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CHIRAL SYMMETRY AND LATTICE GAUGE THEORY*

MICHAEL CREUTZ
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ABSTRACT

I review the problem of formulating chiral symmetry in lattice gauge theory. I
discuss recent approaches involvingan infinite tower of additional heavy states to
absorb Fermion doublers. For hadronic physics this provides a natural scheme for
taking quark masses to zero without requiring a precise tuning of parameters. A
mirror Fermionvariation providesa possiblewayof extending the picture to chirally
coupledlight Fermions.

1. Introduction

Lattice gauge theory is now entering its third decade. Throughout this period
Fermions have presented challenging obstacles. One of these issues lies in Monte
Carlo algorithms, which remain awkward when quarks are included. Indeed, in the
presence of a background Fermion density representing a chemical potential, no truly
viable algorithms are known.

In this talk, however, I will concentrate on the other "Fermion problem," that of
doubling and chiral symmetry. This discussion is essentially an abridged version of 1.
For a more general review of the subject see Ref. 3

Why do we care about chiral symmetry when the lattice gives us a first principles
scheme for calculating hadronic physics? The reason is partly historical and partly
aesthetic. Indeed, chiral symmetry has long played an essential role in particle theory.
The pion is made of the same quarks as the rho meson, yet its mass is considerably
less. The canonical explanation says that if quarks were m_sless, then the pions
would be Goldstone bosons arising from the spontaneous breaking of an underlying
chiral symmetry. Naively, pure gauge interactions are helicity conserving, and thus
both the number of left and right handed massless quarks are separately conserved.
Through confinement into the physical states of baryons and mesons, this symmetry
is spontaneously broken. A host of predictions from current algebra are based on this
picture 2.

These issues are complicated by the presence of "anomalies." Ultraviolet diver-
gences make it impossible, even in perturbation theory, to conserve simultaneously
all axial vector currents associated with chiral symmetry, and the vector currents
coupled to gluons. As current conservation is cr_lcial to our understanding of gauge



symmetries, we must conserve the vector currents, implying that the axial symmetry
cannot be exact.

One consequence of the anomaly is that there is one less Goldstone boson than
naive counting would suggest. For two flavors of light quarks, of the four ways to
form pseudoscalar mesons there are three light pions while the eta remains heavier.
With SU(3) flavor symmetry, it is the _' which is anomalously heavy compared to
the other pseudoscalars.

Chiral issues arise in an even more fundamental way with the weak interactions.
Here parity violation seems to maximally differentiate between left and right handed
Fermions. While lattice methods have been dominantly applied to the strong inter-
actions, there are reasons to desire a lattice formulation of the weak interactions as
well. In particular, the lattice is the best founded non-perturbative regulator, and
thus provides an elegant framework for the definition of a quantum field theory. Even
though the smallness of the electromagnetic coupling makes non-perturbative effects
quite small in the electroweak theory, at least in principle we would like a rigorous
formulation. While exceptionally small, some interesting non-perturbative phenom-
ena are directly related to the anomaly, such as the prediction that baryons can decay
through the instanton mechanism of 't Hooft 4.

2. Massless Fermions and the anomaly

Chiral symmetry is intimately tied with Lorentz invariance. A massive particle of
spin s has 2sq-1 distinct spin states which mix under a general Lorentz transformation.
The helicity of a massless particle, on the other hand, is frame invariant. Indeed, for
free particles one can write down local fields which create or destroy just a single
helicity state. For spin 1/2 Fermions coupled minimally to gauge fields, their helicity
remains naively conserved.

In one space dimension the roles of left and right handed helicities are replaced by
left and right moving particles. Since an observer cannot go faster than light, he can
never overtake a massless particle and a right mover will be so in all Lorentz frames.

The fact that Lorentz invariance is crucial here provides another warning that
chiral symmetry on the lattice will be difficult. Indeed, lattice formulations inherently
violate the usual space time symmetries. Chiral issues should only be expected to be
useful for states of low energy which do not see the underlying lattice structure.

While separate phase rotations of left and right handed massless Fermions give
a formal symmetry of a continuum gauge theory, this is broken by the anomalies
mentioned above. In particular, there is the famous triangle diagram where a virtual
Fermion loop couples an axial vector current to two vector currents. In two space time
dimensions the analogous problem arises with a simple bubble diagram connecting a
vector and an axial vector current.

