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DATA REQUIREMENTS FOR AN ANOMALY DETECTOR IN AN AUTOMATED

• SAFEGUARDS SYSTEM USING NEURAL NETWORKS*
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Los Alamos, New Mexico 87545 Idaho Falls, Idaho 83415-5102
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ABSTRACT a model of the relationship of the outputs as a function
of the inputs, lt can model highly nonlinear processes,

An automated safeguards system must be able to given the correct internal architecture. Figure 1 shows a
detect and identify anomalous e_,entsin a near-real- typical neural network with three layers. The input layer
time manner. Our approach to anomaly detection is contains five nodes. The hidden layer has three nodes
based on the demonstrated ability of neural networks to and the output layer four nodes. Input to this network
model complex, nonlinear, real-time processes. By would be input vectors with five elements, one element
modeling the normal behavior of processes, we can going to each node in the input layer, lt would produce
predict how a system should behave and, thereby, an output vector of four elements.
detect when an abnormal state or event tc.curs. In this

paper, we explore the computational intens.ty of train- Neural networks have been shown to be very ver-
ing neural networks, and we discuss the issues in- satile in modeling the input-output relationships of
volved in gathering and pre-processing the safeguards complex nonlinear systems. As a result, this artificial
data necessary tc :ain aneural network for anomaly intelligence technique has recently been proposed to
detection. We explore data requirements for traininlg provide support for nuclear power plant operations. 35
neural networks and evaluate how different feamre:_of Because of the complexity of the processes and the
the training data affect the training and operation of the large and diverse amount of data, efficient automatic
networks. We use actual process data to train our pre- algorithms are necessary to interpret the data and
vious 3-tank model and compare the results to thos_ ensure secure plant operation.°
achieved using simulated safeguards data. Compari-
sons are made on the basis of required training times Because prediction is one of the most promising
in addition to correctness of prediction, applications of neural networks, it is a natural choicefor modeling nuclear plant activity.7'8 Modem safe-

NEURAL NETWORKS guards systems for nuclear materials handling typically
use distributed control systems that record and store

Neural _mputing attempts to simulate the func- large amounts of data.9From this data, we are using
tions of the human brain and create models by match- current and past information about characteristics of

ing that functionality. These models are based on the the physical system to predict future correlated charac-
assumption that information processing takes piace teristics. By comparing predicted states with those
through the interactions of many simple processing reported by a control system, anomalies can be
units or nodes, each sending excitatory and inhibitory detected.1°
signals to other units. 1"7"In contrast to traditional rule-
based systems, neuralnetworks arebetter able to SIMULATED DATAAND REAL DATA
extract expert knowledge from raw data by adaptively
processing large amounts of knowledge, efficiently In earlier work using neural networks to detect
reducing data, and robustly classifying input patterns, anomalies in safeguards systems, we created training
During an iterative training process, the network forms and test data using a simulation. 11This was donebecause real data are generally noisy and occasionally

*Thiswork supportedby theU.S.D_zparmaentof Energy, erroneous. The data that we created represented tank
Officeof Safeguards mad Security. volumes and sensor states from M-cell processing



tanks in the Idaho Chemical Processing Plant (ICPP).

See Fig. 2 for a diagram of the simulated qow of E_ l_
materials.

For our current work, we used raw data obtained Z-Cell N-Cel]
from the Process Monitoring Computer System
(PMCS) at the ICPP. The PMCS is a set of data _cqui-

sition devices that transmits process data from plant [_ [_
instruments and speciality sensors such as remote

valves, pumps, and steam jets installed on the plant Z-Cell N-Cell
equipment to a computer for data processing and stor-
age. These data are in the form of analog and digital
outputs. 12The PMCS data'base is used by safeguards
personnel to monitor solution movements to and from Fig. 3. Measurement vessels in M-cell.
the measurement vessels. These vessels are positioned
so that ali input and output streams can be measured.
Data from the inventory vessels M-I01, M-102, The ICPP uranium fuel prtx_ss operation consists

of a number of headend dissolution processes, oneM-103, and M-104 are the focus of our current work.

Figure 3 shows the flow of material. 13 cycle of tributyl phosphate solvent extraction, two
cycles of hexone extraction, and one denitration step to
end with uranium trioxide as a product. 12

PREPROCESSlNG THE DATA

Output Layer Two sets of process data were available. The first
is from a campaign run from November 15, 1988, to
May 1, 1989. We will refer to this as campaign 1 data.
The second is from a campaign run from April 1, 1991,
to January 1, 1992. We will refer to this as campaign 2

Hidden Layer data.

To compare results with those from the networks
that were trained and tested with simulated data, we

Input Layer used the same software to preprocess the data. This
software lakes the raw data and outputs snapshots of
the facility at four-minute intervals. As with the simu-

' Fig. 1. A neural network with three layers, lated data, we created input vectors that consisted of
sensor states from three consecutive snapshots. The
output, the predictions of the network, was to be pre-
dicted changes in the tank volumes. For our simulated
data, we used sensor states that we knew were corre-

lated to changes in tank volumes. With our real data,
we did not initially know which sensors indicated
activity in the tanks. Campaign 1 data contained vol.
umes for 4 tanks and 48 sensors. Campaign 2 data con-
rained volumes for 3 tanks and 21 sensors, Because our

input vector was to include the three consecutive val-
ues for each sensor, it was important to include data
from relevant sensors only. If we used ,_ata from ali

