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DATA REQUIREMENTS FOR AN ANOMALY DETECTOR IN AN AUTOMATED
SAFEGUARDS SYSTEM USING NEURAL NETWORKS*

R. Whiteson

Safeguards Systems Group, MS E541
Los Alamos National Laboratory

Los Alamos, New Mexico 87545
(505) 667-7777

ABSTRACT

An automated safeguards system must be able to
detect and identify anomalous events in a near-real-
time manner. Gur approach to anomaly detection is
based on the demonstrated ability of neural networks to
model complex, nonlinear, real-time processes. By
modeling the normal behavior of processes, we can
predict how a system should behave and, thereby,
detect when an abnormal state or event occurs. In this
paper, we explore the computational intens.ty of train-
ing neural networks, and we discuss the issues in-
volved in gathering and pre-processing the safeguards
data necessary tc .ain a neural network for anomaly
detection. We explore data requirements for training
neural networks and evaluate how different features of
the training data affect the training and operation of the
networks. We use actual process data o train our pre-
vious 3-tank model and compare the results to those
achieved using simulated safeguards data. Compari-
sons are made on the basis of required training times
in addition to correctness of prediction.

NEURAL NETWORKS

Neural computing attempts to simulate the func-
tions of the human brain and create models by match-
ing that functionality. These models are based on the
assumption that information processing takes place
through the interactions of many simple processing
units or nodes, each sending excitatory and inhibitory
signals to other units.? In contrast (o traditional rule-
based systems, neural networks are better able to
extract expert knowledge from raw data by adaptively
processing large amounts of knowledge, efficiently
reducing data, and robustly classifying input patterns.
During an iterative training process, the network forms

*This work supported by the U.S. Department of Energy.
Office of Safeguards and Security.
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Westinghouse Idaho Nuclear Company
P.O.B. 4000, MS 5102
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(208) 526-2258

a model of the relationship of the outputs as a function
of the inputs. It can model highly nonlinear processes,
given the correct internal architecture. Figure 1 shows a
typical neural network with three layers. The input layer
contains five nodes. The hidden layer has three nodes
and the output layer four nodes. Input 1o this network
would be input vectors with five elements, one element
going to each node in the input layer. It would produce
an output vector of four elements.

Neural networks have been shown to be very ver-
satile in modeling the input-output relationships of
complex nonlinear systems. As a result, this artificial
intelligence technique has recently been proposed to
provide support for nuclear power plant operations.>
Because of the complexity of the processes and the
large and diverse amount of data, efficient automatic
algorithms are necessary to interpret the data and
ensure secure plant operation 8

Because prediction is one of the most promising
applications of neural networks, it 1s a natural choice
for modeling nuclear plant activity.”8 Modemn safe-
guards systems for nuclear materials handling typically
use distributed control systems that record and store
large amounts of data.? From this data, we are using
current and past information about characteristics of
the physical system to predict future correlated charac-
teristics. By comparing predicted states with those
reported bg' a control system, anomalies can be
detected.!

SIMULATED DATA AND REAL DATA

In earlier work using neural networks to detect
anomalies in safeguards systcms we created training
and test data using a simulation.!! This was done
because real data are generally noisy and occasionally
erroneous. The data that we created represented tank
volumes and sensor states from M-cell processing




" tanks in the ldaho Chemical Processing Plant (ICPP).
See Fig. 2 for a diagram of the simulated fow of
materials.

For our current work, we used raw data obtained
from the Process Monitoring Computer System
(PMCS) at the ICPP. The PMCS is a set of data acqui-
sition devices that transmits process data from plant
instruments and speciality sensors such as remote
valves, pumps, and steam jets installed on the plant
equipment to a computer for data processing and stor-
age. These data are in the form of analog and digital
outputs.'?2 The PMCS database is used by safeguards
personnel to monitor solution movements to and from
the measurement vessels. These vessels are positioned
so that all input and output streams can be measured.
Data from the inventory vessels M-101, M-102,
M-103, and M-104 are the focus of our current work.
Figure 3 shows the flow of material.!>

Output Layer

Hidden Layer

Input Layer

Fig. 1. A neural network with three layers.

M101 M102 M103

Fig. 2. Simulated flow of materials.

M:10] _M-103

N-Cell

Z-Cell N-Cell

Fig. 3. Measurement vessels in M-cell.

The ICPP uranium fuel process operation consists
of a number of headend dissolution processes, one
cycle of tributyl phosphate solvent extraction, two
cycles of hexone extraction, and one denitration step Lo
end with uranium trioxide as a product.!?