The fact that the anomaly must exist can be intuitively argued in analogy with
band theory in solid state physics. With massive Fermions the vacuum has a Fermi
level midway in a gap between the filled Dirac sea and a continuum of positive energy
particle states. This represents an insulator. As the mass is taken to zero, the gap



closes and the vacuum becomes a conductor. External gauge fields applied to this
conductor can induce currents. For a specific example, consider a one space dimen-
sional world compactified into a ring. A changing magnetic field through this ring
will induce currents, changing the relative number of left and right moving particles.
Without the anomaly, transformers would not work.

In this problem, physics should be periodic in the amount of flux through the ring.
This is a two dimensional analog of the periodicity of four dimensional non-abelian
gauge theories as one passes through topologically non-trivial configurations s. The
latter case with the standard model gives rise to a non-conservation of the baryon
current 4.

With the one dimensional ring, the strength of the flux characterizes the phase that
a charged particle acquires in running around the ring. As this net phase adiabatically
increases, the individual Fermionic energy levels shift monotonically. As one adds
another unit of flux through the ring, one filled right moving level from the Dirac sea
moves, say, up to positive energy, while one empty left moving level drops into the
sea, leaving a hole. This induces a net current carried by a right moving particle and
a left moving antiparticle. This way of visualizing how the anomaly works was nicely
discussed some time ago 9.

3. The doubling problem

The essence of the lattice doubling problem already appears with the simplest
Fermion Hamiltonian in one space dimension

H = iK y_ a_+la j -- a_aj+,. (1)
J

Here j is an integer labeling the sites of an infinite chain and the aj are Fermion
annihilation operators satisfying standard anticommutation relations

[aj, a_]+ _ aja_ + a_aj = _j,k. (2)

The bare vacuum 10) satisfies ajl0 ) = 0. This vacuum is not the physical one, which
contains a filled Dirac sea. I refer to I( as the hopping parameter. Energy eigenstates
in the single Fermion sector

= (3)
J

car_ be easily found in momentum space

_j = eiqJxo. (4)

where 0 < q < 27r. The result is

E(q) = 2I(sin(q). (5)



The physical vacuum has all negative energy states filled to form a Dirac sea. Particles
are represented by excitations oil this vacuum.

If I consider a Fermionic wave packet produced from a superposition of states
carrying small momentum q, then, since the group velocity dE/dq is positive in this
region, the packet will move to the right. On the other hand, a wave packet produced
from momenta in the vicinity of q -_ 7rwill be left moving. The essence of the Nielsen
Ninomiya theorem 10 is that we must have both types of excitation. The periodicity
in q requires the dispersion relation to have an equal number of zeros with positive
and negative slopes.

The recent attempts to circumvent this result add to the spectrum an infinite
number of additional states at high energy 11. The idea is to have a mode with
E = 2K sin(q) still exist at small q, but then become absorbed in an infinite band of
states before q reaches 7r. If the band is truly infinite, then the extra state does not
have to reappear as the momentum increases to 27r. In the domain wall picture, this
infinite tower of states is represented by a flow into an extra dimension 5 6

4. The Wilson approach

In this section I review Wilson's scheme for adding a non-chirally symmetric term
to remove the doublers appearing in a naive lattice transcription of the Dirac equa-
tion. I do this in some detail because the general behavior of the Wilson-Fermion
Hamiltonian will be central to the later construction of surface modes. To keep the
discussion simple, I work in one dimension with a two component spinor

a

The most naive lattice Hamiltonian begins with tile simple hopping case of Eq. (1)
and adds in the lower components and a mass term to mix the upper and lower
components

H iK_-_ t t t t-" aj+lai -- ajaj+l -- bj+lbj Jr bjbj+l

J (7)
+M E a_bj + b_aj.

J

Introducing Dirac matrices

(o"r°= 1 0 ' "rl= 1 0 (8)

and defining _ = _bt'70,I can write the Hamiltonian more conventionally as

H = _ iI((fj+l'7,¢, _ - "fj'tl_L'j+l) + M _ -fj_Zj. (9)
j J

As before, the single particle states are easily found by Fourier transformation
and satisfy

E 2 = 4I( _siil2(q) + M 2 (10)



Again, the negative energy sea is to be filled.
Naive chiral symmetry is implemented through distinct phase rotations for the

upper and lower components of _b. The mass term mixes these components and

opens up a gap in the spectrum. The doublers at q ,-_7r, however, are still with us.

To remove the degenerate doublers, I make the mixing of the upper and lower

components momentum dependent. A simple way of doing this was proposed by
Wilson t2. For this I add one more term to the Hamiltonian

M= E 4+,%- 4a., _bt., +
J

+ M Z a_bi + b_aj

J (11)
bt a.-rI( EaJbj+l + b}aj+, + j+, 3 +a_+,bJ

J

= _ I((_j+,(i71 - r)g,j - -_j(iT, + r)_j+,) + _ M-_jej.
J J

Now the spectrum satisfies

E _ = 4h "2sin2(q) + (M - 2rK cos(q)) 2. (12)

Note how the doublers at q ,,_ 7r are increased in energy relative to the states at

q ,_ 0. The physical particle mass is now rn = M- 2rK while the doubler is at
M +2rK.