M 101 M 102 M 103 sensors, our input vector for campaign 1, for example.,
would contain 144 elements, resulting in a cumber-

Fig. 2. Simulated flow of materials. some network and increased training as well as testing
times. To accomplish the necessary feature selection,

_ we analyzed the raw data to determine which sensors
indicated tank activity. Table I shows the sensors with



the highest correlations and the sensors selected for the Again, to make meaningful comparisons with the

input vectors. From campaign 1 data we selected 12 networks we had used on the simulated data, we de-
sensors. Because we are using values from 3 consecu- signed our new networks to be similar. That is, we used

" tive snapshots of each sensor, a network with 36 input feed forward, back-propagation networks with one hid-
nodes is required. See Fig. 4 for a diagram of this net- den layer, a hyperbolic tangent transfer function, and
work. From campaign 2 data we selected 5 sensors, the Norm-Cumulative-Delta learning rule.
The network thus has 15 input nodes, as shown in
Fig. 5. COMPARISON OF RESULTS WITH REAL DATA

AND SIMULATED DATA

Table 1: Sensors Correlated to Tank Volumes Using simulated data, our networks were very
successful in predicting changes in tank volumes;

Campaign 1 Campaign 2 they predicted every transaction and detected several
....... instances of loss of material from the system, lt How-

Correlated Correlated ever, using real data, the results were not as impressive.
Tank Sensors Sensors There were no known anomalies in these data, but

there were a number of normal transactions. For earn-

Ml01 0, 3, 32 7, 12, 18 paign 1 our network correctly predicted 58 transactions
where tank volumes changed. However, in five cases it

MI02 4, 18, 33 10, 11, 18 predicted a transaction where in fact there was none. In
" campaign 2, the network correctly predicted 12 trans-

M 103 7, 11,3 4 10, 11, 18 actions but erroneously predicted 2 transactions.

Ml04 12, 16, 35 N/A

Selected 0,3,4,7,11,12,16, 7,10,11,12,18
Sensors 18,32,33,34,35

,,,

t4
Tanks

Sensors

Fig. 4. Network for campaign 1. Input data are from 12 sensors, 3 value_ f,'or each sensor.
Outputs represent changes involes of four tanks.



Tanks

I Sensors

Fig. 5. Network for campaign 2. Input data are from 5 sensors, 3 values for each
sensor. Outputs represent changes involes of three tanks.

SELECTING VALUES FOR INPUT VECTORS the number of connections. The training time for an
entire network can be viewed as O(n x m) where m is

We hypothesized that using a subset of sensors the number of training vectors. However, this is com-

with three consecutive states for each would create the plicated by the fact that during training, networks pm-
most useful and effective input vector. To test this cess each training vector a number of times. The
hypothesis, we utilized the data sets described above training time for an entire network is not easy to quan-
and, in addition, we created training and test sets that tify as it is often difficult to determine when the net-
contained only the current value for each of the sen- work is fully trained, although this time is generally
sors. For example, for the latter set, campaign 2 data considered to be NP-Complete. 14
required an input vector of 21 elements, one value for
each of the 21 sensors. The networks that used these CONCLUSIONS AND FUTURE DIRECTIONS
data were identical in ali other ways to the networks

using three values for each selected sensor. Our experiments with neural networks on simu-
lated and real data from a process monitoring system

The results of testing our hypothesis using the indicate that a neural-network-based module may be
two data sets described above show that networks able to provide an anomaly detection system as an

using real data in input vectors containing only one adjunct to a material control and accounting system. If
value for each sensor produced much poorer results a trained network represents a good model of normal
than input vectors with three consecutive values for plant operation, it can be a reliable tool for recognizing
each. This is true even though in the former, data from non-normal activity. The neural network will then be
ali sensors were included, able to flag any anomalous facility state such as loss or

diversion of material, instrument failures, or other
COMPUTATIONAL COMPLEXITY abnormal or unusual events. This would improve the

The computational complexity of training lime sensitivity of any existing system and reduce inspectoreffort.
for neural networks is well understood. The tim

required for the network to process one training vector The design of the architecture for a specificprob-
is a function of the number of connections in the net- lem is somewhat of an art form, and it is clear that the
work. In other words, the complexity is O(n) where n is choice of architecture and learning rule is critical to
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•success. However, overall success for many applica- 7. R.D. Jones, Y. C. Lee, C. W. Barnes, G. W. Flake,
-4 tiofls may rely more on data representation (prepro- K. Lee, P. S. Lewis, and S. Qian, "Function

cessing and encoding) than the choice of architectare Approximation and Time Series Prediction with
"_ or learning rule. 15We believe that more work needs to Neural Networks," Los Alamos National Labora-

be done on tools for preprocessing data. One approach tory document LA-UR-90-21 (1990).,
would be development of sophisticated tools that can
aid in feature selection, data aggregation, data fusion, 8. Kanad Chakraborty, Kishan Mehrotra, Chilukuri

K. Mohan, and San jay Ranka, "Ft'xe,casting theconcept extraction, and handling of missing or errone-
Behavior of Multivariate Time Series Usingotis data. Another approach would be to work with an

expert to accomplish these same goals. Further efforts Neural Networks," Neural Networks $(6), 961-
970 (November 1992).in the areas of architecture design and data preprocess-

ing should lead to neural networks that can more accu- 9. M.H. Ehinger, N. R. Zack, E. A. Hakkila, and
lately model processes and detect anomalies. E Franssen, "Use of Process Monitoring For
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