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LOCALIZATION FROM NEAR-SOURCE
QUASI-STATIC ELECTROMAGNETIC FIELDS

by

John Compton Mosher

ABSTRACT

A wide range of research has been published on the problem of estimating the
parameters of electromagnetic and acoustical sources from measurements of signals
measured at an array of sensors. In the quasi-static electromagnetic cases examined here,
the signal variation from a point source is relatively slow with respect to the signal prop-
agation and the spacing of the array of sensors. As such, the location of the point sources
can only be determined from the spatial diversity of the received signal across the array.
The inverse source localization problem is complicated by unknown model order and
strong local minima.

The nonlinear optimization problem is posed for solving for the parameters of
the quasi-static source model. The transient nature of the sources can be exploited to
allow subspace approaches to separate out the signal portion of the spatial correlation
matrix. Decomposition techniques are examined for improved processing, and an adap-
tation of MUltiple Signal Characterization (MUSIC) is presented for solving the source
localization problem. Recent results on calculating the Cramer-Rao error lower bounds
are extended to the multidimensional problem here.

This thesis focuses on the problem of source localization in magnetoencephalog-
raphy (MEG), with a secondary application to thunderstorm source localization. Com-
parisons are also made between MEG and its electrical equivalent, electro-
encephalography (EEG). The error lower bounds are examined in detail for several
MEG and EEG configurations, as well as localizing thunderstorm cells over
Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a
parsing technique for improving the performance of the optimization problem.
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Chapter 1

Introduction

A wide range of research has been published on the problem of estimating the

parameters of electromagnetic and acoustical sources from measurements of signals at

an array of sensors. In the quasi-static electromagnetic cases examined here, the signal

variation from a point source is relatively slow with respect to the signal propagation and

the spacing of the array of sensors. Consequently, the location of the point sources can

only be determined from the spatial diversity of the received signal across the array. The

inverse source localization problem is complicated by unknown model order and strong

local minima.

This thesis focuses on the problem of source localization in magnetoencephalog-

raphy (MEG), with a secondary application to thunderstorm source localization. The

processing of magnetoencephalography (MEG) data distinguishes itself from conven-

tional array processing techniques on several points. The evoked response signal

received at the array is transient. Preferably, assumptions about an appropriate model for

the transient are minimal, thus precluding the use of pattern matching or matched filter-

ing techniques. The signal is assumed quasi-static, so that fluctuations in the signal

arrive simultaneously at ali sensors and thus no time-of-arrival information is available.

The location must be derived solely from the spatial disparity of thesignal across the

array, hence the "near-source" designation of this research. The evoked response time

series from distinct sources can be assumed to be at best only linearly independent, so

that partial temporal coherence often degrades minimum variance approaches. Conven-

tional approaches reduce coherence through spatial smoothing, which depends on the

1



shift invariance of an array; the spatial disparity of the MEG signal makes this approach

inappropriate. The MEO dipole model generates a three-dimensional manifold, such

that the orientation or "polarization" of the neural source must be considered. The MEG

model also suffers from a rank deficiency in the radial direction, which can complicate

the formulation.

These differences notwithstanding, the MEG model can be recast into formula-

tions similar to other source localization problems. This dissertation examines in detail

the basic MEG current dipole model and its variations, then presents methods for solv-

ing for the parameters of the model, beginning with the conventional nonlinear least-

squares approach. A suboptimal approach to solving the difficult nonlinear problem is

introduced, then shown to be a variation of MUltiple Signal Characterization (MUSIC).

Cramer-Rao Lower Bounds for the multidimensional array manifold problem are

derived, then simplified to a meaningful closed form expression for lower bounds on

localization error. The technique of time-eigenanalysis is introduced to analyze the

short-time correlations in the signal. Information from the time-eigenanalysis is used to

parse the transient neural signal into appropriate segments that enhance the SNR and

success of the MUSIC techniques.

This research and its extensions of array signal processing techniques are also

applicable to other problems of near-source quasi-static electromagnetic fields. In addi-

tion to demonstrating the novel approaches with the MEG model, this thesis also pre-

sents applications in electroencephalography (EEG) and thunderstorm source

localization. We discuss the background of the MEG model in more detail below. We

then folllow with a brief introduction to the thunderstorm source model.



Chapter 2

Localization Background

2.1 Magnetoencephalography

Magnetoencephalograms (MEG) (and electroencephalograms (EEG)) are non-

invasive methods of studying the functional activity of the human brain with millisecond

temporal resolution. Much of the work in MEG and EEG in the last few decades has

been focused on estimating the properties of the internal sources of the fields from the

external measurements (e.g., Snyder 1991). The most straightforward model for describ-

ing the external evoked magnetic field or surface evoked potential is the single equiva-

lent current dipole. This model and its variations, both in EEG and MEG, contains a

transfer function or lead field model to relate each dipole's intensity, orientation, and

location to the externally measured fields. The general inverse problem is to find the

three location parameters and the three moment parameters that comprise the unknown

parameters for each dipole.

An array of Superconducting QUantum Interference Device (SQUID) biomag-

netometers may be used to measure the spatio-temporal magnetoencephalogram (MEG)

produced by the brain. Given these external magnetic field measurements, one would

like to compute a "neuromagnetic image," specifying the three-dimensional current den-

sity that produced the magnetic field. Accomplishing this requires inversion of the Biot-

Savart law. Unfortunately, this general inverse problem is ill-posed because different

neural current distributions may produce the same external field measurements. As a

result, physical models of the underlying current distributions are employed; William-

son et al. (1983) provide a good overview of the general topic.
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Of particular interest is the localization of the neural currents evoked in response

to a given sensory stimulus, such as auditory or visual. An external magnetic field may

be produced by this primary, neural current, for which the simplest and most widely used

composite model is the "dipole in a sphere." Here, the primary current is modeled as a

current dipole or set of dipoles, and the head is modeled as a conductive sphere. A cur-

rent dipole can accurately model neural activity localized to one site, representing the

coherent activation of a large ltumber of individual neurons (Scherg and von Cramon

1985a). The return or global volume currents are distributed over the sphere of the head,

and the external magnetic field generated by the volume currents has no component nor-

mal to the head surface (Trip 1982, Ilmoniemi et al. 1985, Sarvas 1987). Thus, in this

simple model, the component of the magnetic field oriented radially from the head is

produced by the primary dipole current alone.

Given a suitable source and head model, the inverse problem can be reduced to

the nonlinear optimization problem of computing the location and moment parameters

of the set of dipoles whose field best matches the MEG measurements in a least-squares

sense. Singh et al. (1984) discussed neuromagnetic imaging (NMI), which extends the

dipole model by assuming a large set of current dipoles, each with a fixed location at the

center of a voxel (volume element) of a three-dimensional volume within the brain. The

MEG data and image are linearly related; however, because of the large number of

unknowns in the three-dimensional image, there is generally not a unique solution. Ilmo-

niemi et al. (1985) described the general forward problem and presented minimum norm

inverse solutions. Jeffs et al. (1987) investigated several cost functions to select an

appropriate solution from the set of feasible solutions. Dallas (1985) investigated the

imaging problem using a direct Fourier-based inversion approach, Alvarez (1990)

recently presented Fourier-based solutions for the two-dimensional case, and Wikswo

et al. (1990) have had success in imaging two-dimensional objects with their MicroS-
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QUID apparatus. In this thesis we present methods for solving for a small parsimonious

set of dipoles as a means of avoiding the ill-posed problem associated with the full three-

dimensional image model.

As in ali modeling situations, a trade-off exists between model complexity and

generality and the ability to reliably estimate the model parameters from the given mea-

surement data. Initial MEG dipole models used single time "snapshots" of the measured

spatial magnetic field, where a spatial dipole model was fitted at an instance in time, usu-

ally at a local or global response peak. These MEG models are direct counterparts of

EEG dipole models, known as instantaneous state dipole models (Wood 1982). To

increase the complexity of the source models that can be effectively employed, research-

ers have begun to incorporate temporal modeling assumptions. The addition of a tempo-

ral model increases the range of the measurements that can be used in model fitting. A

spatio-temporal dipole model and the necessary associated assumptions are presented in

detail in (Scherg and von Cramon 1985a, Scherg 1989).

The spatio-temporal models differ in the manner in which they describe the time

dependence of the data. Scherg and von Cramon (1985a, 1985b) use dipoles fixed in an

unknown location and orientation, and therefore the time dependence is represented by

a scalar time series specifying the magnitude and polarity of the current flow. Maier

et al. (1987) implicitly assume the same model, but use principal components analysis

(PCA) to derive the locations. Achim et al. (1988) compare the instantaneous state

dipole model with PCA dipole fitting and spatio-temporal modeling; in their three-

dipole fixed orientation spatio-temporal model, they assume that two of the dipoles are

known in orientation and location (information obtained from the instantaneous state

dipole model), and thus search for only one unknown dipole location and orientation. In

(Scherg and von Cramon 1986), Scherg and von Cramon have fixed location, but uncon-

strained orientation, and they introduce the idea of dipole source potentials, or regional

5
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dipoles (Scherg 1989), where three elemental dipoles with orientations in orthogonal

directions may occupy the same physical location.

These differences in formulation can be grouped into three spatio-temporal

dipole models: i) unconstrained ("moving and rotating") dipoles, ii) dipoles with a fixed

location ("rotating" or "regional"), and iii) dipoles with a fixed location and a fixed ori-

entation ("fixed"). We assume that the parameters of location, orientation, and magni-

tude are ali unknown. Our intent here is not to argue the merits of one model over

another, but rather to show how each model may be _olved efficiently within a common

linear algebraic framework. In each case, we show that the model can be mathematically

reduced to the same general expression, allowing the same approach to finding the

inverse solution. This expression will unify our approach to solving the inverse problem,

no matter which model we choose.

Neuromagnetic fields are very weak, ranging from 10-12 to 10-14 tesla (T). In

comparison, the Earth's magnetic field is in the ktT region at about 5 x 10-5 T and urban

background noise can generate fields roughly at 10-6 T. Measurements are made typi-

cally in a magnetically shielded room using superconducting quantum interference

devices (SQUIDS) in conjunction with a gradiometer configuration for the pickup coils.

To keep the noise of the electronics below that of the fields, as well as achieve supercon-

ductivity, the entire sensor arrangement is refrigerated to near absolute zero in a Dewar

filled with liquid helium.

Fig. 1 displays a schematic illustration of a single sensor system. The gradiom-

eter configuration uses pickup coils wound in opposing directions, such that spatially

distant signals are canceled as they pass through ali of the coils. The weak and dissipat-

ing neural fields effectively pass only through the nearest coil and are therefore not can-

celed. The single channel system is also expanded to 7 and 37 channel systems. More



TOELECTRONICS

FIGURE1. SingleMEGsensorschematicfrom (Lewisand George1990).The single
channelsensordepictedhereis also configuredin a 7 and 37 sensor"bowl"-Iikearrange-
ments,whichallow the clusterof sensorsto be placednext to the scalp.Otherarrange-
mentsincludea helmetof fixed sensorssitesabout the entirehead.

recently, a 61 position "helmet" with two sensor orientations per position was intro-

duced, as well as a 64 channel first-order gradiometer system.

The diameter of the pickup coil is typically 1-2 cm, and the sensor integrates the

magnetic flux passing normal through the plane of the coil. The thickness of the Dewar

wall, the thickness of the skull, and the minor standoff of the Dewar from the patient's

scalp typically separate the coil and the nearest neural source by at least 1-2 cm. In (Jeffs

et al. 1987), simulations show that each of the gradiometer coils can be reasonably

replaced with a simpler point source sensor model measuring the field at the center of

the coil.



In EEG, the typical use of the sensor data is to generate three dimensional con-

tours by interpolating between the data points. Given MEG sensors' much greater cost,

generating contours from MEG data offers little advantage. The focus has instead been

on source localization, which attempts to infer from these external magnetic fields what

and where the underlying sources were. Although EEG data has also been used for

attempts at source localization, the simplicity of the MEG model (discussed in

Chapter 3) relative to the EEG model implies a greater chance for success in arriving at

a solution.

In Chapter 3, we present each of the three data models, and in Chapter 4, we dis-

cuss the calculation of the error function in fitting these models to spatio-temporal data.

In Section 4.2, we present a computer simulation to illustrate the performance of these

spatio-temporal modeling techniques. Chapter 5 presents a new suboptimal but faster

method of solving the least-squares problem using a subspace scanning approach. In

Section 5.2, we discuss how this subspace scanning is statistically equivalent to the

MUltiple Signal Classification method (MUSIC) (Schmidt 1986). We also present anal-

ysis to show that although PCA dipole fitting is similar to these subspace methods, PCA

will generally fail in the multiple dipole case, whereas these methods will generally suc-

ceed. We present a simulation of this scanning method, using the same example data

from Section 4.2. We then present results from an actual somatosensory experiment.

2.2 Electroencephalography

As part of the Cramer. Rao Lower Bound studies presented in Chapter 7, we

compare the lower bounds of magnetoencephalographic arrays with those of electroen-

cephalographic arrays. The research and computational work of the EEG specific for-

mulas was conducted by Michael E. Spencer. A summary of the EEG model is presented

in Section 3.3 and in (Mosher et al. 1993). For our purposes in this dissertation, the EEG
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model is treated as a variation of the MEG manifold, although obviously more compli-

cated. Background and derivation details will be presented in Mr. Spencer's dissertation.

2.3 Thunderstorm localization

Lightning has always been a primary safety concern at NASA. Most systems

concentrate on detecting lightning occurrence and locations, but do not locate the source

of the lightning. Kennedy Space Center (KSC) is high on the isokeraunic curve averag-

ing 80 to 90 days per year during which thunderstorm activities occur. This frequency

of activity greatly influences both normal operations and launch operations. The electric

field mill network is an electrical system, deployed at KSC, of which the implementation

provides information on lightning location and storm electrification. The electric field

mill network, however, does not identify the electric field structure aloft. NASA has cri-

teria that limit activities and launches when field levels exceed lkV/m. A more accurate

determination of the distribution and strength of storm cells is needed to assess their

ability to produce triggered lightning. If a new technique could infer the electric field

structure aloft from ground-based data, NASA could improve lead time to issue and can-

cel storm warnings.

We adapted the MUSIC eigenanalysis approach developed in this research,

which allows us to scan three dimensional space searching for multiple electromagnetic

sources. This technique should significantly enhance NASA's ability to characterize

potential electrified sources and thus enhance the ability to determine the probability of

triggering lightning with launch vehicles. This new method is very graphically oriented

in a manner quite consistent with existing RADAR and lightning systems in use, and

therefore should readily integrate into forecasters' needs for rapidly assessing informa-

tion in a real-time operational environment. The end goal is to process the data from the

KSC field mill into useful interpretations about the nature of an electrified storm cell.

9



This dissertation includes summaries of some of our activities under a grant from NASA

KSC.

Cloud generation, electrification, and thunderstorm physics are complex and

well beyond the scope of this dissertation. However, at the simplest modeling level, the

thunderstorm localization problem at NASA is remarkably similar to the MEG/EEG

problem. An isolated thunderstorm cell can be modeled as a point charge positioned

above a perfect grounding plane. The electric field at the Earth's surface ranges from

-300 volts/meter (v/m) in fair weather to as high as + 15,000 vim as a storm cell passes

directly overhead. Excepting lightning strikes, the signal recorded by a ground-based

array of sensors is effectively quasi-static, and inverting the array of signals and deter-

mining the source locations suffers from the same problems that plague MEG and EEG

research.

The electric field mill in use at Kennedy Space Center-Cape Canaveral Air Force

Station (KSC-CCAFS) is shown conceptually in Fig. 2, along with a photograph of field

mill 4. An overview of the field mill theory and design is presented in (Maier and

Strange 1988). The KSC-CCAFS field mill array comprises 31 such field mills in a net-

work across the Cape, as structured during the summer of 1991. Fig. 3 presents the loca-

tion of the sensors, numbered 1 to 34; sensor numbers 3, 24, and 31 were not used. The

mills measures the DC and low frequency electric field (to 5 Hz) at the Earth's surface,

producing a measurement situation not unlike MEG or EEG.

