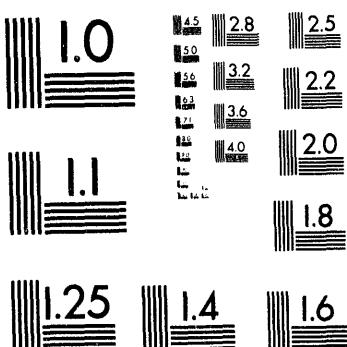


AIIM


Association for Information and Image Management

1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202

Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

1 of 1

DISTRIBUTION SHEET

To Distribution	From Packaging Safety Engineering	Page 1 of 1 Date 08/19/94			
Project Title/Work Order SAFETY EVALUATION FOR PACKAGING 222-S LABORATORY CARGO TANK FOR ONETIME TYPE B MATERIAL SHIPMENT (WHC-SD-TP-SEP-027)			EDT No. 603606 ECN No. NA		
Name	MSIN	Text With All Attach.	Text Only	Attach./ Appendix Only	EDT/ECN Only
J. G. Field	G2-02	X			
P. F. Fortin	T6-12	X			
M. J. Hall	T6-07	X			
L. M. Hay	G2-02	X			
M. A. McGhan	L6-35	X			
G. W. Mettler	G2-03	X			
P. M. Nguyen	G2-02	X			
WHC-SD-TP-SEP-027	G2-02	X			
Central Files	L8-04	X			
OSTI (2)	L8-047	X			

AUG 19 1994 *8/15/94* ENGINEERING DATA TRANSMITTAL

Page 1 of 1

1. EDT 603606

2. To: (Receiving Organization) Packaging Safety Engineering	3. From: (Originating Organization) Packaging Safety Engineering	4. Related EDT No.: NA
5. Proj./Prog./Dept./Div.: 84100	6. Cog. Engr.: P. M. Nguyen	7. Purchase Order No.: NA
8. Originator Remarks: This document is transmitted for approval.		9. Equip./Component No.: NA
		10. System/Bldg./Facility: NA
11. Receiver Remarks:		12. Major Assm. Dwg. No.: NA
		13. Permit/Permit Application No.: NA
		14. Required Response Date: 08/19/94

15. DATA TRANSMITTED					(F)	(G)	(H)	(I)
(A) Item No.	(B) Document/Drawing No.	(C) Sheet No.	(D) Rev. No.	(E) Title or Description of Data Transmitted	Approval Design- ator	Reason for Trans- mittal	Origin- ator Disp- osition	Receiv- er Disp- osition
1	WHC-SD-TP-SEP-027		0	Safety Evaluation for Packaging 222-S Laboratory Cargo Tank for Onetime Type B Material Shipment	SQ	1	1	

16. KEY											
Approval Designator (F)		Reason for Transmittal (G)				Disposition (H) & (I)					
E, S, Q, D or N/A (see WHC-CM-3-5, Sec.12.7)		1. Approval 2. Release 3. Information	4. Review 5. Post-Review 6. Dist. (Receipt Acknow. Required)	1. Approved 2. Approved w/comment 3. Disapproved w/comment				4. Reviewed no/comment 5. Reviewed w/comment 6. Receipt acknowledged			
(G)	(H)	17. SIGNATURE/DISTRIBUTION (See Approval Designator for required signatures)							(G)	(H)	
Rea- son	Disp.	(J) Name	(K) Signature	(L) Date	(M) MSIN	(J) Name	(K) Signature	(L) Date	(M) MSIN	Rea- son	Disp
4,1	1	Cog. Eng.: PM Nguyen	<i>PM Nguyen</i>	8/15/94	G2-02	LM Hay	<i>LM Hay</i>	8/15/94	G2-02	4,1	1
4,1	1	Cog. Mgr.: JG Field	<i>JG Field</i>	8/15/94	G2-02	JL Rathbun (PSAA)	<i>JL Rathbun</i>	8/15/94	R3-09	4,1	1
4,1	1	QA: MA McGhan	<i>MA McGhan</i>	8/15/94	L6-35						
4,1	1	Safety: GW Mettler	<i>GW Mettler</i>	8/15/94	G2-03						
4,1	1	EF Votaw	<i>EF Votaw</i>	8/16/94	G2-02						
4,1	1	MJ Hall	<i>MJ Hall</i>	8/16/94	16-07						
4,1	1	JE Mercado	<i>JE Mercado</i>	8/15/94	G2-02						
18.		19.				20.				21. DOE APPROVAL (if required)	
<i>PM Nguyen</i> Signature of EDT Originator						<i>JG Field</i> Cognizant Manager				Ctrl. No. <input type="checkbox"/> Approved <input type="checkbox"/> Approved w/comments <input type="checkbox"/> Disapproved w/comments	

RELEASE AUTHORIZATION

Document Number: WHC-SD-TP-SEP-027, Rev.0

Document Title: Safety Evaluation for Packaging 222-S Laboratory
Cargo Tank for Onetime Type B Material Shipment

Release Date: 8/19/94

* * * * *

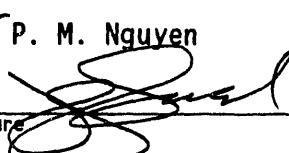
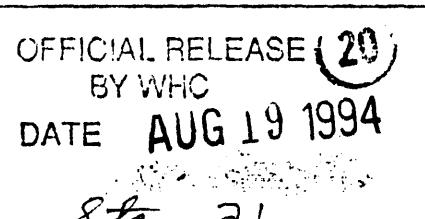
**This document was reviewed following the
procedures described in WHC-CM-3-4 and is:**

APPROVED FOR PUBLIC RELEASE

* * * * *

WHC Information Release Administration Specialist:

V. L. Birkland

V. L. Birkland
(Signature)

8/19/94
(Date)

MASTER

SUPPORTING DOCUMENT		1. Total Pages 62	
2. Title Safety Evaluation for Packaging 222-S Laboratory Cargo Tank for Onetime Type B Material Shipment	3. Number WHC-SD-TP-SEP-027	4. Rev No. 0	
5. Key Words Onetime, Type B, 222-S Laboratory, Cargo Tank	6. Author Name: P. M. Nguyen Signature:		
APPROVED FOR PUBLIC RELEASE 81191947.001		Organization/Charge Code 84100/YL262	
7. Abstract <p>This Safety Evaluation for Packaging (SEP) demonstrates and documents that the 222-S U.S. Department of Transportation (DOT) MC-312 specification cargo tank packaging system meets the onsite safety criteria for a onetime shipment of Type B radioactive material from the 222-S Laboratory in the 200 West Area to the 204-AR in the 200 East Area.</p>			
8. PURPOSE AND USE OF DOCUMENT - This document was prepared for use within the U.S. Department of Energy and its contractors. It is to be used only to perform, direct, or integrate work under U.S. Department of Energy contracts. This document is not approved for public release until reviewed.		10. RELEASE STAMP	
PATENT STATUS - This document copy, since it is transmitted in advance of patent clearance, is made available in confidence solely for use in performance of work under contracts with the U.S. Department of Energy. This document is not to be published nor its contents otherwise disseminated or used for purposes other than specified above before patent approval for such release or use has been secured, upon request, from the Patent Counsel, U.S. Department of Energy Field Office, Richland, WA.		<div style="border: 1px solid black; padding: 10px; text-align: center;"> OFFICIAL RELEASE (20) BY WHC DATE AUG 19 1994 Sta. 21 </div>	
9. Impact Level SQ			

TABLE OF CONTENTS

PART A - DESCRIPTION AND OPERATIONS

1.0	INTRODUCTION	A1-1
2.0	PACKAGING SYSTEM	A2-1
3.0	PACKAGE CONTENTS	A3-1
4.0	TRANSPORT SYSTEM	A4-1
5.0	ACCEPTANCE OF PACKAGING FOR USE	A5-1
6.0	OPERATING REQUIREMENTS	A6-1
7.0	QUALITY ASSURANCE REQUIREMENTS	A7-1
8.0	MAINTENANCE	A8-1
9.0	APPENDIX	A9-1
	9.1 REFERENCES	A9-1

PART B - PACKAGE EVALUATION

1.0	INTRODUCTION	B1-1
1.1	SAFETY EVALUATION METHODOLOGY	B1-1
1.2	EVALUATION SUMMARY AND CONCLUSIONS	B1-1
1.3	APPENDIX	B1-1
1.3.1	References	B1-1
2.0	CONTENTS EVALUATION	B2-1
2.1	CONTENTS	B2-1
2.2	APPENDIX	B2-5
2.2.1	Reference	B2-5
3.0	RADIOLOGICAL RISK EVALUATION	B3-1
3.1	ACCIDENT FREQUENCY ANALYSIS	B3-1
3.2	APPENDIX	B3-2
3.2.1	References	B3-2
4.0	CONTAINMENT EVALUATION	B4-1
4.1	DOSE CONSEQUENCE	B4-1
4.2	APPENDICES	B4-1
4.2.1	Reference	B4-1
4.2.2	Dose Consequence Analysis	B4-2

TABLE OF CONTENTS (Continued)

5.0 SHIELDING EVALUATION	B5-1
5.1 INTRODUCTION	B5-1
5.2 SHIELDING PARAMETERS	B5-1
5.3 SHIELDING RESULTS	B5-1
5.4 APPENDICES	B5-2
5.4.1 Reference	B5-2
5.4.2 ISO-PC Computer Code Runs	B5-3
6.0 CRITICALITY EVALUATION	B6-1
6.1 APPENDIX	B6-1
6.1.1 Reference	B6-1
7.0 STRUCTURAL EVALUATION	B7-1
8.0 THERMAL EVALUATION	B8-1
8.1 INTRODUCTION	B8-1
8.2 SUMMARY OF RESULTS	B8-1
8.3 THERMAL SOURCE SPECIFICATION	B8-1
9.0 PRESSURE AND GAS GENERATION EVALUATION	B9-1
9.1 APPENDIX	B9-1
9.1.1 Reference	B9-1
10.0 PACKAGE TIEDOWN SYSTEM EVALUATION	B10-1

LIST OF FIGURES

Figure A4-1. 200 West Area Route	A4-3
Figure A4-2. 200 East Area Route	A4-4
Figure B2-1. 222-S Laboratory Cargo Tank Lab Sample	B2-2
Figure B2-2. LSA and A ₂ Determination under DOT. Fissile-Exempt Material Determination	B2-3
Figure B2-3. 222-S Laboratory Contents under IAEA	B2-4

LIST OF TABLES

Table A3-1. DOT A ₂ Value Comparison with Nuclides	A3-1
Table B4-1. Decontamination Limits	A4-2
Table B2-1. LSA and A ₂ Limits for DOT and IAEA	B2-1
Table B5-1. Dose Rates of Cargo Tank	B5-2
Table B8-1. Decay Heat Generation for Worst Case Payload	B8-1

LIST OF TERMS

ASME	American Society of Mechanical Engineers
CFR	Code of Federal Regulations
DOT	U.S. Department of Transportation
IAEA	International Atomic Energy Agency
LSA	Low specific activity
RL	U.S. Department of Energy, Richland Operations Office
SEP	Safety Evaluation for Packaging

**SAFETY EVALUATION FOR PACKAGING 222-S LABORATORY
CARGO TANK FOR ONETIME TYPE B MATERIAL SHIPMENT**

PART A: DESCRIPTION AND OPERATIONS

1.0 INTRODUCTION

The purpose of this Safety Evaluation for Packaging (SEP) is to evaluate and document the safety of the onetime onsite shipment of bulk radioactive liquids in the 222-S Laboratory cargo tank (222-S cargo tank). The 222-S cargo tank is a U.S. Department of Transportation (DOT) MC-312 specification (DOT 1989) cargo tank, vehicle registration number H0-64-04275, approved for low specific activity (LSA) shipments in accordance with the DOT Title 49, *Code of Federal Regulations* (CFR). In accordance with the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1A, Chapter III (RL 1988), an equivalent degree of safety shall be provided for onsite shipments as would be afforded by the DOT shipping regulations for a radioactive material package. This document demonstrates that this packaging system meets the onsite transportation safety criteria for a onetime shipment of Type B contents.

This authorization expires on September 15, 1994, or when the shipment is completed, whichever date is earlier.

2.0 PACKAGING SYSTEM

The packaging system is a 5,000 gallon DOT MC-312 specification cargo tank truck with a cleanbore straight shape vessel. The container is constructed of an 8 gauge stainless steel, two piece barrel with one circumferential weld. The container has an American Society of Mechanical Engineers (ASME) tested 2 in. rupture disc with polyethylene drain tube located at the top center of the vessel. The 35 psig air inlet pressure package (consisting of a pressure gauge, ball valve, a coupler, and an ASME approved relief valve) is mounted in the dam area. The container also has a 3 in. stainless steel dip tube in the rear dam area, and another 3 in. stainless steel dip tube in the forward dam area. The dam is a part of the cargo tank flashing system, it is built as a stainless steel construction spillbox with polyethylene drain hoses on each side, located just ahead of the suspension.

The cargo tank has a 5,000 gallon capacity, however, the 222-S cargo tank capacity for this shipment shall be limited to 4,000 gallons. The maximum operating system pressure is 40 psi and the design temperature is 125 °F.

3.0 PACKAGE CONTENTS

The authorized contents for this shipment are 4,000 gallons (15,142 L) of aqueous radioactive liquid with an approximate density of 1 g/mL.

The isotopic composition transported in the 222-S cargo tank for this onetime shipment is as shown in Figure B2-1, based on the sample evaluation.

