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TRANSPORT AND DYNAMICS IN TOROIDAL FUSION SYSTEMS

1.0 INTRODUCTION

Over the past two decades, large scale numerical simulation has played an
important role in fusion plasma research. Applications of these techniques to fluid
plasma models have led to an interpretation of sawtooth! and fishbone oscillations?
in tokamaks, the tokamak major disruption3, the tilting mode in field-reversed
configurations4, and to a fundamental understanding of the Reversed-field Pinch
dynamod. These calculations were generally performed on spatial grids aligned with
fixed coordinate directions. As a result, these calculations were often carried out in
generic toroidal or cylindrical geometry.

Recently fusion has evolved from a research program to one that is
increasingly engineering based, and generic calculations based on simple geometries
have become less relevant. Important problems now involve the quantitative
prediction of flows and heat transport near limiters and divertors, which often have
complex geometry. These phenomena are driven by fluxes of particles and thermal
energy that arise from longer spatial scale motions in the plasma core. The core
dynamics may in turn be affected by the edge conditions through recycling fluxes.
To answer these practical questions, self consistent calculations that include
geometric details are required.

Theoretical issues are also affected by the details of the geometry. For
example, the poloidal plasma shape can greatly influence the linear stability
properties of a fusion plasma, and such calculations are now routinely performed
with the actual poloidal plasma geometry accurately represented. This is often
accomplished by employing a coordinate system based on the magnetic field lines,
which are fixed throughout the calculation. The resulting metric makes the fluid

equations quite complicated, but allows the coordinate system to naturally fit the
plasma shape.

Coordinate systems based on magnetic fields have several disadvantages in
fully nonlinear simulations because of the dynamical nature of the magnetic field.
Primary among these is the non uniqueness of the magnetic topology when finite
resistivity is included in the model. These coordinate systems also may become
singular at magnetic separatrices, which are essential features of modern tokamaks.

It is thus desirable for future simulations to employ a spatial representation
that can readily conform to the geometric details of the plasma and its surroundings,
and is independent of the magnetic structure. For accuracy, this representation
should also be capable of conforming to the dynamical evolution of short spatial
scale structures, such as current filaments and edge density gradients, that may



appear spontaneously and require finer spatial resolution than the surrounding
environment.

One candidate for a spatial representation with these features is an
unstructured, adaptive mesh. In such a mesh the mesh points are not constrained
to lie along constant coordinate directions. Instead, mesh points are placed on the
boundary to conform with the actual geometry of the problem, and distributed in
space to maximize the accuracy of the calculation. Thus placed, the points are
connected with line elements that form the edges of triangles. These triangles are
the Eulerian control volumes that form the basis for the finite representation of the
appropriate fluid equations. In the logical data structure that describes the mesh,
mesh points (and associated triangles) can easily be added or deleted dynamically
based on pre-defined accuracy criteria. The spatial representation can thus adapt to
evolving spatial structures without the mesh distortion problems associated with
Lagrangian formulations.

Techniques based on unstructured, adaptive meshes have come to maturity
in computational fluid dynamics (CFDj, where quantitative predictions in real
geometry have become essential in the design of aircraft and gas turbine engines6.
These methods are generally based the solution of a Riemann problem at each
triangle interface (edge) to determine the fluxes of energy, mass, and momentum’.
The simplest extension of the hydrodynamic model that is appropriate for the
description of magnetic fusion plasmas is magnetohydrodynamics (MHD).

In this document we describe an extension of these spatial gridding
techniques to an MHD model suitable for the description of the dynamics of toroidal
fusion devices. Since the dominant MHD modes in these devices have relatively
long toroidal wavelength, the toroidal coordinate is approximated with finite
Fourier series. The unstructured, triangular mesh is used to describe the details of
the poloidal geometry. With some exceptions, the hydrodynamic variables are
treated in a manner analogous to that used in CFD. These quantities (mass, energy,
and momentum) are volume based densities that satisfy scalar or vector
conservation laws. The electromagnetic variables (the magnetic flux density B and
the electric current density J) are area based densities that satisfy pseudo-vector
conservation laws, and have no counterpart in fluid dynamics. These variables are
also constrained to remain solenoidal. These quantities are represented on the

triangular mesh in a new manner that is an extension of that used on rectangular,
structured meshes.

In this work we have chosen to solve the primitive (instead of reduced) MHD
equations in order to make the resulting codes and techniques more generally
applicable to problems beyond the narrow scope of tokamak plasmas. The temporal
stiffness problems inherent in this description of tokamak dynamics that motivate
the reduced MHD model are addressed here with the semi-implicit method of time
integration8. Finally, we remark that, while the present work deals strictly with the
MHD equations, other volume based fluid descriptions, such as diffusive transport,



could easily be adapted to these techniques and coupled with the description of the
electromagnetic field presented here.

This document is organized as follows. In Section 2 we discuss the properties
of structured and unstructured meshes, and the data structures useful for describing
them. Issues related to the triangulation of an arbitrary set of points in a plane are
also discussed. In Section 3 we derive a finite volume approximation to the
resistive MHD equations suitable for use on an unstructured, triangular mesh in
toroidal geometry. Boundary conditions are discussed here. The specific MHD
model, and its implementation on the unstructured mesh, is discussed in Section 4.
In Section 5 we discuss methods of time integration, and describe our
implementation of semi-implicit and fully implicit algorithms. Examples of the
application of the method are given in Section 6. Included are standard, two-
dimensional hydrodynamic and MHD shock problems, as well as applications of the
method to the equilibrium and stability of toroidal fusion plasmas in two and three
dimensions. Our initial results with mesh adaption are also described. The
conclusions, summary, and future plans are given in Section 7.



2.0 COMPUTATIONAL MESHES

The computational description of a continuous, time dependent system, such
as a magnetized plasma, has three components: a continuum model of the system
that describes the evolution of infinitesimally small volume elements for
infinitesimally small intervals of time; an approximation to the continuum model
that describes the evolution of finite sized volume elements for infinitesimally
small intervals of time; and, a description of how these finite sized volume
elements evolve over finite time intervals. In this work we have chosen resistive
magnetohydrodynamics as the continuum model. This will be described in
Section 3. The finite temporal description will be given in Section 5. Here, and in
Section 4, we will discuss finite methods of spatial representation.

