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Abstract

The third generation Advanced Light Source (ALS) will
produce extremely bright photon beams using undulators and
wigglers. In order to position the photon beams accurate to
the micron level, a closed-loop feedback system is being
developed. Using photon position monitors and dipole
corrector magnets, a closed-loop system can automatically
compensate for modeling uncertainties and exogenous
disturbances. The following paper will present a dynamics
model for the perturbations of the closed orbit of the
electron beam in the ALS storage ring including the vacuum
chamber magnetic field penetration effects. Using this
reference model, two closed-loop feedback algorithms will
be compared -- a classical PI controller and a two degree-of-
freedom approach. The two degree-of-freedom method
provides superior disturbance rejection while maintaining
the desired performance goals. Both methods will address
the need to gain schedule the controller due to the time
varying dynamics introduced by changing field strengths
when scanning the insertion devices.

I. INTRODUCTION

The ALS is designed to store a 400 mA, 1.5 GeV,
multi-bunch electron beam with a lifetime of 6-8 hours. The
natural rms emittance is 3.4x10° m-rad with an estimated
rms beam size at the center of the insertion device nf 195 pm
horizontally and 37.4 pum vertically. The lattice is based on
a cell with a triple bend achromat, repeating twelve times.
This leaves room for a maximum of ten insertion devices.
The storage ring is optimized to produce photon beams in the
VUYV to soft X-ray spectral region.

In order to position the photon beams accurate to the
micron level, a closed-loop feedback system on the electron
beam is being developed. Potential error sources driving
the electron beam include: environmental vibrations,
magnetic field changes associated with insertion device
scanning, magnet power supply ripple, and temperature
drift. Steering of the photon beam is done by monitoring
the position at two locations and correcting the position and
angle of the electron beam through the insertion device.
This is done by local correction using four dipole corrector
magnets in each plane. The following paper integrates
accelerator beam dynamics with feedback control theory for
systematic controller design.

*This work was supported by the Director, Office of Energy Rescarch, Office of
Basic Energy Sciences, Material Sciences Division, of the U.S. Department of Energy
under the U.S. DOE Contract No. DE-AC03-76SF00098.
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II. ALS MAGNET LATTICE

In order to design a feedback control system for
photon beam steering, one must have an accurate closed orbit -
beam dynamics model. Fig. 1 shows the magnetic lattice for
two of the twelve sectors. Each sector is identical except for
the type of insertion device. Using the two dipole corrector
magnets on either side of the insertion device, the goal of the
local bump system is to accurately steer the electron beam
though the insertion device without perturbing the bzam
position outside the four magnet bump. This algoritbm must
account for focusing changes in the quadrupscies located
between the corrector magnets and the field changes of the
insertion devices during scanning.
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Fig. 1. Closed Orbit for a 10 p-radian dipole kick at VCM1

Since only small perturbations about the equilibrium
orbit are being considered, linear modcls are sufficient. If
necessary, one can easily generalize to the nonlinear case by
using automatic differentiation, [9].

The change of the phase space coordinates x = (x,p,)
between two points in the lattice is given by the transport
matrix,

x; =M, ;xi.

1¢))

Therefore, M;_,; is the one-tum matrix. Consider the closed

|
orbit distortions for a single dipole kick, Ax; = (0,40 ,)-
The distortion at location i is then given by

- -1 -

Axy =[1-M,;] Ak @
The distortions at other locations in the lattice can be
computed from (1). Fig. 1 shows the distortions of the
vertical closed orbit for a .01 milliradian kick from corrector
magnet VCMI1. By superposition, one can find the
contribuiions to the closed orbit distortions from the four
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corrector magnets to the center of the insertion device and

VCM4. Introducing, A® = (A® ,,A® ,,A0 ,,A0 ,), One
obtains the following system of equations
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A X vem4

} =T AO® (3)
If the new position and angle downstream of VCM4 is along
the unperturbed closed orbit, then the bump will remain
local. Hence, for open-loop steering of the photon beam, the
corrector strengths can be found from T! with

AX oot = (0,0). Although the position and angle of the
electron beam at VCM4 was chosen, any position outside the
bump would suffice. Also, equation (3) can easily be
generalized to account for any coupling between the vertical
and horizontal dimensions.

III. FEEDBACK CONTROL SYSTEM MODEL

Equation (3) provides the corrector strengths for static
beam steering. However, due to modeling uncertainties and
exogenous disturbances, a dynamic system is necessary. In
order to "close the loop” on the photon beam position, an
accurate model for entire control system needs to be
developed. Shown in Fig. 2, the feedback control algorithm
consists of a controller (to be developed in Sections IV and
V), the beam dynamics compensation gain (T!), and vacuum
chamber compensation filters. The transfer function for the
accelerator (i.e. power supply inputs to photon beam position
monitors) consist of the superposition of four decoupled
corrector magnets systems. The dynamics of this system is
dominated by the eddy currents effects of the aluminum
vacuum chamber. The cutoff frequencies for the vacuum
chamber at the correctors are (58Hz, 195Hz, 250Hz, 58Hz)
vertically and (3 Hz, 55Hz, 66Hz, 3Hz) horizontally. The
power supply and magnet bandwidths are approximately 500
Hz and 1000 Hz, respectively.
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Fig. 2. Local Bump Control System Model

The power supply range is +100 amps verticaily and +40
amps horizontally (accurate to 1 part in 10,000), which
corresponds to a +3.2 milliradian change in the electron
beam at 1.5 GeV. The photon beam position monitors

(PBPM), located 8 and 12 meters from the insertion device
center, are accurate to 1 micron.