The 222-S cargo tank is currently operating under a SEP (WHC-SD-TP-SEP-011) which allows the transfer of up to 5% LSA material with an A_2 value of less than 0.05 Ci. However, a recent laboratory report (Figure B2-1) showed an abnormal amount of ^{241}Am and $^{89/90}\text{Sr}$ (Part B, Section 2.0). The activity for ^{241}Am exceeds the limit for a Type A quantity set by the DOT regulation (49 CFR 173.435) by 20 times and the $^{89/90}\text{Sr}$ limit by 2, as shown in Table A3-1. Therefore, these radionuclides contribute to causing the material content for this bulk shipment in the 222-S cargo tank to be of a Type B nature as shown in Figure B2-2.

Table A3-1. DOT A_2 Value Comparison with Nuclides.

Nuclide	Activity (Ci)	A_2 Value (Ci)
^3H	1.24 E-03	1000
^{14}C	2.30 E-04	60
$^{89/90}\text{Sr}$	8.95 E-01	0.4
^{99}Tc	5.18 E-04	25
^{129}I	6.55 E-04	2
^{137}Cs	9.08 E-01	10
^{147}Pm	6.71 E-02	25
^{233}U	5.19 E-11	0.1
^{235}U	1.01 E-06	0.2
^{238}U	1.98 E-05	N/A
$^{239/240}\text{Pu}$	5.58 E-04	0.002
^{241}Am	1.53 E-01	0.008
TOTAL	2.03 E+00	-----

4.0 TRANSPORT SYSTEM

The transport shall be accomplished during off-peak traffic hours during daylight. There shall be HPT's monitoring during the entire transport operation and the accepting facility HPT shall be contacted to perform a dose rate evaluation and radiological boundary posting if necessary. The emergency response team shall be notified of the shipment and ready to respond. All roads shall be barricaded and the transport route shall be limited to the shortest available route using normal Hanford Site paved roadways (see Figures A4-1 and A4-2). The cargo tank shall have an escort in front and back, and be limited to a speed of 45 mph on regular roadways and 10 mph on curves and/or turns. There shall be two drivers in the cab at all times during transport. The cab of the cargo tank shall be equipped with a fire extinguisher capable of extinguishing a Class A, B, or C fire, and the drivers shall be trained and qualified in its use. The filled cargo tank shall not be left unattended at any time during loading or enroute to its destination unless the vehicle is parked in a secured area.

The packaging external radiation levels shall meet the 49 CFR 173.441 requirements for an exclusive use shipment as follows:

(b) A package which exceeds the radiation level limits specified in paragraph (a) of this section shall be transported by exclusive use shipment only and the radiation levels for such shipment must not exceed the following during transportation:

(1) 200 millirem per hour (2 millisievert per hour) on the external surface of the package unless the following conditions are met, in which case the limit is 1000 millirem per hour (10 millisievert per hour).

(i) The shipment is made in a closed transport vehicle;
(ii) The package is secured within the vehicle so that its position remains fixed during transportation; and
(iii) There are no loading or unloading operations between the beginning and end of the transportation.

(4) 2 millirem per hour (0.02 millisievert per hour) in any normally occupied space, except that this provision does not apply to private carriers if exposed personnel under their control wear radiation dosimetry devices and operate under provision of a State or federally regulated radiation protection program.

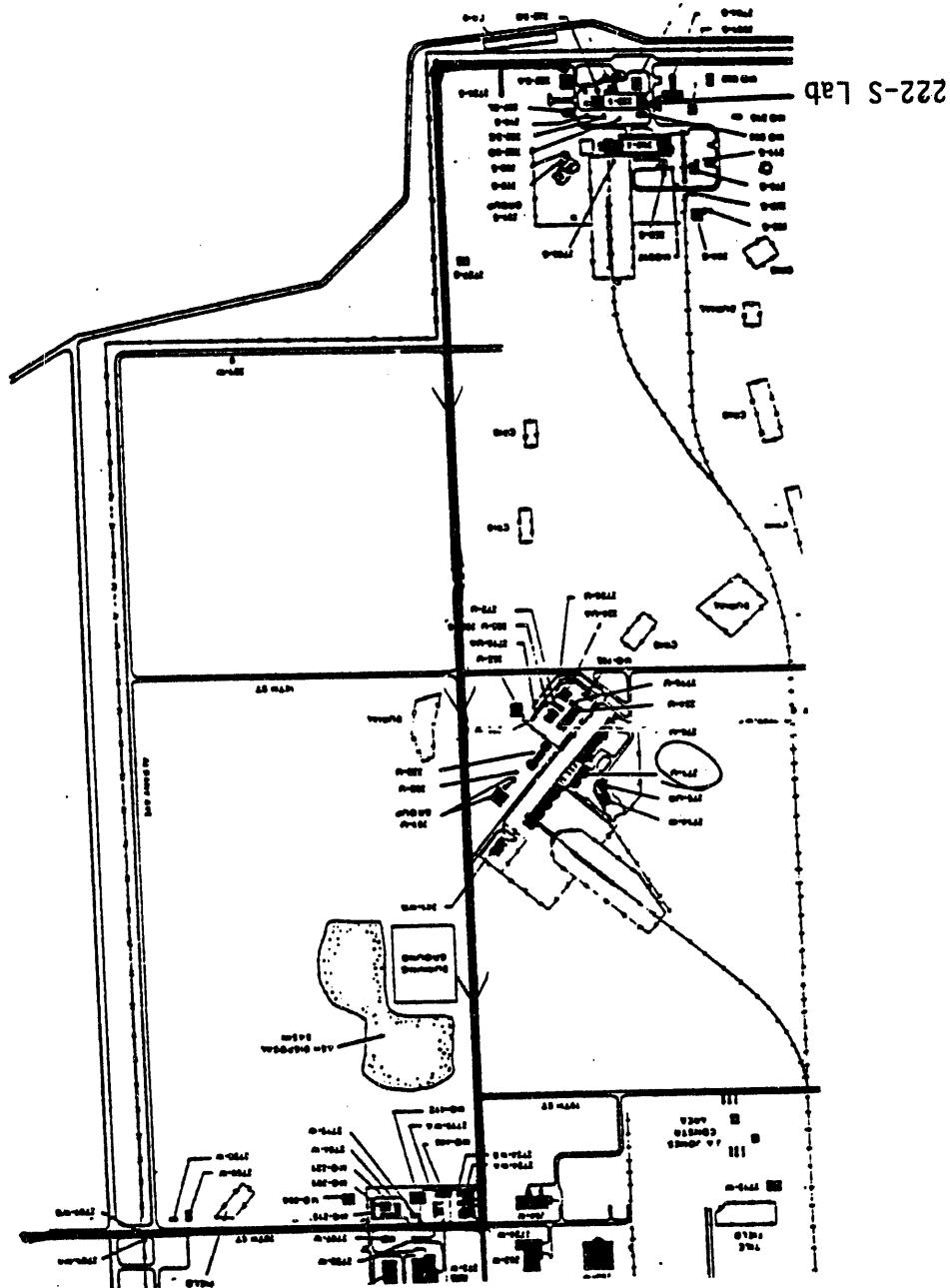
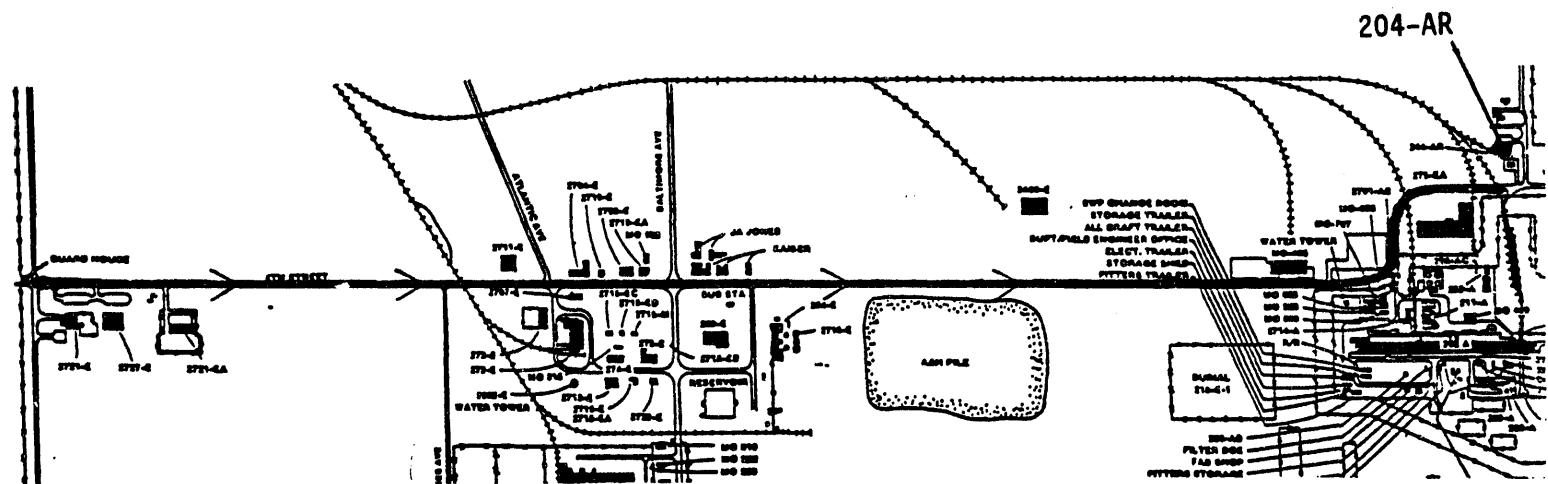

Removable contamination on the exterior surfaces of the 222-S cargo tank will be held to the following limits (WHC Radiological Control Manual, WHC-CM-1-6):

Table B4-1. Decontamination Limits.

Nuclide (note 1)	Removable (dpm/100 cm ²) (note 2)	Total (Fixed + Removable) (dpm/100 cm ²) (note 3)
U-natural, ²³⁵ U, ²³⁸ U, and associated decay products.	220 alpha	5,000 alpha
Transuramics, ²²⁶ Ra, ²²⁸ Ra, ²³⁰ Th, ²²⁸ Th, ²³¹ Pa, ²²⁷ Ac, ¹²⁵ I, ¹²⁹ I	20	500
Th-nat, ²³² Th, ⁹⁰ Sr, ²²³ Ra, ²²⁴ Ra, ²³² U, ¹²⁶ I, ¹³¹ I, ¹³³ I	200	1,000
Beta-gamma emitters (nuclides with decay modes other than alpha emission or spontaneous fission) except ⁹⁰ Sr and others noted above. Includes mixed fission products containing ⁹⁰ Sr.	1,000 beta/gamma	5,000 beta/gamma

Table notes:

1. The values in this table apply to radioactive contamination deposited on, but not incorporated into the interior of the contaminated item. Where contamination by both alpha-and beta/gamma-emitting nuclides exists, the limits established for the alpha-and beta/gamma-emitting nuclides apply independently.
2. The amount of removable radioactive material per 100 cm² of surface area should be determined by swiping the area with dry filter or soft absorbent paper, while applying moderate pressure, and then assessing the amount of radioactive material on the swipe with an appropriate instrument of known efficiency. For objects with a surface area less than 100 cm², the entire surface should be swiped, and the activity per unit area should be based on the actual surface area. Except for transuranic elements, ²²⁸Ra, ²²⁷Ac, ²²⁸Th, ²³⁰Th, ²³¹Pa, and alpha emitters, it is not necessary to use swiping techniques to measure removable contamination levels if direct scan surveys indicate that the total residual contamination levels are below the values for removable contamination.
3. The levels may be averaged over 1 m² provided the maximum activity in any area of 100 cm² is less than three times the values in this table.



LEAVE 222-S Laboratory (219-S TSD Facility)
EAST ON 10th Street
NORTH ON BELoit Avenue
EAST ON 20th Street
EAST on Route 3

Figure A4-1. 200 West Area Route.

Figure A4-2. 200 East Area Route.

- East on 4th Street
- Arrive at 204-AR

5.0 ACCEPTANCE OF PACKAGING FOR USE

The cargo tank system shall meet DOT specification MC-312. The cargo tank shall be current in accordance with the DOT maintenance and inspection requirements as specified in 49 CFR 180 and in accordance with the manufacturer's recommendation for its mechanical system.

6.0 OPERATING REQUIREMENTS

The 222-S cargo tank handling and loading/unloading shall follow the operations procedure (*Transfer Tank 102 Liquid Waste to Tank Farms, L0-100-160*) in accordance with WHC practice.

This SEP shall be considered the controlling document for this onetime shipment of the 222-S cargo tank. Operation controls presented in this SEP (Part A, Section 4.0) shall take priority over similar requirements in other WHC manuals, unless such controls or requirements are more restrictive.

Applicable instructions and/or procedures for onsite shipment of radioactive materials shall be in compliance with WHC-CM-2-14, *Hazardous Material Packaging and Shipping*.

7.0 QUALITY ASSURANCE REQUIREMENTS

The 222-S cargo tank shall be subjected to the DOT MC-312 Quality Assurance requirements in accordance with WHC-CM-2-14, Part IV, "Radioactive Material Shipments" and Part VI "Cargo Tanks/Cargo Tank Motor Vehicles."

8.0 MAINTENANCE

The 222-S Laboratory cargo tank is constructed in accordance with DOT specification MC-312 and shall be current in its periodic inspection and maintenance requirements.

9.0 APPENDIX

9.1 REFERENCES

49 CFR 100-199, 1993, "Transportation," *Code of Federal Regulations*, as amended.

49 CFR 100-199, 1989, "Transportation," *Code of Federal Regulations*, as amended.

RL, 1988, *Environment, Safety and Health Program for Department of Energy Operations for Richland*, RL Order 5480.1A, Chapter III, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

WHC-CM-1-6, *WHC Radiological Control Manual*, Westinghouse Hanford Company, Richland, Washington.