2.1 Finite-dimensional Systems and Structured Meshes.

Continuous systems described by partial differential equations respond to
differences between the state of the system at one spatial location and the state at
another spatial location that is only infinitesimally distant. The state of the system
is defined on a continuum of points in the domain. In a finite analog of such a
system, the infinity of points in the continuum is replaced by a finite number of
discrete points, and infinitesimal distance is replaced by the finite distance between
neighboring points. For the purposes of computing the differences in the state of
the system between these points, near neighboring points can be thought of as being
linked together to form a mesh that covers the domain. The description of the
mesh consists of a list of the mesh points and their connectivity. The physical
relationships between the state of the system at one mesh point and that at all others
then defines a finite-dimensional set of nonlinear algebraic equations that are the
exact equations of motion for the finite system. The extent to which the dynamics of
this finite dimensional system approximate those of the continuum system
determines the accuracy and utility of the approximation.

A structured mesh is one in which a pre-defined logical structure (or order) is
assumed to exist. For example, in 2D Cartesian coordinates, a structured mesh
consists of a product of two sets of mesh arrays (the x and y coordinates), with
indices i and j, ordered by increasing coordinate value. Two indices are required to
identify a mesh point: point (i, /) has coordinates x(i), y(j). The mesh is structured
logically so that points (i + 1, j) and (i, j + 1) are adjacent to point (i, j). This logical
structure is assumed to hold for all points in the domain, and is implicitly used in
constructing the finite-dimensional algebraic equations that describe the dynamical
evolution of the finite system. Structured meshes form the familiar quadrilateral
grids commonly used in numerical methods. The boundary of the domain
naturally consists of curves of the form x = constant and y = constant. (An irregular
domain would be built up from unions of such meshes.) As neighboring points are

logically connected in this way, adding and deleting points affects the indexing of all
points in the mesh.



2.2 Unstructured Meshes

In contrast to a structured mesh, an unstructured mesh is one that has no pre-
defined logical structure. An unstructured mesh consists of a set of arbitrarily
ordered points. A single mesh index suffices to identify a point. Point i , having

coordinates x; and y;, and point i + 1, having coordinates xi+1 and y;+1, are not
necessarily adjacent.

Since there is no pre-defined logical structure, the mesh points are not
constrained to lie along any predetermined curves; they may be arbitrarily
distributed in the domain. Neighboring points are then connected by line elements
to form a mesh of triangles that covers the domain. The mesh points r; form the
vertices of the triangles, and the connecting lines form the triangle edges. (This
triangulation is not unique. This will be discussed in Section 2.4.) The mesh
consists of Ny vertices, N edges, and N; triangles, with Ny < Ns < Ne.

With each triangle s we will associate a point r;. This point identifies the
location of the triangle in the domain. (Like the triangulation, the definition of rs is
not unique. This will be discussed in Sections 2.4 and 2.5.) It is also convenient to
define the edges of the triangles as directed line segments, or vectors 1;j, connecting
point i with point j, i.e., 1;; = rj- r;. Every edge e thus has triangle s = L on the left,
and triangle s = R on the right. With each edge we also associate a unit tangent
vector t, =1,/le, and a unit normal vector n, that points from the left side to the
right side. These mesh elements are sketched in Figure 2-1.

Figure 2-1. Triangle, edge, and vertex mesh elements.




An unstructured mesh is identified and manipulated by means of primary
and secondary data sets. The primary data set consists of a list of mesh elements.
Secondary data sets define the connectivity between the primary mesh elements.
For example, for 2D meshes the spatial representation consists of triangular
elements. The primary data set consists of a list of cells (triangles), their vertices,
and the edges connecting them. Additional data sets consist of cross-indexing
information that relate the elements of the primary set. For example, an edge-
indexed array specifies the indices of the cells to the left and right of an edge. Other
cell-indexed arrays specify the indices of the three vertices and three edges of a cell.

Various tools and routines exist for generating and manipulating
unstructured triangular meshes. We have adapted several subroutines used in 2-D
hydrodynamics codes for use in magnetohydrodynamics. These routines interface
with unstructured meshes generated by the SMART code?. The SMART code runs
interactively on a MACII, and generates files that can be read as input. We have
used SMART to generate unstructured meshes for fusion applications. An example
of zoning for the poloidal cross-section of the D-III-D experiment is shown in

Figure 2-2. Detail of the zoning in the region near the divertor is shown in
Figure 2-3.

Figure 2-2. An example of an unstructured mesh describing the geometry of the D-III-D
experiment.




Figure 2-3. Details of the zoning in the divertor region of D-III-D (the bottom portion
of Figure 2-2).

2.3 Primary and Dual Meshes

Computational meshes, both structured and unstructured, are used not only
to describe geometric regions, but also to define differential operators. For the latter
purpose, it is useful to introduce the concept of primary and dual meshes. For a
structured mesh, these are often referred to as staggered meshes. Some variables are
defined on the primary mesh, and others on the dual, or staggered, mesh. An
example of a 2-dimensional staggered mesh is shown in Figure 2-4. These meshes
have been used very successfully in MHD simulation1¢

The concept of primary and dual meshes can be extended to triangular
meshes. In this case the primary mesh consists of the triangulation of arbitrarily
placed points in the plane. The mesh points are the vertices of the triangles. The
dual mesh consists of polygons that surround each vertex. The vertices of the dual
polygons can be chosen in several ways. Two choices will be discussed below.
When taken together, the primary triangular mesh and the dual polygon mesh are
the generalization of structured, staggered meshes. An example of a triangular
mesh and its polygon dual are sketched in Figure 2-5.




Figure 2-5. Triangular (primary) and polygon (dual) meshes.

2.4 Delaunay Triangles and Voronoi Polygons

A set of points in a plane can be connected to form triangular cells that cover
the plane. The connectivity of the resulting mesh is not unique, i.e., there are many
ways to connect a given set of points. One triangulation that has several desirable
properties is the Delaunay triangulation. This is described below.

