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. .~ 'DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
e B Lent o st g e, mendation, or favoring by the United States Government or any agency thereof. The views
. ; and opinions of authors expressed herein do not necessarily state or reflect those of the
£ e United States Government or any agency thereof.
ABSTRACT

We present a theory of dynamic fragmentation of brittle materials based on thermodynamic
arguments. We recover the expressions for average fragment size and number as originally derived by
Grady. We extend the previous work by obtaining descriptions of fragment size distribution and
compressibility change due to the fragmentation process. The size distribution is assumed to be
proportional to the spectral power of the strain history and a sample distribution is presented for a
fragmentation process corresponding to a constant rate strain history. The description of
compressibility change should be useful in computational studies of fragmentation. These results
should provide insight into the process of fragmentation of brittle materials from hypervelocity impact.

INTRODUCTION

Upon hypervelocity impact, shock waves are generated at the contact surface, propagate outward,
and set the media into a state of compression. Itis intuitively clear that the fragmentation process will
not take place until the stress state in the media becomes tensile due to the reflected waves from the
boundary or scattered waves from internal flaws or structure. A large amount of expansion energy is
thus imparted to the material in a very short time period. When the tensile stresses exceed the fracture
limit, a catastrophic break-down of the material occurs and a debris cloud is formed. However, there
is a lack of rigorous analysis of this observed phenomenon. The major difficulty has been that the
material, upon hypervelocity impact, will break down forming a debris cloud, yet the theories used in
the analysis have always treated the material as a continuum. The catastrophic failure of material is not
a well understood process. In a series of papers, a catastrophic failure theory based on local energy
inequality and minimum fracture time requirement was developed by Grady (1982, 1985, 1988). The
theory is however not completed because the evolution process that leads to the catastrophic failure of
the material was not considered by Grady. This presents a aifficulty in implementing the theory to
computation simulation of the problem. ,

In this paper, we present a different approach to the problem by treating the fragmentati.on event as
a thermodynamic process controlling energy and entropy distributions throughout the entire volume.
We argue that since a large amount of expansion energy is imparted to the material by the reflected
tensile waves, the body is not in a state of thermodynamic equilibrium, and the body tends to reach a
state of equilibrium by breaking-down or by undergoing phase changes Such as fluidizjng or
vaporizing or both. The dynamic fragmentation process can therefore be described by applying the
thermodynamic theory. Since Grady's fragmentation theory will be employed extensively in the
development of our theory, a brief recount of that theory will be presented in section 11 A catastrophic
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fragmentation theory based on thermodynamic theory will then be developed in section I1l. Based on
Grady's horizon condition, it will be shown in section IV that the particle size distribution is
proportional to the spectral power of the reflected tensile strain history in the body. Assuming that the
process that leads to the catastrophic fragmentation of the material is the rapid growth of internal cracks
in the material, a quantitative description of material property degradation caused by the growth of
intemnal cracks is developed in section V. The results are then used to derive the evolution equation for
describing the material behavior during the period of internal crack-growth-to-failure of the material.
Finally, \?I brief recount of the results developed in this study is presented in the concluding section --
section VI

GRADY'S FRAGMENTATION THEORY

Consider 2 small body of material of volume V as shown in Fig. 1, which was previously
comprcsscd is now in a state of rapidly diverging cxpansnon undex thc action of a uniformly

cM

l P(dia=s)
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Fig.1: Formation of Fragments by Rapid Expansion

distributed tension P. Assume that, prior to break-down, the instantaneous kinematic state of the

material is provided by the strain &, strain rate £, and temperature 8. Follow Grady (1982,1988) and
consider, prior to fragmentation, an element of mass within the expanding material which will
constitute the mass of an average fragment after the breakage process is completed. This mass element
is illustrated by the spherical region of diameter "s" shown in Fig. 1. With reference to the position of
mass-center, the kinetic energy of the mass element can be decomposed into a center-of-mass kinetic
energy, Tem, and a kinetic energy relative to the mass center, dT.