WHC-CM-2-14, *Hazardous Material Packaging and Shipping*, Westinghouse Hanford Company, Richland, Washington.

WHC, 1993, *Safety Evaluation for Packaging for the 222-S Laboratory Cargo Tank*, WHC-SD-TP-SEP-011, Westinghouse Hanford Company, Richland, Washington.

WHC, 1994, *Transfer Tank 102 Liquid Waste to Tank Farms*, L0-100-160, Westinghouse Hanford Company, Richland, Washington.

PART B: PACKAGE EVALUATION**1.0 INTRODUCTION****1.1 SAFETY EVALUATION METHODOLOGY**

This Safety Evaluation for Packaging (SEP) authorizes a onetime onsite shipment of Type B radioactive material in the 222-S Laboratory U.S. Department of Transportation (DOT) MC-312 specification cargo tank (222-S cargo tank).

The 222-S cargo tank is an authorized DOT transportation package for bulk liquid low specific activity (LSA) material in accordance with 49 CFR 173.425. The material which is usually shipped in this cargo tank is LSA or slightly greater in accordance with WHC-SD-TP-SEP-011. Due to an abnormal ^{241}Am and $^{89/90}\text{Sr}$ concentration in the 222-S storage tank, however, the liquid contents are a Type B quantity of radioactive material, and greater than Type A (non-bulk) LSA.

This SEP demonstrates that the proposed onetime shipment of the Type B contents meets onsite transportation safety criteria. The safety evaluation method for this shipment is based on risk, shielding, and thermal analysis; on the institution of operational controls; and the cargo tank's up-to-date DOT and mechanical inspection records.

1.2 EVALUATION SUMMARY AND CONCLUSIONS

The shielding analysis (Part B, Section 5.0) shows that the cargo tank meets the DOT dose rate requirements for the Type B contents. The risk analysis shows that in the unlikely event of an accident, the predicted dose consequence meets the onsite acceptance limits as shown in Part B, Section 3.0, based on accident frequency. The decay heat generation study confirms that the contents do not generate sufficient heat to affect the cargo tank. In addition, the cargo tank recently completed its periodic DOT MC-312 and mechanical inspections in accordance with the DOT requirements and the manufacturer schedule.

1.3 APPENDIX**1.3.1 References**

49 CFR 100-199, 1993, "Transportation," *Code of Federal Regulations*, as amended.

WHC-SD-TP-SEP-027 Rev. 0

WHC, 1993, *Safety Evaluation for Packaging for the 222-S Laboratory Cargo Tank*, WHC-SD-TP-SEP-011, Westinghouse Hanford Company, Richland, Washington.

2.0 CONTENTS EVALUATION

2.1 CONTENTS

The allowable contents of the 222-S cargo tank are 4,000 gallons (15,142 L) of the 222-S laboratory liquids. The radioactive contents are based on the laboratory sample shown in Figure B2-1 and the transportation contents are shown in Figure B2-2. The contents are Type B (Part A, Section 3.0) and would also be LSA (greater than Type A) if this was not a bulk liquid shipment.

It should be noted that under the current International Atomic Energy Agency (IAEA) regulations (IAEA 1990), the contents would meet the definition of LSA II (Figure B2-3) and could be shipped in other countries in a packaging similar to the 222-S cargo tank. Therefore, considering the controls which have been mandated for this onetime shipment, the risk posed from these contents is minor.

Table B2-1. LSA and A₂ Limits for DOT and IAEA.

Radionuclide	DOT		IAEA	
	LSA (mCi/g)	A ₂ (Ci)	LSA (Ci/g)	A ₂ (Ci)
³ H	0.3	1000	1×10^{-2}	1000
¹⁴ C	0.3	60	5×10^{-4}	50
^{89/90} Sr	0.005	0.4	2×10^{-5}	2
⁹⁹ Tc	0.3	25	2×10^{-4}	20
¹²⁹ I	0.3	2	unlimited	unlimited
¹³⁷ Cs	0.3	10	1×10^{-4}	10
¹⁴⁷ Pm	0.3	25	2×10^{-4}	20
²³³ U	0.005	0.1	2×10^{-7}	0.02
²³⁵ U	0.005	0.2	unlimited	unlimited
²³⁸ U	unlimited	unlimited	unlimited	unlimited
^{239/240} Pu	0.0001	0.002	5×10^{-8}	0.005
²⁴¹ Am	0.0001	0.008	5×10^{-8}	0.005

Figure B2-1. 222-S Laboratory Cargo Tank Lab Sample.

SAMPLE STATUS REPORT FOR S 9016. 102-LW
 DISPATCHED: 6/23/94 11: 1 SAMPLE HAS NOT BEEN SLURPED
 RECEIVED: 6/23/94 11:40

EXT.	DETER.	RESULTS OR STATUS	OUT OF GOOD CHARGE			
			RANGE?	ANS?	CODE	
1001	APPR/OTR	CLEAR COLORLESS NO SOLIDS PHASES			YLDAA	
1206	TB	2.62000E 02 uCi/L	N	Y	YLDAA	
1266	AT	1.81000E 01 uCi/L	N	Y	YLDAA	
1331	As	INCOMPLETE			YLDAA	
1454	C/R	OUT FOR RERUN			YLDAA	
1454	C/R	1.61000E-01 lbNaOH/gal	N	Y	YLDAA	
1557	Cl	3.65000E-02 M	N	Y	YLDAA	
1601	TIC	5.80000E-04 M	N	Y	YLDAA	
1621	TOC	4.03000E 00 G/L C	N	Y	YLDAA	
1831	DSC	NO EXOTHERMS			YLDAA	
1907	F	7.02000E-03 N	N	Y	YLDAA	
2101	GEA	7.14000E 01 uCi/L	Cs-137	N	Y	YLDAA
2101	GEA	1.799000E-01 uCi/L	Am-241	N	Y	YLDAA
2216	H+	1.44000E-01 M	N	Y	YLDAA	
2385	Hg	OUT FOR RERUN			YLDAA	
2385	Hg	3.68000E-01 mG/L	N	Y	YLDAA	
2456	ICP	1.04000E 04 PPB	Cr	N	Y	YLDAA
2456	ICP	5.21000E 02 PPB	Ba	N	Y	YLDAA
2456	ICP	4.70000E 01 PPB	Ag	N	Y	YLDAA
2456	ICP	8.30000E 03 PPB	Pb	N	Y	YLDAA
2456	ICP	4.20000E 01 PPB	Cd	N	Y	YLDAA
2456	ICP	8.75000E 05 PPB	Na	N	Y	YLDAA
2456	ICP	3.18000E 04 PPB	Al	N	Y	YLDAA
2456	ICP	1.03000E 02 PPB	As	N	Y	YLDAA
2456	ICP	< 1.00000E 02 PPB	Se	N	Y	YLDAA
2491	I129	< 5.15000E-02 uCi/L		N	Y	YLDAA
2912	NO2	5.57000E-04 M		N	Y	YLDAA
3937	NO3	1.46000E-01 M		N	Y	YLDAA
3201	PM	1.20000E 00 NONE		N	Y	YLDAA
3201	PM	1.18000E 00 NONE		N	Y	YLDAA
3244	PM	OUT FOR RERUN			YLDAA	
3244	PM	5.28000E 00 uCi/L		N	Y	YLDAA
3267	PO4	2.65000E-03 M		N	Y	YLDAA
3336	Pu239/40	4.39000E-02 uCi/L	PU239/240	N	Y	YLDAA
3371	Pu-Total	9.09000E-03 GRAMS		N	Y	YLDAA
3531	Se	2.59000E 01 uG/L		N	Y	YLDAA
3707	SO4	1.54000E-02 M		N	Y	YLDAA
3804	Sr89/90	7.04000E 01 uCi/L		N	Y	YLDAA
4193	Tc99	4.07000E-02 uCi/L		N	Y	YLDAA
4419	U	3.93000E-03 G/L		N	Y	YLDAA
4622	Am241	1.70000E-01 uCi/L		N	Y	YLDAA
5701	VOA	INCOMPLETE			YLDAA	
5712	TGA	9.90900E 01 ± H2O		N	Y	YLDAA
7687	H3	9.75000E-05 uCi/ML		N	Y	YLDAA
7688	C14	1.81000E-05 uCi/ML		N	Y	YLDAA

END OF REPORT

**Figure B2-2. LSA and A₂ Determination under DOT.
Fissile-Exempt Material Determination.**

Tanker Shipment 94-3		Done by: <i>Rick Cuttress</i> 8/19/94		Checked by: <i>J. E. March 8/19/94</i>					
Volume = 4000 gallons = 15140 L									
Assume density = 1g/mL									
Concentration									
Nuclide	(μ Ci/L)	(mCi/g)	Activity (Ci)	A2 (Ci)	F/A2				
H-3	9.75E-02	9.75E-08	1.48E-03	1000	6.12E-04				
C-14	1.81E-02	1.81E-08	2.74E-04	60	1.14E-04				
Sr-89/90	7.04E+01	7.04E-05	1.07E+00	0.4	4.42E-01				
Tc-99	4.07E-02	4.07E-08	6.16E-04	25	2.55E-04				
I-129	5.15E-02	5.15E-08	7.80E-04	2	3.23E-04				
Cs-137	7.14E+01	7.14E-05	1.09E+00	10	4.48E-01				
Pm-147	5.28E+00	5.28E-06	7.99E-02	25	3.31E-02				
U-233	4.08E-09	4.08E-15	6.18E-11	0.1	2.56E-10				
U-235	7.92E-05	7.92E-11	1.20E-06	0.2	4.97E-07				
U-238	1.31E-03	1.31E-09	1.98E-05	n/a	8.22E-06				
Pu-239/240	4.39E-02	4.39E-08	6.65E-04	0.002	2.76E-04				
Am-241	1.20E+01	1.20E-05	1.82E-01	0.008	7.53E-02				
Totals		1.59E-04	2.41E+00		1.07E+01				
Type B	LSA				1.35E-01				
Fissile Determination									
Nuclide	Activity (Ci)	Spec. Act. (Ci/g)	Amount (g)						
U-233	6.18E-11	9.50E-03	6.51E-09						
U-235	1.20E-06	2.10E-06	5.71E-01						
Pu-239/240	6.65E-04	6.20E-02	1.07E-02						
Total			5.82E-01						
Since $5.82E-01 < 15$ grams, fissile exempt									
Mix. A2 = 9.34E-02									

Figure B2-3. 222-S Laboratory Contents under IAEA.

Tanker Shipment 94-3		IAEA VERSION					
		Done by: <i>Rid Chatterfall 8/15/04</i>		Checked by: <i>J. E. Meeker 8/15/04</i>			
		Volume = 4000 gallons = 15140 L					
		Assume density = 1g/mL					
Nuclide	Concentration ($\mu\text{Ci/L}$)	Activity (Ci) (Ci/g)	IAEA	A2 (Ci) (Ci/g)	F _i	F _{i/A2}	A2/g
H-3	9.75E-02	9.75E-11		1.48E-03	1000	6.12E-04	6.12E-07
C-14	1.81E-02	1.81E-11		2.74E-04	50	1.14E-04	2.27E-06
Sr-89/90	7.04E+01	7.04E-08		1.07E+00	2	4.42E-01	2.21E-01
Tc-99	4.07E-02	4.07E-11		6.16E-04	20	2.55E-04	1.28E-05
I-129	5.15E-02	5.15E-11		7.80E-04	n/a		
Cs-137	7.14E+01	7.14E-08		1.08E+00	10	4.48E-01	4.48E-02
Pm-147	5.28E+00	5.28E-09		7.99E-02	20	3.31E-02	1.66E-03
U-233	4.08E-09	4.08E-18		6.18E-11	0.02	2.56E-11	1.28E-09
U-235	7.92E-05	7.92E-14		1.20E-06	n/a		
U-238	1.31E-03	1.31E-12		1.98E-05	n/a		
Pu-239/240	4.39E-02	4.39E-11		6.65E-04	0.005	2.76E-04	5.51E-02
Am-241	1.20E+01	1.20E-08		1.82E-01	0.005	7.53E-02	1.51E+01
Totals		1.59E-07		2.41E+00		1.54E+01	2.45E-06
Type B	LSA II				Mix. A2 =	6.50E-02	
Total (Ci/g)/mixture A2	=	2.45E-06	A2's/g				

2.2 APPENDIX

2.2.1 Reference

IAEA, 1990, *Regulations for the Safe Transport of Radioactive Material 1985 Edition*, IAEA Safety Series No. 6, as amended 1990, International Atomic Energy Agency, Vienna, Austria.

3.0 RADIOLOGICAL RISK EVALUATION

The section provides the result of the accident frequency evaluation of the 222-S cargo tank used to transport the material listed in Figure B2-1.

3.1 ACCIDENT FREQUENCY ANALYSIS

An accident frequency evaluation was performed for the 222-S cargo tank shipment from the 222-S Laboratory in the 200 West Area to the 204-AR located in the 200 East Area. The shipping distance was determined to be 6.3 miles and is illustrated in Figures A4-1 and A4-2. The purpose of this analysis was to determine the predicted accident frequency for the shipment.

The following data was extracted from the *Standard Transportation Risk Assessment Methodology* report (WHC 1993):

reportable accidents/mile	4.38×10^{-6}
major accidents/reportable accidents	0.27
random fire/major accident	1/31
collision/major accident	23/31
rollover	2/31
uncontrolled fire/fire	0.033
icy road	not allowed

In order to reduce the potential of a collision (to 5% of the recorded value), the following controls shall be imposed:

- No vehicles allowed on the road segment being traveled by the cargo tank except the escort vehicles.
- Patrol escort.
- Second driver in the cab.
- Speed limited to 45 mph or posted speed, whichever is less.

