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FOREWORD AND ACKNOWLEDGMENTS

This report provides an assessment of the geotechnical status of the Waste Isolation Pilot Plant
(WIPP). During the construction of the principal underground access and experimental areas,
reporting was on a quarterly basis. Since 1987, reporting has been carried out annually
because additional excavations such as the waste storage panel, will take place gradually over

an extended period. This report presents and analyzes data collected up to June 30. 1992.

The two-volume format of the Geotechnical Field Data and Analysis Report was selected to
meet the needs of several audiences. Volume | focuses on the geotechnical performance ot the
various underground facilities inciuding the shafts, shaft stations, access drifts, test rooms, and
waste storage areas. The results of excavation effects investigations, stratigrarhic mapping,
and other geologic studies are also included. The report provides an evaluation of the
geotechnical aspects of performance in the context of the relevant design criteria. The depth
and breadth of the evaluation for the different underground facilities varies according to the
types and quantities of data that are available, and the complexity of the recorded geotechnical
responses.

Volume Il constitutes the principal documentation or data. It also describes the techniques used
to acquire the data and the pertormance history ot the instruments. Data files will be made
available at nominal cost upon request to the U.S. Department of Energy (DOE) at the following
address:

U.S. Department of Energy
WIPP Project Office

P.O. Box 3090

Carlsbad. NM 88221
Attention: Arlen Hunt

The Geotechnical Field Data and Analysis Report is a multiple-author report that was prepared
by Westinghouse Waste Isolation Division and its geotechnical subcontractor, IT Corporation,

for the U.S. Department of Energy WIPP Project Office, Carisbad, New Mexico.
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1.0 Introduction

The Geotechnical Field Data and Analysis Report documents the geotechnical data from the
underground excavations at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New
Mexico. The data are used to characterize conditions, confirm design assumptions, and
understand and predict the performance of the underground excavations during operations.
The data are obtained as part of a routine monitoring program and do not include data from
tests performed by Sandia National Laboratories (SNL), the Scientific Advisor to the project, in

support of performance assessment studies.

Geotechnical Field Data Reports have been routinely prepared and made publicly available
since 1983. During the Site and Preliminary Design Validation Program, the Architect/Engineer
for the project produced the reports on a quarterly basis to document the geomechanical
pertormance during construction of the underground. Since 1987, upon completion of the
construction phase of the project, the reports have been prepared annually by the Management
and Operating Contractor for the facility. This report includes data collected up to June 30,
1992, and describes the performance and conditions of selected areas from July 1, 1991, to
June 30, 1992.

1.1 Background

The location, the mission, and the status of development at the WIPP are discussed below.

1.1.1 Location and Description

The WIPP is located in southeastern New Mexico about 30 miles east of Carisbad (Figure 1-1).
The surface facilities have been built on the tiat to gently rolling hills that are characteristic of
the Los Medanos (sand hills) area. The underground facilities are being excavated
approximately 2,150 feet beneath the surface in the Salado Formation, a thick sequence of
evaporites which are predominantly halite. A schematic view of the surface and underground

facilities at the WIPP site is shown in Figure 1-2.

1.1.2 Mission
The WIPP was authorized by Congress in 1379 (Public Law 96-164) to provide "...a research

and development tacility to demonstrate the sate disposal of radioactive wastes resulting from
the defense activities and programs of the United States exempted from regulation by the
Nuclear Regulatory Commission". The WIPP is intended to receive, handle, and permanently

dispose of transuranic waste. To fulfili this mission, the U.S. Department of Energy (DOE) is
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constructing a full scale tacility to demonstrate both technical and operaticnal principles of the
permanent isolation of transuranic waste. Technical aspects are those concerned with the
design, construction, and performance aof the subsurface structures. Operational aspects refer
to the receiving, handling, and emplacement of transuranic waste in salt. The facility is also
designed for in situ studies and experiments in salt. The test phase is includes on-site
experiments with mixed transuranic waste. The purpose of the test phase is to continue

devel pment of the basis for determining the satety of mixed transuranic waste disposal.

At the conclusion of the test phase, a decision will be made regarding the suitability of the
WIPP facility tor disposal of transuranic wastes. The information that will be colliected during
the test phase will be used to assure the sate, long-term disposal of radioactive waste in a
bedded salt repository. Until the decision is made, waste will be stored in a fully retrievable

mode.

1.1.3 Development Status
To fulfill its missiun, the DOE is developing the WIPP in a phased manner. The Site and
Preliminary Design Validation phase began in 1980 with the purpose of characterizing the site
and obtaining geotechnical data to determine whether site characteristics and design were
suitable for a permanent disposal facility. During this phase, an expioratory shaft (now called
the Salt Handling Shaft), a ventilation shatt (now called the Waste Shatt), a drift to the
southernmost extent of the proposed waste storage area, a four-room test panel, and access
drifts were excavated. Surface-based geological and hydrological investigations were also
conducted. The data obtained from the Site and Preliminary Design Validation investigations
were reported in the WIPP-DOE-161, Summary of the Results of the Evaluation of the WIPP
i nd Preliminar ign Validation Progr (DOE. 1983).

Based on the tavorable rasults of the Site and Preliminary Design Validation investigations,
additional activities were started. These inciuded construction of surface structures,
conversion of the Ventilation Shaft for use as the Waste Shaft, excavation of the Exhaust
Shaft, development of additional access drifts ‘> th2 waste storage area, and excavation of
experimental rooms to support research and development activities. Geotechnical data
acquired during this phase were used to evaluate the pertormance of the excavations in the
cantext of established design criteria (DOE. 1984). Resuits of these evaluations were reported
in Geotechnical Field Data Reports (e.g. DOE, 1985; DOE. 1986a) and were summarized in the
Des:gn Validation Final Report (DOE, 1986b).
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The Design Validation Final Report concluded that the facilities including waste storage areas
could be developed and operated to fulfill the long-term mission of WIPP. However, some
modifications to the reference design were proposed in order to meet the more exacting
requirements for the life of openings during an initial demonstration phase when retrievability of
the waste remained an option.

The original design for the waste storage rooms at the WIPP provided a limited time in which to
mine the salt and emplace waste. Each panel, consisting of seven storage rooms, was
scheduled to be mined, filled with waste canisters, and backfilled in less than five years before
being sealed. Field studies, as part of the Site and Preliminary Design Validation Program,
showed that unsupported openings of a WIPP typical storage room configuration would remain
stable and that creep closure would not impact equipment clearances during the five year
period following excavation. The information from these studies provided the validation of the
design of openings for the permanent disposal of waste under routine operations.

Panel 1 was developed to receive waste for a demonstration and test phase that was
scheduled to start in October 1988. This original plan consisted of the storage of drums ot
contact handled transuranic waste in rooms for a period of five years. During this time and
immediately foHowing it, the rooms were to be inaccessible, but the option to reenter was to be
maintained so that the waste could be removed, if required. To assist with the possible
reentry, ten-foot rockbolts were installed in the rooms in Panel 1 to enhance roof stability.

The demonstration phase was deferred, and the experimental test program was modified to use
contact handled transuranic waste in bin scale tests, now planned for Room 1, Panel 1. This
program will investigate the potential for gas generation from the different types of waste that
will be disposed of in the underground facility. The decision to use Room 1, Panel 1 for these
bin scale tests was made in June 1989, when initial waste receipt was anticipated in 1990. The
start of the test program has been delayed further, and the new anticipated date for first waste
receipt is January 1994. To initiate and conduct the bin scale test, requires an additional
seven years of useful life for the test room(s) in Panel 1. Panel 1 test room(s) require
essentially uninterrupted accessibility throughout the test phase. This requirement has led to
ever more stringent criteria tor roof stability.

1.1.4 Geology

The underground excavations are located 2,150 feet below the surface in bedded salt of the

Permian Salado Formation. A generalized stratigraphy showing the facility horizon is given in
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Figure 1-3. Over 1,000 feet of impermeable evaporite deposits separate the tacility horizon
from overlying sedimentary formations, and 2,000 feet of evaporites lie below the facility
haorizon, providing a barrier to Permian limestones and sandstones.

Halite is the most abundant mineral in the Sa'ado Formation and occurs in thick beds
intercalated with thinner beds of polyhalite and anhyririte. Salado halite is rarely pure and
usually contains trace and minor amounts of clay, anhydrite, and polyhalite. Halite crystal size
and morphology vary locally, and various large and small scale sedimentary teatures are
abundant throughout the Saiado Formation. A detailed geologic discussion of the Salado
Formation can be found in DOE/WIPP 90-051, Geologic Mapping of the Air Intake Shaft at the

Waste Isolation Pilot Plant (Holt and Powers, 1990).