Consider a set of points P arbitrarily distributed in the plane. A Voronoi
polygon is defined as the boundary of the region surrounding a point P; within
which all points in the plane are closer to P; than to any other member of the set P.
The mesh consisting of all the Voronoi polygons of the set P is called the Voronoi
(or Dirichlet) tessellation of the plane. The Delaunay triangles form a mesh that is
dual to the Voronoi polygons. It is formed by connecting points whose Voronoi
polygons share a common side.



The Voronoi/Delaunay mesh has several interesting and desirable properties.
Some of thesell are stated here without proof.

1. A Delaunay triangulation of a set P is unique.

2. The vertices of the Voronoi polygons (these points are not members of the
set P) are the circumcenters of the Delaunay triangles (i.e., a Voronoi

vertex is the center of a circle passing through the three vertices of a
Delaunay triangle.)

3. The sides of the Voronoi polygons are perpendicular bisectors of the sides
of the Delaunay triangles. (These dual meshes are orthogonal.)

4. The Delaunay triangulation maximizes the minimum angle of the
triangulation; i.e., of all triangulations of the set P the Delaunay triangles
are the closest to being equiangular, on average. A Delaunay triangulation
is said to be acute if the interior angles of all triangles are acute. (In

general, the Delaunay triangulation of an arbitrarily distributed set P is not
acute.)

5. An edge formed by joining a point Pj to its nearest neighbor is an edge of a
Delaunay triangle.

6. In an acute Delaunay triangulation, the vertices of the Voronoi polygons
are always interior to their corresponding Delaunay triangles.

As we will discuss in Section 4, Properties 3, 5, and 6 make acute Delaunay
triangles very desirable for defining discrete approximations to differential

operators. Several algorithms exist for constructing the Delaunay triangulation of
the set of points P.

Unfortunately, acute triangulations are not guaranteed for arbitrarily
distributed points. When the triangulation is not acute, the Voronoi vertices are no
longer interior to their corresponding Delaunay triangles. This makes the use of
this dual mesh undesirable. In the future, we are planning to study ways of
distributing, or redistributing, the points P to guarantee an acute triangulation. For
the present, we use a slightly different dual mesh.

2.5 The Barycenter, or Centroid, Dual Mesh

Because of Properties 4 and 5 of Section 2.4 we use a Delaunay triangulation
for the primary mesh. However, instead of Voronoi polygons we use a dual mesh
whose vertices are the centroids, or barycenters, of each triangle. If the coordinates

of the triangle vertices (the points P) are ry, the coordinates of the vertices of the
dual mesh are given by

P

Ig = '5(11014-13024']:03), s =12,..., NS 2.1




where N; is the number of triangles and the ry; are the three vertices of triangle s.
This dual mesh has the property that the vertices of the polygons are always interior
to their corresponding triangles. It has the undesirable property that the edges of the
dual meshes are no longer orthogonal. This complicates the definition of
differential operators, as will be discussed in Section 4.

2.6 The Third (Toroidal) Dimension

Our goal is to describe magnetohydrodynamics in toroidal fusion systems.
We use the unstructured Delaunay triangular mesh and the barycenter dual mesh
dual to approximate the geometry in the poloidal (r, z) plane. It remains to
approximate the angular toroidal (¢) dimension. Since this coordinate direction is
periodic, and since the dominant MHD motions in a tokamak are long wavelength,
we have chosen a pseudospectral description using Fast Fourier Transforms (FFTs)
for this dimension. The toroidal mesh is thus structured, with a uniform mesh

spacing A¢ = 2w/ Ny, where Ny is the number of toroidal mesh points; Ny must be a
power of 2.

The three-dimensional control volume is sketched in Figure 2-6. The
elemental volume is AV = rsA¢Aas, where Aq; is the planar area of triangle s and
is the radius of the triangle centroid. The Pappus-Guldinus Theorem guarantees
that this formula is exact.

Figure 2-6. Three-dimensional control volume.
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2.7 Mesh Refinement

The use of an unstructured mesh allows for new triangles to be added, and
old ones deleted, in a relatively easy manner. New triangles are merely added to the
end of the list, and old triangles deleted and the list shortened. A new triangle is
added by introducing a new vertex at the centroid of a triangle to be refined. New
edges connect this vertex to the three vertices of the original triangle. The original
triangle is thus divided into three, and two new triangles, three new edges, and one
vertex are added to the lists. The new edges may need to be swapped between the
new vertex and the opposing vertices of the three neighboring triangles. The
circumcenter test!2 is used to determine whether or not edge swapping is required.
The new triangulation is thus as acute as possible. The addition of a vertex and edge
swapping are sketched in Figure 2-7. The triangle centered densities can then be
distributed over the new triangles in a conservative manner.

Before adaption can occur a triangle must be identified for refinement. This
can be done by using the edge fluxes to estimate the change in cell quantities during
the next time step, or by estimating the gradient of cell quantities in neighboring
triangles. These methods have been successful in hydrodynamics. The most

appropriate method for MHD is still to be identified, and is a subject of active
investigation.

New
Vertex

Figure 2-7. Mesh refinement and edge swapping.
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3.0 APPROXIMATION TO SPATIAL DIFFERENTIAL OPERATORS

We now proceed to define approximations on the triangular, unstructured
mesh to the differential operators that appear in the MHD equations. We use the

method of finite volumes as applied to the three-dimensional volume element
shown in Figure 2-6.

Consider the triangle in the poloidal (r, z) plane shown in Figure 3-1. We
define normal and tangent unit vectors n. and ¢, at each edge such that

e = tyxn, (3.1)

where ey is the toroidal unit vector. (Note that ey points "into" the page.) The
normal and tangent unit vectors are given by

I, = dre, + Az e, = 4lt, (3.2)
n, = 3.3
¢ Al @3)

and the area of the triangle is
1 1 1
Mg = = [l1x]ly| = = [l x]3] = =]l3x]y]. 34
s = 5 Mhixly] = 2 flaxlyf = = Jlaxyy (3.4)
We say that n, points from the left side of edge e (triangle s = L,) to the right side of
edge e (triangle s = Ry).
We use a finite volume method to obtain the approximations to the

differential operators. In this method differential operators are defined in terms of
their integral relations. We assume all functions are of the form

fro.zt) = Y fulr.z,t) € (3.5)

and then integrate the appropriate identity over the three-dimensional control
volume shown in Figure 2-6. This technique assures that the same integral

relationships are obeyed by the finite difference approximations and their
equivalent differential operators.