PREPROCESSING THE DATA

Two sets of process data were available. The first
is from a campaign run from November 15, 1988, to
May 1, 1989. We will refer 1o this as campaign 1 data.
The second is from a campaign run from April 1, 1991,
to January 1, 1992, We will refer to this as campaign 2
data.

To compare results with those from the networks
that were trained and tested with simulated data, we
used the same software {0 preprocess the data. This
software takes the raw data and outputs snapshots of
the facility at four-minute intervals. As with the simu-
lated data, we created input vectors that consisted of
sensor states from three consecutive snapshots. The
output, the predictions of the network, was to be pre-
dicted changes in the tank volumes. For our simulated
data, we used sensor states that we knew were corre-
lated to changes in tank volumes. With our real data,
we did not initially know which sensors indicated
activity in the tanks. Campaign 1 data contained vol-
umes for 4 tanks and 48 sensors. Campaign 2 data con-
tained volumes for 3 tanks and 21 sensors. Because our
input vector was to include the three consecutive val-
ues for each sensor, it was important 1o include data
from relevant sensors only. If we used 4ata from all
sensors, our input vector for campaign 1, for example,
would contain 144 elements, resulting in a cumber-
some network and increased training as well as testing
times. To accomplish the necessary feature selection,
we analyzed the raw data to determine which sensors
indicated tank activity. Table I shows the sensors with



“the highest correlations and the sensors selected for the
input vectors. From campaign 1 data we selected 12
sensors. Because we are using values from 3 consecu-
tive snapshots of each sensor, a network with 36 input
nodes is required. See Fig. 4 for a diagram of this net-
work. From campaign 2 data we selected 5 sensors.
The network thus has 15 input nodes, as shown in
Fig. 5.

Table 1: Sensors Correlated to Tank Volumes

Campaign 1 Campaign 2

no | Cgmlaed | Corus
M101 0,3,32 7,12,18
M102 4,18,33 10, 11, 18
M103 7,11,34 10, 11,18
M104 12, 16, 35 N/A
Selected 0,3,4,7,11,12,16, 7,10,11,12,18
Sensors 18,32,33,34,35

Again, to make meaningful comparisons with the
networks we had used on the simulated data, we de-
signed our new networks to be similar. That is, we used
feed forward, back-propagation networks with one hid-
den layer, a hyperbolic tangent transfer function, and
the Norm-Cumulative-Delta learning rule.

COMPARISON OF RESULTS WITH REAL DATA
AND SIMULATED DATA

Using simulated data, our networks were very
successful in predicting changes in tank volumes;
they predicted every transaction and detected several
instances of loss of material from the system.!! How-
ever, using real data, the results were not as impressive.
There were no known anomalies in these data, but
there were a number of normal transactions. For cam-
paign 1 our network correctly predicted 58 transactions
where tank volumes changed. However, in five cases it
predicted a transaction where in fact there was none. In
campaign 2, the network correctly predicted 12 trans-
actions but erroneously predicted 2 transacticns.

Sensors

Fig. 4. Network for campaign 1. Input data are from 12 sensors, 3 values for each sensor.
Outputs represent changes involes of four tanks.



Sensors

Fig. 5. Network for campaign 2. Input data are from 5 sensors, 3 values for each
sensor. Outputs represent changes involes of three tanks.

SELECTING VALUES FOR INPUT VECTORS

We hypothesized that using a subset of sensors
with three consecutive states for each would create the
most useful and effective input vector. To test this
hypothesis, we utilized the data sets described above
and, in addition, we created training and test sets that
contained only the current value for each of the sen-
sors. For example, for the latter set, campaign 2 data
required an input vector of 21 elements, one value for
each of the 21 sensors. The networks that used these
data were identical in all other ways to the networks
using three values for each selected sensor.

The results of testing our hypothesis using the
two data sets described above show that networks
using real data in input vectors containing only one
value for each sensor produced much poorer results
than input vectors with three consecutive values for
each. This is true even though in the former, data from
all sensors were included.

COMPUTATIONAL COMPLEXITY

The computational complexity of training time
for neural networks is well understood. The tim:
required for the network Lo process one training vector
is a function of the number of connections in the net-
work. In other words, the complexity is O(n) where n is

the number of connections. The training time for an
entire network can be viewed as O(n x m) where m is
the number of training vectors. However, this is com-
plicated by the fact that during training, networks pro-
cess each training vector a number of times. The
training time for an entire network is not easy to quan-
tify as it is often difficult to determine when the net-
work is fully trained, although this time is generally
considered to be NP-Complete.'®

CONCLUSIONS AND FUTURE DIRECTIONS

Our experiments with neural networks on simu-
lated and real data from a process monitoring system
indicate that a neural-network-based module may be
able to provide an anomaly detection system as an
adjunct to a material control and accounting system. If
a trained network represents a good model of normal
plant operation, it can be a reliable tool for recognizing
non-normal activity. The neural network will then be
able to flag any anomalous facility state such as loss or
diversion of material, instrument failures, or other
abnormal or unusual events. This would improve the
sensitivity of any existing system and reduce inspector
effort.