The tacility horizon lies within a 40 foot unit consisting of halite, argillaceous halite, and
polyhalitic halite as shown in Figure 1-4. These stratigraphic sequences are laterally

continuous.

A 20 to 32-inch thick persistent bed of anhydrite, identified as Marker Bed 139 (MB 139), lies
about five feet below the floor throughout most of the underground. Lateral variability in
composition and thickness exists within this anhydrite bed at both repository and regional
scale. The variability in thickness, up to six inches, has been observed in four inch diameter
cores (Holt and Powers, 1980). The bottom of MB 139 is subhorizontal and underlain by Clay
E.

Anhydrite "a", located about 13 feet above the roof in most areas of the facility, is underlain by
clay H, while anhydrite "b", located about 6.5 teet above the roof in most areas of the tacility, is
underlain by clay G. A thin clay layer, clay F, is found just below the root elevation in most

excavations.

Marker Bed 139 and the clay layers have a significant impact on the mechanical performance
ot excavations. The clay layers provide a surface along which slip can occur, whereas ME 139
acts as a brittle unit that does not deform plastically. In addition, the undulating top of the
marker bed resists shear movement along the interface with the overlying salit.
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1.2 Purpose and Scope of Geomechanical Mcnitoring Program
The purpose of the geomechanical monitoring program is to provide in situ data to support

continuing assessments of the design for the underground facilities. Specifically, the program
provides:

o Early detection of conditions that could compromise operational safety;

e Evaluation of room closure to ensure retrievability of waste;

e Guidance for design modifications and remedial actions; and

e Data for interpreting the actual behavior of underground openings, in comparison
with established design criteria.

This Geotechnical Field Data and Analysis Report covers the period July 1, 1991 to June 30,
1992. Volume | provides an interpretation of the field data while Volume |l describes and
presents the data itseilf.

1.3 Comparison of Geomechanical Performance with Design Criteria
At the start of the project, criteria were developed to follow the requirements that must be
addressed in the design of the WIPP. These criteria cover all aspects of the facility and its
operation as a pilot plant for the demonstration of technical and operational methods tor
permanent isolation of contact and remote handled transuranic waste. The criteria are
documented in WIPP-DOE-071, Design Criteria, Waste Isolation Pilot Plant (WIPP), Revised
Mission Concept-11A (DOE, 1984). This document includes a section specitic to the
performance of underground excavations. In Table 1-1, these criteria are compared with
conditions actually observed in the underground from July 1991 to June 1992. From the table,
it can be seen that the in situ performance of the excavations generally continues to satisty the
appropriate design criteria although specific areas are being identified where deterioration due
to aging of the facility must be addressed by maintenance measures.

1-9
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2.0 Performance of Excavations

This section describes the in situ geomechanical performance of the underground, interprets
underground conditions between July 1, 1991, and June 30, 1992, and highlights significant
events. Generally, the openings are performing satisfactorily; as the openings age, the effects
of deterioration increase. The notable events during this reporting period were installation of
supplemental roof support systems in Room 1, Panel 1; E140 drift; and the Waste Shaft Station,
as well as the deterioration in the roof in N1420 drift and the continuing increase in closure rates

in Site and Preliminary Design Validation (SPDV) Room 2.

Ot these events, the most significant was the installation of the supplemental roof support
system in Room 1, Panel 1. Opinions presented by a pane! of geotechnical experts, whicn
convened in April 1991, indicated the need for some type of supplementai roof support system
in Room 1, Panel 1, in order to ensure roof stability through the test phase. The individual
evaluations of Room 1, Panel 1, by the geotechnical experts are documented in DOE/WIPP 91-
023, R fth hnical Panel on the Effective Life of the Rooms in Panel 1 (DOE,
1991a). A supplemental roof support system was subsequently designed with consideration
given to both the geomechanical properties of the room and the physical access to the room
required during the test phase. The design is documented in DOE/WIPP 91-057, \Waste
Isolation Pilot Plan lem ry Roof r m. Undergroun r Area Panet 1
Room 1 (DOE, 1991b).

Additional roof support was also installed at the east brow of the Waste Shaft Station to
preclude any interference with waste handling operations in the future. Although the
geomechanical instrumentation did not indicate increasing instability, the action was prompted
due to fracturing observed in the immediate roof beam and bed separation at anhydrite "a".

A slow increase in closure rates was observed in SPDV Room 2 during this reporting period.
Convergence data are analyzed on a biweekly basis in an attempt to detect any changes similar
to that recorded in SPDV Room 1 prior to failure.

Deterioration in the roof is being observed in the north end of Panel 1, Room 7, and in the
S1600 drift. The deterioration consists of low angle shear fracturing along the ribs of Panel 1,
Room 7 and extends west into the S1600 drift. In addition, borehole observations have
revealed less than 0.3 centimeter (1/8 inch) bed separation at anhydrite "b" in this area. Some

form of supplementary roof support may eventually be required in this area because the
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anchorage horizon of the presently installed six foot rockbolts is below anhydrite "b", an area
known to develop horizontal fractures.

2.1 Analysis of Convergence Data

Measurements of room closure are evaluated as a primary means of identitying areas where
conditions may be deteriorating. Closure measurements are made throughout the tacility,
approximately every two months, and are used in conjunction with other observations to assess
the geomechanical performance of the excavations. Points that significantly vary from a

closure mode!l are monitored more closely to determine the cause of the variance.

Closure and the resulting closure rates are determined by using radial convergence points which
measure the reduction in distance between opposing surfaces of the excavations. Radial
convergence points are: 1. accurate, 2. easy to install and read, and 3. analyzed with simple
engineering techniques. Closure rates indicate how an excavation is performing; rates that slow
down with time generally indicate stable excavations whereas increasing closure rates, or rates
that are higher than anticipated, may indicate potential instability. Previously reported results
(DOE, 1990) indicate that closure rates generally decline with time and show cyclic variations

that can be attributed to seasonal temperature changes.

Closure rates are plotted against time on a routine basis. In addition, rates are compared to
predicted vaiues. The predictions are based on statistical evaluation of selected data from
openings of various sizes and ages that provide an empirical relationship between closure rates,
room dimensions, and the age of the excavation. The relationship is updated each year as
additional data become available. This approach provides an equation for closure rate as a
transient function of time and opening dimensions (Table 2-1). Predicted values are assessed
as an upper bound, based on the closure rate determined from the statistical analyses of the
previous year. A data tolerance of about 1.3 centimeters (0.5 inches) per year takes into
consideration the variability associated with geologic conditions underground and difterences in
mining history. Parameters A, b, ¢, and d are determined using nonlinear regression techniques

that are in the commercial software package Statgraphics (Version 4.0).

Measured closure rates from July 1, 1991, to June 30, 1992 from locations throughout the
underground are compared to the predicted values in Table 2-2a and 2-2b. Actual closure rates
are generally in agreement with predicted rates. At locations where predictions have been
exceeded, studies were carried out and explanations for the differences are provided in the

table. It the cause of high closure rates cannot be adequately explained (i.e., recent mining
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Table 2-1
Analyses of Underground Closure Rates
(From convergence data through June 30, 1992)

Parameter:
CLOSURE
A b c d R“

Roof

to 0.0030 1.018 1.119 -0.184 0.817
Floor
Wall

to 0.0101 0.587 1.071 -0.275 0.804
Wall

Notes:

1. Parameters A, b, ¢, d, are determined using nonlinear regression techniques by
means of STATGRAPHICS (Version 4.0).

2. Parameters used in the following relationship:
closure rate
room width (feet)

room height (feet)
age of excavation (years)

Cit)
w
h

t

mou nou

closure rate is in inches/year
3. R? is the coefficient of determination.

The coetficient of determination represents the closeness of fit of the model to
the data. Determination with a perfect fit is represented by 1.0.
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I

nearby, instrument malfunction, location in an intersection, etc.). the location is monitored more

frequently and further field studies may be initiated.

The results of these analyses indicate that the underground is performing within the bounds of
the empirical analyses with the exception of the following areas:

¢ Site and Preliminary Design Validation Roorn 2

s Parts of E140 drift. This drift is the main haulage route to the waste storage area
and remedial measures have been taken to increase stability in the affected
areas,

e Room 1, Panel 1.

SPDV Rooms 1, 2, and 3 have remained closed throughout this reporting period. The rock fall
in SPDV Room 1 destroyed the geotechnical instrumentation in the room, and the uncertainty of
present roof conditions prohibits any entry into the room for reinstrumentation or any other
purpose. Convergence rates in SPDV Room 2 are closely monitored. This room has been
barricaded since 1989 in anticipation of a roof fall or falls in the near future. SPDV Room 3
was closed in June 1990 primarily due to a combination of observed fracturing in the roof and
the results of a ground penetrating radar survey cf the roof. The radar survey results are
documented in Geotechnical Field Data and Analysis Report (DOE, 1991). Because there is no
remotely read geotechnical instruments in SPDV Room 3, assessment of the performance of
SPDV Room 3 using the empirical analyses is not possible. SPDV Room 4 continues to perform
satistactorily. Closure rates in the room have consistently been below the maximum predicted

closure rate for that room size and age of excavation.