To obtain an explicit expression for the local kinetic energy (dT), consider a spherical mass

element of diameter, s, expanding uniformly from the center due to a strain rate €. The expansion -

kinetic energy density with respect to the mass center can be shown to be

dT—-——- ¢&?
20PEY 1)

where p is the current mass density.

In addition, a strain energy density

2
du = 1)—~—.113(é[)2
B 2

-

(2)
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is also present as the element is carried into tension.

In Eq. (2), B = pc? is the bulk modulus, p is the density, and c is the dilatational wave speed of
the material. Grady argued that if the body is to undergo macroscopic failure by fracture at a time t, it

is necessary for each and every volume of size (ct)3 to failure independently. Since, at time t, the
communication horizon is no great than (ct), the size of each individual fragment should be governed
by the inequality,

s < 2ct, 3)

Substitution of Eq. (3) into Eq. (2) gives
auslpEy

2 2 . 4

When the mass breaks down into "n" fragments of an average diameter "s", a fracture surface
energy per unit volume approximately .

2
ar=2K. :
pes )
must be dissipated in the fragmentation process.

Grady (1988) postulated that , for brittle spall to be energetically permissible within the element
M, the following inequality must be satisfied:

- dT +dU >dr, 6)

Assuming that dT << dU and the term dT can be neglected, the minimum time requirement of Eq.
(6) gives the average size of fragments:

S = 2[‘\/_3-Kc ]2/3
pcé = @

THERMODYNAMIC FORMULATION OF DYNAMIC FRAGMENTATION

Assume that the global volume shown in Fig. 1 is sufficiently small that the expanding strain rate &

is uniform throughout the volume, and that the volume breaks down into "n" small spheres of an
average diameter "s". Geometrical consideration gives

6V
__~_)1I3

S==(7tn . ’ (8)

By multiplying Egs. 1, 4, and 5 by the total volume V and substituting Eq. (8) into them, the
equivalent energy terms in the volume can be written as:

Total expansion kinetic energy:

1 6 2/3 a2 _~2/3v;5/3
T=—~(= Y
20 PEn , )

Total strain energy:

U E(Ef (é_)ZIJn—ZIBVS/l
8¢ =«



* Total fracture dissipation energy:
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6 pe , ()

The above equations will be used in the derivation of Gibbs thermodynamic function G defined as
(Sears and Salinger, 1975):

G=H- 63, (12)

where H is the enthalpy, Sc is the configuration entropy, and 0 is the absolute temperature of the
system. :

energy, it seems reasonable to assume that the strain energy and the heat energy generated by the
impact are the internal energy in the body that contributes to the break-down of the material, while the
kinetic energy in the body gives the expansional velocity within the fragment particles. In this study,
we consider only the case that the body breaks down according to a K¢-controlled fracturing process.
The energy necessary to fracture the body is governed by the internal energy imparted by the impact
and by the surface energy dissipated in the fracturing process. Note also that the fracture surface
energy is not recoverable, it contributes to the entropy increase of the system. The fragmentation of
the body is assumed to occur under an isothermal condition.

The Gibbs function for a body that breaks into n spheres can be written as
G =GO+ ngf-0S; (13)
where ngf is the contribution from the fracturing process, and S is the configuration entropy.

The above form of Gibbs function has been used in the study of void generation in perfect crystals
(Varotsos and Alexopoulos, 1986). The function GO is defined under the assumption that the perfect
crystal is so near to equilibrium that thermodynamic functions can be defined. For the present case,
one can thus relate the function G© to the expanding strain energy in the body immediately prior to
fragmentation, i.e.,

Go = _B__(E)z(é)z/:\n-zlsvsn
8¢ & ) (14)

By replacing the term ngf with Eq. (13), the Gibbs function (Eq. 13) for the fragmented body can be
written as:

G = E(é)?l!(é)zn-ZIBVSIS + (2)1/3(31{5 )nl/3vll‘3 _ GSC

g8 n° ¢ 6" pc (15)

Following Varotsos and Alexopoulos (1986), the configuration entropy of n cracks that could
occupy N+n sites in the volume V is

»

(N+n)!]