Therefore, the calculated accident release frequency is as follows:

$$\begin{aligned}
 \frac{\text{accident releases}}{\text{mile}} &= \frac{\text{reportable accidents}}{\text{mile}} \times \frac{\text{major accidents}}{\text{reportable accidents}} \times \\
 &\left(\frac{\text{random fire}}{\text{major accident}} \times \frac{\text{uncontrolled fire}}{\text{fire}} + \frac{\text{rollover}}{\text{major accident}} \times \frac{5\% \text{ collision}}{\text{major accident}} \right) \\
 &= 4.38 \times 10^{-7} \times 0.27 \left(\frac{1}{31} \times 0.033 + \frac{2}{31} + \frac{23}{31} (0.05) \right) \\
 &= 1.2 \times 10^{-6} \times 0.102 \\
 &= 1.22 \times 10^{-7} \frac{\text{accident releases}}{\text{mile}} \\
 1.22 \times 10^{-7} \frac{\text{accident releases}}{\text{mile}} \times 6.3 \frac{\text{miles}}{\text{year}} &= 7.7 \times 10^{-7} \frac{\text{accident releases}}{\text{year}}
 \end{aligned}$$

The 7.7×10^{-7} accident releases/year is considered incredible, and the predicted offsite dose consequence is shown to meet the onsite transportation safety criteria (WHC-SD-TP-RPT-001) for this frequency range in Part B, Section 4.0.

3.2 APPENDIX

3.2.1 References

49 CFR 100-199, 1993, "Transportation," *Code of Federal Regulations*, as amended.

WHC, 1993, *Standard Transportation Risk Assessment Methodology*, WHC-SD-TP-RPT-007, Westinghouse Hanford Company, Richland, Washington, December 1993.

WHC, 1994, *Report on Equivalent Safety for Transportation and Packaging of Radioactive Materials*, WHC-SD-TP-RPT-001, Westinghouse Hanford Company, Richland, Washington.

4.0 CONTAINMENT EVALUATION

The cargo tank is designed and constructed in accordance with the DOT specification for MC-312 cargo tanks. The MC-312 cargo tank is authorized for the shipment in commerce of many acutely hazardous liquids, including nitric acid. The cargo tank has been inspected and tested per the DOT maintenance schedule. Its mechanical service record is current per the manufacturer's recommendation. The dose consequence analysis was performed for the cargo tank in Part B, Section 4.2.2 to evaluate the dose in the event of a release due to an accident.

4.1 DOSE CONSEQUENCE

The dose consequence analysis was performed to determine the dose received by the maximum exposed individual offsite due to a release of material from the cargo tank. The analysis was based on the waste sample data in Figure B2-1.

The dose consequence analysis shows that the effective dose equivalent for the offsite individual would be 1.0×10^{-4} rem at the worst case site boundary, which is well below the 25 rem limit established for incredible accident frequencies as documented the *Report on Equivalent Safety for Transportation and Packaging of Radioactive Materials* (WHC 1994).

4.2 APPENDICES

4.2.1 Reference

WHC, 1994, *Report on Equivalent Safety for Transportation and Packaging of Radioactive Materials*, WHC-SD-TP-RPT-001, Westinghouse Hanford Company, Richland, Washington.

4.2.2 Dose Consequence Analysis

**Westinghouse
Hanford Company**

**Internal
Memo**

From: Radiation Physics and Shielding 8D530-SMC-94-001
Phone: 376-3765 HO-35
Date: August 14, 1994
Subject: DOSE CONSEQUENCE ANALYSIS OF TANKER SHIPMENT 94-3 AQUEOUS MIXTURE
 -- SAFETY CLASS ASSESSMENT
To: J. E. Mercado G2-02

cc: J. G. Field G2-02
 J. Greenborg HO-35
 R. J. Chesterfield G2-02
 HJG File/SM

3360 Gallons of aqueous waste are to be moved from 222S Labs (in the 200 West area) to tank farm 204-AR (200 East area). The source term is;

Table 1. Source Term	
Isotope	Activity (Ci)
^3H	1.24×10^{-3}
^{14}C	2.30×10^{-4}
^{90}Sr	8.95×10^{-1}
^{90}Y	8.95×10^{-1}
^{99}Tc	5.18×10^{-4}
^{129}I	6.55×10^{-4}
^{137}Cs	9.08×10^{-1}
^{137m}Ba	9.08×10^{-1}
^{147}Pm	6.72×10^{-2}
^{233}U	5.19×10^{-11}
^{235}U	1.01×10^{-6}
^{238}U	1.67×10^{-5}
$^{239/40}\text{Pu}$	5.58×10^{-4}
^{241}Am	1.53×10^{-1}

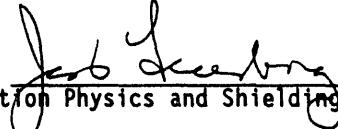
For the purposes of this analysis it has been assumed that the entire inventory in the container has been released from any engineered barriers and is at risk for release. The respirable aerodynamic release fraction was taken from the recommendations of J. Mishima (Recommended Values and Technical Bases for Airborne Fractions [ARFs], Airborne Release Rates [ARRs], and Respirable Fractions [RFs] for Materials from Accidents in DOE Fuel Cycle, Ex-Reactor Facilities, Revision 2).

For aqueous liquids on equipment that is dropped three meters or less onto a hard surface the recommended bounding value is 1.4×10^{-4} . The receptor is assumed to be immersed in the cloud for the entire time of its passage.

Hanford Operations and Engineering Contractor for the US Department of Energy

J. E. Mercado
Page 2
August 10, 1994

8D530-SMC-94-001


The computer program GXQ was run to find the meteorology which is not exceeded more than 0.5% of the time according to Hanford meteorological data. The nine year (1983 - 1991) averaged Hanford data for 200 area release at a height of 10m (created 8/26/92) was used. Two release sites were considered; 222S Labs, and 204-AR. The worst case normalized exposure (\overline{Y}/Q) was the same for both release sites, although the direction of worst case exposure varied. The value was calculated to be 1.55×10^{-3} sec/m³ for an individual at the site boundary directly west of the spill if it occurred at the 222S Labs, and the same for an individual at the site boundary directly east of the spill if it occurred at the 204-AR area. Doses were calculated for inhalation and ingestion through drinking water, aquatic foods, terrestrial foods, animal products, and soil (inadvertent). The doses for both drinking water and aquatic foods were zero, since there was no means to contaminate either of them.

The computer code GENII was then used to calculate the actual dose received. The libraries used were as tabulated below;

GENII Default Parameter Values (28-Mar-90 RAP)
Radionuclide Library - Times<100 years (23-July-93 PDR)
External Dose Factors for GENII in person Sv/yr per Bq/n (8-May-90 R)
PNL Food Transfer Factor Library (by Z, with Fr&Os 7/19/93 PDR)
Bioaccumulation Factor Library (30-Aug-88) RAP
Worst-Case Solubilities, Yearly Dose Increments (23-Jul-93 PDR)

The off-site individual at the worst case site boundary is expected to receive a committed effective dose equivalent of 1.0×10^{-4} rem.

Sebastian McClendon
Radiation Physics and Shielding

Jess Greenborg
Manager, Radiation Physics and Shielding

*** Output file for GXQ - 222S site release ***

GXQ Version 3.1 B
June 8, 1993

General Purpose Atmospheric Dispersion Code
Produced by Radiological & Toxicological Analysis
Westinghouse Hanford Company

Users Guide documented in WHC-SD-GN-SWD-3002 Rev. 0.
Validation documented in WHC-SD-GN-SWD-3003 Rev. 0.
Code Custodian is Brit E. Hey, WHC, ext. 6-2921.

Run Date = 8/ 9/1994
Run Time = 14: 1 2.30

INPUT ECHO:
222S Area Release - Farmer
c GXQ Ver. 3.1 Input File
c mode
1
c
c MODE CHOICE:
c mode = 1 then X/Q based on Hanford site specific meteorology
c mode = 2 then X/Q based on atmospheric stability class and wind speed
c mode = 3 then X/Q plot file is created
c
c LOGICAL CHOICES:
c ifox inorm icdf ichk isite ipop icon
T F F F F F
c ifox = t then joint frequency used to compute frequency to exceed X/Q
c = f then joint frequency used to compute annual average X/Q
c inorm = t then joint frequency data is normalized (as in GENII)
c = f then joint frequency data is un-normalized
c icdf = t then cumulative distribution file created (CDF.OUT)
c = f then no cumulative distribution file created
c ichk = t then X/Q parameter print option turned on
c = f then no parameter print
c isite = t then X/Q based on joint frequency data for all 16 sectors
c = f then X/Q based on joint frequency data of individual sectors
c ipop = t then X/Q is population weighted
c = f then no population weighting
c icon = t then X/Q is air concentration
c = f then X/Q is integrated exposure
c
c MODEL CHOICES:
c idep iwake ipm irise igrav iwash iflow iwind
0 0 0 0 0 0 0 0
c idep = 1 then plume depletion model turned on (Chamberlain model)
c iwake = 1 then NRC RG 1.145 building wake model turned on
c = 2 then MACCS virtual distance building wake model turned on
c ipm = 1 then NRC RG 1.145 plume meander model turned on
c = 2 then 5th Power Law plume meander model turned on
c = 3 then sector average model turned on
c irise = 1 then momentum/buoyancy plume rise model turned on, buoyancy
c rise based on sensible heat emission
c = 2 then momentum/buoyancy plume rise model turned on, buoyancy
c rise based on initial plume density
c igrav = 1 then gravitational settling model turned on
c iwash = 1 then stack downwash model turned on
c iflow = 1 then sigmas adjusted for volume flow rate
c iwind = 1 then wind speed corrected for plume height
c = 0 to turn any of the above models off
c
c PARAMETER INPUT:
c stack wind frequency

```

c release speed mixing to scaling
c height height height exceed factor
c (m) (m) (m) (%) (?) (m)
c 0.00000E+00 1.00000E+01 1.00000E+03 5.00000E-01 1.00000E+00
c
c building building release deposition gravitational
c width height duration velocity settling
c (m) (m) (hr) velocity
c 5.00000E+00 5.00000E+00 1.00000E+00 1.00000E-03 1.00000E-03
c
c initial plume stack sensible
c plume flow rate diameter heat
c density rate (m) emission
c (g/cc) (m3/s) (m) rate
c 1.22000E-03 0.00000E+00 1.00000E+00 4.18000E+05

c
c RECEPTOR DEPENDENT DATA
c FOR MODE make RECEPTOR DEPENDENT DATA
c 1 (site specific) sector distance z-height
c 2 (by class & wind speed) class windspeed distance offset z-height
c 3 (create plot file) class windspeed xmax imax ymax jmax xqmin power
c

c RECEPTOR PARAMETER DESCRIPTION:
c sector = 0, 1, 2... (all, S, SSW, etc.)
c distance = meters
c class = 1, 2, 3, 4, 5, 6, 7 (P-G stability class A, B, C, D, E, F, G)
c windspeed = m/s
c offset = meters offset from plume centerline
c xmax = maximum distance to plot or calculate to (m)
c imax = distance intervals
c ymax = maximum offset to plot (m)
c jmax = offset intervals
c xqmin = minimum scaled X/Q to calculate
c power = exponent in power function step size

```

MODE:

Site specific X/Q calculated

LOGICAL CHOICES:

Joint frequency used to calculate X/Q based on
 frequency of exceedance.
 No normalization of joint frequency.
 X/Q calculated for single sector.
 Output is atmospheric dispersion coefficient.

MODELS SELECTED:

WARNING/ERROR MESSAGES:

WARNING #3 - Scaled X/Q units (shown as s/m³ or 1/m³
 below) do not reflect the user specified
 scaling factor.

JOINT FREQUENCY DATA:

200 AREA (WMS) - 10 M - Pasquill A - G (1983 - 1991 Average)
 Created 8/26/92 KR

222S Area Release - Farmer

SECTOR	DISTANCE (m)	RECEP. (m)	SECT. (%)	FREQ.	POPULATION	TOTAL POPULATION		AVERAGE INDIVIDUAL		ATM. STAB.	WIND SPEED (m/s)
						SCALED X/Q (s/m ³)	SCALED X/Q (s/m ³)	ATM. STAB.			
S	12520	0	6.30		1	8.48E-06	8.48E-06	E	.89		
SSW	12720	0	4.53		1	5.21E-06	5.21E-06	F	2.65		
SW	15430	0	2.93		1	5.24E-06	5.24E-06	F	2.65		
WSW	13200	0	2.72		1	6.40E-06	6.40E-06	F	2.65		
W	12950	0	4.80		1	1.55E-05	1.55E-05	G	2.65		
WNW	13190	0	3.98		1	8.50E-06	8.50E-06	G	4.70		
NW	17170	0	4.72		1	1.13E-05	1.13E-05	G	2.65		
NNW	18130	0	4.58		1	1.06E-05	1.06E-05	G	2.65		
N	20340	0	4.36		1	9.82E-06	9.82E-06	G	2.65		
NNE	28770	0	2.49		1	2.77E-06	2.77E-06	E	.89		
NE	26360	0	3.90		1	3.35E-06	3.35E-06	E	.89		
ENE	23170	0	6.17		1	6.80E-06	6.80E-06	G	2.65		
E	24920	0	14.05		1	8.33E-06	8.33E-06	F	.89		
ESE	28720	0	18.80		1	6.69E-06	6.69E-06	F	.89		
SE	21950	0	10.83		1	8.82E-06	8.82E-06	G	2.65		
SSE	18110	0	4.78		1	5.42E-06	5.42E-06	G	4.70		

Execution Time = 0 hr 0 min .55 sec
Stop - Program terminated.