To obtain an approximation for the gradient of a scalar we substitute
Equation (3.5) into the integral identity

12



Figure 3-1. Poloidal projection of control volume.

[ vfav = § fnds, (3.6)

and use second order approximations to the volume and surface integrals to obtain

1 ) .
(Vf)s = 2 redlen, f, - L e, + l'r"l‘ fsep - 3.7

rsAag Is s

The sum is taken over the three edges of triangle s, and the radius of edge e is

re = (rpe1 + rpe2)/2, where rype1 and rp» are the radial coordinates of the vertices
connected by edge e.

Similarly, for the divergence of a vector we use the identity

[v-Adv = § f-AdS (3.8)
to obtain the approximation
(V-A), = —— 3 rdl,n, A, + 2 Ay (39)
5 rsdag s

for the curl of a vector we use

13




ijAds = §t-Adz (3.10)

to obtain the approximation

1 in
(VXA), = =7 (for Agos = o= Ago-) + = At (3.11)
1
(VxA)y = "k Y Al . (3.12)

Here we have taken surface and line integrals over the faces of the contrcl volume

and their respective bounding edges. To approximate the divergence of a tensor we
use

[v-Tav = § fn-Tds (3.13)
to obtain

1

(V-T), = o Ad 2 re Al [er(ne'Te)r+ e¢(ne‘Te)¢+ez(ne‘Te)z]

(3.14)
in 1
+ ;— [erTm +e¢,T¢¢5 +BZT¢S] + r— [8¢T¢rs —e,TMs] .
S S

It is easy to verify from Equations (3.9), (3.11), and (3.12) that V-V x A = 0 for
these finite operators. Solenoidal magnetic fields are thus assured. This is a direct
result of the use of consistent integral relations to obtain the finite approximations.

14



4,0 THE MHD EQUATIONS:
PLACEMENT OF THE VARIABLES ON THE MESH

In this work we solve the equations of resistive MHD. In a convenient
nondimensional form, they are

2 =- 4.
> E 4.1)
E = —vxB+7J/S 4.2)
B = VxA 4.3)
J = VxB (4.4)
dpv
V- _vy.T 4.
5 (4.5)
T = pvv—BB + -;—(p+Bz)I 46)
dp
P _ _v. 4,
o (pv) 4.7)
ou
M o _V.F 4.
> (4.8)
u = pv>+B? + £ 49)
Y-1
F = 2, Y
= (pv o p) v+2 ExB (4.10)

where ¥ is the ratio of specific heats, u is the total energy density, F is the energy flux,
I is the unit tensor, and T is the Reynolds-Maxwell .iress tensor. All other

15



quantities have their usual meanings. Following the experience of hydrodynamics,
we have chosen the conservation form of the equations.

41 Hydrodynamic Variables

The boundary of the poloidal computational region is formed by triangle
edges. As is the practice in computational fluid dynamics, we define the
momentum density pv, the energy u and the mass density p at the triangle centroids
rs. These quantities thus represent the momentum, energy, and mass per unit
volume in a triangular cell. Velocities in a cell are given by vs = (pv)s/ps. The rate
of change of these quantities given by applying the differential approximations
defined in Section 3.2 to Equations (4.1-4.10). For example, the rate of change of
energy density in triangle s is given by

oUg 1 in
— = - r,Al,n,-F, + — F, 4.11
ot rsAasZeeee rs¢s ( )
where
n, F, = (pzﬂ +}Z:T p) Une + 2 (EgeBte — EteBpe) (4.12)
e

is the poloidal energy flux across edge ¢, and

S

is the energy flux in the toroidal direction. The quantity v, is the normal
component of velocity at edge ¢, and is defined as

Une = n,- (VLe + VRe) (414)

N|=

Expressions similar to Equations (4.11-4.13) hold for the momentum equation
(Eq. 4.5), and the continuity equation (Eq. 4.7).

The advective flux at an edge e is computed using the full donor cell method.

For example, in the first term on the right hand side of Equation (4.12) is evaluated
as

16



(pu2+—’1— ) Vpe » i Upe > 0 (4.15a)
Le

(Fne)adv y- 1

(FHE)adv = (pv2+%__i P) vne ’ if vne < 0 (4.15b)
Re

where L, and R, are the indices of the triangles to the left and right of edge e,
respectively. This method introduces numerical diffusion of order vy.4/2, where
A= Aag1/2. While this technique may be too diffusive for shock calculations, it is
quite adequate to describe the relatively slow motions of interest in tokamak
dynamics. Problems involving strong shocks will require a higher order treatment.

4.2 Electromagnetic Variables

The primary electromagnetic variable in this formulation is the vector
potential A. We define A, and A; at the triangles edges e, and Ay at the triangle
centroids s. Then Equations (3.11) and (3.12) define By, the component of B in the
poloidal plane normal to a triangle edge, and Bgs the toroidal component of B at the
triangle centroid. (Note that (V- B)s=0.)

To uniquely determine the magnetic field we must also define another
independent component of B in the poloidal plane. This is done by integrating
Equation (3.10) over the surface of the dual polygon p. that crosses an edge e, as
shown in Figure 4-1. The polygon edge has a unit normal vector ny, and a unit
tangent vector ty.. This defines Bypye, the component of B normal to the polygon
edge. The cylincﬁ'ical components otP the poloidal field are then given by

B, = %(Bnenm-B,,penez) (4.16)

B, = —}(B,,pene,—B,,enpe,,) (4.17)
where

A= ¢y (nexnpe) # 0, (4.18)

Bie = Bty — Bty - (4.19)




Polygon edge p,

Triangle edge e

Vi

Figure 4-1. Triangle and polygon edges.

Similar relationships hold for the current density J. (Note that if the mesh consists
of Delaunay triangles and Voronoi polygons the dual meshes are orthogonal and
this calculation is simplified.)

