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Abstract

In this paper we present a method for solving the time-dependent incompressible Navier-Stokes equations on
an adaptive grid. The method is based on a projection formulation in which we first solve convection-diffusion
equations to predict intermediate velocities, and then project these velocities onto a space of approximately
divergence-free vector fields. Our treatment of convection uses a specialized second-order upwind method for
differencing the nonlinear convection terms that provides a robust treatment of these terms suitable for high
Reynolds number flows.

Our approach to adaptive refinement uses a nested hierarchy of grids with simultaneous refinement of the

grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which
coarse grids are advanced, Rue grids are advanced multiple steps to reach the same time as the coarse grids, and
the grid levels are then synchronized.

Introduction

The equations governing variable density incompressible flow can be written:

Ut + (U. V)U = --IVp + LU + F, (I.1)
P

p, + (U. V)p = 0, (1.2)

V-U = O (1.3)

where U, p, and p represent the velocity, density, and pressure, respectively, L is the operator representing
the viscous forces (see [4]), and F represents any external forces. In this paper we develop a local adaptive
mesh refinement algorithm for solving these equations, based on a second-order accurate projection method. The
development of the single grid projection methodology for the incompressible Navier Stokes equations is discussed

in [3] and [1]. The method presented here is an adaptive version of the algorithm in [1], generalized to include
finite amplitude density variation as discussed in [4].

The focus of this paper is on incorporating a local adaptive mesh refinement algorithm (AMR) into the basic
projection methodology. This algorithm uses a hierarchical grid approach first developed by Berger and Oliger [6]
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forhyperbolicpartialdifferentialequations,anddemonstratedto behighlysuccessfulforhighspeedflowbothin
two[5]andthreedimensions[2].AMR isbasedon a sequenceofnestedgridswithsuccessivelyfinerspacingin
bothtimeandspace.New finegridsarecreatedrecursivelyuntilthesolutionissufficientlyresolved.Automated

gridgenerationproceduresdynamicallycreateorremoverectangularfinegridpatchesasresolutionrequirements
change.

SingleGrid ProjectionAlgorithm

Inthissectionwe reviewthebasicfractionalstepschemeforthecaseofa singleuniformgrid.The reader
isreferredto[1]and [3]fora more detaileddescription.The algorithmusesa staggeredgridschemeinwhich
velocityand densityaregivenatcellcentersandaredenotedby Ui_and Pi'_respectively.Pressureisspecifiedat

,+½
cellcomersandisstaggeredintime,and isthusdenotedbyPi+½J+½"

The singlegridalgorithmforsolvingthesystem(1.1)-(1.3)isa fractionalstepschemehavingtwoparts.First,
we solvetheadvection-di_sionequations(1.1)-(1.2)fortheupdateddensityand an intermediatevelocityfield
withoutstrictlyenforcingtheincompressibilityconstraint.Then,weprojectthisintermediatefieldontothespace
of(approximately)discretelydivergence-freevectorfields.

Fortheadvection-diffusionstepwe solve

p,+i_ pn + [(u. v)p]"+½= o (2a)At

and

U* - U" __./__1 L (U*+ U") + F (2.2)
[(u.v)u]"+½= p.+½vp"-½+ 2

fortheintermediatevelocityU* andtheupdateddensityp,+1.The methodusesan unsplitsecond-orderupwind
predictor-correctorschemeforevaluatingtheadvectivederivativesin (2.1)-(2.2).For thisstepthepressure

gradientisevaluatedatt"-½and istreatedasa sourcetermin(2.2),withp"+½ = _(p"+ p"+*).The predictor
isdescribedinmore detailin[3],withtransversederivativesand slopesasin[1]and theextensiontovariable
densityasin[4].The Crank-Nicholsondiscretizationoftheviscoustermsrequiressolutionofan ellipticequation
foreachvelocitycomponent;we usea standardfive-pointstencilfortheLaplacian,andsolvetheresultingsystem
usingmultigrid.

ThevelocityfieldU" computedinthefirststepisnot,ingeneral,divergence-free.The projectionstepenforces
theincompressibilityconstraint.A vectorfielddecompositionisappliedto u'-u" to obtainthenew velocityAt
fieldand an updateforthepressure.Inparticular,ifP representstheprojectionthen

U"+I - U" [U'--U"\ U" - U" 1

At = P L At ) = At p,+½G4_ (2.3)

Gp"+½ p.+½ + - Ai
= --Gp -3 (I P) = (Gp"-½+G_)

i

where_ isfoundby solvinga second-orderaccurateapproximationtotheequation

Cu.

HereD andO arethediscretedivergenceandgradientoperator,respectively.The ellipticequationwhichdefines
theprojectionisdiscretizedusinga standardnine-pointRnitedifferencemethodanalogoustothefiniteelement
methodwithbilinearbasisdements.We notethatthisisnotadiscreteorthogonalprojection;infact,DU "+1# 0.
However,theincompressibilityconstraintisapproximatedtosecond-orderaccuracyand theoverallalgorithmis ,
stable.The readerisreferredto[1]fora detaileddiscussionofthisapproximationtotheprojection.