The data sets recorded at CCAFS are based on a 10 bit digital word sampled 60

times a second. The base quantization level is 30 v/m, with the zero baseline set at code-

word 512 (out of 1024 possible). The dynamic range is limited to codewords between

12 and 1012, representing values of +/- 15 kV/m. The data stream from ali sensors is

time-tagged and recorded continuously. Reduced 10 samples per second data sets are

also made available.
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Stator Rotor

FIGURE 2. Exploded view of the mechanicalparts of an electric field mill and the basic
wiringof thestator plates(Maier andStrange 1988). The pickupcoilsensesthe alignment
of the rotorbladesoverthe statorbladesand picksoff the signalfromthe differentialamp.
At the bottomis a photographof Field Mill #4 inoperation.The cementpad at the base of
the sensor istwo foot by two foot in dimensions.
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FIGURE 3. The electric field mill network at Kennedy Space Center and the Cape Canav-
eral Air Force Station, as configured during the summer of 1991. Overlaid is the sensor
response to a thunderstorm over a four hour period. We note that the storm is apparently
to the west of the KSC array andsomewhat southern, as seen by the relative lack of activity
on the oceanside and northern sensors.

Because NASA has no reliable source inversion technique to use operationally,

the primary use of the data is for generating contour maps. The contours are generated

from one minute averages and updated every five minutes in normal operations. The

contour algorithm is based on an exactly constrained set of linear equations, representing

a set of point charges of unknown intensities six kilometers above each field mill. The

model is inverted to obtain the charge intensities, then these charge intensities are used

in a new forward model representing a fine contour grid. Isocontours are typically drawn
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at iIi000V/m, and the zero contour specially denoted. Interpretation of the contours is not

unlike interpretations of F_.EGcontours.

In theory, the field mill can also be used to assess lightning strikes, as described

in (Maier and Strange 1988). In practice, the role of detecting and locating cloud to

ground lightning strikes is assumed by specialized detection arrays, such as the National

Lightning and Detection Network. The electric field mill represents one of several

modalities in use by operational personnel to assess thunderstorm threats. The primary

tools in assessment, in order of importance, are weather radar, lightning detection, and

electric field mill data.

The primary operational procedure for the field mill data focuses on the field

level value; in general, values above 1 kV/m will halt launch operations, and values

above 2 kVim will halt ground operations. Unfortunately, these levels are also found

undec non-threatening conditions, such as fog, smoke, or sea spray. The limitation in set-

ting better launch and ground field mill crJt.eria appears to center on the need for objec-

tive interpretations of the array output. Indeed, one of the prom!ses of the techniques

presented in this research is to better integrate the interpretation of field mill data into

real-time operations, such that unnecessary operational halts can be avoided.

As an example of a data set, Fig. 3 shows the electric fields recorded over a four

hour period, as a storm grew, then dissipated. Fig. 4 shows an overlay of ali of the sensor

recordings. The tait portion of this data set will be examined more clc_,ely as an applica-

tion of time-eigenspectrum and MUSIC (Section 9.3).
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FIGURE 4. August5, 1991 KSC data set. Fig. 3 showsthe spatialdistributionof the data
about the Cape. This figure is the overlayof thosedata sets.
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Chapter 3

Forward Models

In this chapter we first discuss the general spatiotemporal model common to

MEG, EEG, and the thunderstorm local ation. We then present MEG and EEG version

of the "dipole in a sphere" n,.-,del, where sources are represented by current dipoles, and

the head is modeled as a four concentric shell sphere. This model illustrates how we

adapt a specific MEG or EEG model to the general electromagnetic model, which is in

turn used to determine the Cramer-Rao lower bounds. We then follow with a brief sum-

mary of the simple thunderstorm model.

As discussed in the chapter "Localization Background" on page 3, physical

models are used to represent both the neural current sources and the enclosing head

shape and conductivity. Source models range from simple current dipoles to complex

current surfaces. Head shape and conductivity models range from spherically symmetric

conductors to finite element models based on individual anatomy. The combination of

source and head model is known as the forward model. Given any arbitrary static current

distribution, the magnetic field can be obtained from the Biot-Savart law. For source

dipoles in a spherically symmetric conductor, Ilmoniemi et al. (1985) point out that the

source model can be reduced to consideration of just the primary source elements,

regardless of the orientation of the sensors outside of the sphere. If the measurements

are restricted to the radial orientation, the model simplifies further (Ilmoniemi et al.

1985, Sarvas 1987).

Although the degree of complexity can vary greatly, in ali cases the forward

model specifies the complete current distribution within the head via a set of source
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parameters (e.g., locations, magnitudes). In other words the forward model provides a

mapp!mg from the source parameters to the resulting magnetic fields. In general, we can

partition the paran:eters of any forward model into linear and nonlinear parameters. In

this chapter, we show how this partition of spatiotemporal models provides a convenient

algebraic form, a form which highlights the difficult nonlinear parameters. Although our

development utilizes a specific forward model-current dipoles in a spherically symmet-

ric conductor-the basic approach can be applied to any forward model.

3,,1 General Model

By the superposition of electromagnetic sources, we can always separate the

intensity of the sources as a linear term, whether we are considering these simple EEG

and MEG spherical models or any other combination of head and source model. The

vector of measured samples at time j can be modeled as

a(j) = _ G(l,)qi(j) = [G(/,), ..., G(/p)] = G(1)q(j), (EQ 1)

i--,

where a(j) represents the column vector of surface potential or magnetic field measure-

ments, or a combination of both. Column vectors I and q are both concatenations of the

parameters for p dipoles, .1 = l, ..., 1 and _q = i, ...,q . The vector Ii repre-
,dh

sents the three-dimensional location of the ith current dipole, and qi represents the cor-

responding three-dimensional dipole moment. The matrix G(li) represents the "gain

transfer" matrix for the ith dipole, which relates the dipoles' moments to the vector of

measurements and has a nonlinear dependence on the dipole locations.
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For n time slices, we can extend this model by assuming that the dipole locations

are fixed, yet allowing the dipole moments to vary with time:

A = [a(1),...,a(n)] = G(1)[q_(1),...,q_(n)] = G(/)Q . (EQ2)

We present in the next section a detailed description of the MEG model, then fol-

low it with an overview of the EEG model and the thunderstorm model. The EEG model

derivation and its partial derivatives were provided by Michael E. Spencer.

3.2 MEG Model

3.2.1 Biot-Savart Law

In this section, we present the Biot-Savart law in a convenient discrete matrix

notation for discrete source elements, which we then use to develop the spatiotemporal

dipole models commonly used in MEG research. The general model in every case

requires determining the unknown set of parameters {l, M, S }. The linear time varying

parameters, $, can always be found using a direct pseudoinverse solution, but, in general,

the time invariant location parameters, l, must be found using an iterative nonlinear min-

imization algorithm. The block diagonal matrix, M, depends on whether we use the

rotating or fixed dipole model; in the rotating model, M is simply an identity matrix, and

in the fixed model, M contains the un;t orientation parameters, m. The goal here is to

show that each model can be expressed in a common framework and solved in a simi-

larly efficient manner.

We begin by examining the model for a single dipole, then expand this model to

account for multiple dipoles. Establishing an origin, denoting the pth dipole position
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as lp, and observing the mth measurement at sensor location Pm, we can write the Biot-

Savart law for a current dipole as

bnl -" kiP )< _m-lp)

IlPm--lp113' (EQ 3)

where k = [tO/ (4_) is a constant, qp is the dipole moment, lp is the dipole location, Pm

is the ith measurement sensor location, and bm is the magnetic field atPm. A SQUID bio-

magnetometer is used to acquire the magnetic field at position Pm, but it measures only

one component of the three-dimensional field. Thus, only a scalar measurement is made:

b m = b m • r m , (EQ 4)

where rm denotes the unit orientation of the mth sensor. The operation" • "denotes

the dot product of two vectors.

Combining equations (3) and (4) yields

_m -- lp) × rm " q p
b m = k = gm "qp (EQ 5)

]lpm-/.H3

The vector gm can be viewed as a gain vector, relating the moment intensity of

the dipole to the measurement at position Pm" If we let each gain vector be represented

as a 1 )<3 row vector and the moment as a 3 x 1 column vector, then we can arrange the

measurements from m locations in a matrix form,

(Pi-lt,) × rl

F,.l- F,.l--Gp(1,,p)qp. (EQ6)
(Pm--lp) ×r m

The matrix Gp(lp, p) can be considered to be the gain or relationship between a

unit moment source at lp and the column vector of measurement locations p. From this
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form we clearly see the linear relationship between the moment qp and the measure-

ments vector b. As we will show in Section 4.1.2, this form also focuses our attention on

the more difficult nonlinear parameters in the matrix Gp(lp, p).

Although derived for a single dipole, each column in Gp(lp, p) could also be

viewed as the model for three elemental dipoles or dipole source components, with ali

three sharing the same location, but in oblique directions (Scherg and von Cramon

1986). For simplicity, we will continue referring to these collocated elemental dipoles as

one dipole, with moment q. This model easily extends to the multiple dipole (not collo-

cated) case by superposition. For p dipoles,

[°' "I !l
= (EQ 7)

or simply b = G(l, p)q, where G(l, p) can be partitioned into the smaller matrices

Gp(lp, p), as defined in (6). Similarly, q may be partitioned as the concatenation of the

moment vectors for each of the p dipoles. For m sensors and p dipoles, vector b is m x 1,

matrix G is m x 3p, and vector q is 3p x 1. For notational simplicity, we usually drop

the dependence on I and p from our notation of G.

3.2.2 Dipole in a Sphere

Our model in Equation (7) describes the external magnetic field as the sum of the

individual fields from p dipoles. For simplicity in deriving the model, the biomagnetom-

eter is assumed to make a perfect point field measurement. We also assume that this field

is due to the local primary current only, as we are ignoring the global volume Or return

currents. In more sophisticated head and source models, the return currents, the finite

coil area, and the gradiometer configuration of a practical SQUID biomagnetometer
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could also be included, result'.ng in a very similar fornmlation to that presented

here (Ilmoniemi et al. 1985, Sarvas 1987, Jeffs et al. 1987).

Many researchers have correctly noted that only the two tangential dipole

moment components need be computed for the "dipole in a sphere" model. A radially

oriented dipole inside a spherically symmetric conductor produces no external magnetic

field, since the field from the surface return currents cancels the field from the primary

dipole current (Trip 1982, Ilmoniemi et al. 1985, Sarvas 1987, Nunez 1986, Williamson

and Kaufman 1981). Additionally, the magnetic field normal to the surface of the sphere

(i.e., radial from the center of the sphere) is due solely to the primary tangential dipole

currents; volume or return currents in the surface of the sphere contribute nothing to the

radial magnetic field.

A common MEG geometry is therefore an array of sensors arranged radially

about the surface of the head, which is sensitive only to the tangentially oriented primary

dipole currents. As noted by (Ilmoniemi et al. 1985, Sarvas 1987), the nonradial sensor

orientations record magnetic fields that are also functions of only the tangential dipole

moments, but the associated model is not as simple as for the radial sensors.

In this research we will therefore assume that the radial component is immeasur-

able and that only the two tangential components are measurable. Thus each submatrix

Gp will be m x 2, corresponding to the gain in the two tangential directions. We can refer

to these two tangential components as t_ and 0, e.g., Gp = [G_ GO]. We emphasize that

although we are using the dipole in a sphere model as an example, ali results are suffi-

ciently general such that extensions to other models containing ali three moment com-

ponents are straightforward, such as for the EEG model.
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3.2.3 Unconstrained Location and Orientation

The instantaneous state dipole (Wood 1982) is the simplest of the dipole models,

for which we consider just a sing!c time slice of data, typically at the peak of the

observed MEG response. The straightforward extension to the full temporal information

is simply to treat each time slice with a separate static model. At each time slice, the

locations and moments are calculated for each dipole, independently of ali other time

slices. Since no constraints are placed on the parameters of the dipole, this model allows

both moving and rotating dipoles. The model is simply Equation (7) with a time

parameter n inserted, b(n) = G(n)q(n), which we would solve for each n, n = 1, ..., n.

3.2.4 Fixed Location, Unconstrained Orientation

When the instantaneous dipole model is solved for several sequential time

points, the location of the dipole can appear to move as a function of time. Many

researchers believe it is more realistic to assume that different parts of the cortex with

different cortical function are activated electrically when they perform their specific

tasks (George et al. 1989, Demunck 1990). The "movement" seen in the instantaneous

state dipole would therefore be more accurately modeled as two or more stationary

dipoles which are activating electrically at different times. Rather than allowing the

dipole locations to vary with time, as in the above model, this second model restricts the

location of the dipoles to be constant throughout the measurement interval, but allows

the moment intensities and orientations to vary. We begin with the previous model, fix

the gain matrix to be a constant with respect to time, and represent the model in a com-

pact matrix form,

Eb(1)... b(n)_ = G _q(1)... q(n)_ (EQ 8)
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or B = GQ. Each column of the Q matrix may be partitioned to represent the moments

of p dipoles at time n,

= ... (EQ 9)

where each partition qp(n) can be represented by its unit moment orientation mp(n) and

scalar intensity Sp(n). Hence, each row of Q can represent the time series for one com-

ponent of one tangential dipole (Scherg and von Cramon 1986).

3.2.5 Fixed Location and Orientation

Since no constraints are placed on the time series of the three components for

each dipole, the orientation of the dipole can vary or "rotate" over time• Some research-

ers (Scherg and von Cramon 1985a, 1985b) argue that physiologically a dipole orienta-

tion should not rotate, because the dipole model represents a fixed neuroanatomical

structure. If we fix the unit orientation of each moment to be the same for ali time slices

and allow only the magnitude and polarity, Sp(n), of the moment to vary, then we can

express the matrix Q from above as

,,,,
Q ._ ,,,

• (EQ 10)

Ii'°IFm Ls,,(l) s_(n)J
= MS
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Thus, our constrained model is now separated into three components,

bl(1) ... bl(n) 1
B = = GMS. (EQ 11)

Lb,(l) bm(n)J

As before, G represents the m x p gain matrix between p unit dipoles and the array of m

sensors. The 2p x p block diagonal matrix M represents the fixed unit orientation

moments. The moment intensity matrix Sis p x n.

Grouping as B = (G M) S = A S, we retain the same general separation into two

matrices as for the other models. The difference here is that we have both the time invari-

ant location I and moment orientation parameters M in the first matrix A, rather than just

the location as before. Each column of G represents the gain of one component of one

dipole, but each column ofA = [,41, ..., Api = G M now represents one complete dipole.

3.2.6 General MEG Model

The most general model contains both rotating and fixed dipoles. We might

argue that two fixed dipoles may be so closely located that they appear in our data as one

rotating dipole. We may also have rotating dipoles that rotate so little as to appear fixed

in orientation. The general model accounts for both types and will be useful in deriving

further results in this paper.

We simply alter our definition of a rotating dipole to be one which must rotate,

such that its two component time series cannot be partitioned as a fixed moment orien-

tation and a scalar time series (i.e., the time series are linearly independent). For Pr rotat-

ing dipoles and pf fixed dipoles, we partition the pairs of rows of Q as the rank two

23



T

submatrix Qrp = [q¢p qop]T for rotating dil_,les and the rank one submatrix Qfp = [mp st, ]

for fixed:

Q = = (t,,+ i_ , (EQ 12)

T "'" [S T i

_n (t,, + i) s (p, + t _ 0 me (t,, t
• Q! oe,

T

ltl pSp L Sp

where Sp is the scalar amplitude over time for the pth fixed dipole, q¢p is the scalar ampli-

tude overtime of the _ component of the pth dipole (likewise, 0), andl2p r is a 2pr x 2Pr

identity matrix. We can now express our model as B = G Q = G (M S) = H S, where H

---G M is our "hybrid" gain matrix, a combination of the previously defined Gp and Ap

submatrices,

GM=H= IGt, ..., Gp,,AI, ...,Apf]. (EQ 13)

The rank of this matrix H is r = 2 Pr + Pf, which is effectively the number of

dipole source components (Scherg and von Cramon 1986) in our model. The matrix S is

the corresponding time series for each dipole component; if two dipole components are

collocated, then by our definition they represent one rotating dipole.

The rot::ting and fixed models are just specializations of this model, and the

instantaneous dipole model is just this model for one time slice. For no fixed dipoles (pf

= 0), M is simply a 2pr x 2pr identity matrix, and we have the rotating dipole model of

Equation (8), with 3p unknown location parameters in the gain matrix H(I,M) = G(I).