In light of Equation (4.1), we define the electric field E at the same spatial
locations as the vector potential A. The normal and tangential components of the
electric field at a triangle edge are given by

Epe = - E@B,e+i)'ne§te+n],,e /S, (4.20)

Ete = — DpeBpe+TgeBpe+nte/S . (4.21)
The toroidal electric field at the triangle centroids is given by

Egg = — UzsBys+0psBys +Mgs /S . (4.22)
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4.3 Averages and Interpolation
In the above formulas, an overscore indicates that an average should be

taken, or that interpolation be performed. Several types of interpolation are
required in the present algorithm. These are discussed in this section.

Interpolation from triangle centroids to edges is a simple average between
adjacent triangles:

fo = %(fkﬁfu)- (4.23)

Interpolation from vertices or edges to triangle centroids is also a simple
average. For functions defined on vertices

- 1
fs = 3 (for + fo2 + fo3) » (4.24)

and for functions defined at edges

fi = %‘ (fr+fea+fe3), (4.25)

where v1, v2, v3, and el, €2, e3 are the three vertices and edges of triangle s,
respectively.

For interpolation from triangle centroids to vertices, we use a pseudo-

Laplacian weighted averagel3. In this approach, the interpolated value of a function
at vertex v is given by the weighted average

: D (1+ws)fs
fv - Z(1+ws) ’ (4.26)

where the sums are taken over all triangles sharing vertex v.

We require that the weights ws be as small as possible, and that the
interpolation be exact for linear functions. We can then determine the w;s by
minimizing the functional

Fws) = Y w? (4.27)
subject to the constraints
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L =Y (1+w)(rs-n) =0, (4.28a)

L, = ), (1+wg) (25-2) = 0, (4.28b)

where (ry, zp) and (rg, zg) are the coordinates of the vertex and the centroids The
result is that

ws = AdArg+ A4z, (4.29)

where Arg = rs — ry, Azs = 25— 2, and A, and A are Lagrange multipliers given by

A = RIZ—I?% (4.30)
rrtzz rz

A, = .’EIz_’rI_z'::’i;_;zr. (431)
rrézz rzZ

R, = Y 4, (4.32)

R, = Y Az, (4.33)

Iy = 3 ( Ars)z ) (4.34)

Iz = 3 ( az,)? (4.35)

I, = 2 Ar Az (4.36)

Equations (4.23-4.26) are first order accurate, i.e., they are exact for linear
functions. (Equations (4.24) and (4.25) are just special cases of Equation (4.26)). The
use of higher order interpolation methods, especially in place of Equation (4.23), can

be shown to lead to a non-Hermitian formulation and resulting unphysical
behavior.

A further complication is that neither Equations (4.23) and (4.25), nor
Equations (4.24) and (4.26), are exact inverses of each other. Thus, for example,
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interpolation from centroids to vertices using Equation (4.26), followed directly by
interpolation from vertices to centroids using Equation (4.24), introduces errors.
This is especially important during mesh refinement. We have not yet found a
satisfactory solution to this problem . Interpolation on unstructured meshes is an
area to be investigated in future work.

44 Boundary Conditions

Since the computational boundary consists of triangle edges, the mass density
in triangles adjacent to the boundary is completely determined by the normal
velocity vne at the boundary. The momentum density and energy density also
require that the normal component of the magnetic field, By, and the total pressure,
p + B2, be specified. For a non-porous, perfectly conductin % wall, the appropriate
boundary conditions are By, = vy, = 0, and (p + B2), = (p + B2); (no normal pressure
gradient.) Implementation of boundary conditions is aided by introducing ghost
triangles that lie outside the boundary and are reflections of interior triangles that
contain a boundary edge. For the electromagnetic variables it is sufficient to specify
the electric field tangent to the boundary. Thus, for a perfectly conducting wall,
Ete = Ege = 0, where Eg is the average of the toroidal electric field in a boundary cell
and its reflected ghost cell. Note that A, and hence Ej,, is not required to
determine B in a boundary triangle.
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5.0 TIME INTEGRATION

As is appropriate for sound and Alfvén waves, the time integration
algorithm uses an explicit leapfrog method with predictor-corrector steps to stabilize
the nonlinear advective terms. The velocity and momentum are defined at time ¢”.
The energy density, mass density and vector potential are defined at time ¢#+1/2, The
time step can be arbitrarily large; the semi-implicit method8 is used to remove the
CFL time-step restriction. Artificial viscosity is treated fully implicitly.

The time advance proceeds by means of operator splitting, i.e.,

Q{ = ?2‘ + £| + iall (5.1)
o liotal ot explicit ot semi-implicit o lviscous

or,
U -u"
o = Fexpliit (5.22)
U"__U*
= Fsemi-explicit (5.2b)
Un+1__U"
— = Fyiscous (5.20)

where U is the state-vector describing the system, and Fexplicit: Fsemi-implicit, and
Fyiscous represent the explicit (wave-like and advective), semi-implicit, and viscous

terms that appear on the right-hand side of the equations. Details of these methods
are given in the following sections.

5.1 Explicit Advance

Wave-like and advective terms are advanced explicitly with At chosen for

accuracy and computational convenience rather than numerical stability. The
explicit part of the algorithm is:

A‘ - An-1/2

~ - - vn XB’I"I/Z +n ﬂ-—l/Z/s (5.3)




B*=VxA® (5.4)

J' =V xB* (5.5

Amlz-arl? o" xB +1J /S (5.6)
At

1":_;‘;'_”_2 = - vl (5.7)

p* = (r-1) [u*— (o0?)" - (Bz)nH/Z] (5.8)

M2 _yn-1/2

T V{[(pvz)n+—1— p{l + 2 En+1/2xBn+1/2} (5'9)

At r-1
P”;tP" = - V(o) (5.10)
E_'if;_'fﬁ = - V:(p*v") (5.11)
2 g ow) (5.12)
At
BV_’%‘_P‘C = - V{(ow) - @B - 2 v (p+B)"? . e

The predictor-corrector steps introduce an additional diffusion of order vAt/2
that can exceed the diffusion from the donor cell fluxes when the time step exceeds
the explicit CFL stability limit.




