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ABSTRACT

The linear stability analysis of unsteady ablation fronts, is carried out for a semi-

infinite uniform medium. For a laser accelerated target, it is shown that a properly

selected modulation of the laser intensity can lead to the dynamic stabilization or growth-

rate reduction of a large portion of the unstable spectrum. The theory is in qualitative

agreement with the numerical results obtained by using the two-dimensional

hydrodynamic code ORCHID.

The classical Rayleigh-Taylor instability 1 occurs when a heavy fluid is

accelerated by a lighter fluid. In inertial confinement fusion (ICF) the heavy fluid is the

compressed ablated target material that is accelerated by the low-density ablated plasma.

The classical treatment of the incompressible Rayleigh-Taylor instability leads to a linear

growth rate given by Y= _[kglA, where k is the instability wave number, g the

acceleration, and a the Atwood number a = (Ph - Pl)/(Ph + Pl) (Pl and Ph represent the

light and heavy fluid densities, respectively). For typical (ICF) parameters, a classical

Rayleigh-Taylor instability would produce an unacceptably large amount of distortion in

the unablated target resulting in a degraded capsule performance with respect to final core

conditions. Thus, it is of great importance to study the possible means for suppression of

the ablation surface instability in ICF. It has been recently shown that the ablation process

leads to convection of the perturbation away from the interface between the two

fluids. 2--5 Since the instability is localized at the interface, the ablative convection

stabilizes short wavelength modes. The typical growth rate of the ablative Rayleigh-

Taylor instability can be written in the following approximate form: 3

where Va is the ablation velocity and ]3is a numerical factor (ft'-- 3-4).



In this paper we show that a properly selected modulation of the laser intensity

can significantly reduce the unstable spectrum and the maximum growth rate. To treat the

analytic linear stability of unsteady ablation fronts, we consider a simplified sharp

boundary model consisting of a heavy fluid, with density Ph, superimposed to a lighter

fluid (Pl), in the force field g(t) = g(t)ey opposite to the density gradient rg(t) < 0 and ey
is the unit vector in the direction of the density gradient] and with arbitrary time

dependence. The heavy fluid is moving downward with velocity Uh =-Vaey and the

lighter fluid is ejected with velocity UI. The equilibrium velocities Ul(t) and Uh(t) are

both dependent on the ablation ratio per unit surface rh(t), that is treated as an arbitrary

function of time. The equilibrium can be readily derived from conservation of mass and

momentum. We consider a class of equilibria with nonuniformities localized at the

interface between the two fluids. Continuity of the mass flow and the pressure balance

across the interface lead to the following conditions:

PlUl(t) = PhUh(t) (2)

Ph- Pl = PlU_.(t) - PhU_(t) , (.3)

where Ph and Pl represent the pressure of the heavy and light fluid at the interface. Notice

that Ullh<O in the chosen frame of reference. We assume that the discontinuities in the

equilibrium quantities can be removed by including the physics of the ablation process.

The linear stability problem can be greatly simplified by an appropriate choice of

the linearized equation of state, lt is widely known that the most Rayleigh-Taylor

unstable perturbations are incompressible. Furthermore, the ablative stabilization is a

convective process and, therefore, independent of the equation of state, lt follows that the

essential physics of the instability can be captured by a simple incompressible flow

model. The stability analysis proceeds in a standard manner. Ali perturbed quantities are

written as QI = O(y,t)exp(ikx) and the system of equations describing the linear

evolution of the perturbation assumes the following form:

(a,+Vjay) j=0,

Pi(c)t + Ujc?y)f3jx= -ikpj (4)

p j ( c)t + U j oOy) f)j y + [gj ootU j =-OOy[)j + [gj g

ikf3jx + OOyT)j), = 0 .



where the subscript j denotes the heavy fluid region (j = h) and the light fluid region

(j = l) and Oy = Oily, _t = blot. The two regions are separated by an interface (the

ablation front), that moves with the heavy fluid. The linear displacement of the interface

_(t)exp(ikx), has to account for the heavy fluid ablative convection and can be described

by the following integral equation:

(l(t) : I2 f_hY[YO(t')'t'] dt' ' (5)

where yo(t') = Uh(t")dt" is the unperturbed trajectory of the fluid element that, at time

t, has reached the ablation front. Since the heavy and light fluid extend to infinity and the

instability is expected to be localized at the interface, the perturbation must vanish at

y -->+oo. A set of jump conditions relating the values of the physical quantities in the two

regions can be derived from the incompressibility and the conservation equations. At the

interface (y = 0), the set of jump conditions can be written in the following form:
d,

Oh), =Vly

- Ohy)-Vh'+ - 0 (6)

fghx - f)lx + ikO(Uh - Ul ) = 0

Dh- Pl + PhU2 - PlU2 + g(Ph - Pl )fl = 0 .

