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UNDERSTANDING CORRELATION COEFFICIENTS
IN TREATY VERIFICATION

by

A. DeVolpi

ABSTRACT

When a pair of images is compared on a point-by-point basis, the linear-

correlation coefficient is usually used as a measure of similarity or

dissimilarity. This report evaluates the theoretical underpinnings and

limitations of the linear-correlation coefficient, as well as other related

statistics, particularly for cases where inherent white noise is present. As a

result of the limitations in linear-correlation, an additional step has been

derived -- local-sum clustering -- in order to improve recognition of small

dissimilarities in a pair of otherwise identical images. Results show an optimal

three-stage procedure: first, establish congruence of the two images; second,

use the linear-correlation coefficient as a test of true negatives; and, third,

qualify a true positive by using the cluster (local-sum) method. These three

algorithmic stages would be especially useful in application to arms control

treaty verification, particularly for comparison of unique identifiers (tags or

seals). This is illustrated by comparing scanning-electron microscope

topographical images for an intrinsic-surface tag.



INTRODUCTION

Statistical methods have a potentially important role in validating collected arms control treaty

verification data and in optimizing time and resources. A comparison of two images is a

good example; such image pairs are often formed or reconstructed from tamper-resistant seals

or tags used as unique identifiers of arms control treaty-limited equipment. An initial image

is created when the seal or tag is placed on the item, and another image is collected when the

item is verified, possibly years later. In order to quantify the image comparison, thereby

removing subjective human judgment as an evaluation factor, a normalized correlation

coefficient is usually created. This coefficient is expected to have a value close to unity

when the two images are essentially the same and close to zero when they are entirely

different images. The purpose of this paper is to focus and extend the theory and application

of correlation coefficients so their uses and limitations can be better understood in a treaty
verification context.

The result of this analysis is a three-stage process for a verification algorithm that provides

more utility than the linear-correlation coefficient alone.

ANALYSIS OF CORRELATIONS

Let us start by reviewing the simplified mathematical treatment of two directly measured

results A and B, whose functional relationship is anticipated by the theoretical expression

(1) F = F[A(x,y,z),B(x,y,z)],

where A and B are functionally dependent on the causative parameters x, y, and z.tr3 These

parameters could be, for example, the measures (vector components) of a voxel in three-

dimensional space. For simplicity in notation, the third parameter will henceforth be omitted

without loss in generalization. Thus,

(2) F = F[A(x,y),B(x,y)].

From statistical theory, the best estimates of the parameters x and y are their mean values for

i=l,N where N is the size of the sample population:

(3) <X> = Exi/N (and <x 2> = (E xi2)/N)

(4) <y> = _Ey/N.



-2-

Also,

(5) <F>= EF/N
is the minimum-variance unbiased estimate of F.

Next we evaluate the computed covariance of A and B, which would be

(6) F^s = <A'B> - <A><B> = Z(&*Bi)/N - (F-,Ai*F-,Bi)/N2.

The correlation coefficient, which normalizes the covariances to the range (-1 _<PAB--<1), is

(7) PAl3 = FAB/OAOB,

where the standard deviations in A and B are a a and _s, which are measurable from the

samples.

and Bi are pixel values for images A and B at identical coordinates i, each pixel having a

normalized value or magnitude (intensity or grey scale) represented by At and Bi. If the two

images A and B are identical, but their grey scales are uniformly displaced by some linear

correction factor, then we could write a relationship such that the values of B are linearly

related to the values of A. The linear correlation coefficient PAS is the usual statistical

measure of that relationship. Procedurally, one can first align for shift, magnification, and

rotation differences to ensure that two images are in registration (pixel congruence) by finding

the highest value of the linear correlation coefficient of the images or of some fiducials in the

images.

To estimate the standard deviation, let us assume that the images represented by the

populations A i and Bi each have their own random and completely independent (instrument)

white noise values a_ and bi respectively and that B is linearly related to A through their

intrinsic intensities xi and Yi, such that

(8) Ai = xi + ai and

(9) Bi = Yi+ bi = k + mxi + bi,

where k and m are constants of the image system.

In this case,

2 2 2
(10) C_A- _x + _a, and

(11) aB -- m

which means that the slope of the linear relationship would in the absence of noise be

(12) m = _B/aA.
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The autocorrelation in A can be computed, giving

2 2>(13) FAA = <A'A> - <A>*<A> = o'x = <x - <x> 2,

so that another way of computing m is

2
(14) m 2= (0 2- aA)/T'AA

if the variance of the noise were equal for A and B.

