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ABSTRACT
The linear stability analysis of unsteady ablation fronts, is carried out for a semi-
infinite uniform medium. For a laser accelerated target, it is shown that a properly
selected modulation of the laser intensity can lead to the dynamic stabilization or growth-
rate reduction of a large portion of the unstable spectrum. The theory is in qualitative

agreement with the numerical results obtained by using the two-dimensional
hydrodynamic code ORCHID.

The classical Rayleigh-Taylor instability] occurs when a heavy fluid is
accelerated by a lighter fluid. In inertial confinement fusion (ICF) the heavy fluid is the
compressed ablated target material that is accelerated by the low-density ablated plasma.
The classical treatment of the incompressible Rayleigh-Taylor instability leads to a linear
growth rate given by y= W, where k is the instability wave number, g the
acceleration, and A the Atwood number A =(p, — p;)/(pr +p;) (p; and py, represent the
light and heavy fluid densities, respectively). For typical (ICF) parameters, a classical
Rayleigh-Taylor instability would produce an unacceptably large amount of distortion in
the unablated target resulting in a degraded capsule performance with respect to final core
conditions. Thus, it is of great importance to study the possible means for suppression of
the ablation surface instability in ICF. It has been recently shown that the ablation process
leads to convection of the perturbation away from the interface between the two
fluids.2-5 Since the instability is localized at the interface, the ablative convection
stabilizes short wavelength modes. The typical growth rate of the ablative Rayleigh-
Taylor instability can be written in the following approximate form:3

v =lkelA - BlkVa , )

where V/, is the ablation velocity and f is a numerical factor (f=3—4).



In this paper we show that a properly selected modulation of the laser intensity
can significantly reduce the unstable spectrum and the maximum growth rate. To treat the
analytic linear stability of unsteady ablation fronts, we consider a simplified sharp
boundary model consisting of a heavy fluid, with density pj, superimposed to a lighter
fluid (p)), in the force field g(t) = g(t)e, opposite to the density gradient [g(r) <0 and e,
is the unit vector in the direction of the density gradient] and with arbitrary time
dependence. The heavy fluid is moving downward with velocity U, =-V,e, and the
lighter fluid is ejected with velocity U, The equilibrium velocities U;(t) and Uy (¢) are
both dependent on the ablation ratio per unit surface m(t), that is treated as an arbitrary
function of time. The equilibrium can be readily derived from conservation of mass and
momentum. We consider a class of equilibria with nonuniformities localized at the
interface between the two fluids. Continuity of the mass flow and the pressure balance

across the interface lead to the following conditions:

pU(t) = ppUp(2) (2)
Py~ B =pUL (1)~ pyUi (1) , (3)

where Py, and P, represent the pressure of the heavy and light fluid at the interface. Notice
that U;;, <0 in the chosen frame of reference. We assume that the discontinuities in the

equilibrium quantities can be removed by including the physics of the ablation process.

The linear stability problem can be greatly simplified by an appropriate choice of
the linearized equation of state. It is widely known that the most Rayleigh-Taylor
unstable perturbations are incompressible. Furthermore, the ablative stabilization is a
convective process and, therefore, independent of the equation of state. It follows that the
essential physics of the instability can be captured by a simple incompressible flow
model. The stability analysis proceeds in a standard manner. All perturbed quantities are
written as Q) = O(y,t)exp(ikx) and the system of equations describing the linear
evolution of the perturbation assumes the following form:

((9, +U18))[)j =0 s
p,(()t + Ujay)f)j,: = "lkf)J 4)
PO+ U9, Yo,y + PjoU; =9\ + Pjg

lkij + 8),vj). =0 .



where the subscript j denotes the heavy fluid region (f = #) and the light fluid region
(j=1) and 9, =9/dy, J,; =9d/dt. The two regions are separated by an interface (the
ablation front), that moves with the heavy fluid. The linear displacement of the interface
7)(¢)exp(ikx), has to account for the heavy fluid ablative convection and can be described
by the following integral equation:

i) =B lyole)e)ar (5)

where yo(t') = J.:’U n(¢”)dt” is the unperturbed trajectory of the fluid element that, at time
t, has reached the ablation front. Since the heavy and light fluid extend to infinity and the
instability is expected to be localized at the interface, the perturbation must vanish at
y — oo, A set of jump conditions relating the values of the physical quantitics in the two
regions can be derived from the incompressibility and the conservation equations. At the

interface (y = 0), the set of jump conditions can be written in the following form:
Vpy =0y
(Ph = £1)(Orft = Bpy )~ Upp + Uppy =0 (6)
Dpy = Op + kA Up = U;) =0
Pn— P+ PuUs — BUE + g(pn — p1)1=0 .
The next step is to sclve Eq. (4) in the two regions and then apply the jump conditions.