*** Output file for GXQ- 204-AR site release ***

GXQ Version 3.1 B
June 8, 1993

General Purpose Atmospheric Dispersion Code
Produced by Radiological & Toxicological Analysis
Westinghouse Hanford Company

Users Guide documented in WHC-SD-GN-SWD-3002 Rev. 0.
Validation documented in WHC-SD-GN-SWD-3003 Rev. 0.
Code Custodian is Brit E. Hey, WHC, ext. 6-2921.

Run Date = 8/ 9/1994
Run Time = 14: 2 14.03

```

INPUT ECHO:
204ar Tank Farm Release - Farmer
c GXQ Ver. 3.1 Input File
c mode
  1
c
c MODE CHOICE:
c mode = 1 then X/Q based on Hanford site specific meteorology
c mode = 2 then X/Q based on atmospheric stability class and wind speed
c mode = 3 then X/Q plot file is created
c
c LOGICAL CHOICES:
c ifox inorm icdf ichk isite ipop icon
  T  F  F  F  F  F
c ifox = t then joint frequency used to compute frequency to exceed X/Q
c      = f then joint frequency used to compute annual average X/Q
c inorm = t then joint frequency data is normalized (as in GENII)

```

```

c      = f then joint frequency data is un-normalized
c  icdf  = t then cumulative distribution file created (CDF.OUT)
c      = f then no cumulative distribution file created
c  ichk  = t then X/Q parameter print option turned on
c      = f then no parameter print
c  isite = t then X/Q based on joint frequency data for all 16 sectors
c      = f then X/Q based on joint frequency data of individual sectors
c  ipop  = t then X/Q is population weighted
c      = f then no population weighting
c  icon  = t then X/Q is air concentration
c      = f then X/Q is integrated exposure
c

c MODEL CHOICES:
c  idep  iwake ipm  irise igrav iwash iflow iwind
c      0      0      0      0      0      0      0      0
c  idep = 1 then plume depletion model turned on (Chamberlain model)
c  iwake = 1 then NRC RG 1.145 building wake model turned on
c      = 2 then MACCS virtual distance building wake model turned on
c  ipm   = 1 then NRC RG 1.145 plume meander model turned on
c      = 2 then 5th Power Law plume meander model turned on
c      = 3 then sector average model turned on
c  irise  = 1 then momentum/buoyancy plume rise model turned on, buoyancy
c      rise based on sensible heat emission
c      = 2 then momentum/buoyancy plume rise model turned on, buoyancy
c      rise based on initial plume density
c  igrav = 1 then gravitational settling model turned on
c  iwash  = 1 then stack downwash model turned on
c  iflow  = 1 then sigmas adjusted for volume flow rate
c  iwind  = 1 then wind speed corrected for plume height
c      = 0 to turn any of the above models off
c

c PARAMETER INPUT:
c  stack      wind      mixing      frequency
c  release    speed      height      to exceed      scaling
c  height      height      height      (%)          factor
c  (m)        (m)        (m)        (%)          (?)
c  0.00000E+00 1.00000E+01 1.00000E+03 5.00000E-01 1.00000E+00
c
c
c  building    building    release    deposition    gravitational
c  width       height      duration   velocity     settling
c  (m)        (m)        (hr)       (m/s)      velocity
c  5.00000E+00 5.00000E+00 1.00000E+00 1.00000E-03 1.00000E-03
c
c
c  initial      initial      sensible
c  initial    plume      heat
c  plume      flow       stack      emission
c  density     rate       diameter   rate
c  (g/cc)    (m3/s)    (m)       (cal/s)
c  1.22000E-03 0.00000E+00 1.00000E+00 4.18000E+05
c

c RECEPTOR DEPENDENT DATA
c FOR MODE      make      RECEPTOR DEPENDENT DATA
c 1 (site specific)    sector distance z-height
c 2 (by class & wind speed) class windspeed distance offset z-height
c 3 (create plot file)  class windspeed xmax imax ymax jmax xqmin power
c

c RECEPTOR PARAMETER DESCRIPTION:
c  sector = 0, 1, 2... (all, S, SSW, etc.)
c  distance = meters
c  class = 1, 2, 3, 4, 5, 6, 7 (P-G stability class A, B, C, D, E, F, G)
c  windspeed = m/s
c  offset = meters offset from plume centerline
c  xmax = maximum distance to plot or calculate to (m)
c  imax = distance intervals
c  ymax = maximum offset to plot (m)
c  jmax = offset intervals
c  xqmin = minimum scaled X/Q to calculate
c  power = exponent in power function step size

```

MODE:
Site specific X/Q calculated

LOGICAL CHOICES:
Joint frequency used to calculate X/Q based on
frequency of exceedance.
No normalization of joint frequency.
X/Q calculated for single sector.
Output is atmospheric dispersion coefficient.

MODELS SELECTED:

WARNING/ERROR MESSAGES:

WARNING #3 - Scaled X/Q units (shown as s/m³ or 1/m³
below) do not reflect the user specified
scaling factor.

JOINT FREQUENCY DATA:
200 AREA (HMS) - 10 M - Pasquill A - G (1983 - 1991 Average)
Created 8/26/92 KR

204ar Tank Farm Release - Farmer

SECTOR	DISTANCE (m)	RECEPT (m)	SECT. (%)	POPULATION	TOTAL POPULATION	AVERAGE INDIVIDUAL		WIND SPEED (m/s)
					SCALED (s/m ³)	SCALED X/Q (s/m ³)	ATM. STAB. CLASS	
S	19950	0	6.30	1	4.66E-06	4.66E-06	E	.89
SSW	17230	0	4.53	1	3.57E-06	3.57E-06	F	2.65
SW	17580	0	2.93	1	4.45E-06	4.45E-06	F	2.65
WSW	21210	0	2.72	1	3.53E-06	3.53E-06	F	2.65
W	20800	0	4.80	1	8.57E-06	8.57E-06	G	2.65
WNW	21320	0	3.98	1	4.65E-06	4.65E-06	G	4.70
NW	20890	0	4.72	1	8.85E-06	8.85E-06	G	2.65
NNW	21090	0	4.58	1	8.78E-06	8.78E-06	G	2.65
N	24150	0	4.36	1	7.95E-06	7.95E-06	G	2.65
NNE	23150	0	2.49	1	3.66E-06	3.66E-06	E	.89
NE	17810	0	3.90	1	5.49E-06	5.49E-06	E	.89
ENE	15130	0	6.17	1	1.15E-05	1.15E-05	G	2.65
E	15050	0	14.05	1	1.55E-05	1.55E-05	F	.89
ESE	19930	0	18.80	1	1.05E-05	1.05E-05	F	.89
SE	24140	0	10.83	1	7.85E-06	7.85E-06	G	2.65
SSE	20080	0	4.78	1	4.76E-06	4.76E-06	G	4.70

Execution Time = 0 hr 0 min .60 sec
Stop - Program terminated.

```
#####
# Program GENII Input File #####
# 8 Jul 88 #####
Title: 222-s and 204-ar farmer dose
\GENII\222s-f.in                                         Created on 08-09-1994 at 14:28
OPTIONS===== Default =====
F  Near-field scenario?      (Far-field)    NEAR-FIELD: narrowly-focused
F  Population dose?         (Individual)   release, single site
T  Acute release?           (Chronic)      FAR-FIELD: wide-scale release,
                                           multiple sites
                                           Complete
Maximum Individual data set used
                                           Complete
TRANSPORT OPTIONS===== Section  EXPOSURE PATHWAY OPTIONS===== Section
T  Air Transport             1  F  Finite plume, external      5
F  Surface Water Transport   2  T  Infinite plume, external      5
```

F Biotic Transport (near-field)	3,4	F Ground, external	5
F Waste Form Degradation (near)	3,4	F Recreation, external	5
T Report AEDE only		T Inhalation uptake	5,6
F Report by radionuclide		T Drinking water ingestion	7,8
F Report by exposure pathway		T Aquatic foods ingestion	7,8
F Debug report on screen		T Terrestrial foods ingestion	7,9
		T Animal product ingestion	7,10
		T Inadvertent soil ingestion	

INVENTORY

4 Inventory input activity units: (1-pCi 2-UCI 3-mCi 4-Ci 5-Bq)
 0 Surface soil source units (1- m² 2- m³ 3- kg)
 Equilibrium question goes here

Use when	Release Terms			Basic Concentrations				
	transport selected			near-field scenario, optionally				
Release	Surface	Buried		Surface	Deep	Ground	Surface	
Radio- nuclide	Air /yr	Water /yr	Waste /m ³	Air /m ³	Soil /unit	Soil /m ³	Water /L	Water /L
H 3	1.2E-03							
C 14	2.3E-04							
SR90	8.9E-01							
Y 90	8.9E-01							
TC99	5.2E-04							
I 129	6.5E-04							
CS137	9.1E-01							
PM147	6.7E-02							
U 233	5.2E-11							
U 235	1.0E-06							
U 238	1.7E-05							
PU239	5.6E-04							
AM241	1.5E-01							

Use when	Derived Concentrations							
	measured values are known							
Release	Terres.	Animal	Drink	Aquatic				
Radio- nuclide	Plant	Product	Water	Food				
	/kg	/kg	/L	/kg				

TIME

1 Intake ends after (yr)
 50 Dose calc. ends after (yr)
 0 Release ends after (yr)
 0 No. of years of air deposition prior to the intake period
 0 No. of years of irrigation water deposition prior to the intake period

FAR-FIELD SCENARIOS (IF POPULATION DOSE)

0 Definition option: 1-Use population grid in file POP.IN
 0 2-Use total entered on this line

NEAR-FIELD SCENARIOS

Prior to the beginning of the intake period: (yr)
 0 When was the inventory disposed? (Package degradation starts)
 0 When was LOIC? (Biotic transport starts)
 0 Fraction of roots in upper soil (top 15 cm)
 0 Fraction of roots in deep soil
 0 Manual redistribution: deep soil/surface soil dilution factor
 0 Source area for external dose modification factor (m²)

TRANSPORT #####
 =====AIR TRANSPORT===== SECTION 1 =====
 0-Calculate PM | 0 Release type (0-3)

EXPOSURE #####

====EXTERNAL EXPOSURE==== SECTION 5====

Exposure time:	Residential irrigation:	
Plume (hr)	T	Consider: (T/F)
Soil contamination (hr)	0	Source: 1-ground water
Swimming (hr)		2-surface water
Boating (hr)	0	Application rate (in/yr)
Shoreline activities (hr)	0	Duration (mo/yr)
Shoreline type: (1-river, 2-lake, 3-ocean, 4-tidal basin)		
Transit time for release to reach aquatic recreation (hr)		
Average fraction of time submersed in acute cloud (hr/person hr)		

=====INHALATION===== SECTION 6 =====
8766.0 Hours of exposure to contamination per year
0 0-No resus- 1-Use Mass Loading 2-Use Anspaugh model
0 pension Mass loading factor (g/m³) Top soil available (cm)

1 =====INGESTION POPULATION===== SECTION 7=====
0 Atmospheric production definition (select option):
0 0-Use food-weighted chi/Q, (food-sec/m3), enter value on this line
0 1-Use population-weighted chi/Q
0 2-Use uniform production
0 3-Use chi/Q and production grids (PRODUCTION will be overridden)
0.0 Population ingesting aquatic foods, 0 defaults to total (person)
0.0 Population ingesting drinking water, 0 defaults to total (person)
E Consider dose from food exported out of region (default=E)

Note below: S* or Source: 0-none, 1-ground water, 2-surface water
3-Derived concentration entered above
==== AQUATIC FOODS / DRINKING WATER INGESTION ===== SECTION B =====

F Salt water? (default is fresh)

USE TRAN- PROD -CONSUMPTION-
 ? FOOD SIT UCTION HOLDUP RATE
 T/F TYPE hr kg/vr da kg/vr DRINKING WATER

T	FISH	0.00	0.0E+00	1.00	40.0	0	Source (see above)
T	MOLLUS	0.00	0.0E+00	0.00	6.9	T	Treatment? T/F
T	CRUSTA	0.00	0.0E+00	0.00	6.9	1.0	Holdup/transit(da)
T	PLANTS	0.00	0.0E+00	0.00	6.9	730.0	Consumption (L/yr)

=====TERRESTRIAL FOOD INGESTION=====SECTION 9=====

USE ? FOOD T/F TYPE	GROW TIME da	--IRRIGATION--		YIELD kg/m2	PROD- UCTION kg/yr	--CONSUMPTION--	
		S RATE * in/yr	TIME mo/yr			HOLDUP da	RATE kg/yr
T LEAF V	90.00	0	0.0	1.5	0.0E+00	1.0	30.0
T ROOT V	90.00	0	0.0	4.0	0.0E+00	5.0	220.0
T FRUIT	90.00	0	0.0	2.0	0.0E+00	5.0	330.0
T GRAIN	90.00	0	0.0	0.8	0.0E+00	180.0	80.0

=====ANIMAL PRODUCTION CONSUMPTION=====SECTION 10=====

USE ? FOOD T/F TYPE	---HUMAN---			DRINK CONSUMPTION kg/yr	---STORED FEED---			STOR- AGE kg/m3				
	CONSUMPTION RATE kg/yr	PROD- UCTION HOLDUP da	WATER kg/yr		DIET CONTAM FRACT.	GROW FRAC- TION	IRRIGATION-- TIME da		S RATE * in/yr	TIME mo/yr		
T BEEF	80.0	15.0	0.00	0.00	0.00	90.0	0	0.0	0.00	0.80	0.0	
T POULTR	18.0	1.0	0.00	0.00	0.00	90.0	0	0.0	0.00	0.80	0.0	
T MILK	270.0	1.0	0.00	0.00	0.00	45.0	0	0.0	0.00	2.00	0.0	
T EGG	30.0	1.0	0.00	0.00	0.00	90.0	0	0.0	0.00	0.80	0.0	
						-----FRESH FORAGE-----						
BEEF						0.00	45.0	0	0.0	0.00	2.00	100.0
MILK						0.00	30.0	0	0.0	0.00	1.50	0.0