The autocorrelation in B would be

(15) FBB = <B'B> - <B>*<B> = m2o_x ,

and without any loss in generality,

(16) m2 " rBS]]''AA'

The covariance in angle-bracket notation is

(17) FAn = <A'B> - <A>*<B>.

Even if there is noise in the measurement, the (linear) covariance of Eq. 17 becomes from

Eqs. 8 and 9

(18) m(<x,2,- <Xi>2) = ma2x.

With these assumptions the linear cross-correlation coefficient becomes

(19) PAS = ma_/aACS = rrd 1+a m 2+ff2b/a .

Equation 19 corresponds to the coefficient for linearly cross-correlated functions A and B

which each have random errors in their measurement, and a_ is a measure of the inherent

deviation between pixel (intensities) in images A and B.

We can also look at the linearly correlated difference image, that is the subtraction of A-B:

(20) r'A_B = <(A-B),(A-B)> - <A-B>,<A-B> = (1-m)2a2x , and

x )l'°(21) PA-_ = (1-m)2°2,/aAaa = ( l=m)2 1 /a 2, m2+o_/a2x .

Observe that the correlation difference coefficient vanishes as the slope m --> 1 but could

become very large if m and Cb -') 0.
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It is assumed that the two images are represented by N sets of data Ai and B i, where each set

of x i and Yi are pixel locations on a two-dimensional plane, and the values of Ai and Bi are

the components that contain the values to be compared at each point. The sets of data A and

B might be values sensed by a scanning electron microscope (SEM) of electrical current that

would be related to the depth of the point of electron scattering from a reference plane. Or

they might be some other quantification of pixel values, such as the consolidated area of a

reflecting contour point in the reflective-particle tag image. Optimization of the correlation

coefficient will minimize systematic shifts, rotations, and distortions when attempting to make

two images congruent. Having carded out that minimization through maximization of p, now

the question is whether the two images are identical.

APPLICATIONS OF CORRELATION COEFFICIENTS

To assist in interpreting Eq. 19, fin'st note that p--->+ 1 as t_a --->0 and t_b _ 0. In other

words, a perfect correlation (or anti-correlation) is approached as two noiseless images of the

same scent are compared by a system that introduces no noise, randomness, or bias in the

measured values of the image amplitudes. Also note that if the linear displacement m

between images is small, p --->0, as expected.

Let us consider further some cases where k _ 0 and m _ 1, that is, A and B are congruent

except fbr noise jitter. This ought to be the case for accurate digitization for two sets of data

taken from the same original image. Then, PAB --->1, and any differential short of unity is a

measure of the noise introduced in the image comparison. If we go one step further and

choose one image A as a noise-free reference or baseline image, to be compared with the

other image B, we could stipulate that ali the net (comparative) systematic and random

differences reside in the second image. Then

(22) PAB (1 2 2_-1/2 (for m--l)= +t_/t_x] t_a-0 and .

This expression has an interesting node at _b = ax, namely the value of 0.707. This function

is plotted in Figure 1. Figure 1 can be useful in estimating the relative signal-to-noise-ratio

from the measured correlated coefficient, or vice versa, if the signal-to-noise ratio corresponds

to the variance ratio. Also assumed here is that any systematic differences can be represented

by the constants k and m. In Fig. 1, the calculated and measured data show how random

noise degrades the linear correlation coefficient. A very noisy image of an identical noiseless

scene can create a false negative LCC.



-5-

1
°°%

"°

°°°

°°%°

0.8 _':".,.............................................................................................................................................................................................................................................................
z "-. COMPUTED MEASURED
w "-.... CURVE DATA
O °...., °°

_ ......W 0.6 .....:".:':.................................................................................................................................................................................
O ,..°o,.•

£)Z ...........................................

Q ...................... [] ..................

0.4
UJ

0
O 0.2 ...............................................................................................................................................................................................................................

0 I ! _ I I I I I I
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

NOISE/SIGNAL VARIANCE RATIO

Figure I. Dependence of Correlation Coefficient on Variance Ratio. The calculated and

measured data show how random noise degrades the linear correlation coefficient. A

very noisy image of an identical noiseless scene can create a false negative LCC.
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Another interesting case is where both images are uniform (essentially featureless) throughout

-- that is, _h_e is no variation from pixel to pixel in either image. In that situation, any

variances in the image are due to random noise, and the covariance and correlation

coefficients would approach zero. A very small number of non-uniform features could result

in a correlation coefficient slightly greater than zero, but the variance in that coefficient might

be large enough to mask the true value of the correlation coefficient. In effect, Ox would then

be a measure of intrinsic image dispersion or non-uniformity of features.