The inherent difficulty in designing a feedback control
law for this system is due to the fact that only two position
monitors are available when one is trying to control four
decoupled corrector magnet systems. The fact that the states
in each of the correctors are decoupled makes the plant
unobservable. Lack of observability extremely limits
feedback control design. As done in [5] and [6], essentially
one has to take an open-loop control approach, then feedback
on two PBPM signals with the assumption that the zero
leakage condition is met. The problem with this approach is
that closed-loop control only provide robustness to modeling
uncertainties for the photon beam steering, and no robustness
on the leakage condition. Hence, the controller performance
and stability will be extremely sensitive to modeling errors.

The remainder of this paper will concentrate on the
controller design, K(s). The design example will be a four
magnet local bump in the vertical dimension with a closed-
loop bandwidth of 100 Hz. For simplicity, only an analog
control design will be considered, however, the actual
implementation will be digital for flexibility.

IV. CLASSICAL CONTROL DESIGN

The fundamental goal of a feedback control system is to
track a given input command given actuator limitations,
uncertainties in the dynamics model, sensor noise, and
exogenous disturbances. A generic feedback control structure
is shown in Fig. 3. The power supplies, magnets, and
accelerator physics models are lumped into block G(s) (the
plant), with modeling uncertainties, A(s). The disturbances
are external inputs not accounted for in the design model,
e.g. vibration, power supply ripple, cross-talk errors, and
temperature drift.
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Fig. 3. Feedback Control System Structure

If C, =0, then the equations of interest are the following.

y=GCu(I1+GC,) ' (r=m)+(1+GC,)"d @)
E=r-y=(1+GCy )" (r-d)+GC,(1+GC,) " (5)
The sensitivity function is defined as the d to y transfer
function, S=( + GCg)!, and the complementary
sensitivity function is the r to y transfer function, T=GCgx(l
+ GCB)“. The fundamental trade-off in classical control is
that |T+S|=I over all frequencies. |S| "small" implies
good tracking performance, however, it forces |T| close to
unity. Since G naturally rolls off at high frequency, this



would force K to increase which is destabilizing since the
knowledge of the plant dynan.cs at high frequency is poor.
This is discussed in detail in {2] and [4]. Classical PID
control and lead-lag compensation can be used to adjust the
trade-off. For the vertical local bump the following PI

control law provides the necessary performance, t=.0016
seconds.

1.4[s +650]

Cp(s)= » Co(s)=0 (6)

V. A TWO DEGREE-OF-FREEDOM
CONTROL DESIGN

By using two "handles”, C, and Cp, to adjust the

control signal, {1], one can remove the fundamental trade-off
in Section IV. Define,

C, =G'Q(1-Q)" M

Cy =K(1-Q)" (8)

where G is the estimate of G. There are two cases of

interest. If G =G, then the output and error transfer
functions are the following.

y = (1+GK)™" GKr+(I-Q)(I +GK) " d- (1 +GK)™ (Q+GK)n7 (9)

6=(I+GK)'r=-(I-Q)I+GK)'d +(I+GK)(Q+GK)7n (10)

Therefore, if the estimate of the plant is accurate, then the Q
function acts as a scaling term to adjust the influence of the
two error sources on the output and error. In the limit, if
Q=I, then

(GG~ +6K)" GKr - 7

<
1]

(11)

2=(G6" +6K)" G&'r+ g (12)
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Fig. 4. Disturbance to Error and Reference Input to Error
Transfer Functions.

Notice that the disturbance has been totally eliminated --

even when G#G. Given these facts, the design goal is to
choose Q=I inside the system bandwidth. The following
design example will use a third order Butterworth filter with
the cutoff frequency set at the system bandwidth, 100 Hz. K
will be the same PI controller as in (6).

As shown in Fig. 4, the two degree-of-freedom approach
has superior disturbance rejection over the simple PI
controller -- 80 dB per decade verses 20 dB per decade.
However, the reference input to error and closed-loop
transfer functions are identical. As discussed in [1], the two
degree-of-freedom controller can be formulated as a
disturbance observer-based system. By estimating and
canceling the disturbance, one will not -only reduce
environmental error sources but also the negative effects of
cross-talk between the local bumps.

VI. CONCLUSION

The development of an accurate closed orbit model for
the ALS is crucial for the success of the photon beam
steering feedback system. The insertion devices will cause
relatively large field perturbations when scanned. Since the
quadrupole magnets will be adjusted to help compensation
for the field changes, the local bump algorithm must
continually update the lattice model in order to compute the
proper dipole kicks, equation (3). The effects of field
variations for the worst case (i.e. ten insertion devices) is
currently being studied.

To minimize the effects of cross-talk due to modeling
errors as well as environment error sources, a two degree-of-
freedom control algorithm has been developed. This
approach has superior performance over the classical Pl
controller. It has the added advantage that one can set the
system bandwidth independent of the disturbance rejection
"bandwidth". The only cost of these benefits is a more
demanding computer throughput.
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