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ABSTRACT

A gridless numerical technique called smooth particle hydrodynamics (SPH) has been coupled to
the transient dynamics finite element code, PRONTO. In this paper, a new weighted residual deriva-
tion for the SPH method will be presented, and the methods used to embed SPH within PRONTO will
be outlined. Example SPH-PRONTO calculations will also Depresented.

One major difficulty associated with the Lagrangian finite element method is modeling materials
with no shear strength; for example, gases, fluids and ",xplosive bi-products. Typically these materials
can be modeled for only a short time with a Lagrangian finite element code. Large distortions cause
tangling of the mesh, which will eventually lead to numerical difficulties such as negative element
area or "bow tie" elements. Remeshing will allow the problem to continue for a short while, but the
large distortions can prevent a complete analysis.

Smooth particle hydrodynamics is a gridless Lagrangian technique. Requiring no mesh, SPH has
the potential to model material fracture,large shear flows, and penetration. SPH computes the strain
rate and the stress divergence based on the nearest neighbors of a particle, which are determined using
an efficient particle sorting technique.

Embedding the SPH method within PRONTO allows part of the problem to be modeled with quad-
rilateral finite elements while other parts are modeled with the gridless SPH method. SPH elements
are coupled to the quadrilateral elements through a contact like algorithm.

A WEIGHTED RESIDUAL DERIVATION F()R SMOOTH PARTICLE HYDRODYNAMICS

Here, we derive the equations for smooth particle hydrodynamics (SPH) using a weighted residual
approach. This derivation follows the approach used in a displacement based finite element method.
Trial and test functions of the same class as the displacement are used in the formulation. A spherical ,'l_

basis function is used to interpolate the displacements and velocity.
SPH was first applied by Lucy [1] to astrophysical problems and was extended by Gingold [2] and
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' Monaghan [3]. CIoutman [4] has shown that SPH could be used to model hyperveloclty impacts.
Libersky and Petschek [5] have shown that SPH can be used to model materials with strength.

The weighted residual derivation presented here generates a consistent mass matrix for the SPH
technique. When this consistent mass matrix is lumped, then the current method reduces to the classi-
cal formulation for SPH. The weighted residual derivation also generates the terms required for pre-
scribed boundary tractions. These traction terms can be reduced to the same form as derived by Camp-
bell [17].

Displacement and Strain Aooroximation

In SPH, the displacement at a point is approximated using kernel estimates. The displacement kernel
estimate starts from the identity

u(_r) = j_u(r')_5(r-r')dr' (1)

where _ris the three-dimensional position vector and _i(t"- c') is the Dirac delta function. If _i(_r- r')

is replaced by a kernel function W (_r- _r',h) where h is a smoothing length, then a kernel
approximation for the displacement is

u (r) -- f u (r') W (Lr- r', h) dc' (2)

Two constraints on the form of the kernel function W are that it should reduce to the delta function
as h goes to zero:

lim W (t'- r', h) = 8 (r- r') (3)
h -4 0

and that

f W (_r,h) dV = 1 (4)
t._

In addition, it is desirable to have compact support for W, i.e.:

W (_r,h) = 0 for Irl>-2h (5)

Polynomial Kerln¢i Function

A polynomial kernel function W is introduced for an SPH particle of the following form:

1.5 (2 Z2
0.7_h2 _-z+_-) (0<z<l)

W (_r,h) = 0.25 (6)

0"7_:h2 (2- z) 3 ( 1 < z < 2)

0 (2<z)

where z = T,'lrlIn the following derivation, the short hand notation' Wt = W (t'- tJ, h),

W IJ = W (t "lJ, h) = W (F I- r J, h), and u] = u (t J) will be used. The superscript J refers to a
neighboring particle of particle I.

The kernel function used in Equation (6) was selected because it is used in classical SPH methods
and it satisfies the constraints expressed in Equations (3) and (4). Other forms of the kernel function
using an exponential form have been suggested. (see [7], [8]) The displacements, velocity and accel-
eration are interpolated using the kernel basis function W in Equation(6).