2.2 E140 Drift

The E140 drift is the main access to the waste storage area, and its stability is essential.
Convergence rates in areas of the E140 drift have almost consistently been above the upper
bound of the prediction, and fracturing at different stages of development has been identified at
these locations. Depending on the degree of deterioration, either remedial ground control
measures were taken or geomechanical monitoring activities were intensified in the area, or
both.

Roof fracturing, coupled with sporadic rockbolt failures, was observed at two separate areas in
the E140 drift between $1300 and S1600. The northernmost area was renovated with rock

removal. the instailation of wire mesh, and additional rockbolting. Radial convergence arrays
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were installed at the quarter points between the intersections. It was determined that a second
area farther south was experiencing vertical closure rates higher than 8 centimeters (3 inches)
per year. This condition prompted the installation of a supplemental support system at this
location consisting of interlaced wire rope and rockbolts. Geotechnical data gathering
capabilities were enhanced in this area with the installation of two multipoint borehole
extensometers at 30 meter (100 foot) intervals and three observation borehole arrays, spaced
50 feet apart, at the midpoint between the intersections. Data collected from these instruments
will be included in the next annual report.

2.3 Performance of Panel 1 Waste Storage Rooms

Excavation of the waste storage area began in May 1986 with the mining of entries to Panel 1.
Initially, the storage rooms and drifts were developed as pilot drifts that were later excavated to
four meters (13 feet) high, 10 meters (33 feet) wide, and 91 meters (300 feet) long. Room 1
was excavated to near full dimensions in August 1986, and pilot drifts for storage rooms 2 and 3
were excavated in January and February of 1987. Rooms 4 through 7 were completed between
March and May of 1988.

Convergence points were installed at selected locations immediately following excavation in
order to collect early closure data. Tables 2-3a and 2-3b compare the closure rate data for the
Panel 1 storage rooms and the SPDV rooms. Although the history of the Panel 1 rooms is
shorter than the SPDV rooms, a similar pattern of closure rate change is emerging. The vertical
closure rates in Room 1, Panel 1, have shown a slight decrease from the last reporting period.
Panel 1 data will continue to be compared with data from the SPDV rooms in order to determine
the effect of the supplemental roof support system. Roof to floor convergence data indicate that
the closure in the waste storage area is comparable to that of the SPDV rooms at a similar stage
of development. The room with the greatest closure rate is Room 1, Panel 1, which was

excavated to near full dimensions in 1986.

2.3.1 Room 1 Supplementary Support System

This section summarizes the performance of the Room 1, Panel 1, supplementary ground
support system. Detailed analyses of system performance, maintenance activities, and
procedure development are presented semi-annually in the DOE/WIPP 92-024 and 93-012,

wiPP I Roof Panel 1 hnical Field Data Analysis
Reports (DOE, 1992a, 1993).
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in order to provide a stable roof for the estimated total life required for the Test Phase, a
supplemental roof support system was installed. The design was recommended by an
independent panel of international experts in sait rock mechanics. To be acceptable, the expert

panel recommended that the supplemental roof support system must:

o] Be capable of supporting a fuily detached roof slab such as that observed in
SPDBV Room 1.
0 Be capable of yielding in a manner which accommodates the future closure

and detormation of the roof rock.

0 Accommodate the bin scale equipment, including forklitts and ancillary
equipment.
o} Extend the useful life of Room 1, Panel 1 to allow completion ot the experiments,

for an additional period of at least seven years (from July 1991).

The installation of the support system was completed in December 1991, and bolts were
tensioned in February 1992.

The supports consist of 26 rows of eleven bolts on 2.5 to 3.0 meter (8 to 10 foot) centers. Each
row consists of three 2.7 meter (9 foot) long 15 X 40 steel channel support sets installed
laterally across the room. Eleven 2.5 centimeters (one inch) diameter, 4.0 meter (13 feet) long
Dywidag threaded rockbolts are installed through the channels. The bolts are resin anchored
between the 2.6 and 3.5 meters (8.5 to 11.5 feet). Approximately 46 centimeters (18 inches)
extends out of the borehole. Each bolt is equipped with a load cell. The area between the
channel support sets is covered by a network of steel wire lacing cables underneath a mat of
welded steel wire mesh and expanded metal. Figure 2-1 shows a cutaway view of the support
system, and Figure 2-2 shows a plan view. The system is designed so that the rockbolts can be
continuously monitored by the load cells and adjusted (by loosening the nut) to accommodate

roof expansion.

Roof Expansion

Performance of the roof support system is governed by the magnitude of the vertical and
horizontal deformation ot the rock between the anchor and the collar of the rockbolts. The

criterion for vertical displacement is that the expansion of the rock between the anchor and the
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Schematic View of Room 1, Panel 1
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FIGURE 2-2
Planview of Room 1, Panel 1
Supplementary Roof Support System
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collar of the bolts must not exceed 27 centimeters (10.5 inches) or the length of the rockbolt
protruding beyond the collar less the thickness of the load cell, nut, plates, etc. The protruding
section of the rockbolt is referred to as the "pigtail.” Insutficient time has elapsed since
installation to directly measure the change in pigtail length. Figures 2-3, 2-4, and 2-5 show the
expansion rate of the first eight feet of the root as measured by borehole extensometers.
Average annual expansion rates vary seasonally from about 1 to 2 centimeters (0.4 to 0.8
inches) per year. The criterion gives a total time of 13 to 26 years to reach 27 centimeters (10.5
inches). Movement on the pigtails may be slightly iess than that indicated by the extensometers
for two reasons. First. the roof expansion as measured by the collar to eight foot bays of the
extensometers is probably higher than the expansion over the free length of the rockbolts,
because the free length of the bolt is shorter than eight feet. Second. the expansion rate at the
bolt locations is probably lower than at locations away from the bolts. In the event that

individual bolts run out of pigtail, extension pieces can be attached to the bolts to extend their
life.

Horizontal Displacement

The horizontal displacement criterion for roof bolt performance is determined on the size of the
bolt borehole annulus. Initially, there is 5 centimeters (two inches) difference between the
diameter of the rockbolt and the diameter of the borehole. After 5 centimeters (two inches) of
horizontal offset has occurred in the boreholes, the rockbolt will begin to be pinched by the
borehoie walls. After some unknown additional horizontal oftsetting occurs, the bolts could fail.
Should this happen, provisions have been made to reinstall failed bolts. Experience with
smaller-diameter (and therefore, weaker) rockbolts has indicated that bolt tailures due to
horizontal offset occur gradually in an area. Therefore, in the unlikely event that bolts should
fail due to offsetting, it wiil be possible to replace bolts faster than they fail. Fifteen boreholes
have been drilled in the roof of Room 1, Panel 1, for measurement of horizontal offset
magnitude as well as for monitoring fracture development. These holes were drilled in April

1991 and February 1992. As of June 1992, no measurable offsets were observed in these
holes.

Rockbolt Load

In addition to the deformation criteria discussed above, there is a design load limit of 20,000
pounds per bolt. Each of the bolts in Room 1, Panel 1, is equipped with a load cell. As stated
in the design document for the roof support system, when bolt loads approach the design load
limit, the boits will be detensioned by loosening the nut. No bolts have been detensioned as of

June 1992. Because bolts will be detensioned individually at different times, the rate of loading
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Room 1, Panel 1, Center Extensometer
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ot individual wolts will be as much a function of when a certain bolt and the bolts around it were
last detensioned as it is a function of the state of deformation in the rock. Channel bolt loads
and individual bolt loading rates are routinely plotted to provide the primary means ot lcad
analysis. Periodically a load grid is generat2d from the rockbolt load cell data to provide an
cverall view of bolt loading throughout tuz room.

Three load grids from this reporting period are shown in Figure 2-6. The initial tensioning of the
boits was completed cn February 27, 1992, and the load grid after tensioning is shown in Figure
2-6(a). Two additional plots from this reporting period are given in Figures 2-6(b) and (c). The
primary purpose of this plot format i< ‘o examine relatively large-scale loading phenomena over
extendea periods of time.

Individual bolt loading rates were generally in the 75 - 150 pounds per week range during the
first 45 to 60 days after initial tensioning. Rates then began to increase to the 200 to 700
pounds per week range. It is believed that the lower initial loading rates are due to the "bedding
in" effects of the various components of the roof support system, an anticipated response. The
increase in loading rates can be seen by examining the three plots with respect to the overail
load amplitude and the time between piots. In view of the dates the data was read, it is obvious
that the amplitude increase between (b) and :{c) is larger than the amplitude increase between

(a) and (b), indicating an overall increase in loading rate.