S, =kln{
Nin! (16)

where k is Boltzmann's constant.

Under a constant P and 6, the Gibbs function is a minimum in the equilibrium state. The number
of fragments can be found from
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( )2/3( )2( ) ~Sl3v5l3 +( )ll3( c)( ) —2/3v2/3 kel (
8 pc (18)

Making use of Eq. (8), the above equation becomes

n+N

&2
-+ 2)s = k8In(2t N,
. 19
Using the following data:
TABLE 1: Material Properties (Aluminum) Used In Computation

p (density) = 2,800 Kg/m3

K. (stress intensity factor) = 29.13x106 N/m3/2
¢ (wave speed) = 6,300 my/s

k (Boltzmann constant) = 1.39x10-23 N-m/°K
6 (temperature) = 1,273°K

the number of particles n and the average particle size s can be calculated from Eqs. 8 and 19,
respectively.

However, based on the values in Table 1, the coefficient kO in Eqs. (18) and (19) is negligibly
small in comparison with the coefficients on the left-hand side of the equation. The expressions for
number of particles and average particle size s can be derived by dropping the right-hand term in Eqgs.
(18) and (19) to give

the number of particles:

(cBe
(20)
and the average particle size:
'\/—'Kc 1/3
ﬁpce ) ' 1

The above equation differs with the Grady's equation (Eq. 7) by a factor 1/(2)!/3. It should be
mentioned that, despite the closeness of results, the approach used in this derivation is very different
from that used by Grady. In our derivation, the number of fragments in a volume V is calculated by

minimizing the Gibbs function (i.e., U + I') in the volume with respect to the number of fragments.
While, in Grady's derivation, the number of fragments is calculated by imposing a minimum time
requirement to the local energy inequality (Eq. 6).

The average size of particles and particle densities for strain rates of 104, 103, and 106 are
calculated from Egs. (20) and (21) and are tabulated as follows:

i
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e = 104, so = 6.89 mm, WV =5.84 /cm3
€ = 105, So = 1.48 mm, n/V = 584 fcm?3
e = 106, So = 0.32 mm, n/V = 58400 /cm3

Consider, for an example, an aluminum sphere of radius 1 cm expanding at a velocity of 6 km/sec.

The average strain rate is 89 = wr = 6x105. One thus expects the sphere would break down into
fragment particles of an average size less than 1 mm.

Substitution of Eq. (21) into Eqgs. (2) and (3) give the other corresponding expressions derived by
Grady as follows:

Time to break-down:

1,43K

== (5 2)*

¢ V2pci (22')

and the strength of tensile wave at break-down:

3
P, = (2 pcK2)"?
2 POReE 23)
PARTICLE SI1ZE DISTRIBUTION

The horizon condition, Eq. (3), has an important implication in particle size distribution. Observe
that the wave length (A) is related to the frequency () and wave speed (c) by

Aw = c. (24)
Replacing ¢ in Eq. (3) by the above equation and by 1/t, the horizon condition becomes

$ < 20Aw = 2A. (25)

The above equation suggests that the particle size can not be larger than two-times the
corresponding wavelength of the tensile wave in the expanding body. Furthermore, if the tensile wave
in the body is composed of waves of different wavelength, Eq. (25) appears to imply that the
distribution of fragment size depends upon the spectral power of the tensile wave in the body.

Since a material sample of volume V is assumed to be subjected to a hydrostatic expansion at a
constant strain rate €, the expansion wave can be represented by the strain history

E(t)=[ét, OStst,)

0, otherwise

1
i

. : (26)

where tf is the time to fracture. The assumption of size distribution being proportional to the frequency
spectrum of the expansion wave suggests the following relation:

s(w) = B]e(m)lz, : (27)

where le(w)I2 is spectral power of the strain history, s(w) is the size distribution, and B is a
_proportionality constant. Since the strain €(t) is produced by the reflected waves, it is reasonable to
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assume that the spectral distribution of g(w) is a banded distribution with a central frcqucncy '(no.