The next step is to selve Eq. (4) in the two regions and then apply the jump conditions.

The solution of the linearized equation in the heavy fluid region (h) is greatly

simplified by the following transformation of variable' Yh = Y--ffUh(t')dt'. A

straightforward calculation leads to the following form of the perturbed variables in

region h:

f)hy = f)h(t)exp(-kYh ) + a(Yh )

i o3 f)hy (7)
Vax- k OYh

[9h = Dh (Yh)

Ph °]2_)hY

_'h= k2 &ayh '



where ah(t ), /3h(Yh), and a(yh) are arbitrary functions oft and Yh, and k is chosen to be

positive (k>0). In order to satisfy the boundary conditions, a and /5h have to vanish at

Yh --+ _. Since limt+_ Yh = _, it follows that a and /5h asymptotically vanish in time.

In our asymptotic stability analysis, we neglect ali the quantities that do not grow in time.

Thus, we set a = 0 and /5h = 0.

We apply the same procedure to the light fluid region (l) and define the new

coordinates Yl = Y- jt Ul(t,)dt," The solution of the linearized equations in region l can

be written in the following form:

Vly = ?q(t)exp(kYl ) + f_(Yl) + c(Yl )f (t)

i 03 Vly (8)
7)lx= k cgyl

f9l = fgl(Yl)

oq2V/3,

P'=-k  ay,'

where and _91(Yl)are free functions of Yl, that vanish at Yl -+ -_', and al(t ) is an

arbitrary function of t. The functions e(Yt) and f(t) satisfv the following differential

equations:

dy{ - k 2 ?:+ --pl = O

df =G(t) , (9)
dt

where

G(t) - g(t) aU1 (10)at

The next step is to recognize that, using Eqs. (7) into Eq. (8), the interface equation can

be rewritten in a differential form: (a t -kU h)fl = falo,(Y= O,t).



After substituting Eqs. (7) and (8) into the jump conditions [Eqs. (6)] and using

the differential form of the interface equation, the following ordinary differential equation

for _(t) is derived:

(a t -- kU l )G -I {(o_t - kU l )(a t - kU h )_ -I-
(11)

A[kUl(c9t - kUh ) + kg]{1} - Ak2Uh{1 = O,

where a=(p h-pl)/(ph +pl) is the Atwood number. For ICF applications, the

appropriate ordering Uh / Ul = Pl / Ph - (1- A) << 1 and g > OUt / Ot. To lowest order in

l-A, the last term in Eq. (11) can be neglected, yielding

{(Ot-kUl)(Ot-kUh)+a[kUl(cgt-kUh)+kg]}{l=O . (12)

Equation (12) can be further simplified by using the Ansatz

_l(t)=_(t)exp[3 k_tUh(t')dt' 1 (13)

and by neglecting other terms of order (l-A)<<1. After some straightforward

manipulations, we obtain

-- [ 'a21d2_ +k Ag k _=0 (14)
dt 2 2 dt 4 '

where g, and Va are functions of time. Observe that, for steady equilibrium

configurations, Eq. (13) and (14) yield the normal mode solution for _ -- exp(yt), with 7

satisfying the dispersion relation

7'-J(lkgla)+ 1_kZV2a_ 31kV l. (15)4 2

It is easy to recognize that the contribution of the second term under the square root is

relevant only at very small wavelengths, where the mode is already strongly stabilized by

convection [first term in Eq. (15)]. Neglecting such a term in Eq. (14) and (15), would

only cause a small shift of the cut-off wave number [Akc/k c = 1/9] that is consistent with

the order of magnitude of the previous approximations. After neglecting such a term,

Eq. (15) reproduces the numerically derived growth rate of Ref. (3) with fl = 1.5.