Convergence

Vertical convergence rates in Room 1, Panel 1, have dropped approximately 10 to 20 percent
since installation of the supplementary roof support system. Only two vertical convergence
gauges have operated continuously from one year betore bolt tensioning to June 1992. For the
period from February to June 1991, the vertical convergence rate at S1717 (near the center of
the support installation) was 9.2 centimeters (3.64 inches) per year. Over the same period in
1992 (after bolt tensioning) the rate was 7.5 centimeters (2.95 inches) per year, a drop of 19
percent. The convergence rate at $1853 (near the south end of the support installation) was 7.3
centimeters (2.88 inches) per year in 1991 compared to 6.6 centimeters (2.61 inches) per year
in 1992. a drop of nine percent. It is too early to make any assertions as to the cause of the

closure rate decrease. although it is possible that the roof support system may have influenced
the change.

In summary, as reported in the semi-annual assessments, the roof support system is performing

within the design limits. Based on roof deformation rates, it appears at thic time that the
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ettective life of the system could be significantly greater than the minimum of seven years after
installation specified in the design documents.

2.4 Modeling Room Performance

During and after excavation, stresses are redistributed in the surrounding salt. The stress
distribution depends on the constitutive properties ot the salt mass. clay seams and anhydrite
beds. and the geometry of the excavation. in rock salt. the excavation responds initially by
elastic deformation due to the stress redistribution, and subsequently by inelastic, time-
dependent deformation due to deviatoric stress. These changes in deviatoric stress, and the
deformation of salt under gravity loading will result in clay seam sliding and separation and an
increase in closure rates. Computer modeling is a standard method tor precicting the reaction
of the surrounding rock to excavation, as well as tor predicting how the rock mass will respond
to different room configurations, material properties. and support designs. Two computer
programs. FLAC and VISCOT, were used to study difterent constitutive models and modeling
methods for WIPP. These results were also compared with other models used by other WIPP
participants.

2.4.1 FLAC

Fast Lagrangian Analysis of Continua (FLAC) is a two-dimensional, explicit, finite-
ditference code that simulates the behavior of structures built of soil, rock, or other
materials that may undergo piastic flow when their yield point is reached. Materials are
represented by zones that form a mesh that is adjusted by the user to fit the shape of the
object to be modeled. Each zone behaves according to a prescribed linear or non-linear
stress/strain law in response to the applied forces and boundary conditions. Under certain
stress conditions, the material will yield and flow, and the mesh will deform and move with

the material that is represented.

FLAC was developed by Peter Cundall in 1986 specifically to perform engineering analyses
on IBM-compatible personal computers and can handle relatively large problems at
relatively high speeds (ltasca, 1991). ltasca Consulting Group now markets FLAC n an
executable-only form and has incorporated the 1983 SNL Reference Creep Law (Krieg,
1984).

FLAC is primarily intended for geotechnical engineering applications. FLAC has seven
built-in material models, an interface model, three structural models. and can simulate

groundwater flow problems. Three creep and thermal models are available as
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enhancements. FLAC is capable of solving plane strain, plane stress. and axisymmetric
problems. All the FLAC models discussed here used the plane strain case.

2.4.1.1 FLAC Modeling of WIPP Storage Rooms

Six FLAC models were created to model the WIPP storage rooms, particularly Room 1,
Panel 1, to evaluate the effect of rockbolting 6n the mechanical performance of the rooms.
In addition, the models were compared to the results from the SNL Second Benchmark
Probiem (Morgan et al., 1981). All the models used the same mesh and boundary and
initial conditions, but used different material properties or rockbolt layouts. The six FLAC

models are summarized below:
SRARO0 - Standard WIPP stratigraphy, including clay seams.
Calculations include primary creep.
SR1 - Same mesh as SRO, except it was assumed that the
stratigraphy is composed of homogeneous halite
interbedded with clay seams.

SR2 - Same as SRQ, without primary creep.

SR3 - Same as SRO. but using larger units (megapascals and years
rather than pascals and seconds).

SB0O - Same as SRO to five years creep time, then 3.5 meter

(11.5 foot) long grout-anchored rockbolits were installed.
SB1 - Same as SBO to two years creep time, then three meter (10

foot) long mechanical rockbolts installed on a diagonal

pattern with 3.5 meter (11.5 fcot) grout anchored boits

installed after five years.

The mesh tor all six models consisted of 3857 nodes and 3696 elements (Figure 2-7).
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2.4.1.2 SNL Second Benchmark (BMIl) Problem

The Second Benchmark (BMII) Problem was tormulated in late 1980 (Krieg et al., 1980),
and the results were published in late 1981 (Morgan et al., 1981). The BMII problem
involved calculating the mechanical response of an excavation in salt, using nine computer
codes by several WIPP participants. The BMII problem examined two drift configurations.
an isothermal (unheated) drift, and a heated drift. The isothermal room was placed at
approximately the same stratigraphic horizon as the current WIPP storage rooms. In 1988,
Itasca reproduced the Second Benchmark problem using FLAC (itasca. 1988). ltasca's

results compared tavorably with the resuits of the nine codes used in BMII.

2.4.1.3 Differences Between FLAC and SNL BMll Guidelines
Although the six models created for FLAC are very similar to the isothermal case in the
SNL Second Benchmark Problem, they do not meet the exact specifications of that

analysis. The following are notable ditferences:

e Size of the Model: The FLAC model is approximately 100 meters (328 ft) longer
vertically than the BMIl models. This difterence provides FLAC models with more
accurate results, because boundary ettects would be less than those of the BMII models.
In addition, FLAC has many more zones and gridpoints than the BMII models: this tends
to increase the accuracy of the FLAC results. '

e Stratigraphy: The FLAC model corrects the elevation of the room with respect to
MB129 and clays G and H to reflect the field observations in Room 1, Panel 1, more
accurately (Figure 2-8). Overall elevation of the room and stratigraphy was decreased
by approximately 12 meters (39 feet) to coincide with earlier WIPP modeling eftorts
(DOE, 1989). The BMIl models ignore clay G which exerts signiticant intluence on the
behavior of the root of the storage rooms. The FLAC model included slidelines for clay
G and clay H in the roof and clay E in the floor of the excavations.

s Material Properties: Material properties for the FLAC models were taken from the
Reference Stratigraphy (Krieg, 1984) rather than the BMII guidelines. In addition. the
value for the triction angle of the clay seams used in the FLAC models is larger than in
BMII. The larger triction angle slightly increases the resistance to slip in the FLAC
models. However, after clay seam separation occurs in the FLAC models, the friction

angle is effectively zero.
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2.4.1.4 Modeling Parameters

Vertical boundaries for all cases are at the center of the room and in the center of pillars,
because they represent lines of symmetry and are constrained to move in the horizontal
direction. The boundary condition at the top is uniform stress, and the boundary condition

at the bottom was constrained vertical displacement.

The initial conditions applied to the models were in situ stresses. The initial stresses were

lithostatic and equivalent to the overburden stress.

Excavation dimensions were four meters by ten meters (13 teet by 33 feet), and the
surrounding rock was modeled from a depth of 746 meters (2448 teet) to a depth of 546
meters (1792 feet).

The material properties for the rockbolts are based on manufacturer's statements and field
tests. The FLAC calculations consider bolt cross-sectional area. stitfness, and strength and
grout bond stiftness and bond strength. Rockbolt properties were scaied to account for the
ditference between the actual three-dimensional rockboit pattern and the two-dimensional
representation by FLAC.

The creeping rock types were modeled using the WIPP reference creep law. The anhydrites
and polyhalites were considered Mohr-Coulomb materials. All zones with the exception of

the excavation and the interfaces were modeled as isotropic thermal materials.

2.4.1.5 Results of the Comparison of FLAC to BMII
The results of the FLAC SR2 model are compared to the SNL BMI! results and a limited

discussion is presented of some aspects because not all six models are applicable to the
BMII results.

The vertical and horizontal closure histories for the FLAC model fit well within the bounds
of the BMII results. Figure 2-9 shows the overliay of the mid-span vertical closure histories
from BMIl and FLAC. For vertical closure, the FLAC model is in the upper half of the main
group of BMIl models. The horizontal closure history (Figure 2-10) for the FLAC model is in
the upper half ot the main group. The FLAC model gives slightly higher than average
horizontai and vertical closure. The results indicate that the FLAC model predicts
displacements as well as the other BMIl models.
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The results of clay seam relative vertical displacements were difficult to compare because
the location of the slidelines and the thicknesses of the salt beams between slidelines is
ditterent between the FLAC and BMI! models. Because the friction angle of five degrees
used for FLAC clay seams was higher than the zero degrees used in the BMIl models and
because FLAC models allow complete separation of unlimited magnitude at the clay seams,
the overlays of the relative vertical displacement profilie plots from BMIl were not included

in the comparison.