For each sector of an image, similar conclusions regarding variances and covariances can

expected. But as the number of pixels in each sector becomes smaller, the variance in the

correlation coefficient will increase. If, for example, a bubble or defect in replica casting

occurs iri a sector, the coefficient for that sector will become smaller, defining a "bad" sector.

For two images to be considered identical, a standard will have to be set for the number of

acceptable bad sectors.

When two entirely different images are compared with each other, the linear cross-correlation

coefficient is expected to go to zero; however, the coefficient is a statistic that is subject to

variance, and for a small number of pixels subject only to white noise the estimate of p might

exceed the null value. To test the null hypothesis that p = 0, the parameter

(23) t = p(N-2)l/X(1-p2) -_/2 can be used for the tabulated Student's distribution.

The number of samples N needed to achieve different probabilities that p = 0 is given in

Table I as a function of the measured values of p. When only a half-dozen pixels are

compared, there is a 10% chance of getting a false positive (p>0.6). Even a 50-pixel

comparison could yield an ambiguous result (p>0.3) once in a hundred times.

Figure 2 schematically indicates two image-generalized pathways that occur, for example, in

surface-image verification, resulting when plastic casting (fingerprints) are made of the

intrinsic surface roughness. In the first case, there is a surface S which contains the intrinsic

signature. The surface features could be measured directly with an SEM and used as a

reference for comparing the plastic castings. In that case, possible non-linearities in the two

pathways would have to be investigated. More routinely, two castings A and B made from

the same surface S will be compared, with A being taken during the baseline and therefore

becoming defined as the reference image. In fact, the sets of data for A and B are derived
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Figure 2. Pathways for Comparing Images. On the left-hand side a_e comparisons of

two castings, A and B, of the same surface S. One of these castings might be digitized

twice (Al and A2) in order to evaluate digitization-instrumentation system noise. On the

right-hand side is the pathway for a casting made from a dissimilar surface S', from

which we expect true negative to result from comparison of B and B'.
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from a mensuration process using an SEM. In order to determine if this conversion process

introduces noise into the comparison, the sample A could be digitized twice, resul'ing in data

sets A1 and A2 which could be cross-correlated. This cross-correlation coefficient should

give a measure of the instrument noise, while the correlation between A and B Will give a

combined measure of casting effects and instrument noise. In the pathway where two

different surfaces S and S' are to be compared, here we expect to test the null hypothesis for

the correlation coefficient between A and B'. As additional measures of confidence, it would

be useful to calculate the autocorrelations and difference correlations as a matter of routine

practice.

TABLE I

lm

....

APPROXIMATE NUMBER OF PIXELS REQUIRED
TO CONFIRM A NULL HYPOTHESIS*

PROBABILITY THAT TRUE VALUE OF Pab IS ZERO

Measured 101 10-2 10-3 10-4 10-5 10-6 10-7

Pab

0.9 4 5 8 11 13 16 17
L

0.8 4 8 12 16 20 25 28

0.7 5 10 16 21 28 36 43
_

0.6 6 16 24 32 43 53 63

0.5 8 20 35 50 65 80 95

0.4 12 30 55 80 105
,,

0.3 20 57 100

0.2 45 135

0.1 165

*The true correlation coefficient is zero (pah=0) when the measured coefficient is Pah"
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TABLE II

COMPARISON OF COMPUTER-GENERATED NOISE-ADDED EFFECTS

ON LINEAR CROSS-CORRELATION COEFFICIENT

WITH CALCULATED COEFFICIENT BASED ON EQ. 22

Estimated Estimated

Sample Case Measured Noise Noise/Signal Measured Calculated

Number Variance Variance Variance Correlation Correlation

5321 reference 711 10.4 0.015 0.985 0.99

5322 reference 674 10.4 0.016
-- ,H,, ,

5342 noise 992 310.0 0.45 0.809 0.83
added

5352 noise 1679 997.0 1.46 0.618 0.64
added

5362 noise 3678 2996.0 4.39 0.423 0.43
added

As shown in Table II, the value of the correlation coefficient indeed departs from 1.0 as computer-

generated (white) noise is added to images (of Fig. 3) without changing their inherent correlation.