Similarly, for no rotating dipoles (,Pr = 0), we have the fixed dipole model of

Equation (11), with 4p unknown location and constrained unit moment parameters in the

gain matrix H(I_W) = A(ld143. As we will show in Chapter 5, successful localization

24



requires that we determine the rank r, i.e., the number of dipole components, but not nec-

essarily the number of rotating and fixed dipoles.

3.3 EEG Model

One study completed in this research was a cemparison of the lower bounds

between MEG and EEG for effectively identical head models and array configurations.

We present in this section research work performed by Michael E. Spencer.

The EEG dipole model is more complex than the MEG model, and assumptions

must be made for the conductivities and shell thicknesses. The earliest models were for

the dipole in a single homogeneous sphere (Wilson and Bayley 1950), which led to a

closed form solution (Brody et al. 1973); however, this single sphere model is too sim-

plistic because it does not model the relatively high resistivity of the skull layer. A three

concentric sphere model that includes the scalp and skull layers was derived by (Arthur

and Geselowitz 1970). The four sphere model, which also accounts for the cerebrospinal

fluid layer, is derived by (Cuffin and Cohen 1979). Other models recently published

include the three eccentric sphere model (Cuffin 1991) and the four sphere anisotropic

model (Zhou and van Oosterom 1992).

In this research we use the four concentric sphere model. For a single dipole

model at point l, each element in (1) of the column vector of surface potential measure-

ments :_resents the voltage at a single surface point 9 and is expressed as the inner

product of the (3 x 1) gain vector gv and the (3 x 1) dipole moment vector q"

_T, - --_

V(p) = gr(l, p)q, (EQ 14)

where for clarity we show the dependence of the gain vector on both the dipole location

and sensor position. The gain matrix G(i) for a single dipole is the concatenation of the
,dh

gain vectors for all sensor positions p.
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Fig. 5 shows the coordinate system used for the basic EEG formulas. For a dipole

on the z-axis, the potential on the surface of the four sphere model referenced to infinity

is given by (Cuffin and Cohen 1979). Other dipole locations are found by applying rota-

tion transformations to the basic formulas. We can express the gain vector for the four

sphere model for arbitrary dipole position i as

- 1iv(i,;) -- Y__,_(n) _ _x,P',,(cosO')cos¢+*_y,P',,(cosO')sine +_,_,nP,,(cosO')3 (EQ 15)
n=l

where

Ph(') = Legendre polynomial of order n,

p l,_(.) = AssociatedLegendrepolynomial,

R = outside radius of head sphere (in m),

ax,, ay,, a z, = basis, for rotated coord_ate axes_at place _ dip.o:e on
thez -axis,i.e. 0 = ,.¢.i, 0 - at.I, and II I=a_.,,

0', #' = polarcoordinatesofp intherotatedsystem(Fig.5).

The weighting function w(n) in (15) is given by

w(n) = ( _4 )(2n+l)4(cd)2n+l471: R E nF(n) (EQ 16)

where

r(n) d2n+l {b2n+ln(ki 1) (k2- 1) (n+ 1) +c 2n+l= - (kln+n+l) (k2n+n+l) }

{ (k3n +n+ 1) + (n+ 1) (k3- l)d 2n+l}
(EQ 17)

+ (n+ l)c 2n+l {b2n+l (kl- l) (k2n+k2+n) +c2n+i (kln+n+ l) (k2-1) }

{n(k 3-1) + (k3n+k3+n)d 2n+l]

'YI 'Y2 'Y3
k I =--, k 2 =--, k 3 =-- , (EQ 18)

'Y2 'Y3 _4
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FIGURE5. EEGCoordinatesystemfordipoleon z-axisina sphericalheadmodel.The
EEGmodelgeneralizestoanarbitrarydipolelocationusingstandardcoordinatetransfor-
mations.

and 71, '1'2,'t'3,74 are the conductivities of brain, cerebrospinal fluid, skull, and scalp,

respectively, and b, c, d are the inner sphere radii normalized to the outer head sphere

radius. Fig. 6 shows the four spheres with their respective radii and conductivities. Over-

laid on the spheres are the sensor locations for the 37 channel pattern (one of the sensor

arrays analyzed in this dissertation).

The formula for this EEG model explicitly shows that the voltage has a nonlinear

dependence on the dipole and electrode locations and a linear dependence on the dipole

moment. The conductivities and radii shown were taken from (Cuffin and Cohen 1979).

We note that the relatively thin skull thickness, 4 mm in this case, gives favorable values
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layer(shaded),andthescalplayer.TheEEGelectrodesarelocatedonthesurfaceofthe
scalpat a radiusof8.8 cm;MEGcoilsare radiallyoriented10.5cmfromtheheadcenter.
Forthe37-sensorcase,thesensorsarepositionedinringsof 1,6, 12,and18sensors
each,separatedby12degreesas measuredfromthezaxis.The leftfigureshowsthesen-
sorsas viewedfromabove.The rightfigureisthesideviewandshowstheEEGelectrodes
andtheMEGcoilsthatlieinthexz-plane(y=0)forthe37-sensorarrangements.Theanal-
ysisquadrantshowswheretheCRLBboundsarecomputedrelativetotheheadspheres
andsensors.

for dipole localization; thicker skulls will produce higher error bounds. For example,

(Stok 1987), uses a skull thickness of 6 mm.

3.4 Thunderstorm Model

In this section, we review the basic thunderstorm model. In the simple form

examined in this dissertation, the model is very similar in form to the simple current

dipole model of MEG and EEG research.

The contour map presently generated at KSC is implicitly based on a point

charge model, albeit 31 charges in a fixed pattern about the Cape. These contour patterns

generated are still subject to quite a degree of interpretation, and the patterns vary sig-

nificantly in the presence of minor fluctuations, in this section, we introduce a much
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simpler and more readily interpreted model. The thunderstorm model used in this study

is intentionally simplistic, so that the processing methods used to solve the model are not

lost in the complexity of the parameters. Success with simple models will allow careful

building of more sophisticated and hopefully more accurate models.

The model used here is the point charge model. Any complex distribution of

static charges can be simplified to a point charge if viewed from a distance relatively

large compared to the diameter of the charge distribution (Feynman 1962). We assume

a point charge source of intensity Q coulombs located at position (Xq, yq, Zq). The

observer position is on the ground at position (x, y, 0). We use the sign convention that

a positive electric field indicates that a positive charge would move upwards (i.e., the

negative of the potential gradient). In weather related terms, our sign convention is "fair

weather negative." Representing the earth as a perfect ground plane, the electric field at

the surface has only a nonzero vertical component:

--QZq
E = (EQ 19)

2he ( (x- Xq) 2 + (y _ yq) 2+ Z2q)3/2

where e is the permittivity of the medium, here assumed to be free space.

The above formula is for a single charge and a single sensor. The extension to

multiple charges and sensors follow directly that of the MEG formulation. We can thus

arrange our data into a spatiotemporal matrix as:

E = [¢ (tl) , ..., ¢ (t,) ] = G [q (tl), ..., q (tn) ] = GQ . (EQ 20)

Thus the vector e represents the electric field signal at a single time instance due to p

sources. Over a fixed interval of time, we acquire n such vectors of data. We observe that

this data is changing as a function of time, and we therefore need a time dependent

parameter. The sampling interval of 60 samples/second is relatively fast compared to the

ground speed of the thunderstorm, and we will process the data in relatively short time
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segments. During these intervals, we can approximate the position of the storm as rela-

tively fixed in space and assume that only the intensity Q is changing as a function of

time.
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Chapter 4

Least Squares Solution

In this chapter, we show how a least squares error is generated by implicitly or

explicitly projecting the measurements onto the orthogonal complement of the subspace

formed from the appropriate forward model. We use the dipole in a sphere model as an

illustration, where the nonlinear parameters are the locations of the dipoles and possibly

the fixed orientation. The cost function is shown to be a function of these nonlinear

parameters only, thus reducing the number of parameters to be searched. The nonlinear

parameters are iteratively adjusted to minimize this error through standard nonlinear

minimization techniques. The optimal nonlinear parameter set is then used to perform a

linear least squares fit for the linear parameters. We present approaches for efficiently

calculating these cost functions, then conclude with a three dipole simulation example.

4.1 Error Function

4.1.1 Separation of Linear Parameters

Consider the general model of Pr rotating dipoles and pf fixed dipoles for our

data, B =H(1, M) S, where H(l, M) is m × r, S is r × n, and r = 2 Pr + Pf. H(l, M) has 3p

unknown location parameters and pf unknown constrained moment parameters. We

collect n time samples from each of m SQUID biomagnetometers and form a spatio-

temporal matrix of data F = Lt'(1),...,f(n)]. We model this data as F - B = N, where N
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represents the en'or between the measurements and our model. We define our measure

of fit as the square of the Frobenius norm,

m /1

Jt.s _._ ___ {f/q) - bi(J')}2 IIF- BII2--" -- F

i-- tj-t (EQ 21)

- IIF- i(t, sll'-- F

The goal is to find the set {l, M, S} that minimizes this error.

The simple approach is to use this cost function directly in an iterative minimi-

zation algorithm, which would search for ali five parameters for each one of p dipoles at

each point of n time instances, for an overall total of 5pn parameters (Romani and Leoni

1984). Thus a three dipole model would require searching a fifteen parameter space at

every time instance. This same cost function, however, can be viewed as a projection

minimization that can greatly reduce the computational cost, yet incorporates the infor-

mation of ali the time slices.

Given I and M (hence, H), a solution for the matrix S that will minimize JLS is

S = H t F, (EQ 22)

where H t is the well-known pseudoinverse solution (for full column rank H),

H t = (HTH) 1 H T , (EQ 23)

or the more general Moore-Penrose pseudoinverse (minimum norm) solution,

H t = V E+ UT, (EQ 24)

where H = U Y. VT is a singular value decomposition (SVD) and E+ is the diagonal

matrix E with its nonzero elements inverted (Golub and van Loan 1983). This minimi-

zation for S will hold for ali sets {l, M}, including the optimal set {l, M} *that minimizes

the cost function JLS.
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We can replace S with this pseudoinverse solution before solving for {I,M}. The

cost function can be equivalently expressed as

,, ,, II !1== = = n F (EQ 25)
.1.

The matrix Pn and its orthogonal complement PH are projection matrices: PH
±

projects data onto the column space of the matrix H, and Ps is the orthogonal comple-

ment projection, that is, the projection of the data onto the left null space of H. Thus, the

squared error can be explicitly computed as the projection of the data matrix, F, onto the

left null space.

We have used the separation of the unknown parameters into linear and non-lin-

ear components and have factored out the linear moments. While this method has often

been used by other MEG researchers (Scherg 1989, Maier et al. I987, Achim et al. 1988,

Demunck 1990), the mathematical details have not always been stated or explained

explicitly; references (Golub and Pereyra 1973, Guttman and Pereyra 1973) give a full

mathematical justification for this approach. The benefit is that JLS is now an explicit

function of only the parameters in H. An iterative minimization routine need only

explicitly consider this reduced subset of parameters, which can considerably reduce the

convergence time.

This cost function can be minimized directly by a non gradient-based method,

such as the Nelder-Meade simplex, used by many researchers because of its simplicity

and apparent robustness to local minima (Achim et al. 1988). Alternatively, gradient-

based methods are typically faster, but require either analytical or numerical partial

derivatives of the projection matrix. Simple analytic expressions of the partials of the

projection matrix are derived in (Golub and Pereyra 1973, Guttman and Pereyra 1973),

and these expressions, in turn, require only partials of the gain matrix H. In practice,

however, any slight change in the head or source model requires a recalculation of the
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partials, and the simplex method or other non gradient methods are therefore usually

preferred for their simplicity (Maier et al. 1987, Achim et al. 1988).

The computational complexity of the least-squares estimation problem is highly

dependent on the number of nonlinear parameters that must be estimated. In the instan-

taneous state dipole model, the location of each dipole must be computed independently

for each time slice n. In comparison, the number of nonlinear parameters in the rotating

dipole model drops dramatically. For p dipoles and n time slices, in both cases we have

2ph linear parameters, but the gain matrix 13 is a function of only 3p location parameters

for the rotating dipole model, rather than 3pn for the instantaneous dipole model. Thus

the rotating dipole model requires an iterative search of only the 3p non-linear location

parameters, followed by a simple 2ph linear fit for the moment parameters. For the fixed

dipole model, the dimensionality of the search space in the iterative minimization algo-

rithm is increased relative to the rotating dipole model from 3p parameters (locations

only) to 4p parameters (locations and constrained unit orientations). Only the pn param-

eters of the time-series magnitude and polarity of the moments in the matrix S can be

calculated using a simple linear fit.

An approximate approach to the fixed dipole model is to group the model as B =

G (M S), which is effectively identical to the rotating dipole model B = G Q. Once Q is

found, we form a second equation, M S = Q, from Equation (10), and solve for M and S.

The advantage of this approach is that M S = Q can be solved efficiently usingthe SVD.

Each set of two rows of Q represents the time series for the two tangential components

of one dipole. If the dipole is truly fixed in orientation, then this 2 x n matrix partition

is of rank one. An SVD of this partition of the matrix will give ,he best rank one fit, and

a simple analysis of the singular values will confirm the quality of this fit. If the rank one

fit from the SVD is perfect, then the solution is optimal; however, in general this approx-

imate approach is not guaranteed to give the same result as that which would be obtained
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by solving B =A S. The appeal lies in keeping only 3p unconstrained parameters instead

of 4p constrained parameters in the iterative search space. An example of this method is

shown in Section 4.2. One possible extension of this approach may be to embed this

two-step process into each iterative error calculation, rather than solving M S = Q only

once at the end of the iterations.

4.1.2 Error Function Computation

The greatest computational burden in fitting the multiple dipole model occurs in

the iterative nonlinear minimization routine, which must repeatedly form the nonlinear

gain matrix H, then solve the inverse matrix problem for cost function JLS for different

sets of parameters. By using the SVD and the QR decomposition (Golub and van Loan

1983), we can significantly reduce the number of multiplications required. This analysis

also leads naturally into Chapter 5, where we present an alternative method of solving

the least-squares problem using these same decompositions.

If the number of time samples, n, is greater than the number of sensors, m, then

the use of an SVD of F gives an efficient form for calculating the above error function.

Decomposing as F = U E VT, the least-squares cost function can be rewritten as

.!. 2 2 .L 2 j.

= = = = r' (EQ 26)

where we are able to drop the term V Tbecause orthogonal matrices preserve the F-norm.

Since F is m x n, then the diagonal matrix X;of singular values has at most m nonzero

terms. Therefore W = UZ is only m x m, as opposed to the larger m x n data matrix F.

Greater savings occur if the number of non-zero singular terms, r, is less than m,

i.e., F is not of full row rank, because then W would have correspondingly fewer

columns, r. With noise considerations, the singular values are almost always strictly

greater than zero, so we can amend r to be the number of singular terms "significantly"
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greater than zero. The corresponding r components in the decomposition are the princi-

pal components that "adequately" describe the data, where the user must decide what is

adequate and what is significant. Using these significant components reduces the com-

putational cost but results in a suboptimal least-squares solution. Chapter 5 more fully

exploits this possible decomposition. A two-stage approach would be to use this

reduced r set for the coarse fit, then return to the full m set of components for the com-

plete fit.

If an SVD is used to calculate the pseudoinverse of H, then a further reduction

in the number of multiplications can occur. Denoting the decomposition as

H = [U,._],.] EV r, where H is m x r, then let Ur contain the columns corresponding to

the r non-zero singular values, and let L/r correspond to the m-r zero singular values,
T

l l./rtJ_, and the cost function can be calculated aswhere r is the rank of H. Then P n =

- iiw,,_-LI_,wLI_-, wll_ [[v,wll_ (_Q2_)
where the second form follows from the well-known equality for the Frobenius norm

, ILwlL+ vllF F

The selection between the two forms depends on the rank r and the decomposi-

tion method used, since either projection matrix may also be efficiently computed by

using the QR decomposition of the gain matrix H. The choice of SVD or QR decompo-

sition is application dependent. In general, the calculation of an SVD is more expensive,

because it calculates the two eigenvector spaces U and V by iteratively converging to a

solution. However, '°economy" SVD versions (Dongarra 1979, Mathworks 1990) can be

run in which only the principal component eigenvectors are calculated, i.e., those in Ur

above, resulting in considerable savings if the rank r of H is small relative to m. By

comparison, QR decomposition is noniterative, and it outperforms a full SVD calcula-

tion. If the rank of H is large, then QR decomposition generally outperforms even the
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economy SVD. Either method of decomposing H will outperform the undecomposed

projection matrix, PH = H H t. These decomposition approaches also have better numer-

ical properties than inverting (H T II) or solving via Gaussian elimination (Golub and

van Loan 1983).