Figure 2-11 shows the clay seam relative horizontal displacement protile (shear or ride)

comparison. The clay H and clay G interfaces in FLAC were overlain on the first slideline
over the BMII excavation because this slideline was closest in elevation to clay H and G.
The clay E interface in FLAC was overiain on the first slideline under the BMII excavation

for the same reason (Figure 2-12).

The FLAC clay H intertace showed shear displacements slightly less than those of the BMII
models (Figure 2-11). This is reasonable considering that the BMII slideline has no other
sfidelines between it and the excavation. The FLAC clay G intertace gives shear
displacements that are essentially the same as those of the BMII models over the
excavation, but are about 50% of the BMIlI models over the pillar. The FLAC clay E
interface compared most tavorably with the BMII models (Figure 2-12). This result was not
surprising because the model itself is essentially the same as the BMIl models in this area.
However, the FLAC model does not show the negative shear displacement of clay E under

the piltar. Overall, the FLAC interfaces compared reasonably well with the BMII slidelines.

The ditterences between the FLAC model and the BMIl models again made it difficult to
compare the stress profiles along the vertical centerline. The horizontal profiles were much

more suitable for comparison.

Effective stress through the pillar compared well to the BMII models (Figure 2-13). FLAC
produced the same shape profile, but was slightly higher near the center ot the pillar
especially for the first few years after excavation when compared to BMIl models. This may
be due to the difterences in stratigraphy in the models. Effective stress along the vertical
centerline also compared well (Figure 2-14). The FLAC model produced stress at nearly the
same level except near the anhydrites in the roof of the BMII model which are absent in the
FLAC models. Overall, the etfective stresses in the FLAC models compared tavorably with
the BMIl model results.
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The horizontal and vertical stress protfiles from FLAC also compared well to the BMI|
models (Figures 2-15 and 2-16). The difterences between the models are similar to those
tor etfective stress. For vertical stress through the pillar, the FLAC model showed slightly
lower stress near the center of the pillar where for etfective stress it showed slightly higher
stress than the BMIlI models in that location. Overall, the FLAC models produced stress

distributions that are within the range of the BMII results.

2.4.1.6 Results of FLAC Roof Beam Deformation

The six FLAC models produce very little variation in the response of the two roof beams
over the excavation. Figure 2-17 shows the detormed mesh around the excavation for two
FLAC models. All the unbolted models produced a uniform sag over the length ot the roof
beam with varying separations at clay G. The SR1 model (all salt stratigraphy) produced
the largest separation at clay G, about twice that of the other models. This was expected
because the absence ot the stitfer stratigraphic units in SR1 model would tend to increase
the deftormation around the excavation. The bolted models showed less beam sag and
almost no separation at clay G. This is most likely due to the reinforcement provided by the

rockbolts.

2.4.1.7 Results of FLAC MB139 Behavior

The material properties used for MB1338 in the FLAC and BMIl models make this unit
excessively strong but in reality there are pre-existing tractures that weaken it. This is
backed up by field observations that indicate that MB139 is essentially unable to support
load due to intense, excavation-induced fractures after approximately 18 months.
Therefore, the large stress buildup in the anhydrite shown by FLAC and BMI!I models
probably does not really exist.

2.4.1.8 Results of FLAC Rockbolit Modeling

FLAC models SB0 and SB1 include the installation of rockbolts two and five years after
excavation of the drift. The mesh plots (Figure 2-17) best show the effect of the rockbolts
on the pertormance of the excavation. The SB models were the same as the SR0 model
except that 2.5 centimeter (one inch) diameter, 3.5 meter (11.5 toot) long grout anchored
bolts were installed after five years in SB0. SB1 had two centimeter (3/4-inch) diameter
three meter (ten foot) long point anchored bolts installed after two years in addition to the
3.5 meters (11.5 ft) bolts after five years. The effect of installing bolts after five years was
to reduce both the beam bending and the separation at clay G. However, the SB0 model
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showed slightly greater separation at clay H. The effect of both sets of bolts in model SB1
was to slightly reduce the beam bending and nearly eliminate the separation at the clay
seams. The FLAC model results indicated that the bolts do provide some reinforcement to
the roof beams and probably reduce the onset and extent of fracturing. The bolts also
reduce vertical closure in the FLAC models by about 18% over ten years, a significant
amount over the life of the facility.

2.4.2 VISCOT

VISCOT is a computer program used to model! the salt creep around excavations at WIPP.
The VISCOT computer code solves two-dimensional or axisymmetric nonlinear transient
thermo-viscoelastic or thermo-viscoplastic structural problems by the finite element method
(INTERA, 1983). Originally, the VISCOT code was used to solve thermomechanical
probiems tor salt creep for the high-level nuclear waste program. Currently, WIPP

Engineering uses the code in interpreting underground movements for the repository.

VISCOT, in its original form, did not have the capability of modeling clay seams and
separations along the salt bedding. Therefore a joint element with a constitutive relation
tor normal and shear deformation was added to enhance the VISCOT capabilities. The

addition of the joint element has resulted in a revised program called VISJOINT.

2.4.2.1 Munson-Dawson Model

In 1985 SNL presented the results of a comparison between calculations using the 1983
reterence creep law and measured closure data which showed that measured vertical
closures and closure rates were at least three times larger than calculated closures and
closure rates. The new Munson-Dawson constitutive creep law was developed in an attempt
to resolve this discrepancy between measured and calculated room closure rates (Munson
et al., 1989). The new model provides a more accurate representation of the transient
strain curve using a quadratic function that replaces the earlier linear function. Although
the steady-state partion of the model formulation remains as initially presented by Munson
and Dawson, minor improvements have been added. Furthermore, the model now uses a
Tresca creep flow potential in place of the previously used von Mises tlow potential.
Munson et al. (1989) simulated Room D using the new constitutive model. Munson et al.
(1989) used a modified stratigraphy, based on a re-evaluation of underground conditions,
and modeled the clean salt and argillaceous salt layers and clay seams. They did not
include the anhydrite and polyhalite layers in their analysis, assuming that the layers would

have an insignificant effect on the result. The comparison between calcuiated and
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measured in situ Room D closures showed a good correlation. A description of the

tormulation of the new Munson-Dawson model is provided in Appendix A.

Callahan and DeVries (1991) used the new Munson-Dawson constitutive creep law for
analysis ot WIPP backfilled disposal rooms. Because the backtill initially has high porosity.
it does not provide any initial resistance to the room creep closure. Therefore, the closure
history of the backfilled room should be very similar to that of an open drift at early times
(Sjaardema and Krieg, 1987). ’

For purposes of this report. the analysis ot a WIPF storage room using VISJOINT with the
1983 SNL Reterence Creep Law (Krieg, 1984) will be referenced as Case A which allows
opening of the joints. The result of the analysis of a WIPP storage room by Callahan and
DeVries will be referenced as Case B.

The 1983 SNL Reference Creep Law (Case A) and the Callahan and DeVries (Case B) both
indicate a reasonably good agreement between prediction and measurement of room
closure in SPDV Rooms 1, 2, and 4. Note that Case A uses the 1983 reterence creep law
and employs the joint element that allows for opening to occur along clays G and H,
whereas Case B uses the new Munson-Dawson model and does not simulate the opening

along bedding planes or joints.

2.4.2.2 Impiementation of the Munson-Dawson Model into VISJOINT
The new Munson-Dawson constitutive creep law was implemented into the VISJOINT code

to predict the behavior of the WIPP rooms and to provide additional comparisons.

Three ditferent finite element meshes (Figure 2-18) were prepared for a four meter by ten
meter (13 foot by 33 toot) room to examine the etfect of modeling clays G and H. The
three meshes are:

Case 1: Uses the new Munson-Dawson constitutive creep law and allows for shearing and

opening of joints. The mesh consists of 405 nodes and 357 elements,
Case 2: Uses the new Munson-Dawson constitutive creep law and has a mesh with joints

that can shear but cannot open. The mesh consists of 405 nodes and 357
elements.
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Case 3: Uses the new Munson-Dawson constitutive creep law and has a mesh without joints

containing 363 nodes and 318 elements.

2.4.2.3 Modeling Parameters

Vertical boundaries tor all cases are in the center of the room and in the center of pillars.
since they represent lines of symmetry and are constrained against movement in the
horizontal direction. The boundary condition at the top is uniform stress. and the boundary
condition at the bottom is constrained displacement. In order to compare the results with
those of Case B (Callahan and DeVries, 1991), it was assumed that the rooms are located
in a homogeneous layer of bedded salt. Because of the memaory limitation of the program.
only the sutrounding rock from a depth of 678 meters (2224 feet) to a depth of 630 meters
(2067 feet) was modeled. Joint elements were used tc model clay H at a depth of 650
meters (2133 feet), clay G at a depth of 652 meters (2140 feet) and clay E at the bottom of
MB139 at a depth of 661 meters (2168 feet). In situ stress was assumed to be hydrostatic.