The solution of the linearized equation in the heavy fluid region (k) is greatly
simplified by the following transformation of variable: y, =y-—['U,(¢)dt’. A
straightforward calculation leads to the following form of the perturbed variables in
region h:

Bpy = Oy (t)exp(—kyp )+ a(yn)
i d 'E)h

Z~)hx = . (7
k oy

Pr = Pn(¥n)

2.
Ph =L 9 Ty
k2 otdy,



where @iy, (), pp(yy). and a(yy) are arbitrary functions of r and y, and k is chosen to be
positive (k>0). In order to satisfy the boundary conditions, @ and pj have to vanish at
Y, — 0. Since lim,_,,, ¥, = oo, it follows that @ and p; asymptotically vanish in time.
In our asymptotic stability analysis, we neglect all the quantities that do not grow in time.
Thus, we set a=0 and p, =0.

We apply the same procedure to the light fluid region (!) and define the new
coordinates y; = y—[" U;(¢')dt’. The solution of the linearized equations in region [ can

be written in the following form:
D1y = iy (t)exp(ky;) +b(y) +E(y) £ (1)

35,
(8)
Iy

w‘lN.

Uiy =

pr=p1()

2
5= PL 9Oy
k% oidy,

where b(y;) and p;(y;) are free functions of y,, that vanish at y, — —co, and #(t) is an
arbitrary function of ¢. The functions &(y;) and f(r) satisfv the following differential

equations:
2 -
{dz -k2-‘6+k2ﬂ=0
dy[ ] p[
df
—=G(1), 9
o (1), 9
where
U
G(t)=g()- =L . (10)

The next step is to recognize that, using Egs. (7) into Eq. (8), the interface equation can
be rewritten in a differential form: (9, —kUp )} = Oy, (y = O.1).



After substituting Egs. (7) and (8) into the jump conditions [Egs. (6)] and using
the differential form of the interface equation, the following ordinary differential equation
for 7(r) is derived:

(at - kUl)G_l {(81 - kU,)((?, - kUh)f? +

(11)
A[kU(3; — kU )+ kgii} - AU, =0

where A=(p,—p;)/(pn+p;) is the Atwood number. For ICF applications, the
appropriate ordering Uy, /U, = p;/py, ~(1—-A)<<1 and g>dU,;/ot. To lowest order in
1-A, the last term in Eq. (11) can be neglected, yielding

{9, = kU,)(3; = kU, ) + A[kU (3, - kUR) + k)1 =0 . (12)
Equation (12) can be further simplified by using the Ansatz

)= E0)exe| 24 Uy )ar | (13)

and by neglecting other terms of order (1—A) <<1. After some straightforward
manipulations, we obtain

————+k[Ag—-————~—kVa2}§=0 : (14)
where g, and V, are functions of time. Observe that, for steady equilibrium

configurations, Eq. (13) and (14) yield the normal mode solution for 7] ~ exp(y?), with ¥
satisfying the dispersion relation

I 3
y= ,\mkgIA) + Zkzvj - §|kva| . (15)

It is easy to recognize that the contribution of the second term under the square root is
relevant only at very small wavelengths, where the mode is already strongly stabilized by
convection [first term in Eq. (15)]. Neglecting such a term in Eq. (14) and (15), would
only cause a small shift of the cut-off wave number [A ko/k. = 1/9] that is consistent with
the order of magnitude of the previous approximations. After neglecting such a term,
Eq. (15) reproduces the numerically derived growth rate of Ref. (3) with f = 1.5.
Equations (13) and (14), which are valid for arbitrary unsteady configurations, are now
applied to the particular equilibrium obtained by temporally modulating the laser