52 Semi-Implicit and Implicit Solutions

We use the semi-implicit method® to remove the CFL time step restriction
for numerical stability associated with the explicit advance described in Section 5.1.
This restriction is of the form CAt/é < 1, where C is the characteristic speed for the
propagation of normal modes (Alfvén or sound waves) and & is a measure of the
linear size of a zone (here proportional to the square root of the triangle area). With
the use of the semi-implicit method the algorithm becomes numerically stable at
arbitrary At so that the time step can be chosen for reasons of accuracy or
computational convenience rather than numerical stability. This is especially
important for tokamak simulations where the time scales set by the normal modes
differ by a factor of order (R/a)2. The time step remains limited the advective CFL
stability condition VAt/é < 1, where V is the local flow speed. This is not a
significant restriction when V/C << 1, as is the case for many fusion applications.
When V/C = 1, as is the case for shocks, the algorithm becomes explicit. This
restriction can thus be viewed as an accuracy condition.

In this work we use a simple vector Laplacian semi-implicit operator. This
term is added to and subtracted from the right hand side of the momentum
equation at the new and old time levels. The semi-implicit advance is

(1-0tv2) (pv)" = (pv) - att(pv)" , (5.14)

where a is the semi-implicit coefficient given by

1 At
= —|— = 1| for At > At , 5.15
¢ 4(-’-“0-‘1. ) > L 13
a = 0 for At < AtCFL , (5.16)

(pv)* is the value of momentum obtained from the explicit advance, and AtcFL is
the maximum time step allowed by the CFL restriction for normal modes.

The time advance is completed with the implicit viscous advance
(1-vat92) (pv)™*! = (pv)" (5.17)

where vis a (possibly spatially dependent) artificial viscosity coefficient.

The vector Laplacian operator appearing in Equations (5.15) and (5.17) require
the definition of the scalar Laplacian. is is accomplished by the successive
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application of the gradient and divergence operators defined in Equations (3.7) and
(3.9). When combined with the boundary condition

(V)g = (Vf)g . (5.18)

where the subscripts G and B represent values in ghost and boundary triangles,
respectively, the resulting operator is self-adjoint.

Since the mesh is unstructured, the Ns x Ns matrices corresponding to the
operators appearing in Equations (5.14) and (5.17) are not banded but are sparse. An
example of the structure pattern for a case with 320 triangles is shown in Figure 5-1.
Matrix inversion is performed with a conjugate gradient (CG) algorithm with
diagonal preconditioning. Since this method is iterative, the full Ngx N never

needs to be stored. Good convergence properties have been found even with
relatively large time steps.

Figure 5-1. Matrix structure for the Laplacian operator on an unstructured mesh.



At this time the resistivity is treated explicitly. Since /S << 1 we have not
found this to be computationally restrictive. An implicit treatment will require
inversion of an operator L of the form

L-A = A-cAtVYxVxA . (5.19)

We plan to implement this inversion in future versions of the algorithm.
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6.0 APPLICATIONS

The algorithm described above has been applied to several nonlinear test
problems, both two- and three-dimensional. The code based on the algorithm is
called TRIM, for TRIangular MHD. The application of TRIM to these test problems
is described in the following sections.

6.1 The Hydrodynamic Shock Tube Problem

A standard problem for testing hydrodynamic algorithms has been defined by
Sodl4. The initial conditions consist of two fluids with different uniform properties
separated by a membrane. The fluid to the left of the membrane has pressure p, and
density pp equal to 1. The fluid to the right of the membrane has pg = 0.1, and
PR = 0.125. The intital velocity is zero and the ratio of specific heats is y = 1.4 (air).
The magnetic field is zero. These conditions are sketched in Figure 6-1.

At t = 0 the membrane is ruptured and the fluid reacts dynamically. This
Riemann problem is one of the few fully nonlinear problems that has a known
analytic solution?, and is therefore valuable for testing numerical algorithms. The
solution consists of an expansion wave traveling to the left, and a shock wave and a
contact discontinuity traveling to the right, all with known velocities.

We have applied the TRIM algorithm to this problem. The time integration
is explicit and the artificial viscosity v is set to zero. While this test problem is one-
dimensional, the triangular grid in TRIM requires that a two-dimensional problem
be solved. The mesh is shown in Figure 6-2. In this figure, the initial membrane is
horizontal. As the solution proceeds in time no spatial variation develops in the
direction parallel to the membrane. Contours of this solution are superimposed on
the mesh in Figure 6-3. The solution thus remains one-dimensional, even with the
two-dimensional algorithm.

A comparison of the results of TRIM with the analytic solution at ¢t = 0.1 is
shown in Figures 6-4a-c. The two solutions are generally in good agreement. The
magnitude of the pressure and velocity in the region between the shock and the
expansion fan are quite accurate. (Note the because of the normalization the
pressure in TRIM appears to be twice the pressure in the analytic solution.) As is
anticipated, the numerical diffusion introduced by the first-order upwind treatment
of the interface fluxes has resulted in a considerable smoothing of the
discontinuities. This is especially noticeable in the density. The contact
discontinuity, which is an interface separating regions of different density but equal
pressure and velocity, has been considerably smeared out. This structure is
particularly difficult to treat numerically. In contrast with a shock, there are no
nonlinear processes that continue to generate a contact discontinuity in opposition
to numerical diffusion; it is merely an interface between two states of different
density. The effect of any diffusion in the algorithm is felt most strongly here.
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Figure 6-1. Initial conditions for hydrodynamic shock tube problem.

<
Figure 6-2. Mesh for hydrod




1.1 -
0.8 |
P o8
0.3
0 ! ! ' %
0 0.2 0.4 0.6 0.8 1
X
2.000e+00 \
. \
1.500€+00!
!
1.000e+00 | \
5.000e-01 \
\\——_—_—w———-_
0.0 0.2 0.4 0.6 0.8
(@)

Figure 6-3a-c. Comparison of numerical and analytic solutions of the hydrodynamic
shock tube problem at ¢ = 0.1.
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One solution to the problem of numerical diffusion is to employ a higher
order approximation to the interface fluxes. Another solution is to use a low order
method but to reduce the diffusion by adaptively refining the mesh in the regions
near the discontinuities. We have applied the mesh refinement techniques
described in Section 2.7 to this problem. The adaptively refined mesh is shown in
Figure 6-4. In Figure 6-5a-c we compare the solution at ¢ = 0.1 with and without
adaption. Mesh adaption reduces the diffusion near the right-propagating shock
wave. The effect on the contact discontinuity is less satisfactory. A more accurate
treatment of this structure likely requires higher order methods.