The design of the architecture for a specific prob-
lem is somewhat of an art form, and it is clear that the
choice of architecture and learning rule is critical to
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" success. However, overall success for many applica-

tions may rely more on data representation (prepro-
cessing and encoding) than the choice of architecture
or learning rule.!® We believe that more work needs to
be done on tools for preprocessing data. One approach
would be development of sophisticated tools that can
aid in feature selection, datla aggregation, data fusion,
concept extraction, and handling of missing or errone-
ous data. Another approach would be to work with an
expert 0 accomplish these same goals. Further efforts
in the areas of architecture design and data preprocess-
ing should lead to neural networks that can more accu-
rately model processes and detect anomalies.

ACKNOWLEDGMENTS

The authors would like to thank Frank German
and Neil Liester of Westinghouse Idaho Nuclear Com-
pany for their assistance in obtaining and extracting the
data.

REFERENCES

1. D.E.Rumelhart and J. L. McClelland, Parallel
Distribwted Processing (MIT Press, Cambridge,
Massachusetts. 1989).

2. Yann le Cunn, “Generalization and Network
Design Strategies,” in Connectionism in Per-
spective, Rolf Pfeifer, Zoltan Schreter, Francoise
Fogelman-Soulie, and Luc Steels, Eds. (Elsevier
Science Publishers B.V., Amsterdam, Holland,
1989), pp. 143- 156.

3. M.S.Roh, S. W.Cheon, and S. H. Chang, “Power
Prediction in Nuclear Power Plants Using a Back-
Propagation Learning Neural Network,” Nuclear
Technology 94,270 (1991).

4. B.R. Upadhyaya and E. Eryurek, “Application of
Neural Networks for Sensor Validation and Plant
Monitoring,” Nuclear Technology 97, 170 (1992),

5. E. B. Bartlett and R. E. Urig, “Nuclear Power
Status Diagnostics Using an Artificial Neural
Network,” Nuclear Technology 97, 272 (1992).

6. A.Zardecki, R. Whiteson, and A. Coulter,
“Pattern Recogr. ion Methods for Anomaly
Detection,” Los Alamos National Laboratory,
Safeguards Systems Group document N-4/91-420
(April 9, 1991).

10.

11.

12.

13.

14.

15.

R.D. Jones, Y. C. Lee, C. W. Bamnes, G. W. Flake,
K. Lee, P. S. Lewis, and S. Qian, “Function
Approximation and Time Series Prediction with
Neural Networks,” Los Alamos National Labora-
tory document LA-UR-90-21 (1990).

Kanad Chakraborty, Kishan Mechrotra, Chilukuri
K. Mohan, and Sanjay Ranka, “Forecasting the
Behavior of Multivariate Time Series Using
Neural Networks,” Neural Networks 5(6), 961-
970 (November 1992),

M. H. Ehinger, N. R, Zack, E. A. Hakkila, and
F. Franssen, “Use of Process Monitoring For
Verifying Facility Design For Large-Scale
Reprocessing Plants,” Los Alamos National
Laboratory report LA-12149-MS (1991).

D. E. Denning, “An Intrusion-Detection Model,”
IEEE Transactions on Software Engineering
SE-13(2), 222-232 (February 1987).

R. Whiteson and J. A. Howell, “Anomaly
Detection in an Automated Safeguards System
Using Neural Networks,” Nucl. Mater. Manage.
XXI, 411417 (1992).

C. A.Dahl and N. A. Liester, “The 1daho Chemi-
cal Processing Plant Process Monitoring Compu-
ter System,” in Proceedings of the Third Inter-
national Conference on Facility Operations—
Safeguards Interface (American Nuclear Society,
La Grange Park, Illinois, December 1987), pp.
263-2609.

F. O. German, “Accountability Volume Measure-
ment at the Idaho Chemical Processing Plant,”
Westinghouse Idaho Nuclear Company, Inc. report
WIN-333 (November 1991).

A.L. Blum and R. L. Rivest, “Training a 3-Node
Neural Network is NP-Complete,” Neural Net-
works §(1), 117-127 (1992).

Vladimir Cherkassky and Hosseir: Lari-Najafi,
“Data Representation for Diagnostic Neural Net-
works,” JEEE Expert 7(5), 43-53 (October 1992).




DATE
~ FILMED
I/ € /93




S e e