The time-step restriction for the advective scheme is used to set the time step for the overall algorithm; this
issetby theCFL condition: o

I,,,jlm,_ Ax Ap J =o'<1,

• , o ,



Adaptive Mesh Refinement

The initialcreationofthegridhierarchyand thesubsequentregriddingoperationsinwhichthegridsare
dynamicallychangedto reflectchangingflowconditionsusethesame proceduresaswereusedin [2]forthe

hyperbolic case, with the exception of the error estimation procedure. The grid hierarchy is constructed using a

simple error estimation criterion to determine where additional resolution is required; this criterion is determined
by the user, and is typically the magnitude of vorticity, density, or density gradient. A proper nesting requirement
is imposed at this stage, namely that the union of level £ + 1 grids be properly contained within the union of
level £grids (except at the boundary of the physical domain where all levels can be refined up to the edge). This
ensures that all coarse-fine interfaces are between successive levels; a level £+ 2 grid never directly interacts with
a level_grid.

The proceduretoadvancelevel_onetimestepAttisdescribedbelow.The fullalgorithmisrecursive,hence
a fullcoarsegridtimestepisachievedbyfollowingthisprocedurefor£ = 0.
Step 1.Foreachgridatlevel£ applytheupwindadvectionschemetocomputethenonlinearadvectiveterms,
andconstructLU n.Forthiscalculationon eachgrid,dataareprovidedonthegridtobe integratedaswellas
on a borderofcellssufficientlywidetoadvancethesolution.Dataarecopiedfromotherlevel£ gridswherever
suchdataareavailable;otherwise,datainterpolatedinspaceandtimefromcoarsergridsareused.
Step 2.Iftheflowisinviscid,add theadvectiveterms,pressureterm,and externalsourcetermto U n on a

grid-by-gridbasistoconstructU t,*attt+ Att.Iftheflowisviscous,thensolvetheellipticequationforU t,*on
allgridsatlevel_simultaneously.
Step 3.ProjectU t,°ontoits(approximately)divergence-freeparttoobtainan initialapproximationtoU tat

tt+ Att,by solvingan equationanalogousto (2.3).Dirichletboundaryconditionsfor_bintheellipticsolve
are interpolated from the level t - 1 grids. We refer to this projection as a level projection, because it is used
to update the velocities and pressure on all the grids at a single level; the data at every other level remains
unchanged after a level projection. By itself, this projection is not sufficient to account properly for the coupling
between levels in the elliptic equation defining the projection, inasmuch as it only forces matching of Dirichlet
data at the coarse-fine interface, rather than both Dirichlet and Neumann data. The mismatch is corrected in
Step 5 by a second type of projection.
Step 4. If there are grids at level l + 1, call the integration step recursively to advance the level t + 1 grids. After
the level l + 1 grids complete rt consecutive time steps, where rt is the refinement ratio, typically two or four,
the velocity and density data for all levels greater than or equal to _ have been advanced to time t t + At t.
Step 5. If there are grids at level l+ 1, use a sync projection to enforce the divergence constraint on the coarse-fine
interface between levels t and l + 1. The divergence operator used to define the right-hand-side for the projection
is defined at each node as an integral over adjacent cells; hence on the interface the divergence operates on data
from both the coarse and fine levels. The'sync projection correcting the mismatch between levels _ and l + 1 is
used to adjust the velocities and pressure at both levels. The corrections are then interpolated up to grids at
levels _ + 2 or greater, if they exist.

The linear system associated with the sync projection is the standard bilinear finite element stiffness matrix
for a self-adjoint second-order elliptic operator. We solve this system using standard multigrid methods modified
for use within the adaptive grid hierarchy. The multigrid algorithm for the level projection is straightforward
since it only involves grids at a single level.

Computational Results

InFiguresIand 2 we showresultsfromtwodifferentcalculationsusingtheadaptiveprojectionmethod.The
first(Figure1)isan inviscidco-flowingjet,perturbedslightlyatt--0 tobreakthesymmetry.The boundary
conditionsarereflectingwallontopandbottom,inflow-outflowonleftandright.The vorticityattimesteps290
and 291isshown,withthelevel1 gridsateachtimesuperimposed.The basegridis128x256;therefinement
ratiois four.

The second calculation (Figure 2) is of a variable density inviscid fluid swirling in a closed box. The initial
conditions are: u(x, t = 0) = - sin(21ry) sins (_rz), v(x, t = 0) = sin(27rz) sins (try),
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in the unit square. The density at the 400th time step is shown, with the level 1 and level 2 grids superimposed.
(The level 1 grids are drawn in black and the level 2 grids in white; the base grid is 96x96 and the refinement
ratios are two and four for levels 1 and 2, respectively.)

The timings for the variable density problem indicate that the calculation took approximately 16 #-seconds

percelladvancedon m_.eprocessorofa CrayC-90.

t
Conclusions

We havedevelopeda new adaptiveprojectionmethodfortime-dependentincompressiblevariabledensityflow.
The levelsintheadaptivemesh hierarchyarerefinedinbothspaceand time.The advectionsteptakesplaceon
individualgridsinan approachsimilartothatofthesinglegridmethod.The viscoussolveand theprojection
ateachlevelaresimilartothoseinthesinglegridmethod,butmustnow incorporatemultiplegridsperlevel.
Inaddition,we introducea syncprojection,whichisneededtosynchronizethesolutionateachlevel_withthe
dataatthelevelsaboveitattheendofeachlevelI timestep.Thisadaptiveprojectionmethodissecond-order
accurateandprovidesan efficientt0olformodelingvm_ble densityflows.
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Figure 1. Vorticity and grids at level 1. Figure 2. Density and grids at levels 1 and 2.