 GENII Dose Calculation Program
 (Version 1.485 3-Dec-90)

Case title: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:28:50

Page A. 1

 This is a far-field (wide-scale release, multiple site) scenario.
 Release is acute
 Individual dose

 THE FOLLOWING TRANSPORT MODES ARE CONSIDERED
 Air

THE FOLLOWING EXPOSURE PATHS ARE CONSIDERED:

 Infinite plume, external
 Inhalation uptake
 Drinking water ingestion
 Aquatic foods ingestion
 Terrestrial foods ingestion
 Animal product ingestion
 Inadvertent soil ingestion

THE FOLLOWING TIMES ARE USED:

 Intake ends after (yr): 1.0
 Dose calculations ends after (yr): 50.0

 ===== FILENAMES AND TITLES OF FILES/LIBRARIES USED =====

 Input file name: \GENII\222s-f.in
 GENII Default Parameter Values (28-Mar-90 RAP)
 Radionuclide Library - Times<100 years (23-July-93 PDR)
 PNL Food Transfer Factor Library (by Z, with Fr&Os 7/19/93 PDR)
 Bioaccumulation Factor Library - (30-Aug-88) RAP
 External Dose Factors for GENII in person Sv/yr per Bq/n (8-May-90 R)
 Worst-Case Solubilities, Yearly Dose Increments (23-Jul-93 PDR)

----- Release Terms -----

Release	Surface	Buried	
Radio-	Air	Water	Source
nuclide	Ci/yr	Ci/yr	Ci/m ³
H 3	1.2E-03	0.0E+00	0.0E+00
C 14	2.3E-04	0.0E+00	0.0E+00
SR90	8.9E-01	0.0E+00	0.0E+00
Y 90	8.9E-01	0.0E+00	0.0E+00
TC99	5.2E-04	0.0E+00	0.0E+00
I 129	6.5E-04	0.0E+00	0.0E+00
CS137	9.1E-01	0.0E+00	0.0E+00
PM147	6.7E-02	0.0E+00	0.0E+00
U 233	5.2E-11	0.0E+00	0.0E+00
U 235	1.0E-06	0.0E+00	0.0E+00
U 238	1.7E-05	0.0E+00	0.0E+00
PU239	5.6E-04	0.0E+00	0.0E+00
AM241	1.5E-01	0.0E+00	0.0E+00

 ===== AIR TRANSPORT =====
1.5E-05 Input E/Q value (s/m³)

 ===== EXTERNAL EXPOSURE =====

1.0E+00 Fraction of time spent in cloud

 ===== INHALATION =====

Resuspension not considered

===== INGESTION POPULATION =====
 1 Atmospheric production definition: 1 - Use population-weighted chi/q

===== DRINKING WATER SOURCE/IRRIGATION =====
 7.3E+02 Drinking water consumption rate (l/yr)
 0 Drinking water source: 1-ground, 2-surface, 3-system
 T Drinking water treatment: T/F
 1.0 Drinking water transit/holdup time (d)

===== AQUATIC FOODS INGESTION =====

FOOD TYPE	TRAN- SIT h	PROD- UCTION kg/yr	---CONSUMPTION---	
			HOLDUP d	RATE kg/yr
Fish	0.00E+00		1.00E+00	4.00E+01
Mollusc	0.00E+00		0.00E+00	6.90E+00
Crustace	0.00E+00		0.00E+00	6.90E+00
Aqu Plnt	0.00E+00		0.00E+00	6.90E+00

===== TERRESTRIAL FOOD INGESTION =====

FOOD TYPE	GROW- TIME d	--IRRIGATION-- S RATE * in/yr	PROD- UCTION kg/m2	---CONSUMPTION-- HOLDUP d	RATE kg/yr
Leaf Veg	90.0	0 0.0	0.0	1.5	1.0 3.0E+01
Oth. Veg	90.0	0 0.0	0.0	4.0	5.0 2.2E+02
Fruit	90.0	0 0.0	0.0	2.0	5.0 3.3E+02
Cereals	90.0	0 0.0	0.0	0.8	180.0 8.0E+01

===== ANIMAL FOOD INGESTION =====

FOOD TYPE	---HUMAN---		DRINK		-----STORED FEED-----			
	CONSUMPTION RATE kg/yr	HOLDUP d	PROD- UCTION kg/yr	WATER CONTAM FRACT.	DIET FRAC- TION	GROW- IRRIGATION-- S RATE * in/yr	STOR- AGE kg/m3	
Meat	8.0E+01	15.0	0.00		90.00	0 0.0	0.0	0.80
Poultry	1.8E+01	1.0	0.00		90.00	0 0.0	0.0	0.80
Cow Milk	2.7E+02	1.0	0.00		45.00	0 0.0	0.0	2.00
Eggs	3.0E+01	1.0	0.00		90.00	0 0.0	0.0	0.80
	-----FRESH FORAGE-----							
Meat				45.00	0 0.0	0.0	2.00	
Cow Milk				30.00	0 0.0	0.0	1.50	

=====
 Input prepared by: _____ Date: _____
 Input checked by: _____ Date: _____
 =====

 GENII Dose Calculation Program
 (Version 1.485 3-Dec-90)

Case title: Winter: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:29:18

Page C. 1

Acute release

 Uptake/exposure period: 1.0
 Dose commitment period: 50.0
 Dose units: Rem

Organ	Committed Dose Equivalent	Weighting Factors	Weighted Dose Equivalent
Gonads	8.8E-02	2.5E-01	2.2E-02
Breast	1.9E-04	1.5E-01	2.9E-05
R Marrow	5.1E-01	1.2E-01	6.1E-02
Lung	5.2E-02	1.2E-01	6.3E-03
Thyroid	7.0E-04	3.0E-02	2.1E-05
Bone Sur	6.3E+00	3.0E-02	1.9E-01
Liver	1.1E+00	6.0E-02	6.7E-02
LL Int.	3.5E-03	6.0E-02	2.1E-04
UL Int.	1.3E-03	6.0E-02	8.0E-05
S Int.	4.2E-04	6.0E-02	2.5E-05
Stomach	3.0E-04	6.0E-02	1.8E-05
Internal Effective Dose Equivalent		3.5E-01	
External Dose			1.7E-06
Annual Effective Dose Equivalent			3.5E-01

Controlling Organ:	Bone Sur
Controlling Pathway:	Inh
Controlling Radionuclide:	AM241
Total Inhalation EDE:	3.4E-01
Total Ingestion EDE:	2.3E-03

GENII Dose Calculation Program
(Version 1.485 3-Dec-90)

Case title: Winter: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:29:18

Page C. 2

Acute release

Uptake/exposure period:

1.0

Dose commitment period:

50.0

Dose units:

Rem

	Dose Commitment Year				
	1	2	3	...	
Internal Intake :					
Year: 3		0.0E+00	...		
		+			
2	0.0E+00	0.0E+00	...		Internal Effective Dose Equivalent
1	1.6E-02	+ 1.1E-02	+ 1.0E-02	+ ...	= 3.5E-01
Internal Annual Dose	1.6E-02	+ 1.1E-02	+ 1.0E-02	+ ...	= 3.5E-01
	+	+	+	+	Cumulative Internal Dose
External Annual Dose	1.7E-06	0.0E+00	0.0E+00	...	1.7E-06
Annual Dose	1.6E-02	+ 1.1E-02	+ 1.0E-02	+ ...	= 3.5E-01
					Cumulative Dose
					Maximum Annual Dose Occurred In Year 1
					1.6E-02

GENII Dose Calculation Program
 (Version 1.485 3-Dec-90)

Case title: Winter: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:29:18

Page C. 3

Acute release

 Uptake/exposure period: 1.0
 Dose commitment period: 50.0
 Dose units: Rem

Radio-nuclide	Inhalation Effective Dose Equivalent	Ingestion Effective Dose Equivalent	External Dose	Internal Effective Dose Equivalent	Annual Effective Dose Equivalent
H 3	5.5E-10	0.0E+00	4.3E-19	5.5E-10	5.5E-10
C 14	2.5E-09	0.0E+00	5.7E-15	2.5E-09	2.5E-09
SR 90	9.4E-04	2.1E-03	5.7E-10	3.0E-03	3.0E-03
Y 90	4.0E-05	1.7E-04	2.1E-08	2.1E-04	2.1E-04
TC 99	2.4E-08	4.9E-07	6.4E-14	5.1E-07	5.1E-07
I 129	5.0E-07	1.5E-05	1.8E-11	1.5E-05	1.5E-05
CS 137	1.4E-04	2.4E-05	1.6E-06	1.7E-04	1.7E-04
PM 147	1.3E-05	6.1E-09	4.5E-12	1.3E-05	1.3E-05
U 238	1.0E-05	2.1E-10	7.6E-15	1.0E-05	1.0E-05
TH 234	0.0E+00	1.1E-11	0.0E+00	1.1E-11	1.1E-11
PA 234	0.0E+00	2.8E-15	0.0E+00	2.8E-15	2.8E-15
AM 241	3.4E-01	1.5E-05	5.1E-09	3.4E-01	3.4E-01
U 233	3.6E-11	7.1E-16	4.0E-20	3.6E-11	3.6E-11
TH 229	0.0E+00	8.0E-19	0.0E+00	8.0E-19	8.0E-19
RA 225	0.0E+00	6.4E-20	0.0E+00	6.4E-20	6.4E-20
AC 225	0.0E+00	3.1E-20	0.0E+00	3.1E-20	3.1E-20
PU 239	1.3E-03	2.7E-08	1.9E-13	1.3E-03	1.3E-03
U 235	6.3E-07	1.2E-11	0.0E+00	6.3E-07	6.3E-07
TH 231	0.0E+00	6.0E-14	0.0E+00	6.0E-14	6.0E-14

 GENII Dose Calculation Program
 (Version 1.485 3-Dec-90)

Case title: Spring: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:29:24

Page C. 4

 Acute release
 Uptake/exposure period: 1.0
 Dose commitment period: 50.0
 Dose units: Rem

Organ	Committed Dose Equivalent	Weighting Factors	Weighted Dose Equivalent
Gonads	9.3E-02	2.5E-01	2.3E-02
Breast	3.8E-03	1.5E-01	5.7E-04
R Marrow	5.2E-01	1.2E-01	6.2E-02
Lung	5.6E-02	1.2E-01	6.7E-03
Thyroid	7.2E-03	3.0E-02	2.2E-04
Bone Sur	6.4E+00	3.0E-02	1.9E-01
Liver	1.1E+00	6.0E-02	6.8E-02
LL Int.	9.1E-03	6.0E-02	5.5E-04
UL Int.	5.9E-03	6.0E-02	3.5E-04
S Int.	4.5E-03	6.0E-02	2.7E-04
Stomach	4.3E-03	6.0E-02	2.6E-04
Internal Effective Dose Equivalent		3.5E-01	
External Dose			1.7E-06
Annual Effective Dose Equivalent		3.5E-01	

 Controlling Organ: Bone Sur
 Controlling Pathway: Inh
 Controlling Radionuclide: AM241

 Total Inhalation EDE: 3.4E-01
 Total Ingestion EDE: 1.0E-02

GENII Dose Calculation Program
(Version 1.485 3-Dec-90)

Case title: Spring: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:29:24

Page C. 5

Acute release

Uptake/exposure period:

1.0

Dose commitment period:

50.0

Dose units:

Rem

		Dose Commitment Year			
		1	2	3	...
Internal	:				
Intake	:				
Year:	3		0.0E+00	...	
			+		
	2	0.0E+00	0.0E+00	...	
		+	+		
	1	2.0E-02 + 1.1E-02 + 1.1E-02 + ...		= 3.5E-01	Internal Effective Dose Equivalent
Internal					
Annual		2.0E-02 + 1.1E-02 + 1.1E-02 + ...		= 3.5E-01	Cumulative Internal Dose
Dose		+	+	+	
External					
Annual		1.7E-06	0.0E+00	0.0E+00	
Dose					1.7E-06
Annual					
Dose		2.0E-02 + 1.1E-02 + 1.1E-02 + ...		= 3.5E-01	Cumulative Dose
					2.0E-02 Maximum Annual Dose Occurred In Year 1

GENII Dose Calculation Program
(Version 1.485 3-Dec-90)

Case title: Spring: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:29:24

Page C. 6

Acute release
 Uptake/exposure period: 1.0
 Dose commitment period: 50.0
 Dose units: Rem

