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The Symposium concluded with prepared summaries by four experts in the involved

disciplines. These experts made no mention of statistics and/or the statistical content

of issues. The first author contributed an extemporaneous statement at the

Symposium because there are important issues associated with conducting and

evaluating numerical modeling that are familiar to statisticians and often treated

successfully by them. This note expands upon these extemporaneous remarks.

Statistical ideas may be helpful in resolving some numerical modeling issues.

Specifically, we comment first on the role of statistical design/analysis in the

quantification process to answer the question "what do we know about the numerical

modeling of underground nuclear tests?" and second on the peculiar nature of

uncertainty analysis for situations involving numerical modeling.

The simulations described in the workshop, though associated with topic areas, were

basically sets of examples. Each simulation was tuned towards agreeing with either

empirical evidence or an expert's opinion of what empirical evidence would be. if

agreement was not reached, that is, if the tuning was not successful, a discussion was

provided of what was lacking and how the model should be embellished in order to

reach agreement. While the discussions were reasonable, whether the

embellishments were correct or a forced fitting of reality is unclear and illustrates that

"simulation is easy." We also suggest that these examples of simulation are typical

and the questions concerning the legitimacy and the role of knowing the reality are

fair, in general, with respect to simulation. The answers will help us understand why

"prediction is difficult."
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Successful prea_ction demands comprehensive understanding of the relationship

between the situation used to develop the model and the situation to be predicted so

that in some sense prediction is interpolation (or not-too-gross extrapolation). This

brings us now to the first issue with statistical content: with respect to a specific area

from numerical modeling, how do we determine what we know? Some sort of a

systematical evaluation is in order. Statistical design/analysis offers a tool for such an

evaluation. Consider for example a relatively simple and hopefully reasonably well-

understood area, that of one-dimensional hydrodynamic modeling, what we must

accomplish for simulated yield estimation within a spherical geometry. We think

conceptually of the set of simulations that could be done to encompass the reality of

1-D hydrodynamic experimentation. Each point in that space, here called a parameter

space, is defined by a set of material properties and modeled using well-established

mechanisms. The systematic evaluation begins with a check-off in that parameter

space. Where have simulations been done? Where have such simulations been

validated by being compared to experimental data? Looking across the simulations

that have been done, to what degree is there compatibility? Where in the parameter

space are there simulations that in some sense are anomalous and do we have

explanations? For example, an interesting and important fact is that in some cases,

simulations do not agree with reality, because input parameters, such as material

properties, are determined by tests conducted in the laboratory. Glenn [Ref. 1]

showed laboratory mechanical behavior that was distinct from the behavior of the

same material in a field exercise. Thus in some sense the simulation was placed at

the wrong point in the parameter space.

Once this systematic description of what simulations have been done and the level of

agreement is established a plan can be formulated for "filling in the holes", that is, for

increasing what we l,, Jow. At that point, because budgets are finite and ever

shrinking, we must be economical in our attack in filling in the holes. We need a buy

in from the modelers and so that the increased level of knowledge is attained in an

efficient, timely, and economical fashion.
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A possible interesting application of empirical or statistical modeling here would be to

develop a model that would predict the results of a numerical model based on a fit of

the numerical model's outputs on the input points in the parameter space [Ref. 2].
•.,_',

Such "modeling the model" approaches have been successful in complex reactor melt

down catastrophe situations [Ref. 3] where each simulation of a catastrophe is very

computer intensive so that it is really impossible to cover the parameter space in a

timely and economical fashion.

The second statistical issue we wish to discuss is uncertainty in the context of

numerical modeling. Uncertainties are usually measured by the degree of agreement

with an experiment or other description of reality. Uncertainties are either random or

systematic. In the context of numerical modeling, random uncertainty, usually thought

of as measurement error, is an explanation for why empirical measurements do not

exactly agree with a correct model. Random uncertainty is the more familiar, being the

one that is usually treated in the statistical literature. Random uncertainty is reduced

by doing more of the same. The simplest example is independent repetitions of a

simple experiment to estimate a single unknown quantity. That quantity is estimated

with the mean over ali the repetitions of the experiment. Quadrupling the number of

repetitions of the experiment halves the uncertainty as measured by the root mean

squared error. In more complicated situations, say where the random uncertainties

are correlated from repetition to repetition, tile reduction in root mean squared error is

not as dramatic. However, in general, with enough repetition, a pre-specified root

mean squared error can be attained.

Systematic uncertainty is much more complicated. Here the same error is present in

ali repetitions, averaging over more does not reduce such error. In t_qecontext of

numerical modeling, systematic uncertainty as a problem is some fundamental

difference between data and model. Systematic uncertainty indicates that deeper

thought is necessary, possibly more physics, in order to construct and/or improve the

model to include an explanation for the systematic effect. The critical point is that in

comparing numerical modeling to reality most of the uncertainties appear to be
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systematic. "[he solution is either to improve the models so that the systematic

uncertainties are eliminated, or to understand/bound the maximum size of systematic

uncertainty and, hence, the maximum disagreement that is possible between model • ,_',

and reality.

Hydrodynamic yield estimation provides an excellent example of the uncertainties that

appear to be present in the results of numerical modeling. Figure 1 is such an

example of yield estimation as a function of time, determined by yield scaling a

hydrodynamic standard to a CORRTEX radius-verses-time curve at each time point.

The random uncertainty in the raw CORRTEXcrush length data is only several

centimeters on a mean squared basis. The several familiar characteristics of the curve

are systematics. The short term oscillating patterq is unexplained, but conjectured to

be the result of ill-understood dynamics in the cable crushing process. The shape and

amplitude of the pattern seems to be dependent on the type of cable. The steep initial

rise in yield and low frequency oscillation are systematic discrepancies between reality,

the CORRTEX radius-versus-time, and simulation, the hydrodynamic modeled radius-

versus-dme. Thus, yield appears to be a moving target. The final yield value, usually

attained as an average over the analysis window and here illustrated as the horizontal

line, clearly depends upon where the window is located.

A critical issue here is, what do we do if we do not know the yield and truly have to

depend upon the CORRTEX experiment and the modeling of that experiment with an

appropriate hydrodynamic calculation. One might argue that if there is a monotone

trend across the time window, then whatever the discrepancy is between experiment

and hydrodynamic model, it changes sensibly in the same direction as the shock front

moved out to the satellite hole. Hence, the time with the least systematics is the early

time. Of course one can argue just as logically for other time windows. The reality is

that we do not know which time window gives the best yield estimate. In particular,

selection of a time window because the yield-versus-time curve is flat over that window

is no more logical than other selections.
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Figure 1. A typical yield-versus-time curve from a single CORRTEX

cable. The average yield was set arbitrarily at 100 kt.
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