2.4.2.4 VISJOINT Results
The Munson-Dawson constitutive creep law was implemented into the VISJOINT code and
validated by comparing the results of Case 3 (Munson-Dawson Constitutive Creep Law

without joints) with those of Case B (Callahan and DeVries, 1991).

Case A, 1983 WIPP reference creep law allowing the opening of joints, and Case 3,
Munson-Dawson constitutive creep law without joints, showed good agreement with actual
WIPP closure data over a period of eight years. However, Case 3 ignores the opening
along bedding planes and is therefore not physically realistic.

Case 1 using Munson-Dawson constitutive creep law allowing the opening of joints, and
Case 2 using Munson-Dawson constitutive creep law with joints that can shear but not open,
showed a much higher convergence, about 200 to 400 percent of measured convergence.
From the comparison, Case 1 and Case 2 do not seem appropriate for modeling the

behavior of storage rooms.

Cases A, B. and 3 provided good results when compared to actual measured convergence
from SPDV Rooms 1.2, and 4 (Figure 2-19).
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3.0 Excavation Effects Program

Excavation ettects, which are the structural responses of the rock mass to excavation, have been
observed and monitored since mining of the underground tfacility began at WIPP. A historical
summary ot excavation effects is presented in Table 3-1. During this reporting period.

observations of excavation effects have included:

1.) observations of subsurtace fractures in boreholes;
2.) mapping of fractures on excavation surfaces:
3) observations of rockbolt failures.

These observations detect. quantify, and assist in the interpretation of fractures and bed
separations that result from the excavation ot salt in the underground. The magnitudes of
tracture apertures or of bedding plane separations are recorded as the vaiue at the excavation
surface in which such features are tound. When possible, indirect measurement or visual
estimates are made of the distance a fracture or separation continues into the rock. Spalls are
localized areas of rock that have a plane of separation subparallel to and very near an excavation

surtace, and are usually scaled oft or controlled with combinations of rockholts and wire mesh.

3.1 Borehole Fracture Observations

Systematic borehole observations were started in mid-1986 to study fracturing and separations in
the roof and the tloor of the repository. This program consists of an annual inspection of
boreholes. 2 to 4 meters (6 to 12 feet) deep, that are arranged in arrays located throughout the
underground as shown in Figure 3-1. A typical array is shown in Figure 3-2. These observations
are subjective and have been conducted by more than one individual in past inspections.
Variations in the field data and in its subsequent interpretation must be taken into consideration

when evaluating the results presented here.

The original 161 boreholes (30 arrays) were drilled in 1986. Eighteen additional boreholes
(6 arrays) were drilled in 1291. Only 78 of the original 161 boreholes were available for
inspection during this reporting period. The other holes, primarily tloor holes. were
destroyed by mining activities or were otherwise inaccessible. No new arrays were drilled
during this reporting period.
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FIGURE 3-1
Borehole Locations for the Excavation
Etfects Program
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3.1.1 Interpretation of

Fracture Observations —
The results of the 1992 survey are compared with
the results of previous surveys in Table 3-2. The
data for each array are presented in Figures 3-3 to
3-38. The fractures and their distribution in roof
and floor boreholes are interpreted.
The main conclusions that can be drawn from the

data are that as the excavations age:

e fractures and horizontal oftsets increase

o width of fractures and separations increases

o relative displacement at horizontal offsets
increases TyplTal E

ZEF = EZxTavanion Effacng fregram

Horizontal offsets in the roof usually occur within
the first few inches of the back as shallow spalls or Figure 3-2
at clay seams. The majority of these offsets are

observed near the ribs, with the portion of the

borehole from the collar to the offset moving towards the center of the excavation.

Fioor tractures tend to occur with similar frequencies near ribs and at mid-span. Horizontal
offsets in the tloor are generally associated with fractures that define large. shallow, dish-shaped

slabs. Access into many of the floor holes has been lost due to horizontal offsetting or infilling
with salt debris.

Fourteen percent of all fractures recorded in this year were open wider than 0.3 centimeters (1/8

inch). The largest of the fractures are located within the first foot of the excavations, as shallow
spalls.

3.1.2 Results

Fractures and separations below the surtace of excavations may be present betore
inspection boreholes are drilled; however, offsets do not manifest themselves until some
time has passed after drilling. Results tfrom the survey are presented in two groups to
separate offset information for boreholes drilled at ditferent times. Arrays 1 through 30

(original EEP system) were drilled in 1986, and offsets were first recorded for many of
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Table 3-2
Cumulative Data from Excavation Effects Program

Percent of Hole Hole Hole Hole Holr: Hole Al Al All
Holes with: E A C F B D Roof Floor Holes
(%) (%) (%) (%) (%) (%) Holes Holes (%)
(%) (%)
Fracturing 22 28 22 29 46 36 24 37 30
1986 ‘
Fracturing 41 52 41 45 62 64 44 57 51
1987
Fracturing 32 64 52 54 65 7 56 63 60
1988
Fracturing 63 80 67 61 69 " 70 67 68
1989
Fracturing 78 88 78 71 77 79 81 76 78
1990
Fractuning 81 88 78 A 77 79 82 76 79
1991
Fracturing 81 92 83 71 77 79 87 76 81
1992 !
Horizontal Offsetting 63 32 63 21 35 21 33 26 39
1987
Horizontal Offsetting 78 44 85 32 46 43 70 40 55
1988
Horizontal Offsetting 85 60 89 46 54 46 78 49 63
1989
Horizontal Offsetting 89 64 a3 54 58 54 82 55 68
1930
Horizontal Offsetting 89 80 a3 54 62 54 87 56 71
1991
Horizontal Offsetting 93 80 a3 57 g2 54 89 57 73
1992
Notes
1. Section locations and typical hole configurations are shown on Figure 3-1.
2. Observatons were mada using a probe constsung of a nail attached perpendicular to the end of a rod.
3. Gbservauons from previous surveys were usad tor inaccessible holes.

Percentages for 1991 and 1992 do not reflect data obtained from arrays 31 through 36.
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these holes in 1987. Arrays 31 through 36, drilled in 1981, consist of roofholes only.
Offsets were first recorded in these arrays in 1992. Arrays 31, 32 and 33 are located in
the eastern section of the N1420 drift. Arrays 34, 35 and 36 are located in Room 3, Panel
1.

Arrays 1-30

Fractures have been recorded in 87 percent of all roofholes in the original 30 arrays. During this
reporting period, fractures were recorded in 75 percent of rootholes available for inspection.
Ninety-four percent of these fractures had a width of 0.3 centimeters (1/8 inch) or less; 1.3
centimeters (1/2 inch) was the maximum recorded width. Twenty percent of the fractures
recorded in 1992 occur at clay seams.

Horizontal otfsets were found in 89 percent of all rootholes, with increases in lateral

displacements up to 1.3 centimeters (1/2 inch) recorded during this reporting period.

In general, floor fractures in 1992 are not wider than 0.6 centimeters (1/4 inch) and are often
associated with MB 139. The widest opening 12 centimeters (4.8 inches) found in this inspection
was in the floor of SPDV Room 4. Openings wider than six inches have been observed in the
floor near the ribs in the SPDV rooms in past inspections. They are associated with shallow, dish-
shaped slabs.

Horizontal offsets were observed in 57 percent of floorholes. A maximum annual relative
displacement of at least 2.6 centimeters (1'/g inches) was reported fram one tioor hole, located
near an excavation that was widened in 1990.

Arrays 31-36
Seventy-two percent of the boreholes in arrays 31 through 36 contained fractures. Maximum
openings of up to one inch were found within the first foot and were associated with small

rootbolted spalls. Fourteen percent of recorded fractures were located at clay seams.

Horizontal offsets were observed in four of the nine boretioles in Arrays 31, 32 and 33 in N1420,
with maximum relative displacements of 0.6 centimeters (1/4 inch). Seven of the nine boreholes
in Arrays 34, 35 and 36 (Room 3. Panel 1) contain offsets. Maximum relative displacements were
0.9 centimeters (3/8 inch).