Although the "reference" cases in Table II are not noise-free, they are close enough to confirm the

role of Eq. 22. Figure 3C indicates that care was taken to place the artificial noise within the

digitization range of the system. The data tabulated from Fig. 3 also confirm the relationship of

signal/noise and variance ratio expressed in Eq. 22 and depicted in Fig. 1. In each case of Fig. 3C,

the lower and upper tails of the amplitude size distributions are within the digitization range (up to
256 bits).

As a rule of thumb, to avoid a false positive (or ambiguous) conclusion about the similarity of two

images at a high (0.999999) level of confidence requires at least 100 pixels to be compared. On

the other hand, if the measured value of Pah = 0.9, then 16 pixels would give the same high level
of confidence.
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Figure 3A. Output of SEMPER Noise Command, Showing Effects of Increasing Computer-
Generated White Noise (Adding Gaussian and Poisson Noise)
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Figure 3B. Effect of Added Noise on Variance (VAR) and Linear-Correlation Coefficient (t)
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Figure 3C. Confirmation that Noise Level is Within Digitization Range of System. In each

case the lower and upper tails of the amplitude size distributions are within the digitization

range (up to 256 bits).



In Fig. 2, the left-hand side shows comparisons of two castings, A and B, of the same surface S.

One of these castings might be digitized twice (Al and A2) in order to evaluate digitization-

instrument noise. On the right-hand side is the pathway for a casting made from a dissimilar

surface S', from which we expect a true negative to results from comparison of B and B'.

TabT: I applies when two images are known or expected to be entirely different (null hypothesis

that the true correlation coefficient is zero, i.e., pah---'0). The question answered by this table is,

wb t actual values of PaCwould be obtained if only a small number of pixels are compared? Table

I shows that unless many pixel values are compared, correlation coefficients significantly greater

than zero can be computed; in fact, with just a few #xels intercompared, there would be a fairly

high probability of getting a correlation coefficient close to 1.0.

MEAN-SQUARE.DEVIATION

A statistic sometimes used is called the "mean-square-distance" (MSD), which is related to the

mean-square-deviation:

I 1

(24) MSD-- _ _.. (Aij- Bij)2- -_--_-E (Ai - Bi)2.u

This expression's relationship to the linear correlation coefficient can be determined by converting

it to nomenclature used in this paper by setting the mean values <A> and <B> exactly to zero and

the variances GA = a B = I.
Then,

(25) F/AB ----<A.B> = OAB = E Ai Bi/IV,

E E
and likewise for _B because <A> = and <B> = .N N

Hence,

2 2EAiBi E B2_[_ A1
(27) MSD = - + - 1 - PAB"2N 2N 2N
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Consequently the MSD is subject not only to the two given prescriptions for the mean and variance

of each image-normalized distribution, but also to the limitations of the linear cross-correlation

coefficient expressed through Eq. 19.

The MSD could be a useful tool for simply forcing the best congruence of two images: its

calculation in a computer can usually be performed faster than the linear correlation coefficient

because differences execute faster than multiplications. However, the MSD contributes nothing

more to the understanding of image similarity beyond the linear cross-correlation coefficient as a

normalized measure of correlation.

VERIFICATION ALGORITHM

For actual application to treaty-verification analysis of images, a two-step process appears optimal.

The flu'st step is to use Eq. 18 or 19 or the MSD (Eq. 24) to find as good a degree of congruence as

possible. After this has been accomplished, for the second stage the difference correlation (Eq. 21)

can be computed in order to highlight significant differences in images, e.g., identify replication

attempts. [21

In actual practice, data might be available in the form of a set of numbers for each pixel position

i,j. The values in the matrix A might represent grey levels or other amplitude information, or they

might be quantized into binary values.

After optimizing congruence of two images A and B, two data man'ices Aij and Bij would exist. A

normalized difference-correlation coefficient PA-8 can then be computed in any of three ways,

depending on whether or when the values are quantized to a binary set. If threshold values Am

and Bth are first determined, then sets of binary values can be created:

(28) Iii = (Aij - Ath)/<A> and

(29) Jij = (Bij " Bth)/<B>,

such that Iii and Jij equal 1 if the differences are positive and 0 if the differences are zero or
negative.
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Another way would be to compute the average <Aij - Bij> and quantize each difference value by a
similar process into binary numbers:

(30) =(A j- BU)/<AU- BU>.
Ali of these methods should be evaluated to achieve optimal computer processing.