intensity. Consider a planar target of thickness d and density p irradiated by a uniform
laser beam. The periodically modulated laser intensity [1(1) = 10( 1+ Asin a)ot),A < 1] ,
induces an oscillating ablation pressure P, ()= PO(I +A,sin (oot) and ablation velocity
V, (1) = Vo (1 + 4, sinwpr) with A, <A and A, < A. For simplicity, we assume that the
ablation pressure and the ablation velocity are directly proportional to the laser intensity
and the ablation process develops on a very slow time scale compared to oscillation
period and the sound transit time through the target [Va<<cs,cs is the sound speed].
Although the scaling V,, ~ /T ~ [1+Aa sin((not)]l/2 is more appropriate than a simple
linear dependence, the numerical simulations show that the ablation velocity is almost
insensitive to the oscillations in the laser intensity (Aa< <1) and V,=V,q. Iy and Py are
two slowly varying functions of time [Va/d<(l/10)(dlo/dt)
= (/R )(dBy Jdt)<< g ~ cS/d]. A simple estimate of the acceleration of the ablation
front can be derived by solving the one-dimensional compressible fluid equations of

Ref. [6], for a target accelerated by the ablation pressure. The result is

g(t)=— A/ {coth[—‘f— (d -3, )}————“’3“(5’)} ; (16)

dt Cs PoCs

where L~! denotes the inverse Laplace transform, s is the Laplace variable, and p,(s) is
the Laplace transform of the ablation pressure. The quantity ¥y, =J(; V,(¢')dt’ is the
position of the ablation front in the Lagrangian frame of the moving target. In deriving
Eq. (16), the slow ablation time scale (~d/V,) has been treated as an independent
variable. A simple cexpression for g(7) can be derived in the asymptotic limit
(d/V,)>t>>(d/cy), yielding

g(t) = —go[1 + asinwyt+ € coswyt] (17)

where gy =FRy/pody, =4, (wod,/cg)col(wpd,[cg), and €= V,0A,00/80,
d, =d—Yy,. A more accurate estimate of g(¢) (and the parameters g, ¢, and € ), can be
obtained by using a one-dimensional code. Later in this letter, we use the one-
dimensional hydrodynamic code LILAC3 to derive gy, &, and €. However, Eq. (17) gives
some physical insight of the relevant quantities that affect the oscillation amplitude in the
target acceleration. In particular, large oscillations can be achieved by values of the
modulation period shorter than the sound transit time through the target
[T() 5275/60()<d/cs]. Before proceeding further, it is important to define the range of
validity of the stability model for the prescribed equilibrium. The oscillations in the

ablation pressure propagates inside the target at the sound speed. Thus, the equilibrium
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parameters can be considered as uniform over a distance Ay<<cTy. The stability
analysis, carried out for a uniform semi-infinite medium, can be applied to perturbations
with sufficiently short wavelength kAy > 1. It follows that a necessary condition for the
validity of the stability model is kc T >>1. For such wavelengths, Eq. (17) can be used
in Eq. (14) to derive the function &(1). Thus, Eq. (14) can be written in the following
form:

d*¢

—‘;t—z——yg[l+qsin(wot+¢)]§=0, (18)

where 7y, =\/A_|I%g| is the classical growth rate, g¢g= o? +9€2/4, and
¢= tan"l(3 €/20). Notice that Eq. (18) is a Mathieu equation, whose solution has the
form &(r) = o(t)exp(ur), with o(t) being periodic with period @q. Using Eq. (13), the
growth rate of the instability can be easily derived,

— onl (Tog, (om0
Y= kﬁTOIO V,(¢)dr + 1, (19)

where §= 1.5 for the simplified stability model. However, when Eq. (19) is compzred to
the Takabe’s formula, we let = ﬁT =3—4. In order to find Y, one needs to numerically
solve Eq. (18) for one period of oscillation. Figure 1 shows the parameter u, plotted
versus the wave number k, for the following equilibrium parameters d = 20 um, go =5 X
1015 cm/s2, A = 1, <V,> =T7x 104 cm/s, ¢, = 100 cm/s, Ty = 0.3 X 1079 s, ¢ = 0, and
q =0-2.5-3.5. The validity of the stability model requires A = 27x/k<<20um. For any
value of g and @, it is possible to identify intervals of the k axis where Re[u] = 0. We
denote such intervals as dynamically stabilized (DS) regions, and we emphasize the
importance of ablative convection [see Eq. (19)] at shorter wavelengths. According to
Eqgs. (1) and (19), the short wavelength modes are stabilized by convection and the cut-off
wave number is k. = gA/ﬂZV}. It follows that an efficient dynamic stabilization can be
achieved by choosing values of ¢ and wy that cause the first DS region to be located
inside the interval 0<<k<k.. In Fig. 2, the growth rates derived from Eq. (19) for g =
0 —2.5-3.5 and B = 3.5 (as given by Takabe et al.3) are shown. Observe that as g
increases, a better stabilization is induced at longer wavelengths, but shorter wavelengths
can be destabilized (¢ = 3.5). This short wavelength instability is driven by the
oscillations in the acceleration, with the perturbation having the characteristic structure of
an oscillatory mode with exponentially increasing amplitude. For convenience, we denote