Equations (13) and (14), which are valid for arbitrary unsteady configurations, are now

applied to the particular equilibrium obtained by temporally modulating the laser



intensity. Consider a planar target of thickness d and density P0 irradiated by a uniform

laser beaIn. The periodically modulated laser intensity [ l(t)= I0(1+ Asinm0t),A < 1],

induces an oscillating ablation pressure Pa(t)= P0(1+ Apsincoot ) and ablation velocity

Va(t ) = Va0(l + AasinCOot) with Ap _<A and Aa _<A. For simplicity, we assume that the

ablation pressure and the ablation velocity are directly proportional to the laser intensity

and the ablation process develops on a very slow time scale compared to oscillation

period and the sound transit time through the target [Va<<Cs,Cs is the sound speed].

Although the scaling Va ....,J-i _ [I + Aasin(mot)] 1/2 is more appropriate than a simple

linear dependence, the numerical simulations show that the ablation velocity is almost

insensitive to the oscillations in the laser intensity (Aa< <1) and Va--Vao. I0 and PO are

two slowly varying functions of time [Va/d<(1/lo)(dIo/dt )

= (1/Po)(dPo/ dt )< <c00 ~ cs/d ]. A simple estimate of the acceleration of the ablation
front can be derived by solving the one-dimensional compressible fluid equations of

Ref. [6], for a target accelerated by the ablation pressure. The result is

g(t)= dt c u,_ poC, j'

where L-1 denotes the inverse Laplace transform, s is the Laplace variable, and Da(s) is

f;the Laplace transform of the ablation pressure. The quantity .Ya= Va(t')dt" is the

position of the ablation front in the Lagrangian frame of the moving target. In deriving

Eq. (16), the slow ablation time scale (-d/Va) has been treated as an independent

variable. A simple expression for g(l) can be derived in the asymptotic limit

(d/V a)>t> >(d/cs), yielding

g(t) = -g0[1 + o_sin (_o0t+_ coso30t] , (17)

where go =-Po/PoNa, _ = Ap(a)oda/cs)COt(_oda/cs), and _= VaoAaCoo/go,

- da = d - Ya" A more accurate estimate of g(t) (and the parameters go, (:z,and _ ), can be

obtained by using a one-dimensional code. Later in this letter, we use the one-

dimensional hydrodynamic code LILAC 8 to derive g0, (:z,and _. However, Eq. (17) gives

some physical insight of the relevant quantities that affect the oscillation amplitude in the

target acceleration. In particular, large oscillations can be achieved by values of the

modulation period shorter than the sound transit time through the target

[TO-27v/o30<d/cs]. Before proceeding further, it is important to define the range of

validity of the stability model for the prescribed equilibrium. The oscillations in the

ablation pressure propagates inside the target at the sound speed. Thus, the equilibrium



parameters can be considered as uniform over a distance Ay<csT o. The stability

analysis, carried out for a uniform semi-infinite medium, can be applied to perturbations

with sufficiently short wavelength kay > 1. It follows that a necessary condition for the

validity of the stability model is kcsTo >> 1. For such wavelengths, Eq. (17) can be used

in Eq. (14) to derive the function _(t). Thus, Eq. (14) can be written in the following
form:

d2_ )'2[l+qsin(coot +_p)]_=O (18)dt 2

where Yc =_/A[kgoI is the classical growth rate, q=_]o_ 2+9e2/4, and

q_= tan-l(3 e/2a). Notice that Eq. (18) is a Mathieu equation, whose solution has the

form _(t)=cr(t)exp(ltt), with ct(t) being periodic with period coo. Using Eq. (13), the

growth rate of the instability can be easily derived,

y = -kfl TOO Va (t')dt' + lt , (19)

where ]3= 1.5 for the simplified stability model. However, when Eq. (19) is compared to

the Takabe's formula, we let fi = fiT = 3-4. In order to find lt, one needs to numerically

solve Eq. (18) for one period of oscillation. Figure 1 shows the parameter lt, plotted

versus the wave number k, for the following equilibrium parameters d = 20 _n, go = 5 x

1015 cm/s 2, A = 1, <Va> = 7 x 104 cre/s, cs = 106 cre/s, TO= 0.3 x 10-9 s, (l)= 0, and

q = 0 -2.5 - 3.5. The validity of the stability model requires A,= 2folk< < 20ltm. For any

value of q and co(),it is possible to identify intervals of the k axis where Re[lt] = 0. We

denote such intervals as dynamically stabilized (DS) regions, and we emphasize the

importance of ablative convection [see Eq. (19)] at shorter wavelengths. According to