4.2 MEG Simulation

We conclude this chapter by presenting the results of simulations in which the

spatio-temporal models described are applied to a set of simulated MEG data. Data were

simulated for the case of three dipoles, ali three with fixed locations, two with fixed

moment orientations and the third with a rotating orientation. The data were computed

for an array of 37 closely spaced sensors radially oriented and positioned on the surface

of an imaginary sphere of radius 12 cm.

Because the head model was assumed to be a spherically symmetric conductor

and the sensors were arranged radially outside of the sphere, then only the fields due to

the primary tangential dipole currents were computed, as discussed in Chapter 3. How-

ever, rather than compute the parameters in a spherical or rotated coordinate system, we

employ a Cartesian coordinate system and solve for the three constrained moment

parameters per dipole, using the pseudoinverse form of Equation (24). A total of 100

time samples were generated and corrupted by additive white Gaussian noise with an

SNR of 10dB. SNR is computed as the ratio of the average magnetic field measurement

power to the variance of the noise. The resulting simulated MEG data are shown in

Fig. 7.

The parameters for this data were estimated using two of the models discussed:

a) fixed location but unconstr_dned orientation; and b) fixed location and orientation. For

the "rotating" model, the locations of the three dipoles were estimated using a Nelder-

Meade simplex search to minimize JLS in Equation (25) over the dipole location param-
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FIGURE 7. Simulated MEG data for 37 radially oriented sensors, 100 time samples from
each. Sensors are positioned on an imaginary sphere of radius 12 cm, centered on the ori-
gin, with Sensor 1 located 12 cm above the(x,y) plane at (x,y,z) position (0,0,12). Three
dipoles were simulated about 3 cm radially below the sensors numbered 9, 13, and 17.
Zero-mean Gaussian noise with a standard deviation equal to one-tenth the peak was
added, for an SNR of approximately 10 dB. Each numbered trace represents the time
response for the corresponding sensor, with the plots arranged intheir approximate spatial
position in the (x,y) plane.
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eters; Equation (22) was then used to find the moment time series. The true and esti-

mated locations are listed in Table 1 and the estimated time series are shown in Fig. 8

overlaid with the original simulated time series.

TABLE 1. Estimated Locations and Moments. The locations were found using a Nelder-
Meade simplex algorithm for the rotating dipole model. The number of dipoles, 3, was
assumed known, and the simplex algorithm searched for the best 9 location parameters that
fit the data in a least-squares sense. Once the locations were optimized, the time series were

found via a simple linear least-squares fit. The time series for the second and third dipoles
were decomposed into a rank 1 model, from which the fixed moment orientations were found

Dipole 1 I Dipole 2 I Dipole 3
True and Estimated Locations (cm)

!x ly Iz ix ly Iz Ix ly Iz

True 2.800 -1.700 8.300 -2.900 - 1.600 8.300 0.000 3.300 8.400

Estimated 2.817 - 1.691 8.335 -2.910 - 1.594 8.225 -0.056 3.320 8.358

True and Estimated Moments (from SVD)

mx my mz mx my m z mx my mz

True (N/A, rotating) 0.770 0.525 0.369 0.516 -0.797 0.313

Estimated 0.770 0.518 0.373 0.507 -0.800 0.320

For the fixed orientation and location model, rather than iteratively search for

dipole locations and orientations, we used the two-step approximate method discussed

in Section 4.1.1. In this method, we use the results of the rotating model above, which

searched the nine parameter location space only. The identified time series were then fit

to a rank one model (per dipole) via an SVD, resulting in the time series displayed in

Fig. 8. The true and identified moments for the two fixed dipoles are displayed in

Table 1. Because the third dipole actually had a rotating moment, then the SVD of its

time series properly revealed a poor rank one fit.

..
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Chapter 5

MUSIC

In this chapter we introduce a new MEG inverse algorithm. Although it is gen-

erally suboptimal in a least-squares sense, this algorithm has the strong advantage of

"scanning" quickly with a one dipole search, rather than the p-dipole search necessary

in a complete fit. In Section 5.2.4, we discuss how this algorithm is analogous to the sta-

tistically derived MUSIC direction-finding algorithm for polarized sources (Schmidt

1986). Section 5.4.2 examines the related method of PCA dipole fitting, but shows

where this method differs and why it generally fails. We first develop the algorithm for

the rotating dipole, then extend it to include the fixed dipole model. We then consider

the general hybrid case of both fixed and rotating dipoles.

5.1 Order Selection

Perhaps one of the greatest problems in MEG analysis is determining the number

of dipoles: if too few are selected for any of the models, then the calculated dipoles are

biased by the missing dipoles; if too many dipoles are specified, then spurious dipoles

are introdu:ed, which may be indiscernible from the true dipoles. Since the computa-

tional cost and numerical sensitivity of most iterative minimizations increases dramati-

cally with the number of parameters, then too many dipoles also adds needless

computational burden.

Other authors have shown that examination of the spatial surface topography can

be misleading if time se _'iesare overlapping and/or dipoles are placed such that one max-

imum potential cancels another (Achim et al. 1988, Nunez 1986). As an alternative,
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analysis of the dimensionality or rank of the data matrix F is often made in an attempt

to determine the true number of dipoles. In general, for p dipoles, the rank of the model

data matrix B will be limited by

Rank(B) = min(Rank(H), Rank(S)) < 2p. (EQ 28)

The upper limit comes from either H or S, since each dipole moment component

in S has a corresponding column in H, with at most two moment components per dipole.

For the lower limit, the problems usually arise in S, where the matrix is of full row rank

only if all time series.are linearly independent. If ali dipoles are rotating, then S is at

most rank p; however, if ali dipoles are fixed in orientation, then S is at most rank p. If

any combination of the spatially distinct dipoles have linearly dependent time series

(perfectly correlated), then the rank of S drops accordingly.

For the general model with Pr rotating and pf fixed dipoles, the rank of H is r =

2 pr + pf As we will show, we do not explicitly need to know Pr and pf, if the time series

are sufficiently independent and the SNR sufficiently large.

5.2 Dipole Models

5.2.] Rotating Dipole Model

We consider first the case where ali dipoles rotate, that is H(1, M) = G(1) M =

G(l). From Equation (25), we express the least-squares cost function as

JLS = IIF- G Q II2 = IIP_ FII2 (EQ 29)

where G is m x 2p, Q is 2p x n, and M is the identity matrix, since ali dipoles are

assumed rotating. We can interpret the least-squares problem as trying to find the gain

matrix G whose orthogonal subspace projectorP_o minimizes JLS. Since G is of rank 2p,

then the orthogonal complement projectorP'_ is of rank m - 2p.
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In the method developed here, we first find the best orthogonal projector pL,

regardless of the gain matrix, and then find the gain matrix G that best fits this projector.

The first step in this method is to minimize over ali possible orthogonal projectors of

rank m - 2p, for which we form the first cost function,

Jl -" IIP£ F II2 . (EQ 30)

Minimizing Jl over ali pa. is equivalent to finding the best rank 2p projections of

F. From (Golub and van Loan 1989, Corollary 2.:3), the best rank 2,o approximation of

F is formed from the first 2,0components of the SVD. Hence, we decompose F as

F = t/XC" = [U2pl./2/]X:V r, where U2p contains the 2p left singular vectors associ-

ated with the 2p largest singular values, and U2p contains the remaining m-2p left singu-

lar vectors. The best rank 2p approximation of F is given then by F2p = _U2pU2_]F.

The best orthogonal projector is therefore

pi . _ r= U2pU2p (EQ 31)

Once we have formed this best orthogonal projector pa., then the second step is

to find the gain matrix G most orthogonal to this projector. Orthogonality between pa.

and G = [G 1, ..., Gp] implies pi. asorthogonal to each Gp, where Gp is them x 2 gain

matrix for a single dipole. Since the pth matrix depends only on the location of the pth

dipole, our scanning function for rotating dipoles, Jr(P), is derived from this orthogonal-

ity,

j_(p) = r = U2pGp F (EQ32)
G 2II.li

2 is the normalized gain matrix. Normalization is necessary sowhereG. = G,,/II G,,II,,
that a small value for Jr(P) is an indication of closeness to orthogonality and is not sim-

ply due to a relatively small gain.
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If pl. is a reasonable approximation to the optimal P_, and a G exists such that

F= 0, then each of the Gp submatrices will be orthogonal to pl. and jr(p) = 0

when evaluated for each correct location (the conditions under which these approxima-

tions hold tree will be discussed in Section 5.2.4. Our scanning method therefore is to

search over ali possible one-dipole locations and at each location evaluate Jr(P), looking

for minima. The explicit steps will be presented in Section 5.3. The general approach is

to evaluate Jr(P) over a fine three-dimensional grid, plot its inverse, and look for p sharp

"spikes".

Provided the gain matrices are linearly independent over the scanning space, the

scanning function will not display more than p spikes, since the existence of more, for

instance p + 1 spikes, would suggest there are m + 2 orthogonal column vectors in an m-

dimensional space, which is not possible. We may however find fewer than p spikes.

Each evaluation of Jr(P) actually represents the projection of the column vectors for two

tangential components in Gp. If the dipole isfixed in orientation, then only a linear com-

bination of the two vectors may be orthogonal, and Jr(P) would not necessarily be a min-

imum at the dipole location. The next section extends this scanning method to

accommodate these fixed orientation dipoles.

5.2.2 Fixed Orientation Dipoles

We now assume ali dipoles are fixed, such that our model for the fixed orienta-

tion dipole, as shown in Equation (11), is B = [G(I) M] S = A(1, M) S, where S is the

scalar time series and M is the matrix of fixed unit orientation moments. The gain

matrix G is still m x 2p, but M is 2p x p and S is p x n, where p is the number of

dipoles. Thus, A(l, M) is anm x p matrix and the full least-squares cost function is
2li / li /

.,,,- w.ere,'isar,or .o ooaprojectorontoanm-,,s,.,bspaco,r t.er
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than an m-2p subspace as for/_G. We otherwise proceed identically as above, arriving at

an analogous cost function for a fixed dipole,

II  %ll,,
2

where_ip A,,'[I IIis th_ normalized gain matrix for fixed dipoles, [/p now contains

the m-p left singular vectors associated with the m-p smallest singular values, and we

note that for the vector A the L2 norm is equivalent to the Froebinius norm.

Note that Jj(p) is now a function of four parameters. If Jflp) were evaluated in the

same manner as the rotating dipole scanning function, then not only would we need to

scan over ali possible locations lp, but at each location we would also have to scan over

all possible constrained unit orientations m, thus extending our scan from three dimen-

sions to four dimensions. However, we now show that we can instead continue to search

over only the three-dimensional locations lo and at each location implicitly select the

best orientatio_ m which minimizes our cost function. We achieve this by using the sep-
T

arability of Ap = G_o and applying the constraint mpm = 1, since mp is, by our defi-

nition, a unit moment orientation vector.

For a given three-dimensional location lp, Gp(lp) is completely specifiea,sowe

seek to minimize the cost function J_) with respect to mp,

2

J/(P) = [III;"At,''2 (EQ34)

= (EQ 35)
2
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T T .L

mpGpP Gpmp
= (EQ 36)

T T

mpGpGpmp

T

subjectto mpm -- 1.

From Equation (36) we recognize that minimizing this problem is equivalent to

finding the minimum generalized eigenvalue (e.g., (Strang 1980), Page 277, (Golub and

van Loan 1989), Page 470) of the expression

T .I.

= _,GrGpmp (EQ 37)GpP Gpmp

If we denote the SVD of Gp as Gp = UGp_._GpVTGp,where Uap contains only the princi-

pal eigenvectors associated with the non-zero singular values, then the generalized

eigenvalue problem can be expressed as

-- v[U_pY-,t;pVcp]mp _,[V6pE6p6p3_Ut;pZ_pVbp]mp.(EQ38)
-1 T

By pre-multiplying both sides by _'t;pVr;p, we can simplify to

T .1.

U_pP U_pE_6pVrpmp_ = _,[ZcpVr_,]mp (EQ 39)

so that we can now solve the equivalent simpler minimum eigenvalue problem,

T .1.
J/P) = _'min{U6pP Uop} (EQ 40)

where _'min{ } denotes the minimum eigenvalue of the bracketed term.

Thus we need not explicitly scan for or calculate the best moment orientation that

minimizes J3(P), but rather calculate just the eigenvalue associated with this moment.

Consequently, the fixed dipole scanning procedure is the same as for the rotating model,

except that at each location in our 3-D scanning grid we calculate the smallest eigenvalue

of the bracketed term. For the fixed p-dipole model we expect to find p locations where

J/(p) ---0. The optimal moment orientation at each minimum of J/(p) is found indirectly

as the eigenvector associated with minimum eigenvector.
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Note that calculating this cost function requires finding the smallest eigenvalue

of only a2 x 2 matrix. Also note that depending on the dimension p of the orthogonal

projector, this small 2 × 2 matrix may be more efficiently formed as

T
T T

Ut;p(l-UpU'p) Utzt, = I-(UrUt;p) (UrU6p), (EQ41)

where Up again represents the p left singular vectors associated with the p largest singu-

lar values of F. Thus, this cost function may be calculated with relatively little compu-

tational burden.

5.2.3 Fixed and Rotating Dipoles

In the mixed case, we have Pr rotating dipoles and pf fixed dipoles for a total of

P --"Pr + pf dipoles. Our general model is therefore

T-

Eq0,,01
,oa

I

_1 "'" 1"" T

$ l

ooo

T

_ Spf

We have two related scanning functions for rotating and fixed dipoles, Jr(P) and Jy(p).

Examining Jr(P), we see that

.1_I1__,o_o_ll_
_ r (EQ 43)_r_- II_11_-

Ilzo_ll_F

2 Iii_ll,_ I1_o, Uo_e,+_11lP UGpe2
"- 2 2 (EQ 44)

(_! "t" (_2
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where oi and O2 are the two non-zero singular values associated with Gp. The vectors

e1 = [1, 0] T and e2 = [0, 1]T form an orthogonal unit moment orientation pair that spans

the row space of Gp. By comparison, Jy(p) can be viewed as

T .1.

J/(P) "-"_'min{ UGpP UGp}

--II" " (_Q 45)
IIi

wheremp is the optimal mp that minimizes Jj(p) over ali unit moment orientations at that

location. Comparingm_ with e I and e2 above, we can describe the rotating dipole scan-

ning function as a weighted average measure of how all dimensions of Gp project onto

the noise subspace, while the fixed dipole function is a measure of how one optimal

dimension of Gp projects. Thus when Jr(P) = O, then J/p) = O.

The rank of H is r = 2Pr + pf and is the crucial piece of information for this

model. We otherwise proceed as for the fixed dipole model. At each location, we calcu-

late the hybrid scanning function
.,

T ~ ~T

Yh(P) = _min{ UGpUrUr UGp} (EQ 46)

where _Jr now contains the m-r left singular vectors associated with the m-r smallest sin-

gular values, as compared to m-2p and m-p vectors for the two previous models. If at a

location p we have afixed dipole, then Gp mp represents a linear combination of the vec-
~ ~T

tors in Gp that is orthogonal to the noise subspace projector (UrU r), and we Obtain

Jh(P) "_O. Correspondingly, if at a location p we have a rotating dipole, then Gp is

already orthogonal to the noise subspace projector, regardless of the fixed orientation mp

we attempt to assign, and we still obtain Jh(P) -- 0. Thus we can use the fixed dipole

scanning method for both rotating and fixed dipoles. We summarize the complete steps

in the following section, where we show that this same algorithm can be derived under

the proper statistical conditions.
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5.2.4 Signal and Noise Subspaces

In the previous section we examined the rotating, fixed, and hybrid models sep-

arately. In this section we proceed directly to the general hybrid model B = H(l, M) S

and assume that the hybrid gain matrix may represent any mix of fixed or rotating

dipoles. We state the assumptions necessary for proving some of the MUSIC assertions.

• [AH] (Gain Matrix Assumption) Them x r hybrid gain matrix H, m > r, is of full col-

umn rank r for p dipoles. In other words, the gain columns of the dipole components

cannot be combined to simulate the gain columns of a third dipole component. For Pr

rotating and pf fixed, p = Pr + Pf and r = 2Pr + pf.