CLUSTERING FOR LOCAL-SUMS

By clustering the image data into local-sums, the second stage of the verification algorithm is likely

to yield results more sensitive to replication attempts. If i,j are the elements of a square matrix of

N*N pixels, divided into a square matrix of M*M pixel clusters of size c'c, where M is the

truncated integer resulting from dividing N/c, then the value of each normalized-difference local-
sum coefficient D is

where i ranges from (k-1)c to kc, j ranges from (Q-1)c+l to Qc+l, and both k and _ range from 1
toM.

The normalized sum of the normalized-difference local-sum coefficient is therefore:

(32) DA__ - DM -- (_.k,, Dk,)/M 2 (0<_DM_<I).

Computationally, rather than use the binary values of differences between grey-scale values, it is

more convenient to first quantize the grey-scale values and then subtract the binary values in the

cluster. In that case, we derive a local-sum for the cluster Kke:

(33) Kki = Eij (lij - Jij) 2,

where I and J are defined as in Eqs. 28 and 29, and the normalized- total binary local-sum C
becomes

(34) CA.B = CM = Ekl(Kkt/C2)/M 2.

For subtraction and summing of binary values, the sum Kke in Eq. 33 has the same result as the

absolute value of the unsquared differences, which computationally might be easier to program and

execute.
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Figure 4 shows some sample results from 3 by 3 clusters. Each score is derived from the absolute

value after subtraction of binary values (0,1) assigned for cases A and B. The expected features of

replicas would have relatively high scores (which could be normalized to l by if divided by 9).

With a pair of images in good correlation, most of the difference clusters will score 0. Random

noise can create a single point difference in A or B, resulting in scores of l, and occasionally a

cluster score of 2 if single-point noise is in both clusters. In effect, this will establish a threshold

of low average scores that would be considered below the threshold of true-negative significance.

A true negative would normally have cluster scores of 3 or more. For example, any three points in

B but not A would suggest a narrow crack-like feature. A narrow feature that is broadened might

have a score of as much as 6, and a microbubble might cause a cluster score of up to 9.TM

If higher weights are be given to line broadening and microbubbles that are likely to occur in

replication attempts using casting techniques, the differences could be deliberately exaggerated,

especially if the images are not too noisy. For example, the cluster difference correlation

coefficient could be squared:

2

"l_is would result in a greater numerical separation of values between noisy pixels and systematic
deficiencies.

Appendix A provides supporting data for the. clustering/local-sum method.

CALIBRATION ERRORS

The expressions derived above implicitly take into account calibration errors, whether random or

systematic.

If the error is purely random, it can be considered explicitly by, for example, adding a component

2
ci to F-xi. 8, and the equivalent to Eq. 9, such that o a is really the sum of the variances of

instrument and calibration noise terms.

On the other hand, if the calibration error might be systematic, as a result of constant bias in the

measurement xi or Yi or a relative error between the two, then it can be treated in the same way as

Eq. 9, where a linear relationship is assumed.
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Figure 4. Cluster Scores for Difference Correlations. Each score is derived from the absolute

value after subtraction of binary values (0,1) assigned for cases A and B.
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It is this linear relationship which underlies the linear correlation coefficient, and the explicit

inclusion of a calibration bias will not change the results. On the other hand, if the calibration bias

(or the fundamental linear assumption of the primary data) is invalid, so is the linear correlation

result, which should be derived for some other known or unknown relationship between the two

blocks of data. Because of the unpredictability of such non-linear relationships, it is not

particularly productive to go beyond the linear correlation coefficient, but potential non-linearities

are a reminder of the limits of this commonly used measure.

SUMMARY

There are a number of statistical measures to help assess the validity of data. Autocorrelations,

cross-correlations (covariances), and the normalized covariance, usually called the correlation

coefficient, are minimum-variance unbiased statistics. Each of these can play a role in finding the

optimum congruence (that is, in helping to correct for linear shifts, rotations, magnifications, and

distortions) and in guiding conclusions after the optimum value is attained. Each has its own level

of uncertainty that depends largely on the number of sample points (or pixels for images). In every

case, the random "noise" or uncorrelated component must be taken into account as well as the

systematic effects. The linear cross-correlation and difference-correlation coefficients can be

computed with explicit attention to inherent noise.