3-9
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Excavation Effects Data, Array #6
Site and Preliminary Design Validation Room 3, N1312
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Excavation Effects Data, Array #13
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Excavation Effects Data, Array #15
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Excavation Eftects Data, Array #21
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Excavation Effects Data, Array #22
E300, S700
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Excavation Effects Data, Array #23
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Excavation Effects Data, Array #24
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Excavation Effects Data, Array #25

E140, S1129
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Excavation Effects Data, Array #26
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Excavation Effects Data, Array #27
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Excavation Effects Data, Array #28
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Excavation Effects Data, Array #29
E140, S1700
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Excavation Etfects Data, Array #30
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Excavation Effects Data, Array #31
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Excavation Effects Data, Array #32
N1420, E1470
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N1420, E1110

3-42




P PPN -
<L Lo L.
_-_ anme amm
: ‘ \
i | i
| ; |
’ |
| | |
! ! noriz. oftset /4"’
L - clay S S T
e H -—
: . R g i hang i e
noriz. oftset I/E \
i i |
| ‘ !
. ; i
; I i
z ; |
| . l
N
p— A "~ )
| - » :
'
: Ar,ﬂy _s
; v - N
(Lzcoking Norirn)
!
i
' +
7/
e
— e 105
u .e2enc
E ; e~y C* ~ce
-2 nor2cnig c¥set v e
- fracture or frgoiare {crrows gencte rtocec
E € ¢ Ay seg™ 0"Gue 23me re clive ~overer: ! nd omm e
g _.
e _ T 4 .
E - , T < -~
-2 i VAR V. :
i L1
g BOCM DIMENSIONG Ty 3T ¥
Soaf n fir M DIMENSIONS ¥

Figure 3-36

Excavation Effects Data, Array #34
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Excavation Effects Data, Array #35
Panel 1, Room 3 - S1775
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Panel 1, Room 3 - S1688
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3.2 Fracture Mapping of Excavation Surfaces
Distribution of excavation surface fractures is shown on fracture maps created for areas of the
WIPP underground facility as required. During this reporting period. fracture maps were

produced to assist in ground stability assessments for the (ollowing areas:
e Waste Shaft Brows
e Room 7, Panel 1 Back

e Room 1, Panel 1 Floor

3.2.1 Waste Shaft Station

The fractures of the shaft brows of the Waste Shait Station were mapped in November, 1991.

Fractures were mapped for the following areas:

e FEast Brow Face (within the shaft)
e West Brow Face (within the shaft)
s East Brow Underside (station back)

» West Brow Underside (station back)

East Brow Face

Fractures in the shaft are shown in Figure 3-39. Vertical extent of mapping is from the base of
the brow to approximately eighteen feet up into the shaft. No visible horizontal fractures were
found in the halite unit above anhydrite "a" (approximately 4 meters (13 feet) up into the shatt);
however, some subvertical spalling was found. The contact between the halite and the top of
anhydrite "a" contained discontinuous fractures with openings up to 0.2 centimeters (1/16 inch)

wide.

There is a separation spanning from rib to rib at the contact of anhydrite "a" with the underlying
halite unit. Width ot this separation varied from tight to 1.3 centimeters (1/2 inch). The depth of
this separation into the rock could not be determined. A discontinuous horizontal fracture was
observed in the halite unit between anhydrite "a" and anhydrite "b" (approximately 1.5 meters (5
feet) up into the shatt), with openings up to 0.9 centimeters (3/8 inches) wide. The depth of this
fracture into the rock cculd not be determined, and no horizontal displacement (offset! was noted.

The halite below anhydrite "b" is offset along the contact toward the shaft by one to three inches:
opening widths of up to one inch were observed along the contact. There are several horizontal
fractures in this section of halite. A discontinuous fracture 0.6 centimeter (1/4 inch) wide. occurs
about 1.2 meters (4 feet) above the base of the brow and appears to span the width ot the brow
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tace. Low-angled fractures originating at the sides of the tace intersect this tracture, outlining a

wedge-shaped section of rock.

West Brow Face

Much of the west brow face was obscured by wire mesh encrusted with halite. making
observations difficult. The brow exhibited features similar to those of the east '»»Lw (Figure 3-40).
A spail was tound between 4 meters (13 feet) and 5 meters (18 feet) up into the shatt. Anhydrite
"a" contained a discontinuous separation along the upper contact, with openings less than 0.15
centimeters (1/16 inch) wide. A horizontal fracture with a 0.3 cenitmeters (1/8 inch) wide opening
was found between anhydrite "a" and anhydrite "b". The depth of the tracture into the rock could
not be determined.

Anhydrite "b" exhibited no separation from the overlying halite. However. the lower contact of the
anhydrite with the underlying halite consisted of a separation of up to 1.3 centimeters (1/2 inch)
wide. The depth of the separation into the rock could not be determined. The lower halite unit i1s

oftset toward the shaft by approximately 2.5 centimeters (1 inch).

A group of fractures with openings up to 0.15 centimeters (1/16 inch) wide was located on the
south side of the face between the base of the brow and approximately 1.2 meters (4 feet) up.
Orientations of the tractures ranged from horizontal to vertical, with lengths up to approximately
four feet.

East Brow Underside
Vertical fractures were observed in the back within 3 meters (10 feet) of the shaft (Figure 3-41).

Openings up to 1 centimeter (3/8 inch) wide were observed in the fractures closest to the shaft.

Vertical depths of these fractures were not determined.

West Brow Underside
Vertical tractures up to 4 centimeters (1'/, inches) of surface opening and. with visible depths
extending approximately 0.3 meters (1 foot) into the back were found on the underside of the

west brow (Figure 3-42). One vertical fracture intersects a horizontal fracture lying approximately
tour inches above the back, forming a shaliow slab.

Four steel straps (anchored with rockbolts) are installed on the west brow and extend

approximately 3 meters (10 feet) along the underside of the brow and up into the shatt

approximately 4 meters (12.5 feet). To contain shallow spalling on the underside of the brow,
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wire mesh was installed between the straps and the back.

3.2.2 Panel 1

Room 7, Panel 1 Back Fractures
Fractures in the back of Room 7 were mapped in June, 1992. Comparisons with similar maps

created in 1991 indicate that the overall lengths of fractures did not increase signiticantly.

Low-angle fractures continue to appear in the back near the ribs. These fractures are estimated
to project at angles less than approximately twenty degrees from horizontal. The depth of
fracturing into the rock has been measured up to 0.7 meters (2.2 feet) in the past. but generally
the openings are not wide enough to allow such measurements to be made. Fracture depths were

not estimated or measured during this survey.

The majority of fractures occur along the east side of the room within 2.1 meters (7 feet) of the
ribs. Although relatively unchanged in length, many of these fractures contained small slabs that
were removed. Wire mesh was installed along the east side of the back to contain further
spalling.

Room 1, Panel 1 Floor Fractures

Fractures in the floor of Room 1 were mapped in June 1992, Regularly spaced fractures,
averaging approximately 2.1 meters (6.8 feet) in length and 2 meters (6.5 feet) apart, were found
within a 37 meters (120 foot) section along the centerline of the room. Fracture strikes were
primarily east-west and dips primarily to the south. A set of fractures approximately 12 meters
(40 feet) north of the south bulkhead were found to coincide with a drummy area identified in
1981. A large floor siab was identified 21 to 24 meters (70 to 80 feet) from the south end of the
room where existing fractures had extended and intersected forming a rectangular pattern. One
continuous fracture parallels the east rib 0.6 to 0.9 meters (2 to 3 feet) away and spans eighty

percent of the length of the room. Filling with loose salt prevented fracture depth measurements.

3.3 Observations of Rockbolt Failures

During this reporting period. each reported rockbolt tailure was documented as close to the time
of tailure as possible and recorded in a database. Figure 3-43 depicts cumulative failures from
July 1, 1991, through June 30, 1992. Some observed failures were noted for inclusion in the
database aithough the actual dates of failure are unknown. Information recorded tor each failure
include, when possible. the tyoe of failure, location, bolt length and diameter. plate type, and any
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unusual conditions associated with the installation.

3.3.1 Failure Mechanisms

For the purposes of this section, rockboit failures are divided into three categories:

1. Bolt head separating from shatt.
2. Bolt breaking along shatt.

3. Other types of féilures, including anchor failures.

Bolt heads fail when the head of the bolt separates from the bolt shaft. The bolts usually have
not exhibited necking near the breaks. The exact cause of this type of tailure remains
undetermined, however it may be attributed to one or more of the following: non-vertical bolt
installations: bearing plate not instailed parallel to the excavation surface, or overtorquing during
installation. If a bolt installation is non-vertical, added stress is induced on one side of the boit
head as the load increases (Figure 3-44). As the salt moves down, one side of the bolt head
supports more weight than the other side and the bending moment causes the bolt head to break

off. Overtorquing may weaken the bolt, contributing to the conditions which lead to failure.