• [AS] (Asynchronous Assumption) The moment time series for different dipole com-

ponents are asynchronous or linearly independent, i.e., the time series of one compo-

nent is not simply a scalar multiple of the time series from another component, nor

can any combination of time series form another time series. Thus the time series

matrix S is also of full rank r.

• [AWl (Noise Whiteness) The additive noise is considered temporally and spatially

zero-mean white noise with variance o 2 , such that the expectation of the outer prod-

uct of them x n noise matrix is E{N(n) N(n)T}= o21, where n is the number of time

slices. This requirement may be eased by prewhitening of the data, if the noise statis-

tics are known.

The key assumption is that spatially distinct dipoles have linearly independent

time series over the measured time segment; however, no constraint is imposed on

whether or not the dipole moment is rotating, i.e., the method will work for either fixed

or rotating dipoles.
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Our model for noiseless data with m sensors, n time slices, and r elemental dipole

components is B = H S, where H is m x r, m > r, and S is r x n, r < n. Consider the

model for the noisy data under the assumption AW of zero mean white noise, F = H S

+ N. The spatial autocorrelation of the data is then

RF =-E{F(n) F(n) T} = E{[HS(n) + N(n)][US(n) + N(n)] T} = HRs HT + o21 (EQ 47)

where E { } is the expectation operator, and RS = E {S(n) S(n) T}; by assumption AS, this

correlation matrix R S is of full rank. The square symmetric matrix R F may be written in

terms of its eigendecomposition as

= [A_ o][_o]r (EQ48)ICy = ¢A¢ r [tpstpo] A

where we define As as the diagonal matrix containing the r largest eigenvalues and • s

as the matrix containing the corresponding eigenvectors. By our assumptions, it is well

known that the eigenvalue equal to the variance of the noise, _ = 02, repeats with mul-

tiplicity m - r (Schmidt 1985). Accordingly, AO= o2I, and tpo is the matrix containing

the corresponding m - r eigenvectors.

Comparing Equations (47) and (48) and using assumptions AH and AS, it is

straightforward to show that the space spanned by • s is identical to that spanned by H

R s HT; therefore, tps is said to span the signal subspace. The space spanned by tPo is the

orthogonal complement of the signal subspace and is referred to as the orthogonal or

noise subspace. Based on these observations, it can be shown that the quantity

_'min{urptPotProUop} (EQ 49)

is zero for any matrixGp = UopZ6pVrp corresponding to a true dipole location

(Schmidt 1986). Thus we can determine the dipole locations exactly using Equation (49)

provided R_ and hence tPo, is known exactly.
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In practice, MUSIC approximates R F by R_. = (l/n) FF r. Estimates of the

signal and noise subspaces, _I,s and _,,, are formed using an eigendecomposition of R e.

Using this approximation for _o, Equation (49) is now equivalent to Equation (40),

which was derived using a deterministic suboptimal least-squares approach. Thus the

scanning method presented in this chapter is also equivalent to the MUSIC algorithm for

"polarized sources", as defined in (Schmidt 1986), when the assumptions presented here

hold true.

5.3 Summary of the MUSIC Algorithm

Summarizing the MUSIC algorithm,

1. Given them x n data matrix F for m sensors and n time samples, perform the
T

eigendecomposition of the estimate R r = (l/n) FF r = _/_ . Order the eigenval-

ues, such that ;Ll _>_'2 > '" > _'m" Equivalently, perform the SVD of/7, where the eigen-

values are the square of the singular values.

2. Select the separation point 1 < r < m between the signal and noise subspace

eigenvalues. By assumptions AH and AS, r = 2pr + pf, where Pr is the number of rotating

dipoles and pf is the number of fixed dipoles; therefore, r is the number of elemental

dipoles. While theoretically _'min = G2 repeats with multiplicity (m-r), in practice there

is some spread among the smaller eigenvalues, depending on the number of time slices n

used to estimate R F. If the signals are of sufficient strength and sufficiently uncorrelated

during the time interval, then a distinct drop in the magnitude of eigenvalues will occur

between Xr and ;Lr+1' (A more detailed treatment of the order determination problem is

given recently by Chen et al. (1991).) Form the estimated matrices _s andco from the

corresponding signal and noise eigenvectors.
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3. Over a fine grid of three-dimensional locations {(x, y, Z)p}, calculate the cor-

respondingm x 2 gain matrix Gp for each location, obtain the principal left eigenvectors
r

UGp of Gp, using an SVD such that Gp = UGp_,Gp VGp, and evaluate
T

Jh(P) = _'min{U_p_o_o UGp} ' i.e., the minimum eigenvalue of the bracketed expres-

sion. Form two-dimensional slices through the three-dimensional space, e.g., (x, y)

planes for constant z, and plot the function Z{ (x, y, Z)p} = llJh(p) as contours, images,

or oblique mesh plots.

4. At each sharp "spike" (minimum of.lh), check to see if the entire subspace of
T

Gp is orthogonal to the noise subspace (both eigenvalues of { Urop_Po_oU6p} are

approximately zero), indicating that the dipole is rotating. Alternatively, if memory stor-

age is not an issue, then at each point when evaluating Jh(P) we can also calculate the

II.Trotating cost function JrQ_) = • oUGpEap /llzo.ll_. Locations

where Jr(P) -- Jh(P) -- 0 indicate rotating dipoles. If the dipole is indeed fixed (only

Jh(P) _ 0), we estimate its orientation by calculating the eigenvector associated with

_'min" We repeat this analysis until we find Pr rotating dipoles and pf fixed dipoles such

that r = 2Pr 4- pf. We can refine the estimate of the locations by either using a finer grid

in these areas, or by using these estimates as the initialization point for a p-dipole least-

squares search.

5. Form the hybrid gain matrix H(l, M) and solve for the time series, S = H t F.

Note that we do not explicitly need to know the number of rotating versus fixed

dipoles, Pr versus pf; instead, we need only r = 2Pr + pf. The values of Pr and pf are then

found by the MUSIC algorithm. We also note that Step 4 indicates the possibility of

detecting rotating dipoles by examining not only Jr(P), but by also examining the other
T

eigenvalues of { Urp_Po_PoUap} found in the calculation of Jy(p); however, we ha ;'_ not

studied differences in bias and variance among these various measures of fit.
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5.4 Comparison to Other Dipole Fitting Methods

5.4.1 Least Squares Scanning

It should be emphasized that the MUSIC scanning procedure is quite different

from fitting the full data with a single dipole. The appeal of the one-dipole model is the

relative simplicity with which we can form Gp. An alternative to the MUSIC approach

would be to simply fit a one-dipole model at each point in a scanning grid, i.e., compute

the function

J,sscp)= {EQ5o}

"Least-squares scanning" is then the evaluation of this function as the single

dipole is scanned through the head region. The dipoles are assumed to lie at the locations

corresponding to the local minima of JLSS. Since we are fitting a one-dipole model, this

method will naturally work when there is a single source. However this method gener-

ally fails, for example when there are multiple sources that are closely spaced or that

generate fields of greatly differing intensities.

Least-squares scanning is equivalent to the beamsteering approach of conven-

tional direction-finding and suffers from the same problems of poor resolution and inter-

source interference. The MUSIC approach itself was first proposed in the direction-find-

ing arena to overcome these problems (Schmidt 1986).

5.4.2 PCA Dipole Fitting

The MUSIC algorithm fits a one dipole model to a subspace derived from the

data. Principal Components Analysis (PCA) dipole fitting is a related method often

examined in MEG analysis, usually with poor results (Maier et al. 1987, Achim et al.

1988, Mocks and Verleger 1986, Wood and McCarthy 1984). Although PCA dipole fit-
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ting also scans a one dipole space derived from a similar decomposition, the subspace

framework presented here allows us to examine this method and show where it fails.

PCA dipole fitting begins with the identical step of decomposing the data

matrix F into its orthogonal components, F = UI2VT, then selecting the signal subspace.

As described by Maier et al. (1987) and analyzed by Achim et al. (1988), the columns

of U are the spatial distribution of the principal components, and the columns of V are

the corresponding time functions. The matrix W = U12"describes the "factor loadings,"

where Y-"contains only the r principal singular terms; this definition of W is consistent

with our definition in Section 4.1.2.

The PCA method fits a series of r single dipole models to the principal compo-

nents as follows. The pth dipole location and moment are chosen as a least squares fit to

a linear corr.bination of the factor loadings,

mint¢%llGp(lp)qp- Wcpi I (EQ 51)

where Gp(lp) is the gain matrix for a dipole at location lp and qp is the dipole moment.

In (Achim et al. 1988), Achim et al. chose the individual terms of Cp to be Cpp = 1 and

Cip= 0 for i _ p. In this case a single dipole is fit to each of the columns of W. Alternative

ci'oices of the rotation factors cip, such as Varimax, are discussed and analyzed in

(M _k_ ,,ad Verleger 1986, Wood and McCarthy 1984) and elsewhere.

The error in Equation (51) can be written as

2 .I. 2

s,,,:,, = II G,qll =
.L

where P,;, represents the orthogonal projection for a single dipole. The limitations of

PCA dipole fitting are now apparent. PCA dipole fitting will succeed only if the coeffi-

cients in Cpare correctly selected, such that Wcp lies in the two-dimensional subspace

spanned by Gp. However, this requires that we know the dipole location before we begin.
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As an example of the inaccuracy of PCA, Achim et al. (1988) show a case in which PCA

severely mislocates one of three dipoles in a noiseless simulation.
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Chapter 6

Applications of MUSIC

6.1 MEG

6.1.1 Simulation

In this chapter, we present results using the MUSIC algorithm for both simulated

data and experimental somatosensory data. We begin by using the same simulation

model and data as in Figure 7 on page 38, where at each of 37 sensor locations we sim-

ulate 100 time samples. Since by design we have two fixed dipoles and one rotating, then

our data model has a rank of four for three dipoles. We perform an SVD of the simulated

noisy data matrix F and plot the singular values, of which the first ten are shown in

Fig. 9.

The abrupt drop between values 4 and 5 give a clear indication in this simulation

that the number of elemental dipoles is 4. We form the noise subspace estimate_, from

the eigenvectors associated with singular values 5 to 37. We form the gain matrix at each

voxel in the region x - -5 to 5 cm, y = -5 to 5 cm, and z = 6 to 9.5 cm, at 0.5 cm intervals.

The minimum eigenvalue at each position using Equation (40) is found, then the

inverses of these values are formed into two-dimensional images for fixed z.

The results are shown in Fig. 10. The cost function shows three distinct peaks in

Fig. lO(a) between z = 8 and z = 9 cm. The true locations, given in Table 1 on page 39,

are just below the plane z = 8.5 cm and agree well with the positions shown in the figure.

Fig. 10(b) shows the inverse of the second eigenvalue found in the evaluation of

Equation (40). The figure shows a distinct peak for the single rotating dipole in this sim-
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FIGURE9. Singularvalues forsimulated noisy data matrixP..Forclarity,onlythe first10 of
37 singularvaluesareplotted.Theabruptdropbetweensingularvalues4 and5 givesa
clearindicationinthissimulationthatthenumberof elementaldipolesis4. Thenoisesin-
gularvaluescorrespondingto indices5 andupwardareseento beapproximatelyequal.

ulation. We could refine our estimates by either scanning more finely around the z = 8.5

plane or by using these scanning estimates as an initialization point for a full three-

dipole least-squares fit.

6.1.2 Phantom Example

A seven-sensor, 2nd-order gradiometer system was placed in six different posi-

tions about a glass sphere of radius 9 cm, for a total of 42 measurement locations. Four

dipole sources were placed inside the sphere, which was filled with a conducting solu-

tion. The sources were coaxial cables, with the inner conductor extending 1 mm beyond

its coaxial sheath. The sources were located within the sphere using a probe position

indicator.
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FIGURE 10. SimulationResults.Each subimage isa two-dimensionalslice in the (x,y)
plane for z = 6 cm to 9.5 cm. Each (x,y) slicewas formedat 0.5 cm intervals,from-5 to
5 cm in boththe x andy directions.The simulationdata are identicalto the least-squares
example, wherethe SNR is approximately10 dB. The top set of images is fromthe fixed
dipolefunction,Jt(P), Equation(34). Here we have encoded the image as whiteto repre-
sent the minimainthe cost function.The lowerset of images, also from the fixed dipole
model,showsthe second (non-minimum)eigenvalue;a minimuminthe second eigen-
value indicatesthe presenceof a rotatingdipole,as discussedin thetext. The singlemin-
imumhere correctlyidentifiesthe one rotatingdipole.The true locations,giveninTable 1,
are approximatelyinthe z = 8.3 cm plane,withgoodagreement inthe positionsindicated
here.
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Fig. 11 displays the average absolute response recorded over ali sensors, where

we see the overlap between the source responses. Each source produced an approxi-

mately 30 ms wide monopulse, with each source firing about 8 ms after the previous,

such that the fourth source was activated before the first source had completed its

response.

Phantom Data, Four Sources, 8 ms delay, 30 ms duration
500 .....

450 1400

350 \ V
g
_ 250

2oo
< 150

100

50

0 "' "_ i 7: i (_0 i .... t ,-2OO - 1O0 0 l 200 300 400

Time (msec)

FIGURE11. Average of the absolute response across ali sensors for the phantom
experiment.

Using the MUSIC algorithm, the data set was scanned over a 20 cm source cube

at a 0.5 cm sample interval to establish the overall quality of the data and to confirm the

absence of ambiguous head regions (strong local minima). These 5 mm scans were then

used to select the 1 mm scan region. The results of the 1 mm scans were examined by

converting the three dimensional metric information into two dimensional slices. From

these slices the "peaks" (points where the metric approached zero) were identified. The

true locations of the sources and the identified locations are given in Table 2.
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In Fig. 12 we show two axial slices from the one millimeter MUSIC scans. Both

slices span the x-axis horizontally from-2 to 2 cm and the y-axis vertically from-2 to

2 cm. Figure (a) is for z = 6.5 cm, and Figure (b) is for z = 7.8 cm. The locations of the

peaks are given in Table 2. Sources 2 and 4 were well resolved, as indicated by the nar-

row peaks in both figures and the good agreement with the true locations in Table 2. The

other source that was identified had a much broader peak that spans the region near

Sources 1 and 3, indicating that these two closely spaced sources may not be resolvable

by this array configuration. Indeed, the three sources identified explain 99 percent of the

data variance.

TABLE 2. Coordinates of located sources (centimeters) for the true, MUSIC, three ("LS 3")

and four ("LS 4") dipole least-squares fit. The "Error" is distance to the true location, and
the "Variance %" is the percent variance explained by the locations. Dipole (3) was not
distinguishable as a separa_ source in the MUSIC run.

Source True MUSIC LS 3 LS 4
III II

x 0.16 0.2 0.3 0.3

Dipole 1 y -0.82 -1.0 -1.0 -0.6

z 5.90 5.9 5.8 6.1

Error 0.2 0.2 0.3

x 0.88 0.9 0.5 0.6

Dipole 2 y -0.28 -0.4 -0.3 -0.4

z 6.30 6.5 5.9 6.2

Error 0.2 0.6 0.3

x -0.15 0.3

Dipole 3 y -0.30 -0.6

z 5.20 6.1

Error 1.1

x 0.27 0.3 0.3 0.3

Dipole 4 y 0.81 0.8 1.0 1.1

z 7.75 7.8 8.4 8.4

Error 0.1 0.7 0.7

Variance % 99.4 98.9 99.4 99.7
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z = 6.5 cm

z = 7.8 cm

FIGURE 12. One millimeter MUSIC axial slices of phantom data in the x-y plane. Each
image spans -2 to 2 cm on the x-axis horizontally and -2 to 2 cm on the y-axis vertically.
Table 2 gives the locations of the peaks.
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The true locations were then used as the initialization point for a nonlinear least

squares localization algorithm. Both a three dipole and a four dipole model were fit to

all of the data. The moment orientation was not constrained. As shown in Table 2, the

least-squares solutions were just slightly better able to explain the variance of the entire

data set, but at an increased error in the location over that of the MUSIC results. We see

that the MUSIC results are quite good for this data set. Repetitions of this experiment

should be conducted to determine the variance of these results.