Volume Weighted Sum Integral ADDroximation

The volume integral in Equation (2) is approxi_aaated by a volume weighted sum at particle 1"

-lt(l'I) = Z -t't(CJ) W(cIJ'h) AVJ (7)
JE h i



Whe're k VJ is tile volume of particle.l, and the sum is over ali particles within the smoothing length k i

of pariicle I. The volume of a particle is computed from its mass, m. and the density, p. at the particle:
J

pJ
For a uniform initial grid, the mass associated with a node can be computed from the total number of

particles within a volume of known mass. The velocity and acceleration can be computed using the
same volume weighted sum approximation:

"-ul= E d WIJ AVJ (9)
J e h,,

,V,elocitv gradient

In a continuum, the gradient of the velocity is needed to determine the stretch. The spatial gradient

is computed using a kernel approximation by substituting V_u (r) for u (r) in Equation(2).

V _ti= IV _ti(r') W (r- r_',h) dV' (I0)

Green's theoremand Fxtuation(5) can be usedto transformEquation(10)to

V O (r) = -I/_ (r') VW (r - r_',h) dr' (11)
_Q

Using a volume weighted sum to replace the volume integral, the velocity gradient at particle I is

approximated in SPH by

V__I = _ (_-0 l) VW IJ AV J (12)
J_ hI

where (t_J - lit) is used to insure a symmetric system and VW Iy = _--_--W(r I - rg) i.
_ _ 8r i

Weak Form of Linear Momentum Balance

The differential form of the linear momentum balance, can be expressed in a weak form by multi-

plying by a weighting function, 8/j.

IS u(V,g+O_+fb)dV = 0 (13)

As.;ume, for now, that the body force, [b, is zero, so that:

I_)u(V,,o+po)dV = O. (14)

Integration by parts of Equation (14) gives:

I_)u 9 "_tidV-I_ " VS_u dV+ Ii. _)_udS = 0 (15)
_,_ __ _2

where ? = g. _ is the traction on surface with normal o. To obtain a weighted residual statement for

the discrete system, substitute Equation (7) into Equation (15).

R, = IO'_R(ZS_ul W/ AVI)dv (16)

-J__. (z_d vw _Av_)dV+J .t(Z__WW_AVZ)dS
__ ao_
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' The'residual at each node, I, can be minimized by imposing:

dR u

= 0 (17)

For node/, Equation (17) gives"

Jp _ Wt AVt (IV-[._ VW' AVr <tV+[.t W' AV' dS = 0 (18)

Note that the integral in Equation (18) is over the total volume; however, WI = 0 and aw_3r - 0

forl_rl > h, so that Equation (18) can be approximated using a volume weighted sum

Ip "_liW I AV # dV=___9 J __JwIJ AV 1 AV g (19)
tl J

A dV = AV # A VJ (20)
_2 - J

where A VJ is the volume contribution of node .I:

m Jav s = (21)
pJ

The mass m J at a node is fixed and the volume contribution to the integral due to node J changes as the

density changes.
Likewise, the integral along the boundary with tractions can be approximated by

I t. W 1 A V I dS = Z.t W (_r! - _rB) A VI AS J (22)
bf)- J

where rB is the shortest distance from the boundary to the particle I, and A SJ is the surface intercept

along the prescribed boundary. Campbell [7] computes A S based on the intersection of a sphere with

a plane as:
o_-1

2
as-'= c (h -ld - rB]2) (23)

where a = 1,2,3 is the dimension of the problem and C(a) = (1,2,rr). Eabsututing Equations (19), (20)

and (22) into Equation (18) gives a total of N equations with each node I having an equation of the
form:

_._ pJ W#J AV ! AV J fi = ___ 9"J VW #J AV I AV J (24)
Je h t JE h t

- Z .l W IJ AV l AS J
Je h t

The interacting particles J E h l, i.e. those particles that are within the smoothing length ht of particle

I, are determined by a particle sort routine (described latter). Equation (24) can be assembled to give a
mass matrix and force vector:

M fi = F ext-F inr (25)

For dynamic problems, Equation (25) may be integrated forward in time using a central difference or
other time integrating scheme.