The MSD is a computationally useful measure of congruence of two image matrices,

mathematically being a mirror-image of the linear-correlation coefficient. A linear correlation

coefficient that does not take into account sample noise might be useful for comparing results for

data of consistent origin, but the linear coefficient should be used with caution in comparing data of

different origin. Moreover, the linear cross-correlation coefficient does not take into account higher-

order effects (such as image warpage and other non-linearities). A constructive operational

approach would be to plot results from false positives and negatives along with true positives and

negatives. There should be a comparison of at least 100 pixels when two images are to be

accepted as true positive based solely on the linear-correlation coefficient.

One strategy designed to differentiate between similar (true positive) and dissimilar (true negative)

images is a three-stage procedure consisting of separate registration and verification algorithms:

first, a linear cross-correlation coefficient or a mean-square-deviation is used to optimize the

congruence between two pixel image arrays; second, the highest value obtained for the linear cross-

correlation coefficient is compared against an array value (<0.3) that defines a true negative result;

third, if the correlation coefficient averaged over the array exceeds the true negative threshold, the

cluster (or local-sum) method is invoked as a further test to qualify a true positive.
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APPENDIX A

DATA IN SUPPORT OF LOCAL-SUM CORRELATION

R.G.Palm

As described in the main body of the report, clustering data after carrying out some earlier image-

data manipulations has the potential of yielding an objective measure of differentiation between two

images, one of which differs in small but systematic ways from each other. The linear correlation

coefficient (LCC) fails to provide objective discrimination scores in such cases. Although the

method is illustrated in this Appendix with images produced by a scanning-electron microscope

(SEM), the algorithm is applicable to any generic situation where two images need to be compared.

Both gray scale and binary images can be compared to determine tag authenticity. These tests for

agreement are described in Section 1 of this appendix. Proposed acceptance criteria for sub-regions

of images obtained for an SEM-authenticated tag are also presented in Section 1. The verification

algorithm has been implemented using SEMPER 6.2 image-processing software. Congruent

registration of the images is necessary before the tag images can be numerically compared; this

process is described in Section 2.

1. Imaze Registration and Correlation of Gray-Scale Images

Before two digital images can be compared, a certain amount of processing is necessary to

piace them in congruent registration. Details of this registration process as implemented by the

SEMPER software are described in a Section 2. In the case of two digital images A(x,y) and

B(x,y), registration is achieved when the x,y addresses of each image correspond to the same point

on the scene being compared. One measure of image agreement known as the linear correlation

coefficient can be calculated from the registered image o. An LCC of 1.0 indicates perfect

agreement while an LCC near 0.0 would be expected for totally uncorrelated images.

Figures Ala and Alb compare two sets of gray-scale images. Figure Ala is a comparison

of two casting images from the same original, and these two images have an LCC of 0.919.

Figure A lb is a comparison of an original with an attempted replica, and these two images have an

LCC of 0.875. Note that on Fig. Alb, the LCC falsely indicates a true positive, while the local

sum correctly indicates a true negative. Visual inspection shows that the images in Fig. Ala agree
better
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Figure Ala. Comparison of the Local Sum and Linear Correlation Coefficient for Two

Castings from the Same Original Surface.



Figure Alb. Comparison of the Local Sum and Linear Correlation Coefficient for an

Original and a Replica. Note that the LCC falsely indicates a true positive, while the local

sum correctly indicates a true negative.
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in the brighter areas that represent high areas in the surface. However, there is only a 5 difference

in the LCC discrimination ability so the LCC provides a crude score with limited discrimination.

Note that Figs. Ala and Alb also present another image-comparison statistic called the local sum.

This statistic is oescribed in a subsequent section.

Figure A2 presents two pairs of the same original and _plica images with LCC = 0.832,

highlighting disagreement among the brightest pixels, lt is possible to extract sub-areas around the

peaks (brightest pixels) to determine the correlations between areas. These sub-areas are shown in

the lower part of this figure, taken from the areas marked in the top. Figure A2 shows that the

sub-area isolated in the lower left of Figure A2 agrees to 0.828, still only 5% less than the LCC for

the whole image comparison above. The boxed areas appear and are, in fact, noticeably different.

The LCCs show no significant difference until the boxes are narrowed to a small area. In the lower

right _s a narro0ver sub-area comparison with a low or LCC of 0.414, coinciding better with visual

observation of the disagreement. The LCC of the original and replica images are markedly smaller

if one carefully chooses small sub-regions for correlation. However, choosing such small regions is

difficult to implement.

From examining Figures A1 and A2 it is apparent that the LCC reported on the whole data

set is a rather insensitive measure of image congruence. Nevertheless, the data suggests that a

sensitive and computationally simple means _o score an image based upon only its brightest pixels
could be devised.