6.1.3 Somatosensory Example

For the somatosensory experiment, the data were generated by vibrotactile stim-

ulation (using a piezoelectric speaker element) of the right thumb, the right ring finger,

and then both digits simultaneously. The intent was that the evoked field pattern for

"both digits" might reflect a summation of the fields evoked by the stimulation of thumb

and ring finger alone. The data were collected during eleven placements of a seven-sen-

sor, 2nd-order gradiometer system, at each placement averaging 300 trials. The data

were digitized for 300 milliseconds (100 pre-stimulus and 200 post-stimulus) at 1 kHz

and were filtered on line between 1 Hz to 100 Hz. Fig. 13 displays the average absolute

time response across ali sensors for the three experiments, "ring", "thumb", and "both".

Since piezoelectric stimulation creates a large stimulus artifact, the data were partitioned

into a prestimulus interval up to 0 msec and a poststimulus interval after 24 msec.

Fig. 14 plots the first ten singular values from the decomposition of the spatio-

temporal data matrices. The upper three curves are from the SVD of the poststimulus

data matrices, and the lower three correspond to the prestimulus. The shape of the post-

stimulus curves and the merging of the prestimulus curves leads us to select the first six

eigenvectors as our signal subspace. (For subspace orders five and four, we also obtained

results similar to those presented below.) Fig. 15 displays the results of a five millimeter

63



Thumb. Ring. and Both digits stimulus
300 ....

!,,
i t,,,

.,,,
250 t:,

:i ' Thumb
,t
_t ........ • Ring

200 .......... : Both Digits

150

_ 100 -

50 ....
I : i

t e_ • /

• _A0 _""J"
0
-100 -50 0 100 50

Time (msec)

FIGURE 13. Average Absolute Evoked Field. The data were rectified across ali sensor
locations and averaged to give an indication of the temporal activity.

grid MUSIC scanfor the"both digits" stimulation, using the first six principal compo-

nentsof thepoststimulusinterval. Eachsubimagerepresentsanaxial slice of theheadin

five millimeter incrementsalong thez-axis, with the left ear at the topof the image and

thenoseat the right. The headcoordinatesystemusedwas thex-axis throughthenose,

they-axis throughthe left ear, andthez-axis up throughthe topof thehead.

One millimeter scanswere thencenteredon theobservedpeaks seen in the five

millimeter scans.Fig. 16, Fig. 17, andFig. 18 display axial scansin onemillimeter

increments,from x = -2 to 2 cm, y = 3 to 7 cm, andz = 6.1 to 8 cm. We seea clearshift

in the responseamong thethree datasetsin both the y and z coordinates.Fig. 19sum-

marizes the results from the z = 7.3 centimeter slice, where we have overlaid contour

plots with full gray scale images. Here we clearly see the distinct separation between the

peaks for the thumb and the ring finger stimulation. The response due to the "both digits"
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FIGURE 14. SingularValues of SomatosensoryData Matrices.The top set of curvescor-
respondto the three setsof poststimulusdata (dataafter 24 msec), andthe bottomset cor-
respondsto the prestimulusdata. We selectedordersix as our signalsubspace;similar
resultswere obtained fororders five and four.

stimulation actually peaks in the z=6.9 cm plane, but we see in this z=7.3 cm plane the

indications of a possible summation of the response from the two somatosensory cen-

ters. A more thorough analysis would include discussions of noise correlation, order

selection, and physiological interpretation, but we defer such analysis, since the empha-

sis here is simply to illustrate the utility of MUSIC analysis with real data.

6.2 Thunderstorm Localization

6.2.1 Simulation

Fig. 20 displays the simulated positions of two "storms" for ten different sequen-

tial instances. The point charges were each positioned at an altitude of 4 km and given a
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FIGURE 15. Axialscansof the "bothdigits" stimulationcase. Each subimage is a two-
dimensionalslicein the (x,y) plane for x = -10 to 10 cm, y = -10 to 10 cm, and z = 4 to
8.5 cm. The scanninggridincrementis 0.5 cm inali directions.Basedon these results,a
1 mm scanninggridwas then formed aroundthe indicatedminima.

FIGURE 16. One millimeteraxialscansot RingData. Eachsubimageisa two-dimensional
sliceinthe (x,y) plane for x= -2 to 2 cm, y= 3 to 7 cm, and z= 6.1 to 8 cm.The scanning
incrementis 0.1 cm in ali directions.
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FIGURE 17. One millimeteraxial scansof Thumb Data.

FIGURE 18. One millimeteraxial scans of Both DigitsData.
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FIGURE19.Comparisonsof theonemillimeterscansatz= 7.3 cm.The (x,y)dimensions
remainx = -2 to 2 cmandy = 3 to 7 cm.Contourplotsoftheaxialslicesareoverlayed
witha grayscaleimageof thedata.On theleftisthe"ring"data,inthemiddleisthe
"thumb"data,andontherightisthe"bothdigits"data.

nominal charge of 10 coulombs. Random noise uniform over +/- 0.5 coulombs was

added to each charge for ten samples at each time position. Thus 100 total time samples

were simulated for the charges as they moved across the cape. The bottom figure in

Fig. 20 displays the total simulated fields measured across the KSC sensors. We thus

have one charge passing from west to east over the Vertical Assembly Building while

the second charge moves roughly from north to south over the Cape Canaveral Air Force

Station. The intent is to show (a) the sharpened resolution as the storm cells move from

outside the array into the center of several sensors, and (b) the relative ease with which
• i'"

MUSIC tracks two simultaneous charges.

Fig. 21 shows the overlay of ali 31 simulated time sequences across the cape.

The abrupt transitions correspond to the jump from one storm position of ten samples to

the next position, i.e., we did not smoothly move the storms from position to position.

These jumps serve as our discontinuity or incoherence in trying to fit our mod=i to the

data, effectively serving here as our lightning strikes. Since the quasi-static charge model

requires a stationary source, we can visually see how this simulated data should be par-

titioned into ten even segments of time; however, we need a more objective measure of

dividing this stream of data.
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FIGURE 20. Two simulated charges. The top figure shows the position of the two charges
for ten different time segments. The bottom figure shows the simulated field intensity
recorded at each sensor as the two "storms" pass through the Cape.
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FIGURE21. Overlayofsimulations. _ofthesimulatedfieldsrecordedateachsensorare
overlaidhere.The visiblyabruptchal =.sindicatewherewe haveshiftedthe=stormcells"
up to the nexttime segment,for ten ti= _.segmentstotal.

Section 9.3.1 presents the result, qf apply time-eigenanalysis to this same simu-

lation to show how the data could be pars_J. Here we simply assume we know how to

partition the time data into its proper segments. Fig. 22 is the MUSIC scan of the first

time segment of simulation presented in Fig. 20. In this position, both charges are just

outside of the KSC array, one charge to the west, the other offshore. The top figure is the

MUSIC scan at 4 km in altitude, where we have colored the MUSIC intersections from

"poor" to "perfect" as dark red to white, respectively. We see in this image perfect peak-

ing at the correct position "1", as confirmed in Fig. 20. We also note the relatively broad

smearing around these peaks, to be expected from the Cramer-Rao results. The bottom

figure in Fig. 22 illustrates the vertical smearing of the MUSIC spectrum as weil. The

results of ten MUSIC scans, each at increasing 1 km increments, are stacked on top of

one another, but we have only tagged with a "*" those regions of the slices whose inter-
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section was greater than 85%. Effectively we are viewing a large distorted three-dimen-

sional ellipsoid in space, whose center represents the source location.

We contrast the smearing of these position 1 results with the precision of the

results in Fig. 23, which presents the MUSIC results for position 6. In this position, both

storm cells are well situated within a cluster of sensors. The top figure is again the

MUSIC scan at 4 km, and here we note the tightness of the peak. The bottom figure is

the view again from the southwest of ali ten MUSIC scans for each corresponding 1 km

of altitude, where only those regions greater than 85% tagged with a "*." In contrast with

the position 1 results, here we see excellently localized peaks in both the horizontal and

vertical directions. This well-focused MUSIC sphere corresponds directly with the

excellent Cramer-Rao results predicted for these regions of the cape.

We ran the MUSIC spectrum for the other eight simulated positions as weil,

obtaining comparable results, then plotted them in a manner identical to Fig. 22 and

Fig. 23. These ten images were then arranged in a sequence and played as a "cine" or

movie loop on the computer. The result is a very effective demonstration of the ability

of the MUSIC scans to reinterpret the KSC array of field mill data into a visually infor-

mative and insightful sequence of graphical images. One area of further research is to

integrate this visual modality of the mill data into the other graphical weather presenta-

tions, such as weather RADAR, LDAR, and the lightning detection network. Effective

integration will allow the weather forecaster to more readily assess and incorporate the

unique field mill information into the overall weather operations.

6.2.2 Intense Lightning Example

Fig. 24 displays 360 seconds of thunderstorm data, parsed down from 600 sec-

onds of data that contained several lightning strikes. The parsing was done using time-

eigenanalysis as a guide, described in Chapter 9. We selected two time segments, one
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FIGURE 22. MUSIC Simulation l. The time segment isthe first inthe simulation, when the
"stormcells"are just outsideof the KSC array.The top figure is the view from above the
Cape, andthe bottomviewis theviewfromthesouthwest.The analysiswas doneon 1 km
planes,and any voxelsgreaterthatn85% weresimplytagged to forma stack of images as
seen here. We observe howthe MUSIC spectrumsmearsaway fromthe array,consistent
withthe Cramer-Rao analysis.
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FIGURE23. MUSICSimulationIi.Thetimesegmentisthe sixthinthe simulation,wellsit-
uatedwithintheKSCarray.IncontrastwithFig.22, wenotethetightnessof theMUSIC
peakinsideof theKSCarray,againconsistentwiththeCRLBanalysis.
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FIGURE24. Usingthetime-eigenspectrumtechniquesdiscussedinSection9.3, we
parsed600secondsintothe360secondsshownhere.Wethendividedthissegmentinto
sixevensegmentsof60 secondsforMUSICprocessing.

with residual lightning activity still evident, the other a much more static region between

strikes.

The top figure in Fig. 25 is from the second time segment, time data 61 to 120,

and the bottom figure is from the fourth time segment, time data 181 to 240. Segment

two contained many low similarity regions in its time-eigenspectrum, and the MUSIC

spectrum is correspondingly broad and somewhat poor. Segment four contained a very

stable low rank time-eigenspectrum, and we see a corresponding well defined peak. The

peak aligns with the intuitive interpretation of the storm center, obtained by examining

the field levels manually. We also note the same broadening of the peak of the solution

outside of the array, as was seen in the simulation data presented in Fig. 22.

Fig. 26 more closely shows the peak seen in the right of Fig. 25. We again tag ali

MUSIC results above 85% for the 1 km planes, and view this stack from the southwest.

Here we see the stack peaking at a minimum of 10 km, which would appear to be unre-

alistically high; however, further examination leads us to believe that the coronal damp-

ing of the fields are the cause of this vertical error. Further research effort will investigate

if we can incorporate coronal damping into the model to allow more accurate vertical

positioning
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FIGURE 25. MUSIC Thunderstormexample. The top figure is fromthe second time seg-
ment, time data 61 to 120, and the bottomfigure is fromthe fourthtime segment, 181 to
240. Segmenttwo stillcontainedresiduallightningactivity,and itsMUSIC spectrum
appearscorrespondinglybroadandpoor.Segment fourcontaineda very stable low-rank
regionof data, and we see a correspondingwelldefined peak. The peak alignswiththe
intuitiveinterpretationof the stormcenter,obtainedby examiningthe fields manually.
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FIGURE 26. MUSIC Example detail. Tilting the fourth segment into a southwest view, we
see that the MUSIC scan is peaking above 10 km, although it is well defined in the hori-
zontal plane. The error in locating the storm vertically is believed due to the coronal damp-
ing of the fields.

We repeated this MUSIC analysis for the other four 60 second segments and

again formed a cine loop for presentation and analysis. The loop shows peaks over a

range roughly between the two presented here. The overall result is a quite consistent

localization of the source in the same region of the cape, even with data not ideally quasi-

static.

For an additional example, in Section 9.3.3 on page 136 we examine an End-of-

Storm-Oscillation (EOSO) for its time-eigenspectrum, then produce MUSIC images of

two regions in the EOSO.
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Chapter 7

Cramer-Rao Lower Bound

7.1 Background

The simplest head model in use is a set of homogeneous spherical shells, for

which the MEG model is straightforward and the EEG model is still tractable, but with

more parameter assumptions. Although a dipole comprises six parameters, the focus of

most research has been on the accuracy of determining the three location parameters.

Early studies compared the relative localizing ability of EEG and MEG (Cuffin and

Cohen 1979, Cohen and Cuffin 1983). In (Stok 1987), several of the model parameters

were varied to determine which had the greatest impact on accuracy. In (Cuffin 1990 and

Cuffin 1991), the head shape and sphere models were examined for their accuracy

impacts. In (Cuffin 1986), variations of noise and measurement errors were explored for

several array configurations. In (Kaufman et al. 1991), the dipole source is expanded to

a larger spatial extent to test the dipole assumption in cortical folds for both EEG and

MEG models. In (Achim et al. 1991, Baumgartner et al. 1991), the spatiotemporal

model was examined to determine its effectiveness in improving location accuracies.

The accuracies found and the conclusions drawn by these studies vary widely.

Direct analysis of the localization error is complicated by the nonlinearity of the location

parameters, the sensitivity to the moment orientation, the moment intensity, the back-

ground noise power, the orientation and spatial extent of the sensors, and the absolute

position of the dipole. Consequently, most of these studies and comparisons were

restricted to specialized dipole locations or sensor positions. The error results were gen-

erally established by experimental data or by Monte Carlo analysis. More recently,
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dipoles implanted in patients have been used in an attempt to determine localization

errors in MEG (Balish et al. 1991) and to compare localization errors between EEG and

MEG (Cohen et al. 1990). The results of (Cohen et al. 1990) have particularly lead to

recent controversy, with the study criticized on methodological grounds in (Hari et al.

1991, Williamson 1991). In (Therapeutics and Technology Assessment 1992) and (Ano-

gianakis et al. 1992), the call is for a careful consideration of the absolute accuracies of

either modality under conditions that are fair to both modalities. As noted in (Cohen and

Cuffin 1983) and repeated in (Anogianakis et al. 1992), EEG and MEG provide comple-

mentary data, and the use of both modalities can contribute to overall improved accu-

racy.

Our analysis of dipole localization error for MEG and EEG is based on the well-

known Cramer-Rao Lower Bound (CRLB). The CRLB provides a lower bound on the

variance of any unbiased estimator of the location and other model parameters. By deriv-

ing a closed-form expression for the bound, we can compute it efficiently for a much

wider range of conditions than can studies based on Monte-Carlo simulations or exper-

imental data. The bounds are useful only if they are relatively tight (i.e. if they are not

overly optimistic compared with the true localization error variances) and if the estima-

tors employed have relatively small biases. To demonstrate the usefulness of the bounds,

we present a Monte Carlo simulation which indicates that the CRLBs, in most cases,

give reasonably accurate predictions of actual localization error variances.

We note that there are important limitations to this analysis, primarily due to the

fact that the CRLB holds only under the assumption that the model is correct. The

bounds give no insight into the effect of modeling error on localization accuracy. Nev-

ertheless, in many of the cases shown, the CRLB gives surprisingly large lower bounds,

even under fairly optimistic assumptions. Since modeling errors tend to degrade, rather

than improve, performance, these results indicate that the accuracy of dipole localization
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based on single time epochs is often limited by the inherent ill-posed nature of the prob-

lem. The models used here are some of the simplest in use. In general, more complicated

models would be more prone to modeling errors and could have more parameters to esti-

mate. Consequently, the bounds presented here may pose fundamental limits on EEG

and MEG localization performance.

In this research, we present the Cramer-Rao lower bound for the general spa-

tiotemporal model for an arbitrary number of sensors, an arbitrary number of time

instances, and an arbitrary number of dipoles with arbitrary moments. We then present

the formulas for the dipoles in a four shell sphere model for both the EEG and MEG

case. These formulas are used in the subsequent sections to examine the lower bound on

errors for several different array and dipole configurations. The localization error

bounds are computed for one and two dipoles located in a plane in the upper hemisphere

of the head. For each location, a search is performed over ali possible dipole orientations

to determine the best and worst results and the average localization error bounds. Graph-

ical error contours are displayed for a quadrant in the upper-head hemisphere, providing

rapid a'_sessment and comparison of the two modalities.