The hopping parameter has a critical value at

M

l(_,t = 9_r (13)

At this point the gap in the spectrum closes and one species of Fermion becomes

massless. The Wilson term, proportional to r, still mixes the a and b type particles;

so, there is no exact chiral symmetry. Nevertheless, in the continuum limit this

represents a candidate for a chirally symmetric theory. Beforehand, as discussed in

Ref. 13, chiral symmetry does not provide a good order parameter.

A difficulty with this approach is that gauge interactions will renormalize the

parameters. To obtain massless pions one must finely tune K to K_it, an a prio,'i

unknown function of the gauge coupling. Despite the awkwardness of such tuning,
this is how numerical simulations with Wilson quarks generally proceed. The hopping

parameter is adjusted to get the pion mass right, and one hopes for the remaining

predictions of current algebra to reappear in the continuum limit.

5. Supercritical K and surface modes

The case of K exceeding the critical value M/2r is rarely discussed but quite in-

teresting nevertheless. Aoki and Gocksch 13 have argued that as one passes through

this point with gauge fields present, there occurs a spontaneous breaking of parity.



Restricting ourselves to the free Fermion case for the time being, interesting things
happen here for supercritical K as well. As the band closes and reopens with in-
creasing K, the positive energy particles and the negative energy Dirac sea couple
strongly. A similar situation was studied some time ago by Shockley 14,who observed
that if the system is finite with open walls, then two discrete levels leave the bands
and emerge bound to the ends of the system.

As the volume of the system goes to infinity, particle-hole symmetry forces these
surface levels to go to exactly zero energy. In a finite box, the wave functions have
exponential tails away from the walls, mixing the states and in general giving them
a small residual energy.

A general result 1 is that there exists such a state bound _o any interface separating
a region with K > Kc,.it from a region with K < Kc,.it. In Ref. s, Kaplan uses
M = 2Kr + me(x). I prefer to consider here the simpler approach of Shamir xs and
take K = 0 on one side, giving modes on an open surface.

In the later discussion of the anomaly in terms of currents into an extra dimen-
sion, it will always be a flow into a region of supercritical hopping. This should be
contrasted with the continuum discussion of Ref. 16, where the flow is symmetric
about the defect. This symmetry appears, however, to be regulator dependent xz.
For example, with a Pauli-Villars regulator, the relative sign of the Fermion to the
regulator masses controls the direction 6f flow.

Following the usual procedure of filling half the states for the Dirac sea, we see
that there is an ambiguity with the last Fermion, which could go into either of the
degenerate surface modes. If I imagine coupling the Fermions to, say, a U(1) gauge
field, then this last Fermion will be a source of a background electric field which will
run to the hole state on the opposite wall. This is the physical origin of the parity
breaking proposed in Ref. 13. In the continuum limit the vacuum should be equivalent
to that of the massive Schwinger model with a half unit of background electric flux.
The physicsofthismodel inthecontinuun_iwas extensivelydiscussedinRef.18.

6. Extra dimensions

As the system size goes to infinity, particle-hole symmetry naturally forces the the
surface modes to zero energy. This behavior forms the basis for a lattice approach to
chiral Fermions. The picture of Kaplan 5 is to reinterpret the coordinate labeled by
j in the above discussion as an extra dimension beyond the usual ones of space and
time. Our physical world then exists on a four dimensional interface, with the light
quarks and leptons being the above surface modes.

To be concrete, consider adding D space dimensions to the above Hamiltonian,
where for the following D will either be 1 or 3. For simplicity I will take LD space
sites and use antiperiodic boundary conditions for each of these dimensions. The
extra dimension, which I refer to as the fifth, has L5 sites and open boundaries. I
take the same hopping and Wilson parameters in each of the dimensions, including
the fifth, although this is not essential.



The Dirac matrices 7. satisfy the usual

b., = (14)

I define 3's = i%3'13'27a for D = 3 and % = 3'03'1for D = 1. I take 3'0 and 3's to be
Hermitian, while the spatial 3' matrices are anti-Hermitian. The Hamiltonian I am
led to is then

= _ (It'¢n,/+,(3's- r)_bn,j - l('_n,j(Ts + r)0n,j+,H
11,3

\

D

+ _(I/_n+_o,j(i% - r)g'n,j - I('C_n,j(i% + r)g'n+_.5) (15)
awl

+M_nsCn,j).