2. Binary-Image Comparison

lt is possible to form binary images from the gray-level images thresholded according to

some characteristic of the image, such as its brightness. In this case the binary images l(x,y) and

i J(x,y) derived, respectively, from the gray-scale images A(x,y) and B(x,y) are compared to

determine a numerical score for tag comparison. Figure A3 shows binary imag-- derived from an

original and an attempted replication. The brightest 15% of the original and replica pixels are

isolated by setting a threshold on the image intensity. Next, the gray-scale values are convened to

binary values by assigning a null score to ali values below the threshold and a unit value to those

above. Then, the absolute differences are taken of the binary values, and a gray-scale image is

reconstructed of the local-sum highlights. The binary images are set to pixel values equal to one if

they are pan of the brightest 15% set of pixels; otherwise they are zero. Inspection of Figure A3

shows that the ridge features of the replica are wavy and discontinuous compared to the original.

The binary brfghtness-threshold process captures the differences between the original and a replica.
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Figpre A2. Isolation of High-intensity Peaks in and Original and Replica. The boxed areas

appear and are, in fact, noticeably different. The LCCs show no significant difference until

the boxes are narrowed to the small area.
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Figure A3. Steps Illustrating Calculation of Local-sum Image. The brightest 15% of the

original and replica pixels are isolated by setting a threshold cn the image intensity. Next, the

gray-scale values are converted to binary values by assigning a null score to ali values below

the threshold and a unit value to those above. Then, the absolute differences are taken of the

binary values, and a gray-scale image is reconstructed of the local-sum highlights.
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2a. Absolute-Difference Image

The simplest way to compare the binary images is to form the absolute-difference image C
from images I and J according to the following formula:

C - II(x,y)-J(x,y) I

Image C gives a binary indication of the brightest pixels in I and J that disagree. The
authentication score derived from C is simply its mean averaged over ali x,y. Low mean values

(i.e., small differences) indicate good agreementand vice versa. The mean of C can span from 0.0
(perfect agreement) to 1.0.

2b. Local-Sum Image

Another way to define the image-comparisonscore is to process image C further to define a

local-sum image. The local-sum image gives a gray..scale rendition of the disagreement between

images A and B. This local-sum image, referred to as image D, renders in terms of a gray scale
the degree of disagreement of local p x p pixel clusters in C.

In order to implement a local-sum algorithm in SEMPER, the theoretical steps described in

the main body of this report were modified. In particular,a moving-average cluster was created, in
which the origin of the Va'stcluster is displaced to an adjacent pixel which thereupon forms the

centroid of the next cluster used to compute a local sum. The theoretical formulation would move
the centroid from the first cluster to an entirely different adjacent cluster, the centroid of which

might be several pixels away. The moving-average process smoothes out the appearance of the
image, so that it is easier to visualize the local-sum differences. More testing needs to be done to

see which method gives the most contrast between true positives and negatives.

The local-sum image D(x,y) is produced by summing each pixel in C(x,y) with its p x p

nearest neighbors and placing the sum in position x,y of D. Because the pixels within a distance

p-2 of the borderof C(x,y) can't be summed, the local-sum image has dimensions M-p+l by N-p+l
if the image C has dimensions M x N. The pixel values of the local-sum image can span the range

from 0 (complete agreement) to p2 (complete disagreement).
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Figure A3 shows the local-sum image formed from comparison of an original and a replica.

Disagreement amongst the brightest pixels is highlighted by a local-sum gray-scale image. For the

3 x 3 local-sum image shown in Figure A3, the local-sum pixel values range from 0 to 9. The

score derived from local-sum image D is simply its mean value averaged overall (x,y). Low mean

values indicate good agreement (small differences). The mean of D is about nine times the mean

of C for 3 x 3 local-sum images.

3. Tentative Acceptance Criteria for Subareas

The adopted tentative criteria are to accept the images in a subareas if the LCC > 0.7 and

the local-sum mean is < 0.6. When the images are overlaid, the LCC is determined before the

local-sum mean. If LCC < 0.7, the subarea would fail to pass, and the local-sum need not be

calculated. Figures A1 and A2 show that despite visual differences it is relatively easy to satisfy

the LCC part of the acceptance criteria. However, meeting the local-sum criterion is much more

demanding; only image pairs with their bright pixels in registration can satisfy it.