We emphasize that problems involving strong shocks are uncommon in
fusion plasmas, so that low-order methods are sufficient for these applications.
Nonetheless, it is desirable to develop an algorithm that is more universally
applicable to a variety of problems. The control of unwanted numerical diffusion
will be the goal of some of our future efforts.

A

0.5

0.0

:000.90 1000.5 1001.0

Figure 6-4. Adaptively refined mesh for the hydrodynamic shock tube problem.
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6.2 The Magnetohydrodynamic Shock Tube Problem

The hydrodynamic shock tube solution described in the pervious section has
been extended to MHD by Brio and Wulé. The thermodynamic properties of the left
and right states are the same is in the purely hydrodynamic case. A uniform
magnetic field By is imposed in the direction (x) perpendicular to the membrane.
The component of the magnetic field By parallel to the membrane is discontinuous
at the membrane, with Byr =1 and Byr =-1. The membrane is thus a current sheet
in the z-direction. The magnetic configuration is sketched in Figure 6-6.

The dynamics after the membrane is ruptured are much more complex than
in the purely hydrodynamic case; we refer the reader to Reference 15 for details. In
Figures 6-7a-e we compare our two-dimensional solution with the more finely
resolved one-dimensional solution of Brio and Wul5. We find that most of the
details of the Brio-Wu solution are reproduced in our results, although the effect of
the low-order diffusion is again apparent, especially near the contact discontinuity.
We have also repeated the calculation with the component of magnetic field

parallel to the membrane rotated by #n/2, and find identical results for this
polarization.
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Figure 6-6. Initial magnetic field vectors for the MHD shock tube problem.
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Figure 6-7a-e. Comparison of numerical solution of the MHD shock tube problem with
the solution given in Reference 15.
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We have not yet applied adaptive mesh techniques to this MHD problem
because of errors encountered in interpolating electromagnetic quantities to the new
mesh. This is symptomatic of the problems discussed at the end of Section 4.3. We
are actively investigating solutions to this problem.

6.3 Toroidal Equilibria
To be useful for magnetic fusion applications the TRIM algorithm must be

able to describe force balance in low aspect ratio toroidal systems. Force balance is
given by solutions to the Grad-Shafranov equation

2= .'Z'rz'—— F— 6.1)

where y(r,z) = rAyp is the poloidal flux, and the pressure P(y) and the toroidal flux

function F(y) = rBy are arbitrary functions of y. An analytic solution has been given
by Solov'ev1é. With

4 1+x2
PW) = -5 —5 (y-1) 6.2)
2b
—4 - - 1/2
F(y) o 1-wli/i2 + C (6.3)

the poloidal flux and toroidal field are

2 32\ .2 2 _4\?
y(r,z) = ;1-2- <r +:2) - (r 41) (6.4)

By = $+ O(b) (6.5)

where € =a/R is the inverse aspect ratio, x is the elongation, b is a diamagnetic
factor, and C is a normalization constant that determines the strength of the
vacuum toroidal field. Contours of y and P with k =1 and b = 0 are shown in
Figure 6-8. Since b = 0, this equilibrium has no poloidal current (J, = J; = 0).
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POLOIDAL FLUX

Figure 6-8.  Contours of poloidal flux and pressure for the Solov'ev toroidal
equilibrium.

A typical unstructured mesh for this problem with Ng = 1658 is shown in
Figure 6-9. The outer boundary corresponds to y = 1. When Equations (6.2), (6.4),
and (6.5) are introduced onto this mesh, the right hand side of Equation (4.5) (the
momentum equation) is a small number of the order of the truncation error of the
finite volume approximation: there are unbalanced forces to this order. This force
imbalance excites Alfvén and sound waves. In Figure 6-10 we plot the kinetic
energy of these oscillations versus time for two values of the viscosity. The
viscosity effectively removes these modes and the system finds a neighboring state
of forces balance on the unstructured mesh.
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Figure 6-9. Unstructured mesh for the Solov'ev equilibrium.
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Figure 6-10. Kinetic energy versus time during relaxation of the Solov'ev equilibrium.




The averaging procedures described in Section 4.3 introduce diffusion in the
magnetic energy due to the velocity averages used in Ohm's law. In Figure 6-11 we
plot the magnetic energy as a function of time for cases with and without viscosity.
The lower velocity in the viscous case causes the magnetic damping to decrease.
This damping is also affected by the number of triangles in the mesh, Nj, as
illustrated in Figure 6-12 for cases with three different values of Ns. This damping
rate is summarized in Figure 6-13. We see that the numerical damping rate is
approximately linear in A = (Aas)1/2, confirming the first order nature of the
algorithm.
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Figure 6-11. Magnetic energy versus time during relaxation of the Solov'ev equilibrium.
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for three different meshes.
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6.4 Nonlinear Evolution of Toroidal Instabilities

One of the standard applications of MHD to fusion plasmas is the linear
growth and nonlinear saturation of instabilities. These instabilities can occur
because toroidal equilibria of the type described in Section 6.3 are not necessarily
minimum energy states, even though they are extrema of the energy. Equilibria
that are local maxima of the energy are unstable, with deviations from the initial
state growing exponentially in time. Determining the stability of equilibria is an
important problem in the design of a fusion experiment, and even stable equilibria
can be driven unstable by diffusive processes>. The growth rate of an instability can
be found by solving a linear eigenvalue problem. The details of the saturation
requires that a nonlinear, time-dependent problem be solved.