Our emphasis is to present optimistic operating conditions with perfect models,

many sensors, and low noise power, so that we may establish if the corresponding lower

bounds indicate the potential for good dipole resolution. The use of identical sensor pat-

terns allows, in each case, a cautious, but direct comparison of the differences in MEG

and EEG source localization ability.

7.2 CRLB solution

The Cramer-Rao lower bound (CRLB) (e.g., Sorenson 1985) is an important

result in estimation theory that establishes a lower bound on the variance of any unbiased

estimator of a set of unknown parameters. Determining the bound requires a joint prob-
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ability density function for the data. While the existence of an unbiased estimator that

attains the bound is not guaranteed, we can use the bound to establish fundamental lower

limits on the accuracy with which the parameters may be estimated. In applying the

CRLB to dipole localization, we can use this result to determine, under certain modeling

assumptions, minimum mean squared localization errors for dipolar sources. To demon-

strate that these bounds are meaningful in this application, we need to show that (a) the

estimators we use are effectively unbiased, and (b) the bounds are relatively tight, i.e.,

that the lower bound on the variance is close to the true attainable variance with a given

estimator. To investigate the utility of the CRLB, we performed Monte Carlo studies

using nonlinear least-squares for localization. The results of this study are reported in

Section 7.3.

7.2.1 Derivation

Consider a set of data F, which we model as F = G(/)Q + N , where N is the

unknown noise and G(/)Q is the noiseless deterministic data. We assume that the loca-

tions I and the orientations and magnitudes Q of the dipole moments are unknown. We

also assume that the noise N is zero-mean, spatially and temporally white, and normally

distributed, and that it has an unknown variance v. For convenience, we group these

parameters into one vector _,

E "_t= v,q_(1)r,...,q_(n)r, ll,..., , (EQ 53)

where each moment vector at each time instance j is the concatenation of the individual

moments for each dipole, as

aT

_q(i)r [q3(J), .. -_r 7
= ., qp(j)j . (EQ 54)

Cramer-Rao Inequality Theorem: Let _t be any unbiased estimate of the deter-

ministic parameters in F = G(I.)Q + N . Then the covariance matrix C of the errors
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between the actual and estimated parameters is bounded from below by the inverse of J,

as

T

C = E{(V-_) (_-_) } >J-_ (EQ55)

where J is the Fisher Information Matrix

J=E{ [_log p(Fl_)]E_log p(Fl_)]r}. (EQ 56)

E{ } denotes the expected value or mean of the enclosed term, and p(F I_) denotes the

probability density function for the data with parameters _.

See (Sorenson 1985) for a proof of this result. The inequality in (55) states that

the difference matrix (C - j-l) is positive semi-definite, and as a consequence, the vari-

ance of each parameter Vi is individually bounded by the corresponding diagonal ele-

ment in j-l. Under the assumption that the noise is spatially and temporally white and

normally distributed, an closed form expression for (55) is possible. We derive below the

Fisher Information Matrix and the corresponding Cramer-Rao lower bound for the gen-

eral spatio-temporal model. We derive this result for the case of m sensors, n time

instances, and p dipoles, in a general form that is applicable to both EEG and MEG data.

We define some notation and develop the bound to parallel the work of (Stoica

and Nehorai 1989). We define D as the partials of the gain matrix G:

Ik=- [lxk, lyk, lzk]

d(lxk)=--__-_G (_lk)

d(lk)- [d (l_k),d (lyk),d (lzk) ]

O - Id(l,), ..., doj,), ..., d(lt,)] (EQ 57)
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where lxk refers to the x-axis component of the kth dipole location, and, similarly, for the

other subscripts. Arrange the p moments at the jth time slice, q(j), into a block diagonalm

matrix,

i '1
3 ® qn(J)

X(]) = ... , (EQ 58)

0 13 ® qp(j

where 13 is a 3 x 3 identity matrix and" ® "denotes the Kronecker product. (The Kro-

necker product of a (p x q) matrix A = {aij} and an (m x n) matrix B = {bij} is the (pm

x qn) matrix, {aijB}, denoted by A ® B .)

With our parameters and their partials thus redefined into the matrices G, D, and

X, we group these together into two more matrices before deriving the Fisher Informa-

tion Matrix. This notation also simplifies the expressions for inverting the FIM to obtain

the lower bounds:

li

F- __, [ (DX(j)) "r(DX(j)) ]

j = 1 (EQ 59)

A(j) - GTDx(j)

A- [A(1) r, ..., A(n)r]r

Thus, for m sensors, n time slices, additive zero-mean white noise with a vari-

ance v, and the dipole moments and locations grouped as defined above, the Fisher

Information Matrix is (Stoica and Nehorai 1989)

mn
0 0

y=l 2v
v 0 /.®dG A" (EQ 60)

0 Ar F
-
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The three diagonal elements represent the information content of the scalar noise vari-

ance, the set moment parameters, and the set of location parameters, respectively. The

off-diagonal terms represent the cross-information between the various parameters.

With this partitioning and with the use of standard matrix inversion formulas (Sorenson

1985), we can readily invert this matrix analytically. We are particularly interested in the

diagonal elements, since the Cramer-Rao lower bound for the ith parameter _/i is simply

the ith diagonal element of j-1 (Sorenson 1985).

The off-diagonal zero elements in J make the lower bound for the scalar noise

variance particularly easy to calculate:

2v 2
CRLB (v) = _ . (EQ 61)

mn

where CRLB( ) denotes the Cramer-Rao lower bound on the error covariance matrix of

the enclosed vector. The lower bound covariance matrix for all p locations in I is found

in the lower 3p x 3p portion of matrix j-!

r (EQ 62)= ® -' •
Simplifying using (59),

= v (DX(j)) T(DX(j)) -

(EQ 63)

Fo[ (DX(I)) rG... (DX(n)) TG] [I._ (GTG)-_3 Sl.

LG'ox(,

I n n 1-1

= v _., (DXQ))rI(DX(j))- _., (DXq))rG(GrG)-_GrDX(j) , (EQ64)
j=l j=!
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l-I
----"V/_i,,,dI_" (DX_'))TE1-G(GTG)-IGT_(DX_)) , (EQ65)

L

1-'= v (DX(/))r Pc
j=l

where _ = (I-GG t) - (I-P_) is the orthogonal complement of the projection

matrix for G, and Gt is the full rank pseudoinverse of G, G t - (GrG) -IGr.

The lower bounds for the moment series at each time slice j can be readily

expressed in terms of the lower bound for the location. If we define 7- CRLB(I)/v,

then the lower bound covariance matrix for each moment time slice j, j = l,...,n is

CRLB(q(j)) = vi (GrG) i . 7"- +GtDX(j)'t (G_DX(J')) 1" (EQ67)

These formulas depend on inverting GTG, and therefore a brief discussion about

its rank is important. In the EEG and MEG cases studied in this research, we assumed

that the dipole lay in the tangential plane, i.e., that the radial component was assumed

known and equal to zero. Since G comprises submatrices G| for each dipole, then each

G i must be appropriately expressed as a 2 x 2 matrix, before attempting the inverse of

GTG. If GTG becomes singular for a particular selection of dipoles, then the inverse is

undefined, and we cannot calculate the variance. The reduced rank Moore-Penrose

pseudoinverse is inappropriate here.
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The Fisher Information Matrix and its inverse provide insight into how each

parameter affects the estimate of the other parameters. Repeating (60), for m sensors, n

time slices, and variance v, the Fisher Information Matrix is

0 0
j = 1 r - . (EQ 68)v o  .®d6

LAT0 _ F i
m

The upper-left diagonal term in J, (mn) / (2v), represents the information for the esti-

mate of the noise power. The other entries in the first column and first row represent the

cross-information between the noise power and the other parameters of our model,

namely the moments and locations of the dipoles; these off-diagonal elements are zero.

The CRLB requires that this matrix be inverted, and these zeros allow us to partition the

matrix into two separate submatrices and invert them separately. Thus, the noise vari-

ance submatrix cannot affect the parameters in the other submatrix. Of course, the other

lower bounds depend on the noise variance (there is a scalar noise variance term leading

the matrix), but whether or not we assume that we know the noise variance is irrelevant,

because the submatrix inversion to calculate the moment and location lower bounds is

the same whether we estimate the noise variance or assume it.

In contrast, the lower bounds on either the set of moment parameters or the set

of location parameters depend on whether we estimate both sets of parameters or assume

one set known. We represent the information for the moments and the locations in the

lower right submatrix in (68). The cross-information between the moments and the loca-

tions is represented by the off-diagonal term A. If we assumed perfect knowledge of the

moments, then the CRLB of the locations would reduce to the first bracketed term in

(62). Similarly, if the locations are perfectly known, the CRLB for the moments would
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reduce to the first bracketed term in (67). In the general dipole localization problem, w_

know neither the moment nor the location, and the second term in each of these CRLB

equations shows that we cannot simply ignore the cross-information term A. This cross

coupling will always increase the error lower bounds, except in the rather specialized

case of P_D = D, i.e., where tile partials matrix is completely orthogonal to the gain

matrix. Thus, consideration of the estimation of both the moment and the lc_- :ion is crit-

ical to better lower bound accuracy.

7.2.2 l_catlon Error Lower Bounds

Equations (61), (66), and (67) above are for the general multiple dipole spa-

tiotemporal model. They express the lower bound for the variance, the dipole location,

and the dipde moment. Our approach in this research is to focus on the variance of the

dipole location error, since much MEG and EEG work emphasizes the ability or inability

of the different modalities to locate the source of neural activity. To gain insight into the

utility of the formulas and establish some basic lower bounds, we simplify the studies to

the single time slice case and to the case of multiple dipole sources of equal scalar inten-

sity Q. In this case, the scalar Q factors out and can be grouped with the variance of the

noise. Equation (66) reduces to

± (EQ 69)CRLB(I) = vi- (DX(1)) r Pc (DX(1):_ _-'.

If we assume ali dipoles to be of equal intensity Q, then X(1) can be factored as

QX, where X comprises just the orientations of ali the dipoles, and we have dropped the

single time index for convenience. Thus (69) can be factored as

v _ r ± _ . (EQ 70)

86



Broadly speaking, D represents the matrix of partial derivatives of the gain transforma-

tion with respect to the locations, ,_"represents the moment orientations scaled to unity,
±

and Pc is a projection operator onto the orthogonal complement of the column space of

the gain matrix G. Equation (70) illustrates how the dipole intensity and the noise vari-

ance can be lumped into a single scalar ratio of the two values, v/Q 2, and that the

moment orientation can be isolated into a single term ,_'. We can therefore easily scale

our results for any desired noise power and moment intensity levels.

7.2.3 Best, Average, and Worst Dipole Orientation

For one dipole, the lower bound error analysis for EEG generates a 7 by 7 cova-

riance matrix: one dimension for the noise variance, three dimensions for the moment,

and three dimensions for the location. In the case of MEG, we only have two dimensions

of the moment we can estimate, but in either case we always have three dimensions

assigned to the location. If we use Cartesian coordinates for our location parameters,

then the difference vector between our estimate of the location and the true location can

be written as

Location Error Vector = [ (x-._), (y- _), (z- _) ] . (EQ 71)

The corresponding 3 by 3 submatrix bounding the error covariance for these parameters

would be

2 2 2

_ xx (_ xy (lxz

CRLB0) = 2 2 2 (EQ72)
{_xy (_yy (_yz "

2 2 2

ff xz Oyz _zz

Independent of our choice of coordinate systems, this bounding matrix can be

represented by an error ellipsoid. The major axes of the ellipsoid are found as the eigex_.-
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vectors of the bounding matrix. The lengths of the axes are determined from the corre-

sponding eigenvalues. The eccentricity of the ellipsoid indicates the directional bias that

the error vectors will exhibit. Indeed, the minor axes of the ellipsoid represent the "pre-

fen'ed directions" discussed in (Cohen and Cuffin 1983). If we consider the errors in any

direction to be equally important, then we can ignore this directional bias and, instead,

focus on the scalar length of this error vector. The lower bound on the expected squared

value of this length is the sum of the eigenvalues, or equivalently, the trace (sum of the

diagonal elements) of the bounding matrix. Hence, at a given location l and for a give,
d_

moment q, we can define our scalar localization error bound in Cartesian coordinates

as

i

• "_ 0.2 2 2
RMS Location Error: _(l,I q) = ( xx "4- (Yyy+ aZZ) (EQ 73)

which, physically interpreted, is the lower bound on the root mean square (RMS) length

of the three-dimensional error vector given by (71).

We emphasize in (73) the dependency of this calculation on the moment of the

dipole7 different moment directions at the same location will generate, in general, differ-

ent error ellipsoids. Since radial sources represent "silent sources" for MEG data, we

have largely restricted our examination to sources lying in the tangential plane for both

MEG and EEG data. This restriction also simplifies our analysis of the RMS location

error, because the moment orientation can now be parameterized by the single parameter

0 describing the angle the moment makes in the tangential plane.

For a given point 1, we can "scan" over ali possible 0, observing the RMS loca-

tion error. Fig. 27 presents such a scan for two different cases. We see a strong depen-

dency on the dipole orientation for one situation and relatively little dependency for the

other. We retain three values from these curves: the best (lowest) RMS error, the worst,
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FIGURE 27. RMS Location error as a function of moment orientation angle. The moment
direction was restricted to the tangential plane, because radial moments represcr_tblind
sources for MEGsensors. For each 0, the RMS location error is calculated using (70). This
figure shows a comparison between two different sensor arrays for the same dipole loca-
tion. The upper curve is for the dense 127-sensor pattern (see Fig. 31 for description),
which is relatively more sensitive to the moment orientation, versus the lower curve for the
127 upper-hemisphere pattern (Fig. 29), which is insensitive to moment orientation. We
retain three values from the curves: the best (lowest) error, the worst, and the average over
ali 0.

and the average over ali angles. We illustrate in the examples to follow the sensitivity of

some sensor patterns to dipole orientation.

For two dipoles, we extend the above approach. Since two dipoles represent six

location parameters, we have a six-dimensional bounding matrix that represents ali of

the correlations between the parameters. If we focus on the error vectors that extend

from the true locations to the estimated locations, we can still interpret the sum of the

first three diagonal terms as the lower bound on the mean square error for the localiza-

tion of the first dipole. The complexity is that each RMS error length depends on both
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dipole moments and both locations. We can express these RMS values using the six

diagonal terms of the bounding matrix, expressed here in Cartesian coordinates as

i

ii

1

a. 2)= ( x2,2+ y2yz
12 " • (EQ 74)

If we again restrict the moments of both dipoles so that they lie only in the tan-

gential plane, we can parameterize these scalars as functions of angles for each moment.

For a given pair of dipole locations, (li, 12) , we scan over ali possible combinations of

01 and 0 2 and again find the best, worst, and average RMS lengths for each dipole. In

general, the best orientation occurs when the two moments are arranged orthogonally,

such that the peak intensities of the dipoles are well separated in the field array. The

worst arrangement is for both dipoles to be aligned in the same direction, such that their

intensity peaks coincide and lie poorly across the array.

7.3 Monte Carlo Comparison

Ali of tile results presented in this research represent the lower bound on the vari-

ance of the estimated location parameters for any unbiased estimator. In this section, we

present the results of a Monte Carlo simulation based on a standard least-squares esti-

mator for a 37 sensor MEG instrument. The full CRLB analysis assumptions are pre-

sented in Chapter 8 and the specific details of the 37 sensor arrangement are presented

in Section 8.1.4. We present the Monte Carlo results both to confirm the formulas and

to demonstrate the closeness of the CRLBs to the actual RMS error results from our

Monte Carlo study.
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For each point on a 5 mm grid in a selected region of _he upper positive quadrant

of the x-z plane, we positioned a dipole in the best moment orientation as found by our

CRLB analysis. We synthesized the single dipole forward model across the array using

the same dipole intensity as in the analysis. For each grid point, we ran 5000 realizations

of zero mean white Gaussian noise at the sensors, using a random number generator with

the same standard deviation as that used in the analysis. For each noise realization, we

estimated the dipole location parameters using the Nelder-Meade nonlinear least-

squares approach described in (Mosher et al. 1992). We initiated the search within a

10 mm region around the true location to enhance the possibility of finding the global

minimum and to avoid converging, instead, into a local minimum.