In the classical SPH techniques, the mass matrix is lumped. In the current derivation of the SPH

equations using a weak form, the particle mass matrix in Equation (25) leads to a consistent mass ma-



trix.' Numerical tests need to be performed to determine whether a lumped or a consistent mass matrix
will give more accurate results. A consistent mass has the disadvantage that it will require a matrix in-
version fox each time step.

The individual components of a consistent mass matrix are given by:

M IJ = pJ W IJ AV J AV J (26)

For a lumped mass matrix, the initial particle mass may be determined from the density at the pmticle
and the initial volume of the partic|e (both are supplied as input to SPH).

The components of the internal force vector are given by:

.mldV- - F ! _ W IJ V !dt = _-_ °'1 V A A VJ (27)
J_ h t

Equation (27) can be made symmetric by adding the constant t3"1 to the sum at node I:
K

_,I _. Z (# + 91) VWIJ A V l A V J (28)

Je h t

If the smoothing length used for particle I and J are equal, h/ = hJ, then a symmetric system of equa-
IJ wJI

tions will result since WIg = WJz and --__r Or In addition, the system will be banded since lo-

OWH

cal support is insured by WIJ = 0 and _ = 0 when r/J > h.

Summary of SPH Eouations of Motion

In the above section, the SPH equations were derived using an approach that parallels the derivation
of the classical displacement based finite element method. The derivation starts with an approximating
function for the displacements using a kernel sum. A weighted residual form of the momentum balance
condition, using a weighting function of the same class as the displacement function, was minimized
to form a system of equations that can be integrated through time. A key to obtaining the classical SPH
equations is the use of a volume weighted sum to perform the spatial integration.

From this perspective, the SPH method can be viewed as a special case of the finite element method,
where the connectivity of the element is constructed by a search for the nearest neighbors. In addition
to generating a consistent mass matrix for SPH, the derivation suggest several areas for further work.

The accuracy of the approximating function will depended on the accuracy of the kernel sum. Re-
placing the volume weighted sum used in the spatial integration with a more accurate numerical inte-
gration may improve the method. Just as with successful finite element methods, the SPH method must
pass the equivalent of a patch test, andproven to be stable and convergent. Swegle et. al [11] and Hicks
et. al [12] have investigated the stability of the SPH method.

COUPLING ()F PARTICLE METHODS WITH LAGRANGIAN METHODS

In the above section we presented a derivation of the SPH method that shows that it can be reduced

to a Lagrangian weighted residual method. The SPH method can be easily embedded within existing
finite element code architecture, if the particles are viewed as elements whose connectivity must be
determined for each time step. To embed the SPH method within a finite element code:

• SPH particles are treated as elements with only one node.

• A kernel sum approximation is used to compute the velocity gradient and stress divergence.

• Constitutive relations for particle elements and finite elements are the same and remain unchanged.



• " Algorithms for kinematics of large strain and large detormation are the same for particle elements
and finite elements.

• A p_u'ticle search algorithm is required to determine particle interaction.

• A contact surface can be used to couple d_e finite element mesh to the particle elements.

particle Searching Te._:hnique. Determining the subset of points (particles) that are contained with-

in the local support defined by h can be one of the most time consuming parts of a SPH calculation.
Two phases of the coupling problem require a particle search: i) a search is required to determine the

list of particles that interact with a given particle element, and ii) a search is required to determine
which particles interact with the boundary of the finite elements.

To determine which of a given set of points lie inside a box,an ordered list of points was constructed

by sorting the points on each rectangular coordinate value. This list was then searched for the points

that lie within the box. The search algorithm is economical in its use of memory. In 3D, for example,
the algorithm requires only 7N memory locations, where N is the number of points. Here, we review

the point-in-box search algorithm developed by Swegle [ 13]. Briefly, the algorithm consists of indi-

vidual one-dimensional sorts of the points using each coordinate value as the search key, followed by

binary searches of each sorted list to find the points at the edge of the search region (box). This pro-
duces separate sets of points whose positions fall within the bounds of the box for each coordinate di-

rection. Finally the three lists (two lists for a 2D problem) are intersected to obtain the points inside the

box. Figure 1 shows a schematic of the three steps in the algorithm. A description of each step is given

below, followed by a detailed example.