The quantity le(w)! is determined by using the Fourier transform, giving

2

[e(m)]2 = !517:_ fa(t)c"'“‘dt

(28)
Equations (26) and (2b) give the result
[e(w)]* = (.‘:'31;_)2 [n? —2(cosn +nsinn~1)]
2n n* ' | -

with 1 = (W - W)ty

Equations (27) and (29) give the size distribution once the constant f§ is known. We can determine
this constan( by using Eqs. (27) and (29) to define an average particle size and equate the result to the
definition of average particle size derived in the last section as represented in Eq. (21). We can define
an average particle size in terms of the size distribution in Eq. (27) as follows:

[stan
Sppe = o
Jsyan
-~ . (30)
Substituting Eq. (27) and (29) into the above equation yields
2
... = BEL)R
2, (31)
where R is defined as
[tmian
R ==——o,
[£emyan
S (32)

with
f(n) = [n* ~ 2(cosm +7sinn— 1}/ n°

Evaluation of the integrals in Eq. (32) gives R = 0.1578968. Equating the definitions of the average
particle size as they appear in Egs. (21) and (31) leads to the result

1 2n,,
=—(3)s, .
P R &} (33)

where sg is defined in Eq. (21).
Equations (27), (29), and (33) yield the particle size distribution

S(n)=%[ﬂ2 _2(c05n+nsinn-—1)]/ﬂ4. (34)
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Fig. 2: Particle Size versus Dimensionless Frequency
F o

A plot of this distribution as a function of the dimensionless frequency parameter 7 is displayed in
Fig. 2. The figure suggests that the low frequency components give rise to the larger fragment sizes
whereas, the higher frequency components yield the smaller sizes. It is interesting to note that the
largest fragment sizes are roughly 60% larger than the average size. If one replots the size distribution
with the vertical scale modified to enhance the details at the shoulder of the peak, one will notice a
number of plateaus suggesting that certain sizes are generated by wave components in compact

frequency domains. Recall that 1} = wtf, where t¢ denotes the time to fracture. If one acknowledges
the “horizon condition", and assumes that fracture occurs in minimum time, then tf can be represente 1
by the Grady relation (1988)

1 V3K,

t = (t)mn = = (——=)*?

c pce (35)

It should be emphasized that the above observations result from the postulation of a horizontal
condition. Experimental evidence is needed for its verification.

EQUATION OF STATE DURING BREAKING DOWN

Equations (20), (22) and (23) give a description of the body at its final stage of breaking down. At
this instant, the body is at a state of equilibrium again. In order to describe the behavior of material
during its fracture growth-to-failure stage, a model is needed. The study of constitutive models for
dynamic failure of materials has been undertaken by many authors (Carroll and Holt, 1972; Cochran
and Banner, 1977; Seaman, Curran and Shockey, 1976; Asay and Kerley, 1987). In their studies,
the material was modelled as a porous medium, and the failure (or loss of integrity) of material was
characterized by the increase of pore size (or void volume) in the material. In this study, a different
approach is taken. We argue that since the hypervelocity impact produces a very large stress in the
material in a very short time period, the materiz! is not expected to experience a significant amount of
void growth during the period of internal crack nucleation and growth. Therefore, it seems reasonable
to assume that, during this period, the material behaves as an elastic material with degrading moduli
which are caused by the growth of internal cracks in the material.