Here n denotes the spatial sites, j the extra coordinate, and e_ is the unit vector in
the positive a'th direction.

The use of antiperiodic boundary conditions makes it simple to go to momentum
space for the spatial coordinates. Denoting the components of the momentum by q_,
I write

1 -iq.n,,/, .

= LO/2 e (16)11

Each component of the momentum takes discrete values from the set (2k + 1)r/L
where k runs front, say, 0 to L- 1. This makes the Hamiltonian block diagonal, with
each value for q l epresenting a separate block. In this way the Hamiltonian reduces
to

-- E (l(_q,j+1(3'5 -- r)tZ,q,j -- K_q,j(% + r)_q,j+,H
q,3

\

+ _ 2K sin(q_)_q,3 %Oq,j (17)
(1

+(M - 2Kr _ cos(q_))_q,j_q,j).
a

Modes bound to the surface in the fifth direction exist whenever K exceeds the
critical value

l(_,.it = M/2r - I( _ cos(q_). (18)

Note how this critical value now depends on the spatial momentum. Appropriately
choosing M, I can have the surface states exist for small q, but have them disappear
when any component of q_ _ 7r. This avoids the doublers 19. Specifically, when the
hopping is direction independent, I want (assuming K, r, and M are all positive)

(D- 1)K < M/2r < (D + 1)K. (19)

The above discussion shows that on a single surface I have an elegant lattice theory
for a low energy chiral Fermion. I would now like to add gauge fields. Here I adopt



the attitude that I do not want a lot of new degrees of freedom, and follow Ref. 11
in regarding the extra dimension as a flavor space. In particular, I do not put gauge
fields in the fifth dimension, and the physical gauge fields are independent of this
dimension.

While this approach has the .vantage of preserving an exact gauge invariance
and not introducing lots of unwanted fields, it has the disadvantage that both walls
are coupled equally to the gauge field. Thus, even when the size of the fifth dimension
approaches infinity, the opposite chirality Fermions do not decouple. The main thing
that has been accomplished so far is to find a theory of Fermions coupled in a vectorlike
manner, without any doublers, and with a natural way to take the Fermion masses
to zero.

7. The anomaly and rotating eigenvalues

One of the nice features of this formulation is how the chiral anomaly appears as a
flow of Fermionic states in the extra dimension. The basic scenario was discussed in a

somewhat different context by Callan and Harvey x6. They consider a vector theory,
whose mass term has _ domain wall shape in an extra dimension, and show that it has
a chiral zeromode livi_ag on the wall. The anomalous gauge current generated by this
state has to be cancelled in the underlying 2n + 1 dimensional theory since that world
is anomaly free. Indeed, the massive modes contribute to the low energy effective
action a piece representing the flow of charge into (or out of) the wall from the extra
dimension. When calculated far from the wall, it cancels the anomalous contribution.
In the U(1) case in 2+1 dimensions this was recently explicitly checked on the lattice
with both Kaplan's and Shamir's formulations 20. Indeed the cancellation is valid
even close to the wall 21. Therefore, what on the interface looks like an anomaly is
the flow of charge into the extra dimension and the role of the heavy modes is to
carry that charge.

The above picture was studied in some detail in Ref. 22. Since opposite chirality
partners live on opposite walls, the charge has to be transported through the extra
dimension. In the adiabatic limit of slowly varying gauge fields, the time evolution
is a continuous change of one particle states. As one passes through an "instanton"
configuration the low energy states at the lattice ends change energy without sub-
stantially changing their position in the extra dimension. The same is true for the
very high energy states, residing deep in the lattice interior.

However, the surface states with energies close to the cutoff are very sensitive to
the applied field. When the energy of such a level rises towards the bottom of the
band of plane waves flowing in the extra coordinate, the wave function penetrates
increasingly deeply into this dimension. At the same time, another level from the
interior lowers its energy and flows towards the opposite wall. This is also true for
levels with corresponding negative energies; they just move in the opposite direction.

In this way we see how the heavy modes right at the cutoff carry the charge on and
off the surfaces. With a gauge field applied to the physical vacuum with all negative
energy states filled, these "flying states" are rcsponsible for what appears to be the



gauge anomaly on the surfaces.

