT

correctly predicts the stability of the fcc phase at
temperatures as low as 60 K (or kT/e = 0.5).
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