e9 Yup--0"85 [ 9 • 1(_i) 8 _"

yu,____0.85........._ • 10 • 7•' F'
- oi •4 • •:y]o=0.325.o2]-: 5 Ylo--O325 14
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y(3)<y(4)<y(2)<y(5)<y(6)<y(l)<y(7)<y(8)<y(lO)<y(9) (b) search for bounds
(a) sort points

ql,9

Yup=0.851 , • l t_

lil°7_Box•li
Ylo=0.325 •2i •6 •51

•4
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Xlo--0.475 Xup--0.685

{3,7_6} _ {2,5,6,1,7,8}={ 7,61

(c) intersect lists

FIGURE 1. Schematic of Swegle Search Algorithm

SorL The sorting step constructs an ordered list of the points for each coordinate direction. The re-

sult of this sort is an index vector for each coordinate, {Ix, ly, Iz }, that contains the point ID's in order

of increasing coordinate value. One additional set of vectors, {Rx, Ry, Rz], called the rank vectors is

also constructed, lt gives the location of each point in the index vector, lt can be easily constructed by
looping through the index vector. For example, suppose pointj is stored at position i in the index vec-



tor.'Then the rank vector would store the pointer i at its positionj. The rank vector is required to avoid
•searching the index vector for a given point. The memory requirements for this step is 2*N*ND, where
N is the nuinber of points and ND is the spatial diinension of the point set.

Search, The second step is to form three lists (one for each coordinate) which contain those points
that are within the minimunl and maximum bounds of the box. Each list is formed using two binary
searches on the index vector: one to find the pointer corresponding to the Cn'stpoint inside the box, and
the other to find the pointer corresponding to the last point within the box. Figure 2 shows one step in

the O(log2N) binary search, where the target Xtargetcorresponds to one of the bounds Xmin or Xmax of
the box.

Pointers Index
Xlo= x(Index(lo))

'mpl' = '1o' - updated Pointers
• , i

i i if( Xtarget< Xtap )

- : Xtap = x(Index(tapped)) 'lo' 4- '1o'

( " ' 'up'-_l--'tap:z''tap2' , ,= lo'+'up .. ,') • , otherwise

, '1o' _ 'taP2'

'taP3' ='up' _ - -: Xup= x(Index(up)) 'up' ._- 'up'

FIGURE2. Classicalbinarysearchsteptofinda pointerintoindexarray

The binary search continues until 'lo' + 1 = 'up' and xlo < Xtarget< Xup. Upon completing the search,
the pointer into the index vector is then (ix)min = 'up' for the target Xtarget= Xmin, and (ix)rnax = '1o'
for the target Xtarget = Xmax.

Intersection. Finally, the lists are intersected to find the slave nodes in the box for each coordinate
simultaneously. To accomplish this, each of the slave nodes in one list is selected and then checked to
see if its rank is between the lower and upper pointer in the other two coordinates. For computational
efficiency the shortest list of slave nodes is selected, which can be determined by selecting the smallest
of [(iw)max - (iw)min + 1], w = x, y, or z. Suppose, for example, that the list for the y-coordinate con-

tains the smallest number of points. Then the points in this list i = Iy ((iy) rain), Iy((iy) rain + 1) ,

_ _ < R z (i) < (i t)• < Rx (i) < (ix) and (iz) rain-- -.., ly ((iy) ro.x) are in the box if (ix) min max max

$_Immarv 9f point in Box S_arch

The great advantage of this algorithm is that it is nearly independent of the geometry of the point set
and is very economical in its use of memory. In 3D, for example, the search algorithm requires only
(7N) memory locations, where N is the number of points. Davis, et. al [14] have optimized the point-
in-box search for the vector architecture on the CRAY Y-MP.

C()NTACT COUPLIN(.; ()F PARTICLE METH()DS WITH FINITE ELEMENT METHODS

A contact algorithm can be used to couple the motion of SPH nodes to finite element surfaces.
Contact detection algorithms for finite element methods define a set of nodes called slave nodes and a

set of surface patches called master surfaces. For a finite element mesh, a slave node is simply a nodal
point on the surface of the mesh. A master surface is defined using the side of a finite element on the
surface• For particle method/finite element method coupling, the SPH nodes are treated as slave
nodes.