In Figure 6-14a,b we display poloidal flux and pressure contours for an
equilibrium that is representative of ITER, an international fusion test reactor that is
presently being designed. This equilibrium has both toroidal and poloidal currents,
and has been obtained by a careful numerical solution17 of Equation (70). The outer
boundary is the separatrix, or last closed flux surface; it is intended that the plasma is
confined within this surface. The functions P(y) and F(y) are displayed in
Figure 6-15. This equilibrium has been constructed to be unstable to an internal
kink mode with toroidal mode number n = 1. The safety factor profile is shown in
Figure 6-16. The linear instability has been computed with the GATO codel8, which
directly solves the resulting linear eigenvalue problem.
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The unstructured mesh inside the separatrix with Ng = 5728 is shown in
Figure 6-17. The equilibrium is initialized to this mesh by cubic spline
interpolation, and the resulting force imbalance is resolved with viscous damping
as described in Section 6.3. We have also found it useful to introduce spatially
dependent resistivity, with S = 106 near the magnetic axis and S = 104 near the
separatrix. Thus resistive flow is always present and true static equilibrium is not
achieved. The resistivity also causes the current to peak near the magnetic axis, thus
altering the safety factor profile.

After axisymmetric relaxation, three-dimensional modes are perturbed with
random noise at very low amplitude. For this calculation we use a toroidal mesh
with Ny =8 toroidal mesh points, so that three toroidal Fourier modes (n =0, 1, 2)
are included after dealiasing. This resolution is marginally acceptable for highly
accurate calculations, but will demonstrate the utility of the TRIM algorithm for this
problem. We expect that linearly unstable modes will begin to grow exponentially
in time with linear growth rates comparable to those determined by GATO.

TRIANGULATION INSIDE
LAST CLOSED FLUX SURFACE

Figure 6-17. Unstructured mesh for the ITER equilibrium.
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In Figure 6-18 we plot the kinetic and magnetic energy in all modes except
n =0 as a function of time. An exponentially growing solution is seen to arise from
the initial random noise. This instability saturates nonlinearly at finite amplitude.
The exponential growth rate is approximately a factor of 2 larger than that
determined by GATO.

In Figure 6-19 we plot the magnetic and kinetic energy in the individual n =1
and n =2 modes as functions of time. It is seen that both n =1 and n =2 modes
grow exponentially, with approximately the same linear growth rate. This is in
contradiction to the results of GATO, which predicts stability for n = 2. However,
both the appearance of the n =2 mode and the enhanced growth rate of the n =1
mode may be the result of the modified safety factor profile as a result of resistive
diffusion. The n =2 mode may also be nonlinear driven by the growing n = 1.
These issues must be resolved in the near future.

The linear eigenmode for the poloidal velocity is shown in Figure 6-19, where
poloidal velocity vectors at ¢ = 530 are superimposed on contours of the poloidal flux
at the eight toroidal locations included in the calculation. The flow pattern has the
clear counter-rotating vortex structure of an internal kink mode with dominant
poloidal mode number m = 1. This structure is seen to rotate once around the torus,
as required by an n =1 mode. As the mode saturates nonlinearly the structure takes
on an m =2, n =2 character, as is seen in Figures 6-20 and 6-22. The three-
dimensional structure of the pressure at saturation is shown in Figure 6-23.

The instabilities computed here evolve on a fraction of the poloidal Alfvén
time, which is almost a factor of 10 longer than the toroidal Alfvén time. Purely
explicit methods require that the time step be taken at a fraction of the shortest time
scale. In the example computed here, we have used the semi-implicit method with
a time step 30 times that allowed by explicit numerical stability. Clearly, this method
is essential for computing tokamak instabilities with the primitive MHD equations.
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Figure 6-18. Kinetic and perturbed magnetic energies versus time for the evolution of
an unstable n = 1 kink mode in the ITER equilibrium.
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Figure 6-19.  Magnetic and kinetic energies versus time for the n =1 and n = 2 modes in
the ITER equilibrium.
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Figure 6-20. Velocity and poloidal flux at 8 different toroidal locations during the linear growth phase.
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Figure 6-21. Velocity and poloidal flux at 8 different toroidal locations late in the linear growth phase.
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Figure 6-22. Velocity and poloidal flux at 8 different toroidal locations at the time of nonlinear saturation.
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Figure 6-23. Three dimensional structure of the pressure at the time of nonlinear saturation.




7.0 SUMMARY AND CONDITIONS

An algorithm for the solution of the time-dependent, primitive, resistive
MHD equations in three-dimensional toroidal geometry has been developed. The
algorithm uses an unstructured, triangular mesh in the poloidal plane, and a
structured, pseudospectral method based on FFTs in the toroidal coordinate. The
algorithm is fully conservative and maintains both the magnetic field and current
density as solenoidal. Fluxes at cell interfaces are computed with a low-order
upwind method. The semi-implicit method is used for time integration.

A code based on the algorithm, TRIM, has been written and is being verified.
The first order nature of the algorithm has been confirmed. The code has been
applied to four nonlinear test problems: a hydrodynamic shock tube; an MHD shock
tube; toroidal force balance; and, growth and saturation of toroidal instabilities. For
both the hydrodynamic and MHD shock tube problems, good agreement with
previous results has been obtained. The primary inaccuracy is due to the numerical
diffusion introduced by the low order fluxes. Mesh adaption and refinement has
been successfully applied in the hydrodynamic case. Toroidal force balance has been
computed by viscous damping of Alfvén and sound waves. Linear growth and
nonlinear saturation of a three-dimensional kink mode in a highly elongated
toroidal equilibrium representative of the ITER design has been computed. This
calculation is qualitatively correct, but quantitative differences with other
calculations must still be resolved. These differences may be due to resistive profile
modification, nonlinear effects, or errors.

During the next year we will concentrate on verification of results and
algorithm improvement. In particular,

We will obtain an understanding and confirmation of the toroidal
stability results described in Section 6.4,

We will develop techniques to apply the mesh adaption algorithm to
MHD,

We will incorporate implicit resistivity,
We will investigate methods of interpolation on unstructured meshes,

If necessary, we will investigate higher order methods for determining
interface fluxes,

We will begin to apply the algorithm to the external kink mode,

We will investigate the viability of applying the algorithm to dynamics
and transport in the tokamak scrape-off layer (SOL), and

We will visit various national fusion facilities to publicize the
algorithm and to offer its use in solving fusion problems.
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