Failures occurring along the bolt shafts are associated with lateral movements within the strata in
which they are installed. Inspections of observation boreholes located near many ot these
failures otten reveal slip-planes (usually clay layers) lying at approximately the same distance
from the excavation as the zones of bolt breakage. Bolts that break along the shaft typically
exhibit some degree of bending near the broken ends, indicating that lateral forces were exerted
on the boits.

A small number of bolts experienced failure when the anchor assemblies tailed or slipped down

the bolthole. These faiivres are believed to be associated with the mechanical aspects of
installation.

3.3.2 Failure Locations

Rockbolt failures were found at various locations throughout the underground tacility during this
reporting period. Two thirds of these failures occurred at the heads of the bolts. The remainder
were primarily shaft failures.

E300 Shop: N1100 to N1420

Bolt failures at this location primarily occurred along the shafts, and aimast all the boits exhibited
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some degree of bending at the breaks. These tailures are associated with lateral movement at
anhydrite "b", which is evident in observation boreholes located in the roof of the shop. Because
these bolts were installed almost immediately after excavation, they were affected earlier by the
high detormation of the rock immediately after excavation, whereas most bolts in other areas of
the facility were installed years atter excavation. This may explain the high concentration of bolt
failures in this area.

Panel 1

All bolt failures rect rded through June 30, 1992, in Panel 1 were head tailures. Many of these
failures are locaied in the S1600 and S1950 access drifts. Bolts installed in these drifts (and in
Room 7) are six feet long and do not penetrate the first major clay layer (clay G). Faiiure of
these bolts is probably due to non-vertical installation. Bolts installed in Storage Rooms 1
through 6 are ten feet long and do penetrate the clay layer. Bolt shaft failures, similar to those in
the E300 Shop, are expecteu to occur in the storage rooms as lateral movement progresses along
the clay, although silicon sealant present in these installations may prevent some broken bolts
from tfalling out of the holes.

E140 Drift: S1300 to S2065

Failures documented for this area during this reporting period included both head and shaft
failures. Many of these occurred at approximately S1450 (see Table 3-1). Observation boreholes
were drilled in this section of E140 to provide for inspection of the roof to aid in monitoring of
fracturing and lateral movement along clay G.

General

Other areas experiencing several rockbolt failures included the west end of the S1300 Shop
(especially the north and south alcoves), the Salt Shaft station, and Room L4. Failures in these
areas are primarily head failures and are variously attributed to non-vertical installations or
installations at rib-back corners, which cause eccentric bolt-head loading, or to installation closely
following excavation. The database of rockbolt failures is being updated as boits continue to fail.
More investigations wiil be conducted into the causes and impacts of rockbolt failures in the
underground as additional data are collected.

3.4 Summary of Excavation Effects Program
Fracture development in the roof is primarily due to the concentration of compressive stresses in
the roof beam, and is influenced by the shape of the excavation and stratigraphy in the immediate

vicinity of the opening. The buildup of stress with time causes differential movements along
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stratigraphic boundaries. Large strains associated with lateral movements in the root can induce
fracturing in the roof that is frequently seen near the ribs. The presence of horizontal ottsetting
confirms lateral movements in the roof beam. The results ot borehole observations indicate that

tracturing continues to increase as the excavations age.
Observations of excavation ettects continue to monitor the increased fracturing as the

excavations age. These observations are used to provide information for assessing the

geotechnical performance of the excavations and installed support systems.
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4.0 Summary

During this reporting period a yielding root support system was instalied in Room 1, Panel 1 to
extend the life of the room through the test phase. In addition to the support system. additional
instrumentation was installed tor monitoring purposes. The data accumulated since the
installation indicate that the system has performed within design specifications over this reporting

period.

Rockbolt load cells installed in Room 1. Panel 1 have proven to be useful in determining when to
detension the support system to provide a yielding system. Monitoring of all Room 1, Panel 1,

instrumentation and evaiuation of the data collected will continue on a weekly basis.

Due to the observed fracturing in E140 drift between S1300 and S1600 dritts, a supplementary
roof support system was installed temporarily until a permanent support system is designed.
Also. roof extensometers and additional convergence points were installed to monitor bed
senaration and closure in the vicinity of the root support system. Unlike the support system in

Roor: 1, Panel 1, the E140 support system is not a detensioning support system.

Fracture development in the roof is primarily caused by the concentration of compressive
stresses in the roof beam and is influenced by the shape of the excavation and the stratigraphy in
the immediate vicinity of the opening. The buildup of stress with time causes ditterential
movements along stratigraphic boundaries. Large strains associated with lateral movements in
the roof can induce fracturing in the roof which is frequently seen near the ribs. The presence ot
horizontal otfsetting confirms that lateral movements occur in the root beam. The results ot
excavation eftects borehole observations indicate that fracturing continues to increase as the

excavations age.

Numerous failed rockbolts were recorded in the E300 Shop during this reporting period. In the
interest of satety, wire mesh was installed to prevent any failed rockbolts or debris trom talling
onto personnel in this highly used area. Most of the rockbolt failures occurred along the rockbolt
shatts. and virtually all of the bolts have exhibited some degree of bending at the breaks. These
tailures are associated with lateral movement at clay G, which is evident in observation boreholes
located in the roof of the shop. Due to the tact that these bolts were installed almost immediately
after excavation, they were atfected earlier by the high deformation of the rock immediately after

excavation. whereas maost bolts in other areas of the tacility were installed years atfter excavation.

4-1



To provide a better understanding of the mechanisms acting in and around the excavations and to
evaluate future room conditions, modeling was conducted using FLAC and VISCOT. FLAC was
compared to the Sandia Second Benchmark models and was found to predict displacements as
well as the Second Benchmark models. In addition. models with varying stratigraphic and
rockbolting conditions of the urnderground were calculated out using FLAC.

In addition to FLAC, the Munson-Dawson constitutive creep law was implemented into VISCOT.
Several different cases of the underground were modeied. inciuding a general WIPP storage

room. The results were comparable to actual measured convergence data from SPDV Rooms 1.
2. and 4.

Modeling has proven to be a useful tool in determining the future conditions ot the excavations,
and it provides a better understanding of ground conditions. Modeling of underground

excavations in various other conditions and configurations will continue.
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Appendix A - Munson-Dawson Material Model

Munson et al. (1989) present a creep model that attempts to resolve the discrepancy
between measured and calculated room closure and closure rates. The significant
improvements of the model involve a more accurate representation of the transient strain
potential curve using a quadratic function that replaces the earlier linear function.
Although the steady-state portion of the model formulation remains as initially presented
by Munson and Dawson (1979 and 1982), minor improvement has been made to it.
Furthermore. the model now uses a Tresca creep flow potential in place of the previousty
used von Mises flow potential. A brief description of the formulation is presented here.

The details can be found in Munson et al. (1989) and Callahan and DeVries (1991).

The modified Munson-Dawson materiai model defines the inelastic creep strain as follows:

e s
g = Fg,
where€ 1s the invariant inelastic strain-rate measure and €_is the steady-state strain

rate.

The transient creep is incorporated through the function F, which consists of three

branches

exp A(l——%) {<e/
EI
F =< 1 L=¢
C 2
exp| -6 1-—= C>ef
L i

where A and & are the work hardening and recovery parameters. respectivelv. The

internal variable £ is governed by the evolutionary equation
- .
C=(F-1)E,

and the transient strain-rate limit 8,/ is given by

U m
e/ =K,e” [——'J
m
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where K . c.m.and [ are material parameters: T is temperature: and G, is an invariant

stress measure.

The steady-state strain rate is taken as the sum of the individual strain rates (€ ) for the

various creep mechanisms acting in parallel to give:

where

in which

k]
"'c = zen
=]

5

i

R ”q

A. A, B, B..
n.n, Q.0, o,
R

Normalizing parameter (MPa)

Activation Volume

Experimental constants

. cal
1.987. universal gas constant | ——————
mol - K

Heaviside step function.

In order to generalize-the Munson-Dawson model to three-dimensional states of stress.
Callahan and DeVries (1991) expressed the inelastic tensorial strain-rate (éf} ) components as

follows:

where the inelastic strain-rate measure (éj ) is

4

¢ = ge 09!
£ =gl —=

do,
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& =¢i(T.0,.¢)

4

. 1
and the two invariant stress measures (G,, J,) are:

In these equations. the mean stress (G ), the second invariant of the deviator stress (.J.),

and the third invariant of the deviator stress (J;) are given by

cm - le
3
J.=1S,S,
J,=+5,5,S,

where S‘/ represents the deviatoric stress tensor and repeated indices indicates summation

(tensor notation).

The Lode angle (¥), which is a convenient alternative to J;, is given by

T T
A ECLN I .
VE [6 6)

The partial derivative given earlier is determined using the cha:n rule

do’ do’ do +80{ dJ,  dcl ¥ aJ.
go, o5, 00, d), 9o, oY dJ, 00,
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