~ The size of fragments, in an approximate manner, can be considered to be determined by the
intersecting crack network in the volume. If one models the fragments as spheres as described in
section 1I, when thzre is one crack (i.e. n¢ = 1), the body can be considered to break-down eventually
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into two spheres (n = 2); and when nc =2, n =4, and so on. The relationship between the number of
cracks and the number of spherical fragments is n = 2n¢, Thus, the amount of energy dissipated,
when the number of cracks in the volume grows, can be expressed by replacing n in Eq. (11) by 2n¢
to give

r‘ - (971:)1/3(__I_<_Z_)n1/3v2/3
pcttt (36)

Assuming that the effect of internal cracks on the material behavior is reflected in the bulk modulus
B of the cracked material, the change of strain energy in the material when the body cracks under the

action of a constant expansion pressure P (or tensile stress o) must be equal to the energy dissipated
by the cracking process, i.e.,

2
.1.02(__1_ - _l.)v = (9n)‘/3(—li°;)ni’3vm
2 B, B pc . a7

Replacing the bulk mudulus B in the above equation by conipressibility C (= 1/B), and making use

of relation n = 2n¢ and Eq. (20), the equation which relates the change of compressibility (AC) [or the
degradation of material property during the process of breaking down] can be written as:

4
YL o
pc

g2
ey
o . (38)

Equation (38) describes the degradation of material compressibility resulting from the growth of
internal cracks during the fragmentation process. When the number of internal cracks equals

n = ._1_ _@E)zv
4n KC . (39)
the internal cracking process is completed, and the body breaks down catas'trophically into "n"
fragments, and the tensile stress in the body drops to zero abruptly.

CONCLUDING REMARKS

A theory for dynamic fragmentation of brittle materials, based on thermodynamic arguments, has
been presented. The expressions for average fragment size and number of fragments are identical to
those derived by Grady. We have extended the previous work by obtaining descriptions of fragment
size distribution and compressibility change due to the fragmentation process. The size distribution is
assumed to be proportional to the spectral power of the strain history and a sample distribution has
been presented for a fragmentation process corresponding to a constant rate strain history. These
results should provide insight into the process of fragmentation of brittle materials from hypervelocity
impact. Furthermore, the description of compressibility change should be useful in computational
studies of fragmentation.

ACKNOWLEDGEMENT

The work has been supported in part by a grant NAG9-114 from the Johnson Space Center -
NASA to the first author (CHY). The reported study was developed when the first author was with
Sandia National Laboratories as a summer faculty member (1992). The hospitality of SNL is
gratefully acknowledged.
REFERENCES

Asay, J. R, and Kerley, G. L. (1987), “The Response of Materials to Dynamic Loading", Int. J.
_Impact Engng, vol. 5, pp. 69-99.

i
t



AUTHORS TYPING e 18R

Pt S DL TFL B VRS SRR T PR ER IR TS | subsegiuent papers heg

J. Appl. Phys. Vol. 43, No. 2, pp. 759-761.

Cochran, S. and Banner, D. (1977), "Spall Studies in Uranium", J. Appl. Phys. Vol. 48, No. 7, pp.
2729-2737.

Grady, D. E. (1982), "Local Inertial Effects in Dynamic Fragmentation", J. Appl. Phys, vol. 53, No.
1, January, pp.322-523.

Grady, D. E. (1985), “Fragmentation Under Impulsive Stress Loading", Fragmentation By Blasting,
edited by Fourney and Costin, Experimental Mechanics, Brookfield Center, 1985, pp. 63-72.

Grady, D. E. (1988), "The Spall Strength of Condensed Matter", J. Mech. Phys. Solids, vol. 36,
No. 3, pp.353-384. .

Seaman, L., Curran, D. R., and Shockey, D. A. (1976), "Computational Models for Ductile and
Brittle Fracture", J. Appl. Phys. Vol.47, No. 11, pp. 4814-4826.

Sears, F. W. and Salinger, G. L. (1975), "Thermodynamics, Kinetic Theory, ang‘Statistical
Thermodynamics”, 3rd edition, Addison-Wesley Pul:!ishing Co.

Varotosos, P. A, and Alexopoulos, K. D. (1986), "Thermodynamics_of Point Defects and Their
Relation with Bulk Properties”, North-Holland Publishing Co.

e gt Yea o fiS Y rage e,
‘I

Carroll, M. and Holt, A. C. (1972), "Suggested Modification of the P-a Model for Porous Materials”,



ll/l'7/9i'>