8. Weak interactions, mirror Fermion model

With an exact gauge invariance and a finite size for the extra dimension, the
surface models are inherently vectorlike. The Fermions always appear with both
chiralities, albeit separated in the extra dimension. However, experimentally we know
that only left handed neutrinos couple to the weak bosons. In this section I discuss
one way to break the symmetries between these states, resulting in a theory with only
one light gauged chiral state. Here I keep the underlying gauge symmetry exact, but
do require that _he chiral gauge symmetry be spontaneously broken, just as observed
in the standard model. The picture also contains heavy mirror Fermions. If anomalies
are not cancelled amongst the light species, these heavy states must survive in the
continuum limit. It remains an open question when anomalies are properly cancelled
whether it might be possible to drive the heavy mirror states to arbitrarily large mass.

I start by considering two separate species _'1 and _'2 in the surface mode picture.
However, I treat these in an unsymmetric way. For _'1 I use the previous Hamiltonian.
For _b2I change the sign of all terms proportional to _5. On a given wall, the surface
modes associated with _Pland _P2will then have opposite chirality.

Now I introduce the gauge fields. Since I want to eventually couple only one-
handed neutrinos to the vector bosons, consider gauging _Pxbut not _b2. Indeed, at
this stage _b2represents a totally decoupled right handed Fermion on one wall. I still
have a mirror situation on the opposite wall, consisting of a right handed gauged state
and a left handed decoupled Fermion.

The next ingredient is to spontaneously break the gauge symmetry, as in the
standard model, by introducing a Higgs field ¢ with a non-vanishing expectation

value. I can use this field to generate masses as in the standard model by coupling
_1 and _2 with a term of the form _/'1_/'2¢.

The new feature is to allow the coupling of the Higgs field to depend on the extra
coordinate. In particular, let it be small or vanishing on one wall and large on the
other. The surface modes are then light on one wall and heavy on the other.

This model is closely related to the proposal in 2z, where the gauge field is suddenly
shut off in the interior of the fifth dimension, and gauge invariance is restored via a
Higgs field. Folding that lattice in half around this shut off point reduces it to the
picture presented here.

As in other mirror Fermion models 2._, triviality arguments suggest that there
might exist bounds on the mass of the heavy particles. This is certainly expected
to be the case where the light Fermions alone give an anomalous gauge theory, in
which case I expect the mirror particles cannot become much heavier than the vector
mesons, i.e. the W.

It is conceivable that the restrictions on the mirror Fermion masses are weaker

when anomalies cancel amongst the light states. In this case there is no perturbative
need for the heavy states, and perhaps they can be driven to infinite mass in the
continuum limit. This is a rather speculative desire, but if possible would give a



candidate for a lattice discretization of the standard model.

Unfortunately, the model as it stands does not lead to baryon number violation
es. The anomaly will involve a tunnelling of baryons from one wall to the opposite,
where they become mirror baryons. Even if these extra particles are heavy, the decay
can only occur through mixing with the ordinary particle states. In this sense, the
mirror particles still show their presence in low energy physics. This further hints
that the mirror Fermions might not be removable in the continuum limit.

Another speculative proposal is to use the right handed mirror states in some way
as observed particles. Indeed, the world has left handed leptons and right handed
antibaryons. Any simple extension of this idea to a realistic model must unify these
particles 26 On the other hand, the fact that the anomalies are canceled between dif-
ferent representations of the SU(3) of strong interactions may preclude such options.

9. Conclusions

The use of Shockley surface states may provide the basis for a theory of chiral
Fermions. For strong interaction physics this yields an elegant formulation where the !
massless limit for the quarks is quite natural.

In this picture the anomaly appears as a flow into the extra dimension. For
anomaly free currents, the net flow in this dimension cancels, and I expect the pre-
dictions of current algebra to arise naturally. On the other hand, the symmetries for
singlet axial currents are strongly broken by this flow. This presumably precludes the
need for a corresponding Goldstone boson and solves the U(1) problem.

Several questions remain before we have a theory of the weak interactions on the
lattice, where the gauge fields are to be coupled to chiral currents. One approach leads
to a theory with mirror Fermions on the opposing walls of the system. In a spon-
taneously broken theory these extra states can be given different masses. Whether
they can be driven to infinite mass in the continuum limit presumably depends on
whether all necessary chiral anomalies have been cancelled.

The difficulties in formulating chiral theories with a fundamental non-perturbative
cutoff, such as the lattice, hints that there may be a deeper hidden message. Perhaps
mirror fermions must exist at a few times the W mass and we should be looking for
them. Note also that spontaneous breaking of the gauge theory is central to that
approach, hinting that perhaps the only consistent chiral theories are spontaneously
broken.

* This manuscript has been authored under contract number DE-AC02-76CH00016
with the U.S. Department of Energy. Accordingly, the U.S. Government retains a
non-exclusive, royalty-free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.
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