Two general kinds of images were compared to formulate these empirical acceptance

criteria. For two castings taken from the same original surface, acceptance criteria were formulated

that ali of the casting image comparisons had passing scores. For originals and positive replicas of

the original, the acceptance criteria were formulated so that ali but one of these image comparisons

at high magnifications had failing scores. At low magnifications the originals and replica attempts

had passing scores. This is reasonable, as differences in the finer features that can distinguish the

originals from the replicas were not resolved at the low magnifications.

Table A shows the results for several image comparisons reporting both LCC and mean

values D of the two images based upon binary thresholds. Ali images in Table A were 128 x 128

pixel images. Note that Table A also gives the magnification of the images being compared. Six

of seven original-versus-replica comparisons of images acquired at a magnification of 5500 fail to

meet the LCC acceptance criteria. The left side of Figure A4 shows the one replica subarea that

passed the acceptance criteria. However, note that the original and replica set on the right-hand

side of Figure A4 did not have a passing score. The LCC in both cases incorrectly indicated true

positive; the local-sum incorrectly indicated true positive in subarea 1, but correctly recognized the

true negative in subarea 2. Both replica images in this figure were from the same replica, and the

two subareas were located only 11 microns from each other, lt is also important to note that each

of the subareas in Figure A4 represent only 10-7 of a 1 cm 2 authentication surface, lt is expected

that the great majority of the subareas in each replica will fail to meet the local-sum acceptance
criteria.
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Figure A4. Comparison _f Two Nearby Subareas from an Original and a Replica. The LCC

in both cases incorrectly indicated true positive; the local-sum incorrectly indicated true

positive in sub-area I, but correctly recognized the true negative in sub-area 2.
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One further acceptance criterion must be developed as more data is examined. This

criterion would average the subarea pass/fails to provide a overall score. An example of an overall

authentication criterion would be to accept the item as genuine if 90% of the subareas passed.

Figure A5 shows that three attempts to replicate the same surface failed the acceptance

criteria. One of the three replication attempts passed the LCC criteria. While ali three attempts to

replicate the original were correctly identified by the local-sum test as true negatives, one of the

LCCs gave a false-positive result, and the other two are borderline.

4. Processing Software

The gray-scale and binary-image processing steps have been implemented in the

SEMPER 6.2 image-processing software. This software is a product of Synoptic's Ltd. Most of

the computer effort is spent in making the image congruent, which is described in this section. As

previously mentioned, the congruent LCC value is used as the first acceptance criterion. The

binary-image processing is straightforward and its SEMPER implementation will not be discussed
further.

Ali image matching must undergo a certain amount of processing before the two images can

be compared mathematically. In general, two images of the same or similar scenes would, of

course, be slightly dissimilar if the imaging device or the scene is changed between acquiring the

images. These dissimilarities can be described either as translation, rotation, or magnification

differences. In the case of digital images acquired by a scanning electron microscope, ali the

differences must be corrected before the images are congruent.

The initial goal of the image correlation is to adjust one or both of the images, so the

images overlay or are congruent. In the case of two digital images A(x,y) and B(x,y), congruence

is achieved when the x,y addresses of each image correspond to the same point on the scene being

compared.

A program has been written that uses several SEMPER commands or routines to accomplish

congruence using standard Fourier techniques, which are used because they are much more

computationally efficient for the large images being compared. The most important correlation

routine translates two images over each other and reports the x,y shift that provides the best

overlay, which is determined when the linear correlation coefficient is maximized. Another

SEMPER correlation routine determines the rotational correlation between two images; this routine
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Figure A5. Comparison of an Original and Three Replicas. While ali three attempts to

replicate the original were correctly identified by the local-sum test as true negatives, one of

the LCCs gave a false.positive result, and the other two are borderline.
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as implemented in this program operates on the real images rather than their Fourier power spectra.

The last important SEMPER routine extracts shifted, rotated, and translated sub-images from the

as-acquired images.

As implemented in the program, three overlays with successively higher correlations are

computed. The first overlay corrects for shift differences and is used as input into the second

overlay. The second overlay corrects for magnification differences and is used as input into the

third overlay. Finally, the third overlay corrects for rotational differences completing ali

adjustments.

The LCC's reported in Table A are for the third correlation. This correlation is computed to

within 0.5 pixel and 0.1 degree of the theoretically best congruence; it is precise to at least the third

decimal point. The casting images could be made congruent by a less resource-intensive process;

however, false maximum correlations might then occur.
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