Radio-nuclide	Inhalation Effective Dose Equivalent	Ingestion Effective Dose Equivalent	External Dose	Internal Effective Dose Equivalent	Annual Effective Dose Equivalent
H 3	5.5E-10	0.0E+00	4.3E-19	5.5E-10	5.5E-10
C 14	2.5E-09	0.0E+00	5.7E-15	2.5E-09	2.5E-09
SR 90	9.4E-04	3.2E-03	5.7E-10	4.1E-03	4.1E-03
Y 90	4.0E-05	2.4E-04	2.1E-08	2.8E-04	2.8E-04
TC 99	2.4E-08	4.8E-07	6.4E-14	5.0E-07	5.0E-07
I 129	5.0E-07	1.0E-04	1.8E-11	1.0E-04	1.0E-04
CS 137	1.4E-04	3.6E-03	1.6E-06	3.8E-03	3.8E-03
PM 147	1.3E-05	9.5E-07	4.5E-12	1.4E-05	1.4E-05
U 238	1.0E-05	3.7E-08	7.6E-15	1.0E-05	1.0E-05
TH 234	0.0E+00	1.0E-09	0.0E+00	1.0E-09	1.0E-09
PA 234	0.0E+00	2.6E-13	0.0E+00	2.6E-13	2.6E-13
AM 241	3.4E-01	3.1E-03	5.1E-09	3.4E-01	3.4E-01
U 233	3.6E-11	1.2E-13	4.0E-20	3.7E-11	3.7E-11
TH 229	0.0E+00	1.4E-17	0.0E+00	1.4E-17	1.4E-17
RA 225	0.0E+00	5.0E-19	0.0E+00	5.0E-19	5.0E-19
AC 225	0.0E+00	1.4E-19	0.0E+00	1.4E-19	1.4E-19
PU 239	1.3E-03	1.1E-05	1.9E-13	1.3E-03	1.3E-03
U 235	6.3E-07	2.3E-09	0.0E+00	6.3E-07	6.3E-07
TH 231	0.0E+00	9.4E-12	0.0E+00	9.4E-12	9.4E-12

GENII Dose Calculation Program
(Version 1.485 3-Dec-90)

Case title: Summer: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:29:30

Page C. 7

Acute release
 Uptake/exposure period: 1.0
 Dose commitment period: 50.0
 Dose units: Rem

Organ	Committed Dose Equivalent	Weighting Factors	Weighted Dose Equivalent
Gonads	1.1E-01	2.5E-01	2.7E-02
Breast	8.1E-03	1.5E-01	1.2E-03
R Marrow	6.3E-01	1.2E-01	7.5E-02
Lung	6.1E-02	1.2E-01	7.3E-03
Thyroid	1.6E-02	3.0E-02	4.9E-04
Bone Sur	7.3E+00	3.0E-02	2.2E-01
Liver	1.3E+00	6.0E-02	7.6E-02
LL Int.	2.9E-02	6.0E-02	1.7E-03
UL Int.	1.6E-02	6.0E-02	9.5E-04
S Int.	1.0E-02	6.0E-02	6.1E-04
Stomach	9.4E-03	6.0E-02	5.7E-04
Internal Effective Dose Equivalent			4.1E-01
External Dose			1.7E-06
Annual Effective Dose Equivalent			4.1E-01

Controlling Organ:	Bone Sur
Controlling Pathway:	Inh
Controlling Radionuclide:	AM241
Total Inhalation EDE:	3.4E-01
Total Ingestion EDE:	6.6E-02

GENII Dose Calculation Program (Version 1.485 3-Dec-90)

Case title: Summer: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:29:30

Page C. 8

Acute release

Uptake/exposure period:

Dose commitment period:

Dose units:

1.0

50.0

Rcm

		Dose Commitment Year				
		1	2	3	...	
Internal Intake :						
Year:	3	0.0E+00			...	
		+				
	2	0.0E+00	0.0E+00	...	Internal Effective Dose Equivalent	
		+	+			
	1	2.8E-02	1.4E-02	1.3E-02	= 4.1E-01	
Internal Annual Dose		2.8E-02	1.4E-02	1.3E-02	= 4.1E-01	Cumulative Internal Dose
		+	+	+	+	
External Annual Dose		1.7E-06	0.0E+00	0.0E+00	...	1.7E-06
Annual Dose		2.8E-02	1.4E-02	1.3E-02	= 4.1E-01	Cumulative Dose
					2.8E-02	Maximum Annual Dose Occurred In Year 1

GENII Dose Calculation Program
 (Version 1.485 3-Dec-90)

Case title: Summer: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:29:30

Page C. 9

 Acute release
 Uptake/exposure period: 1.0
 Dose commitment period: 50.0
 Dose units: Rem

Radio-nuclide	Inhalation		External Dose	Internal		Annual Dose
	Effective Dose	Effective Equivalent		Effective Dose	Equivalent	
H 3	5.5E-10	0.0E+00	4.3E-19	5.5E-10	5.5E-10	
C 14	2.5E-09	0.0E+00	5.7E-15	2.5E-09	2.5E-09	
SR 90	9.4E-04	1.2E-02	5.7E-10	1.3E-02	1.3E-02	
Y 90	4.0E-05	9.8E-04	2.1E-08	1.0E-03	1.0E-03	
TC 99	2.4E-08	5.6E-07	6.4E-14	5.8E-07	5.8E-07	
I 129	5.0E-07	2.5E-04	1.8E-11	2.5E-04	2.5E-04	
CS 137	1.4E-04	7.8E-03	1.6E-06	8.0E-03	8.0E-03	
PM 147	1.3E-05	5.7E-06	4.5E-12	1.9E-05	1.9E-05	
U 238	1.0E-05	3.8E-07	7.6E-15	1.1E-05	1.1E-05	
TH 234	0.0E+00	1.8E-08	0.0E+00	1.8E-08	1.8E-08	
PA 234	0.0E+00	4.8E-12	0.0E+00	4.8E-12	4.8E-12	
AM 241	3.4E-01	4.5E-02	5.1E-09	3.9E-01	3.9E-01	
U 233	3.6E-11	1.3E-12	4.0E-20	3.8E-11	3.8E-11	
TH 229	0.0E+00	9.1E-16	0.0E+00	9.1E-16	9.1E-16	
RA 225	0.0E+00	5.2E-17	0.0E+00	5.2E-17	5.2E-17	
AC 225	0.0E+00	2.4E-17	0.0E+00	2.4E-17	2.4E-17	
PU 239	1.3E-03	1.7E-04	1.9E-13	1.4E-03	1.4E-03	
U 235	6.3E-07	2.3E-08	0.0E+00	6.5E-07	6.5E-07	
TH 231	0.0E+00	1.1E-10	0.0E+00	1.1E-10	1.1E-10	

GENII Dose Calculation Program
(Version 1.485 3-Dec-90)

Case title: Autumn: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:29:35

Page C. 10

Acute release
 Uptake/exposure period: 1.0
 Dose commitment period: 50.0
 Dose units: Rem

Organ	Committed Dose Equivalent	Weighting Factors	Weighted Dose Equivalent
Gonads	2.4E-01	2.5E-01	6.0E-02
Breast	8.2E-02	1.5E-01	1.2E-02
R Marrow	1.2E+00	1.2E-01	1.5E-01
Lung	1.4E-01	1.2E-01	1.6E-02
Thyroid	1.6E-01	3.0E-02	4.7E-03
Bone Sur	1.2E+01	3.0E-02	3.5E-01
Liver	1.9E+00	6.0E-02	1.1E-01
LL Int.	1.9E-01	6.0E-02	1.1E-02
UL Int.	1.2E-01	6.0E-02	7.4E-03
S Int.	9.6E-02	6.0E-02	5.8E-03
Stomach	9.2E-02	6.0E-02	5.5E-03
Internal Effective Dose Equivalent		7.3E-01	
External Dose		1.7E-06	
Annual Effective Dose Equivalent		7.3E-01	

Controlling Organ:	Bone Sur
Controlling Pathway:	ing
Controlling Radionuclide:	AM241
Total Inhalation EDE:	3.4E-01
Total Ingestion EDE:	3.9E-01

GENII Dose Calculation Program
(Version 1.485 3-Dec-90)

Case title: Autumn: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:29:35

Page C. 11

Acute release

Uptake/exposure period:

1.0

Dose commitment period:

50.0

Dose units:

Rem

	Dose Commitment Year				
	1	2	3	...	
Internal : Intake : Year: 3					
			0.0E+00	...	
			+ 0.0E+00	0.0E+00	...
	2				Internal Effective Dose Equivalent
			+ 1.1E-01 + 3.1E-02 + 2.4E-02 + ...		
	1			= 7.3E-01	
Internal Annual Dose					Cumulative Internal Dose
External Annual Dose	1.1E-01 + 3.1E-02 + 2.4E-02 + ...				
Annual Dose	1.7E-06	0.0E+00	0.0E+00	...	1.7E-06
					Cumulative Dose
	1.1E-01 + 3.1E-02 + 2.4E-02 + ...				
					Maximum Annual Dose Occurred In Year 1

GENII Dose Calculation Program
(Version 1.485 3-Dec-90)

Case title: Autumn: 222-s and 204-ar farmer dose

Executed on: 08/09/94 at 14:29:35

Page C. 12

Acute release
 Uptake/exposure period: 1.0
 Dose commitment period: 50.0
 Dose units: Rem

Radio-nuclide	Inhalation		Internal		Annual	
	Effective Dose Equivalent	Ingestion Effective Dose Equivalent	External Dose	Effective Dose Equivalent	Effective Dose	Effective Dose Equivalent
H 3	5.5E-10	5.0E-08	4.3E-19	5.1E-08	5.1E-08	
C 14	2.5E-09	1.7E-09	5.7E-15	4.2E-09	4.2E-09	
SR 90	9.4E-04	6.1E-02	5.7E-10	6.2E-02	6.2E-02	
Y 90	4.0E-05	4.7E-03	2.1E-08	4.8E-03	4.8E-03	
TC 99	2.4E-08	5.8E-07	6.4E-14	6.1E-07	6.1E-07	
I 129	5.0E-07	2.3E-03	1.8E-11	2.3E-03	2.3E-03	
CS 137	1.4E-04	8.1E-02	1.6E-06	8.1E-02	8.1E-02	
PM 147	1.3E-05	3.6E-05	4.5E-12	4.9E-05	4.9E-05	
U 238	1.0E-05	2.2E-06	7.6E-15	1.2E-05	1.2E-05	
TH 234	0.0E+00	1.2E-07	0.0E+00	1.2E-07	1.2E-07	
PA 234	0.0E+00	3.0E-11	0.0E+00	3.0E-11	3.0E-11	
AM 241	3.4E-01	2.4E-01	5.1E-09	5.8E-01	5.8E-01	
U 233	3.6E-11	7.5E-12	4.0E-20	4.4E-11	4.4E-11	
TH 229	0.0E+00	5.7E-15	0.0E+00	5.7E-15	5.7E-15	
RA 225	0.0E+00	3.0E-16	0.0E+00	3.0E-16	3.0E-16	
AC 225	0.0E+00	1.3E-16	0.0E+00	1.3E-16	1.3E-16	
PU 239	1.3E-03	8.9E-04	1.9E-13	2.1E-03	2.1E-03	
U 235	6.3E-07	1.3E-07	0.0E+00	7.6E-07	7.6E-07	
TH 231	0.0E+00	6.3E-10	0.0E+00	6.3E-10	6.3E-10	

HEDOP REVIEW CHECKLIST
for
Radiological and Nonradiological Release Calculations

Document Reviewed: Dose Consequence Analysis of Tanker
Shipment 94-3 Aqueous Mixture, S. McClendon
8D530-5MC-94-001

Submitted by: S. McClendon Date Submitted:

Scope of Review: Entire Document

YES NO* N/A

- [] [] 1. A detailed technical review and approval of the environmental transport and dose calculation portion of the analysis has been performed and documented.
- [] [] 2. Detailed technical review(s) and approval(s) of scenario and release determinations have been performed and documented.
- [] [] 3. HEDOP-approved code(s) were used.
- [] [] 4. Receptor locations were selected according to HEDOP recommendations.
- [] [] 5. All applicable environmental pathways and code options were included and are appropriate for the calculations.
- [] [] 6. Hanford site data were used.
- [] [] 7. Model adjustments external to the computer program were justified and performed correctly.
- [] 8. The analysis is consistent with HEDOP recommendations.
- [] 9. Supporting notes, calculations, comments, comment resolutions, or other information is attached. (Use the "Page 1 of X" page numbering format and sign and date each added page.)
- [] 10. Approval is granted on behalf of the Hanford Environmental Dose Overview Panel.

- * All "NO" responses must be explained and use of nonstandard methods justified.

Reviewer Name:
(print or type)

Paul Rittmann Aug 12, 1994
HEDOP-Approved Reviewer (Signature) Date

CHECKLIST FOR INDEPENDENT TECHNICAL REVIEW

DOCUMENT REVIEWED

NUMBER: 8D530-SMC-94-001

TITLE: Dose Consequence Analysis of Tanker Shipment 94-3 Aqueous MixAUTHOR(s): S. McClelland

I. Method(s) of Review

Input data checked for accuracy
 Independent calculation performed
 { } Hand calculation
 { } Alternate computer code: _____
 { } Comparison to experiment or previous results
 { } Alternate method (define) _____

II. Checklist (either check or enter NA if not applied)

Task completely defined
 Activity consistent with task specification
 Necessary assumptions explicitly stated and supported
 Resources properly identified and referenced
 Resource documentation appropriate for this application
 Input data explicitly stated
 Input data verified to be consistent with original source
 Geometric model adequate representation of actual geometry
 Material properties appropriate and reasonable
 Mathematical derivations checked including dimensional consistency
 Hand calculations checked for errors
 Assumptions explicitly stated and justified
 Computer software appropriate for task and used within range of validity
 Use of resource outside range of established validity is justified
 Software runstreams correct and consistent with results
 Software output consistent with input
 Results consistent with applicable previous experimental or analytical findings
 Results and conclusions address all points and are consistent with task requirements and/or established limits or criteria
 Conclusions consistent with analytical results and established limits
 Uncertainty assessment appropriate and reasonable
 Other (define) _____

III. Comments: _____
_____IV. REVIEWER: Paul Rittmann DATE: Aug 12, 1994

5.0 SHIELDING EVALUATION

5.1 INTRODUCTION

The computer code ISO-PC Version 1.98 (Rittmann 1994), formerly ISOSHLD-II, was used to assess the dose rate at various positions on tanker shipment 94-3. Surface dose rates at the center of the tanker end and the lateral midpoint of the tanker were calculated. Dose rates were also calculated 2 m from the center end of the tanker and 2 m from the lateral midpoint of the outside surface. In addition, a dose rate at 100 in. (2.54 m) from the tanker end, a distance assumed to approximate the position of the driver, was found.