Contact detection is accomplished by monitoring the displacements of the slave nodes throughout
the calculation for possible penetration of a master surface. Following contact detection, a contact
constraint is defined so that the slave node is "pushed back" to remain on the master surface. Based
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on "this description, it is convenient to separate contact algorithms into a location phase and a restora-
tion phase. The location phase consists of a neighborhood identification and a detailed contact check.
The neighborhood identification matches a slave node to a set of master surfaces that it potentially
could contact. The detailed contact check determines which of the candidate master surfaces is in
contact with a slave node, the point of contact, the amount of penetration, and the direction of push-
back. The point of contact, amount of penetration, and the direction of pushback define a contact con-
straint that is then enforced in the contact enforcement or restoration phase of the contact algorithm.
This constraint is enforced in the following time step or possibly over several time steps.

_9¢ation ohase

Only an outline of the location phase will be presented here, the reader is referred to Heinstein, et al
[13] for a complete description of the algorithms used in the neighborhood identification and detailed
contact check.

During the location phase, a subset of the SPH nodes which are in the vicinity of master surface are
collected for a later detailed contact check. This subset is formed using the point-in-box search algo-
rithm where a capture box is defined around the mater surface and a global search for ali SPH nodes
inside this capture box is preformed. The known locations of contacting surfaces and tt,eir velocities
are used to construct a master surface capture box. This guarantees that only physically meaningful
contacts are considered in the detailed contact check.

The detailed contact check uses projected motions of the particle and surface. Both the point of con-
tact, and the direction of push-back for each slave node is determined during the detailed contact check.
The position and velocity of both the slave node and master surface are considered in determining ini-
tial contact. This results in a physically correct determination of the contact location.

A distinction between a concave and convex surface is made for slave nodes already in contact with
a master surface. This results in a more accurate determination of the point of contact, amount of pen-
etration, and the direction of pushback. The location phase run time is proportional to mlogn, where m
is the number of master surfaces and n is the number of slave nodes.

Contact cnforcement:

For the contact enforcement, a predictor-corrector method is used. First, the location of master sur-
faces and slave nodes assuming no contacts is predicted:

& = f (finite element method) (29)rn

_ (smooth particle method) (30)

f_ = v+At & (31)

2 = x+At _ (32)

where &,_, and 2 are the predicted acceleration, velocity and position respectively. The detailed con-
tact check results in a calculated depth of penetration for each slave node into the master surface

8 = max(h. (2"-2),0) (33)

The contact constraint is satisfied by simultaneously applying a contact force to the slave node and
the master surface so that the penetration is removed during the next time step. The application of this
penalty force will result in both the surfaces moving and, therefore, the force must be determined with
an iterative method. The iterative method is outlined as follows:

Compute acceleration (or force) needed to cancel the slave node penetration assuming it is contact-
ing a rigid surface:

- 8
an - (34)

At2

or



• " _ lr/

fs = Ata (35)

Next, compute the resulting acceleration of master surface due to the application of all slave node forc-

es. The resulting master surface nodal forces can be determined by" (here we assume 2D, but calcula-
tions extend easily to 3D)

1

Fi = _ (5-_)fs and (36)
S

1

Fi+ 1 = ]_7.(_ + _)fs" (37)
S

The forces acting on the master surface nodes are assembled and their accelerations are computed as:

Fis
a i - (38)

m l

Since master surface has moved, the initial guess for penalty force must be corrected. The acceler-

ation of the contact point on master surface due to the acceleration of master nodes is given by:

1 1

aps = (-_ - _) anl + ( -_ + _) an2 (39)

This leads to a corrected penalty force:

_s ms

fs - At 2 -apsm s. (40)

And a new master node acceleration

mia i = _ (fls-apsms). (41)
s

Note: we should iterate to find the 'best' penalty force; however, one pass is usually ali that is required
for an accurate solution. Any errors in the contact enforcement will be accounted for in the next time

step.