Eqs. (1) and (19), the short wavelength modes are stabilized by convection and the cut-off

wave number is kc = gA/fl2V 2 . It follows that an efficient dynamic stabilization can be

achieved by choosing values of q and coo that cause the first DS region to be located

inside the interval 0< k< kc . In Fig. 2, the growth rates derived from Eq. (19) for q =

0 - 2.5 - 3.5 and/3 = 3.5 (as given by Takabe et al. 3) are shown. Observe that as q

increases, a better stabilization is induced at longer wavelengths, but shorter wavelengths

can be destabilized (q = 3.5). This short wavelength instability is driven by the

oscillations in the acceleration, with the perturbation having the characteristic structure of

an oscillatory mode with exponentially increasing amplitude. For convenience, we denote

these short wavelength modes as "parametric instabilities." Furthermore, when the mode



is smaller than the density gradient scale length r , ,l[6:[(]/p)dp/dy[-l[, thewavelength
L J

sharp boundary model is not valid and Eq. (19) cannot be used.
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Fig. 1 Plot of the instability drive term g, versus the mode wave number k for

modulated (q :_ 0) and unmodulated (q = 0) laser intensity.
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Fig. 2 Plot of the instability growth rate versus the mode wave number k for modulated

(q _ 0) and unmodulated (q = 0) laser intensity.



The results of the analytic theory have been compared with the two-dimensional

simulations obtained using the code ORCHID. 7 We have considered an 18-/tm CH planar

target, irradiated by a uniform laser beam. The laser intensity is modulated in time with a

period of 0.3 ns. The modulation amplitude is 100%, and the flat-top average intensity is

50 TW. For an accurate comparison with the analytic stability theory, we derive the

equilibrium parameters g, (Va ) and q, from the one-dimensional code LILAC. 8 The result

is g= 4.5.1015 cm/s 2, (Va)= 7. 104cm/s 2, 6= 1.5-2/.zm,, = 0, and q = 3.5-5.5. In

the two-dimensional simulation, an initial single wavelength perturbation evolves for

3 ns. Figure 3 shows a comparison between the linear growth rate derived from the

simulation, with the one given by Eq. (19). Three regions of the k-axis can be identified:

(1) The long wavelength region with k < 0.2/tru -l, where the growth rate is virtually

insensitive to the modulation of the laser intensity and very close to the classical value.

(2) The intermediate wavelength region with 0.2 < k < 1. For these values of the wave

number, the dynamic stabilization is particularly effective. Observe that for

k. = 2rc/k -- 7/.tta, the mode is completely stabilized. (3) The short wavelength region is

defined as having a wave number k > 1. In this region k_ > 1 and the effect of finite

density-gradient scale length cannot be neglected. Notice that the simulation shows the

presence of an unstable mode with wavelength _,-- 5 #m. Using Eq. (19) beyond its limit

of validity (k_ < 1) and dividing 72 by (l+c_k_) with a < 1, we would predict the

existence of parametric instabilities at shorter wavelengths (Fig. 3). However, the

structure of the perturbation observed in the numerical simulation does not clearly show

the characteristics of a parametric instability. Furthermore, the cut-off wave number

observed in the numerical simulation (with or without laser intensity modulation) is much

shorter than the one predicted by Eqs. (1) and (19). The stability of very short wave-

length perturbations needs further investigation to determine an accurate value of the cut-

off wave number.

The dynamic stabilization of the Rayleigh-Taylor instability in ICF targets was

first observed in the numerical simulations by J. Boris. 9 At that time, the ablative

stabilization was still relatively unknown and a self-consistent theory for the stability of

unsteady equilibria could not be derived, In this Letter we have shown the derivation of

the linear stability theory of unsteady ablation fronts, and the conditions for the dynamic

stabilization of the ablative Rayleigh-Taylor instability. The growth rate of the instability

has been calculated for a sinusoidal modulation of the laser intensity, lt is shown that an

appropriate modulation frequency and amplitude can stabilize a large portion of the

unstable spectrum and significantly reduce the maximum growth rate.
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Fig. 3 Comparison of the growth rate obtained from numerical simulations (with
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o_= 0.2, q = 4.5 (dashed), q = 5.5 (dotted). The solid line represents Takabe
formula and the shaded area represents the region with _ < 1.
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