these short wavelength modes as “parametric instabilities.” Furthermore, when the mode



wavelength is smaller than the density gradient scale length [5 =|(1/ p)dp/dyrl], the
sharp boundary model is not valid and Eq. (19) cannot be used.
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Fig. 1 Plot of the instability drive term [, versus the mode wave number k for
modulated (g # 0) and unmodulated (g = 0) laser intensity.
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Fig.2  Plot of the instability growth rate versus the mode wave number k for modulated
(g # 0) and unmodulated (g = 0) laser intensity.



The results of the analytic theory have been compared with the two-dimensional
simulations obtained using the code ORCHID.” We have considered an 18-um CH planar
target, irradiated by a uniform laser beam. The laser intensity is modulated in time with a
period of 0.3 ns. The modulation amplitude is 100%, and the flat-top average intensity is
50 TW. For an accurate comparison with the analytic stability theory, we derive the
equilibrium parameters g, (Va> and g, from the one-dimensional code LILAC.8 The result
is g=4.5-10°cm/s?, (V,)=7-10*cm/s?, §=1.5-2 um, ¢ = 0, and ¢ = 3.5-5.5. In
the two-dimensional simulation, an initial single wavelength perturbation evolves for
3 ns. Figure 3 shows a comparison between the linear growth rate derived from the
simulation, with the one given by Eq. (19). Three regions of the k-axis can be identified:
(1) The long wavelength region with k& < 0.2 um~!, where the growth rate is virtually
insensitive to the modulation of the laser intensity and very close to the classical value.
(2) The intermediate wavelength region with 0.2 < k < 1. For these values of the wave
number, the dynamic stabilization is particularly effective. Observe that for
A =2m/k =7um, the mode is completely stabilized. (3) The short wavelength region is
defined as having a wave number k > . In this region k6 > 1 and the effect of finite
density-gradient scale length cannot be neglected. Notice that the simulation shows the
presence of an unstable mode with wavelength A = 5 um. Using Eq. (19) beyond its limit
of validity (k6 < 1) and dividing 7/3. by (1+ak8) with @ < 1, we would predict the
existence of parametric instabilities at shorter wavelengths (Fig. 3). However, the
structure of the perturbation observed in the numerical simulation does not clearly show
the characteristics of a parametric instability. Furthermore, the cut-off wave number
observed in the numerical simulation (with or without laser intensity modulation) is much
shorter than the one predicted by Egs. (1) and (19). The stability of very short wave-
length perturbations needs further investigation to determine an accurate value of the cut-
off wave number.

The dynamic stabilization of the Rayleigh-Taylor instability in ICF targets was
first observed in the numerical simulations by J. Boris.? At that time, the ablative
stabilization was still relatively unknown and a self-consistent theory for the stability of
unsteady equilibria could not be derived. In this Letter we have shown the derivation of
the linear stability theory of unsteady ablation fronts, and the conditions for the dynamic
stabilization of the ablative Rayleigh-Taylor instability. The growth rate of the instability
has been calculated for a sinusoidal modulation of the laser intensity. It is shown that an
appropriate modulation frequency and amplitude can stabilize a large portion of the

unstable spectrum and significantly reduce the maximum growth rate.
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Fig. 3 Comparison of the growth rate obtained from numerical simulations (with
modulation A and without modulation O) and the modified Eq. (19) with
a=0.2, q= 4.5 (dashed), q = 5.5 (dotted). The solid line represents Takabe
formula and the shaded area represents the region with k< 1.
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