5.2 SHIELDING PARAMETERS

The activities shown in Figure B2-1 were used as the source term in the shielding analysis. The tanker is assumed to contain the maximum allowable liquid, 4000 gallons (15,000 L), which is an homogenous mixture composed of the source term mixed with water. The tanker was modelled as a right circular cylinder with a length of 1128 cm (444.0 in.) and a reduced radius that is just large enough so that the tanker holds 4000 gallons. The wall thickness of the tanker is 0.4176 cm (0.1644 in.) and is composed of stainless steel. This wall thickness is less than one mean free path, therefore, the buildup was assumed to take place within the water. The density of the source material may vary from 1.0 g/cc to 1.9 g/cc, so a density of 1.0 g/cc for the source material was used because it yields the highest dose rate with the given radionuclides. Surface dose rates in the center of the tanker end and at the lateral midpoint of the tanker, at 2 m from these two points, and at the driver's seat were calculated. Input files can be found in the Part B, Section 5.4.2.

5.3 SHIELDING RESULTS

The dose rates calculated meet 49 CFR requirements and can be seen in Table B5-1. The surface dose rate at the end of the tanker is 37.7 mrem/h. The dose rate 2 m from the end is 2.05 mrem/h and the dose rate 100 in. from the end is 1.34 mrem/h. The lateral midpoint of the tanker surface dose rate is 36.3 mrem/h and the rate 2 m from this point is 6.40 mrem/h. These dose rates are within DOT specifications of 200 mrem/hr on contact and 10 mrem/h at 2 m.

Table B5-1. Dose Rates of Cargo Tank.

Position of Detector	Dose Rate
Surface of Midpoint Tanker End	37.7 mrem/h (0.377 mSv/h)
2 m from Midpoint Tanker End	2.05 mrem/h (0.0205 mSv/h)
100 in. (2.54 m) from Midpoint Tanker End	1.34 mrem/h (0.0134 mSv/h)
Surface of Lateral Midpoint	36.3 mrem/h (0.363 mSv/h)
2 m from Lateral Midpoint Surface	6.40 mrem/h (0.0640 mSv/h)

5.4 APPENDICES**5.4.1 Reference**

Rittman, P. D., 1994, *ISO-PC*, Version 1.98, Westinghouse Hanford Company, Richland, Washington, August 1994.

5.4.2 ISO-PC Computer Code Runs

```

0      2 Tanker Shipment 94-3, August 12, 1994, tnkr1b.in
Dose 100 in. away from end surface (in air)
&Input Next= 1, Igeom= 9, Slth= 65.37, Dunit= 1,
Ntheta= 26, Delrs 0.5, X= 1382.2, T(1)= 1127.76,
T(2) = .4176, Nshld= 2, Jbuf= 1,
Weight(451)= 2.74e-4, Weight(76)= .535,
Weight(82)= .535, Weight(84)= 1.07,
Weight(141)= 6.16e-4, Weight(290)= 7.8e-4
Weight(335)= 1.08, Weight(336)= 1.08,
Weight(388)= 7.99e-2, Weight(519)= 6.18e-11,
Weight(476)= 1.2e-6, Weight(526)= 1.98e-5,
Weight(493)= 3.325e-4, Weight(494)= 3.325e-4,
Weight(496)= 1.82e-1  &
Water 1 1.0
1 Fe 9 7.86
Dose on End Surface Contact
&Input Next= 4, X= 1128.1776  &
Dose 2 m away from end surface (in air)
&Input Next= 4, X= 1328.1776  &
END OF RUN
&Input Next= 6  &

0      2 Tanker Shipment 94-3, August 12, 1994, tnkr2b.in
Dose 2 m away from surface (in air), (density = 1.0)
&Input Next= 1, Igeom= 7, Slth= 1127.8,
X= 265.7913, T(1)= 65.3737, T(2)= .4176, Y= 563.9, Ntheta= 26,
Delr= .5, Npsi= 26, Nshld= 2, Jbuf= 1, Dunit= 1,
Weight(451)= 2.74e-4, Weight(76)= .535,
Weight(82)= .535, Weight(84)= 1.07,
Weight(141)= 6.16e-4, Weight(290)= 7.8e-4
Weight(335)= 1.08, Weight(336)= 1.08,
Weight(388)= 7.99e-2, Weight(519)= 6.18e-11,
Weight(476)= 1.2e-6, Weight(526)= 1.98e-5,
Weight(493)= 3.325e-4, Weight(494)= 3.325e-4,
Weight(496)= 1.82e-1  &
Water 1 1.0
1 Fe 9 7.86
Dose at surface
&Input next= 4, X= 65.7913  &
END OF RUN
&Input Next= 6  &

```

PEER REVIEW CHECKLIST

Document Reviewed: *Safety Evaluation for Packaging 222-S Laboratory Cargo Tank for One Time Type B Material Shipment*

Scope of Review: Section 9.0 Shielding Evaluation

Yes	No	N/A	
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Previous reviews complete and cover analysis, up to scope of this review, with no gaps.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Problem completely defined.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	Accident scenarios developed in a clear and logical manner.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Necessary assumptions explicitly stated and supported.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Computer codes and data files documented.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Data used in calculations explicitly stated in document.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Data checked for consistency with original source information as applicable.
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	Mathematical derivations checked including dimensional consistency of results.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Models appropriate and used within range of validity or use outside range of established validity justified.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Hand calculations checked for errors. Spreadsheet results should be treated exactly the same as hand calculations.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Software input correct and consistent with document reviewed.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Software output consistent with input and with results reported in document reviewed.
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	Limits/criteria/guidelines applied to analysis results are appropriate and referenced. Limits/criteria/guidelines checked against references.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Safety margins consistent with good engineering practices.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Conclusions consistent with analytical results and applicable limits.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Results and conclusions address all points required in the problem statement.
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	Format consistent with appropriate NRC Regulatory Guide or other standards
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	Review calculations, comments, and/or notes are attached.
<input checked="" type="checkbox"/>	<input type="checkbox"/>		Document approved.

Peer Reviewer: P. D. Rittmann, PhD CHP

Paul Rittmann
Signature

8-15-94
Date

6.0 CRITICALITY EVALUATION

The cargo tank fissile material content provided by the 222-S Laboratory detailed in Figure B2-1 meets 49 CFR 173.453, "Fissile Material Exception." The payload contains less than 15 g of fissile material as shown in Figure B2-2. Therefore, a criticality evaluation is not required.

6.1 APPENDIX

6.1.1 Reference

49 CFR 100-199, 1993, "Transportation," *Code of Federal Regulations*, as amended.

7.0 STRUCTURAL EVALUATION

The cargo tank is designed, constructed, tested, and maintained in accordance with the DOT MC-312 requirements for the purpose of transporting bulk hazardous liquids. The authorized payload does not exceed the weight limits of the cargo tank. The payload will not result in pressurization of the tank in excess of the operating limits as discussed in Part B, Section 9.0. No additional evaluation is required.

8.0 THERMAL EVALUATION

8.1 INTRODUCTION

A thermal evaluation was performed for the 222-S Laboratory DOT MC-312 cargo tank to determine the decay heat generated by the material content of the cargo tank to assess any effect on the system.

8.2 SUMMARY OF RESULTS

The maximum decay heat generation for the cargo tank payload is 0.019 W (0.065 Btu/h) or $1.5 \times 10^{-3} \text{ W/m}^3$. This decay heat is negligible; therefore, further thermal analysis of the cargo tank is not required.

8.3 THERMAL SOURCE SPECIFICATION

Table B8-1 contains the decay heat generation for the worst case payload. The maximum possible heat generation is 0.019 W (0.065 Btu/h).

Table B8-1. Decay Heat Generation for Worst Case Payload.

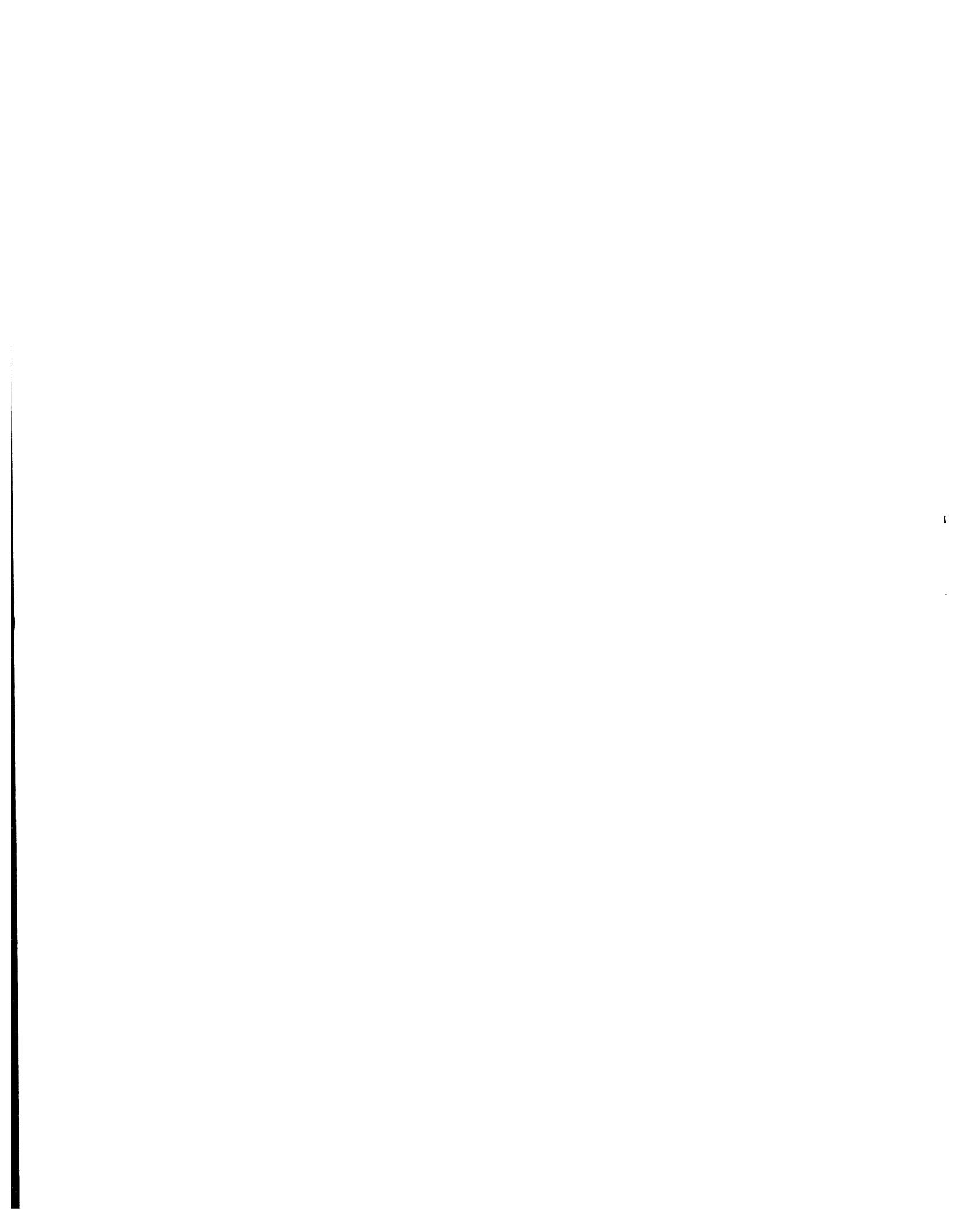
Nuclide	(W/Ci)	Activity (Ci)	Heat (W)
^3H	2.69 E-05	1.24 E-03	3.34 E-08
^{14}C	4.10 E-04	2.30 E-04	9.43 E-08
^{89}Sr	3.49 E-03	8.95 E-01	3.13 E-03
$^{90}\text{Sr}/^{90}\text{Y}$	6.84 E-03	8.95 E-01	6.12 E-03
^{99}Tc	5.01 E-04	5.18 E-04	2.60 E-07
^{129}I	5.37 E-04	6.55 E-04	3.52 E-07
$^{137}\text{Cs}/^{137m}\text{Ba}$	4.87 E-03	9.08 E-01	4.42 E-03
^{147}Pm	3.57 E-04	6.72 E-02	2.40 E-05
^{233}U	2.96 E-02	5.19 E-11	1.54 E-12
^{235}U	2.82 E-02	1.01 E-06	2.85 E-08
^{238}U	2.57 E-02	1.67 E-05	4.30 E-07
^{239}Pu	3.16 E-02	5.58 E-04	1.76 E-05
^{240}Pu	3.15 E-02	5.58 E-04	1.76 E-05
^{241}Am	3.39 E-02	1.53 E-01	5.19 E-03
TOTAL HEAT			1.89 E-02

9.0 PRESSURE AND GAS GENERATION EVALUATION

The cargo tank is built per DOT MC-312 specification. This specification requires that the container is designed, constructed, and tested per American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) code requirements. The proposed payload does not develop any gas generation or pressure that exceeds the MC-312 cargo tanks design. Therefore, a pressure and gas generation evaluation is not required.

9.1 APPENDIX

9.1.1 Reference


ASME, 1992, *American Society of Mechanical Engineers Boiler and Pressure Vessel Code*, American Society of Mechanical Engineers, New York, New York.

10.0 PACKAGE TIEDOWN SYSTEM EVALUATION

The cargo tank system is a certified DOT MC-312 packaging system. It is a self-contained transportation packaging. Therefore, a package tiedown system evaluation is not required.

10/10/94

FILED
DATE