If only one iteration is done, the mass and force can be assembled to obtain the acceleration of ali
master nodes

Dis = (mi + Zmls ) anl (42)
s s

1 1 1 1

where mis = ( -_ - _) m s, n2s = ( _ + _) m s, [Is = (_ - _)fs and fzs = ( _ + _)J_.

After assembling and solving for the motion of the master surface, the slave node acceleration can be
corrected to account for the relative motion between the slave node and the master surface.

D, (43)
ans = aps-reZ

Finally, the predicted accelerations for all nodes can now be corrected by

a = _ + a,, (44)

In PRONTO, the accuracy of the penalty force is improved by using a symmetric (or partitioned)
contact when two finite element surfaces are in contact. This allows both surfaces to act as the master

for a portion of the time step. With SPH nodes, however, a strict master slave approach is required.



EXAMPLE PR(.)BLEMS

Two example problems are presented that detnonstrate the ability to couple particle and finite ele-
ment calculations. In the first example, a simple SPH mesh impacts a simple FEM mesh. The second
example considers a thin structure that impacts water.

Two bars im0actine

This example considers two one inch square copper bars impacting at 1000 in/see. The bar on the
left was modeled using SPH elements, and the bar on the right was modeled using FEM. The purpose
of this example ;o ,,. ,.i..... ,h,., ,r,....... ,o._ ...=,h...4 ..,-.-,,_.............. .4 ...... ,,+, t_;.... e 3 shows a plot
of the pressure tttat re:iutt5 txottt t.,,tenttpact.
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FIGURE 3. Two copper bars impacting.

The pressure from the finite element model was plotted by shading a square the size of the finite
element. The SPH results were visualized by simply drawing a sphere with the correct intensity at the
location of the SPH element. Since the SPH elements overlap, this simple method of plotting distorted
the SPH result.

This example shows that the SPH method tends to be more diffusive than the finite element method.
Here, both the SPH nodes and the finite element nodes had the same spacing. However, since SPH
method requires more particles to interpolate, the effective h of the SPH mesh is bigger than the effec-
tive h of the finite element mesh. Despite these differences, both method predicted a similar pressure
wave from the ixnpact.

Point-to-point oscillations in the pressure can be seen in both the finite element mesh and the SPH
mesh. Increasing the artificial viscosity will damp these oscillations at the expense of broadening the
wave front.

Boat lmpa_;ting water

This example shows so,me of the advantages of combining the SPH and FEM method. Figure [4]
shows a plane strain model of a boat like object impacting water at very high speed. The 'boat' sta'uc-
ture was modeled using four elements through the thickness. This thin structure would not be efficient-
ly modeled using the SPH method. The nature of the SPH method would require 5 to l0 elements
through the thickness of the boat. Since the SPH method is more accurate when the spacing between
the nodes is uniform, many more nodes would be required than for the FEM method, which can have

: elements with high aspect ratios. Using SPH to model the boat would also require a shorter time step,
since the distance between the SPH elements would be smaller in order to accommodate the increased



nfffilber of S PH elements.

The splash of the water would be very hard to model with FEM. If the water was modeled using
finite elements, the elements would distort and tangle resulting in an ill-posed mesh. The SPH method

allows for the fluid behavior of the water and does not result in an ill-posed mesh.

A contact algorithm used between the FEM and SPH method allows for a mesh transition between
the boat and the water. For this problem, four SPH elements contacted a single side of the finite ele-
ment mesh used to model the boat.

This example was presented to demonstrate the advantages of a SPH-FEM coupling. The actual be-
havior of a plane strain water splash could differ from the behavior shown by the demonstration model.

The water was modeled using SPH with a very simple equation of state. The behavior of water could

be more complex than the equation of state can capture (i. e. steam formation).

FIGURE 4. High speed impact of water by 'boat' like object. Impact speed = 2000 in/see.

SUMMARY

The ability to couple particle methods and finite element method will allow fluid structure interac-
tion problems to be solved efficiently. Here we have demonstrated the ability to couple smooth particle
hydrodynamics to the transient finite element code PRONTO. This coupling actually embeds the SPH
method within the f'mite element code and treats each SPH particle as an element within the finite el-
ement architecture. Contact surface algorithms used in the finite element method were modified to

couple the SPH particles with the finite element particles.
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