From these trials, we calculated the mean and RMS location error at each grid

point. The mean location error for 95% of these grid points was less than 0.07 mm. This

indicates that the nonlinear least-squares estimator is effectively unblased for this single

dipole case. The RMS location errors were observed to be greater than or equal to the

CRLBs, within normal experimental variation. We then continued the Monte Carlo anal-

ysis for a larger region in the upper head quadrant, restricting our repetitions to 100 trials

per grid point. Fig. 28 presents the RMS location errors and the corresponding CRLB

results. In ali regions where the anticipated standard deviation is less than a few centi-

meters, we see excellent agreement between the Monte Carlo and CRLB results. The

overall result is a confirmation of both the MEG CRLB formulas and evidence that the

least-squares estimator comes very close to meeting the CRLB.

At a 5 mm spacing, the MEG Monte Carlo simulations here required many days

of computation on a Sun SPARCstation 2 computer, because each of the error trials

could require many hundreds of calls to the generating function, and because at each

point in the grid, we perform 100 or 5000 trials. The equivalent EEG model would

require an order of magnitude greater processing time, because of the greater complexity
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FIGURE 28. Monte Carlo simulation and comparison. The top figure shows the computed
CRLBs for a single dipole in a 37-channel MEG system. The bottom figure is the result of
a 100-trial Monte Carlo simulation at each point in a 5 mm grid, using the same dipole
intensity and noise variance as was used in the GRL,.qanalysis. The dipole was oriented
in the "best" direction, as found from the CRLB analysis. In deep regions, the signal
received at the array is much weaker than the additive noise, and the Monte Carlo runs
experienced difficulty converging. In the shallow head regions, the signal at the array is
improved, and we see excellent agreement between analysis and simulation.
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of its gain transfer function. This computational burden for a single Monte Carlo study,

with a single dipole orientation, underscores the utility of the CRLB calculations in more

rapidly assessing many sensor arrangements and ali dipole orientations.

93



..... JI ,i ,,

Chapter 8

Applications of CRLB

8.1 MEG and EEG

8.1.] Parameter Assumptions

Analysis Region

The formulas presented in Chapter 3 for the dipole in a four concentric sphere

model are the general formulas for arbitrary sphere radii, tissue and skull conductivities,

sensor and dipole locations, and dipole intensities and orientations. The CRLB formulas

presented also apply for the general spatiotemporal model. Here, we restrict our numer-

ical analysis to a few relatively simple cases of symmetric array patterns and one or two

dipoles. The CRLB formulas require that the partial derivatives of the gain matrix with

respect to the unknown location parameters also be calculated. The tedious calculations

for the EEG model were carried out by hand by Michael E. Spencer, and verified using

Maple V, a symbolic algebra computer program. The MEG partials were straightfor-

ward.

Figure 6 on page 28 displays one of the array patterns used here with relation to

the spherical model. The other patterns were similarly symmetric about the z-axis,

which runs through the center of the array. Because of this high degree of symmetry, we

restrict our analysis region to the positive x-z plane. The error results in this plane can

then be inferred by symmetry for the entire upper hemisphere. As this analysis plane is

rotated about the z-axis, differences will arise because of the finite spacing of the sen-

sors; however, these diff_,rences are not anticipated to be great.
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Dipole Orientation

One of our goals in this study was to allow careful and cautious comparisons

between EEG and MEG data. For the simple dipole in a sphere model used here, the

radially oriented dipole generates no external magnetic field, so EEG holds an obvious

advantage. We therefore restricted the orientation of the dipole to lie in the tangential

plane for both the EEG and MEG data for most of the following error analyses. This

restriction also simplified the parameterization of the dipole orientation to the single

parameter 0, the angle the moment makes in the tangential plane. We note that this is not

unduly restrictive, since ali of the results presented here scale with dipole intensity Q. In

the case of MEG data, a dipole with a radial component aad an intensity Q would simply

project into the tangential plane as a dipole with intensity Q cosO, where _ is the angle
]

made by the dipole with respect to the tangential plane. Ali of the standard deviations

for the MEG data presented here could then be appropriately scaled to include any

desired radial component. For comparison we also present some EEG results in which

we place no restriction on the dipole moment orientation; the results are similar to those

from the tangential dipole study.

Dipole Intensity

The bounds presented in (70) could be normalized to the ratio v/Q 2, but these

units of sensor noise variance v to dipole intensity Q are nonintuitive and give the user

no relative feel for the absolute localization error. We therefore attempt to establish some

realistic values for the dipole intensity, and in the next subsection, the noise variance.

We note that this ratio can be viewed as a signal-to-noise ratio, defined here as SNR(di-

pole) = Q/o, where o is the standard deviation. By fixing the dipole intensity at Q, then

moving this dipole about the upper hemisphere, the actual signal intensity received by

the sensor array will vary, roughly, as the inverse function of the squared distance to the
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array. Hence, if we consider a second definition, SNR(array), to be a function of the sig-

nal at the array (either an average across ali sensors or at the peak field among ali sen-

sors), then we observe that SNR(array) will drop as the dipole is moved deeper.

Maintaining the SNR(array) as a constant over ali dipole locations requires deeper

dipoles to have correspondingly stronger intensities.

Variations of SNR(array) are common definitions in other studies, including

(Cuffin and Cohen 1979, Cuffin 1986, Mosher et al. 1990, Oshiro et al. 1992), in which

it is therefore not necessary to assign explicit units of amps to the dipole current. In such

studies, ali of the calculations are carried out in "relative units," where the signal at the

array is set to one unit and the noise standard deviation is set to some ratio of this unit,

for instance, 10 percent. We argue that the alternative SNR(dipole) is the preferred def-

inition when the intent is to study the location error for a dipole or sets of dipoles arbi-

trarily located in the head. For SNR(array), adjusting the dipole intensity as a function

of location will lead to distorted comparisons between different array configurations,

because dipole intensity implicitly becomes a function of sensor location, and, in this

study, a function of sensor type (EEG or MEG). Deeper dipoles may also be assigned

unrealistically high currents simply to keep the SNR(array) constant. A fixed dipole

intensity at a physically plausible current leads to a more informative accuracy analysis

and to more direct comparisons between configurations.

In (Cohen and Cuffin 1983), a relatively strong dipole was estimated to have a

dipole intensity of 2.1 laA-cm (21 nA-m). In (Cohen et al. 1990), an implanted dipole of

16 mm length was stimulated with 4 pA current, for an equivalent 64 nA-m current

dipole. We wished to establish a baseline dipole intensity of the proper order' of magni-

tude that was readily scaled to other intensities, and that appeared physically plausible.

We selected 10 nA-m as our dipole intensity. With this selection, we can present accu-
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racy bounds in units of meters, but we emphasize, however, that ali of the examples pre-

sented can easily be rescaled to any other choice of dipole intensity.

Noise Variance

The selection of a standard deviation for the noise is not immediately obvious,

in part because of the widespread practice of averaging experimental data. In theory, we

could average the trials until the noise is reduced to any arbitrary low value. In this EEG/

MEG comparison, the noise standard deviation is in units of either volts or teslas, respec-

tively; thus we cannot easily set a standard deviation general to both sensor types as we

did with the dipole intensity.

A dipole of intensity 10 nA-m near the cerebral spinal fluid layer can generate a

field that peaks roughly at 350 fT in MEG sensors, or at 4 gV in nearby EEG sensors,

for the sensor patterns and model examined in this chapter. In research such as that of

(Cuffin 1986), the standard deviation is expressed as a percentage of the peak, approxi-

mately 10 percent. This definition roughly translates into similar SNRs examined in

(Westerkamp and Aunon 1987, Stok 1987, Achim et al. 1991). We therefore, somewhat

arbitrarily, set the MEG noise standard deviation to 35 fT and the EEG noise standard

deviation to 0.4 ktV,to reflect this 10:1 ratio. We compare with (Balish et al. 1991), who

had a stated noise level of 50 fT after averaging 200 trials. We note the difficulty in

extracting absolute noise levels from other reports for comparison because of the wide-

spread practice of normalizing the noise standard deviation into the field levels. As with

the dipole intensity, we emphasize that ali of the examples presented can easily be

rescaled to any other choice of noise variance.

97



Sensor Assumptions

In ali cases, the EEG sensors are assumed to be affixed directly to the 88 mm

scalp sphere, and they acquire a_ absolute voltage potential referenced to "infinity." In

reality, EEG measurements are acquired as differential measurements with reference to

a common local sensor or adjacent sensors. Here, however, we ignore this common use

of a "switching" matrix. We also ignore the physical diameters of the sensors and

assume that they make a point voltage measurement.

The MEG coils are placed 105 mm from the head center, representing a 17 mm

offset from the scalp surface. This distance was chosen to represent the Dewar wall

thickness of the larger sensor arrays and the air gap, both of which prevent the placement

of the coils closer to the subject's scalp. Although these coils are often 20 mm in diam-

eter, we also assume that they make a point magnetic field measurement and that they

are oriented in the radial direction. (Jeffs et al. 1987) showed that this practice is a rea-

sonable approximation by comparing point models with integrations across the coil

diameters. Since most MEG sensors are arranged in a first or second order gradiometer

configuration to control external field noise, we ran a CRLB comp_ison between a per-

fect point measurement and a perfect first order gradiometer, with a coil baseline sepa-

ration of 50 mm. Our CRLB results for a 37 channel comparison showed that the only

differences were minor, in the deep regions of the upper hemisphere. Thus, to simplify

the comparisons, we ignored any considerations of gradiometers for the MEG examples

presented here.

Array F'atterns

The sensor array patterns presented here are identically arranged in angular sep-

aration for both the EEG and the MEG cases, and they were designed to mimic possible

MEG sensor patterns because MEG sensors are much larger than EEG probes. Although
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EEG probes are much smaller, they, too, have practical limitations in placement, because

gels may form salt bridges for electrodes spaced too closely. In the following examples,

we present the error lower bounds for 127 sensors spread first over the entire upper

hemisphere and then densely in one region. We then present, for comparison, the results

for just 37 sensors arranged in an array pattern similar to that of commercially available

37 ,_:ensorMEG instruments. The 127 sensor dense pattern was chosen to cover the same

spatial area as a 37 channel system. We also present, for comparison, the accuracy

bounds of the standard EEG Ten-Twenty array pattern, which provides a wide spatial

coverage, similar to the 127 upper hemisphere pattern presented, but at a much more

sparse spatial sampling.

The overall emphasis is to show which accuracies are possible for the 'wide spa-

tial coverage or the dense local coverage, or the accuracy achievable with an array pat-

tern similar to that of existing technologies or practices. Direct comparisons among

different EEG and different MEG patterns are warranted, since dipole intensity and

noise were held constant; however, comparisons between EEG and MEG results must

consider the differences in noise assumptions and the uncertainties in model parameters.

While our MEG model is relatively simple, the equivalent simple EEG model depends

on many more assumptions of conductivities and sphere radii.

8.1.2 Upper Hemisphere 127 Sensor Pattern Results

We designed a simple pattern to cover the entire upper hemisphere without plac-

ing the sensors too close together. The first sensor is placed on the z-axis, then six sen-

sors are placed evenly around a circle 15degrees down from the z-axis. The next ring is

30 degrees from the z-axis, along which are twelve sensors evenly arranged. The pattern

is repeated at 15 degree intervals for a total of 6 rings, with the rings containing 6, 12,

• 18, 24, 30, and 36 sensors, respectively, for a total of 127 sensors. The last ring lies com-
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pletely in the x-y plane, such that the entire array provides full upper hemisphere spatial

coverage. The MEG sensors are oriented radially.

This pattern was chosen as a natural extension of commercially available 7 and

37 channel MEG sensor arrays. The sensors are spaced roughly two centimeters apart,

which is about the diameter of a single MEG coil. EEG and MEG instruments are now

in the design phases with roughly 100 sensors. The analysis here for 127 sensors should

represent the petential accuracy of these new instruments when they are used for whole

head coverage.

One Tangential Dipole

In the first study, we calculated the lower bound for a single dipole located any-

where in the positive x-z plane (y = 0). The dipole was stepped along at 1 mm intervals

within the brain sphere. At each location, the motnent angle was stepped in 1 degree

increments from 0 to 179 degrees, and at each angle the RMS lower bound was calcu-

lated using (70). The average RMS lower bound was calculated over ali 180 degrees, and

the best and worst angles were located. At these extrema, either a minimization or a

maximization algorithm was initiated to refine the estimate of the best and the worst

RMS errors, respectively. Three different bounds were retained for each location point

in the grid, representing the best, average, and worst RMS errors.

In this case, the best, average, and worst bounds were similar. Fig. 29 shows the

average RMS results for the EEG and MEG cases as contours representing lines of equal

RMS error. For much of the upper head region, the error curves are approximately con-

centric. For this upper hemisphere sensor pattern, the RMS lower bounds are primarily

a function of radial depth and are largely independent of orientation. Since dipole

sources oriented radially produce no external magnetic field, we see an increasing MEG

error as the dipole's location approaches the center. In contrast, the EEG error near the
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center flattens out, because this inner region is approximately equally located from ali

sensors. Near the surface of the sphere, both modalities exhibit similar changes in error

as a function of radial depth.

Two Tangential ._ipoles

We now examine the rapid degradation in performance that occurs by introduc-

ing a second dipole. For simplicity in examining the effect of an additional dipole on the

localization accuracy of the original dipole, we fixed the location of the second dipole

on thez-axis at z=7.5 cm, directly under the center of the array. Both dipoles had equal

intensity Q, so ali results are directly scalable to any other arbitrary intensity. By the

symmetry of the location of the additional dipole on the z-axis, we can restrict our anal-

ysis region to the positive x-z plane and infer the results for the remainder of the upper

hemisphere.

As in the single dipole studies, the first dipole was stepped along on a 1 mm grid

within the positive x-z plane. At each location point, the angles of both of the dipoles

were stepped in 10 degree increments from 0 to 170 degrees, resulting in a grid of 18 by

18 different angle combinations. For each angle pair, the RMS error bounds for the first

dipole were calculated using (70). The average errors were then calculated from this

two-dimensional grid of error bounds, and the best and worst angle pairs were found. At

these grid point extrema, a Nelder-Meade simplex minimization or maximization algo-

rithm was initiated to refine the estimate of the best or worst RMS error bounds.

Fig. 30 presents the best and worst orientation results for the EEG and MEG

cases. These cases, unlike that of the single dipole, have a strong dependency on dipole

orientation. A wide range of error is possible between the best and worst orientation

pairs. In comparison with the one dipole case above, we note that the results do not differ

much along the x-axis, because the additional dipole on the z-axis is far enough away
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FIGURE 29. 127 upper hemisphere sensorcase for a singletangentialdipole, EEG (top)
and MEG (bottom)Cramer-Rao lowerbounds.The 127 electrode patternconsistsof an
electrodeonthe z-axisand sixconcentricringsseparatedby 15 degrees,consistingof 6,
12, 18, 24, 30, and 36 electrodesper ring,respectively.The 127 MEG sensorsare
arrangedin the same angularpattern,but they are located 10.5 cm fromthe head origin.
The contourlinesare labeledwiththe standarddeviationofthe error(in cre). Linearscaling

factorsof (oV/Q) = 40VI(Am) and (%IQ) = 3.5x10-6T/Am for the EEG and MEG
casesrespectivelyare assumed.These factorscorrespondto a noisestandarddeviation
of 0.4 microvolts(EEG) or 35 femtoteslas(MEG) and a dipolestrength(both cases) of
10 nanoam.pmeters. The plotsshow the average of the error boundcalculationsfor the
dipoleorientationsteppedinone degreeincrementsarounda fullcircle. Boththe EEG and
MEG resultsshow littlesensitivityto momentorientationforthispatternandsingledipole.
We emphasize that the curvescan be linearlyscaledfor arbitraryG/Q.
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that it has little effect. As we follow along the inner radial cerebrospinal fluid layer, we

see that the second dipole can affect the accuracy of the first dipole as far as 4 cm away,

rapidly doubling the standard deviation error. In general, in the best moment orientation

pairs, the two dipoles were pointed in orthogonal directions, so their corresponding field

intensities across the array were separated better than at any of the other angle combina-

tions. The worst orientations occurred when both dipoles pointed in the same parallel

direction, so that their fields had the greatest overlap.

This study has presented only a few of the endless possible combinations for two

dipole intensities and positions. However, this one study shows the rapid degradation in

accuracy that occurs when trying to localize two equal intensity dipoles that are rela-

tively well situated within the array. We also see that localization error is not simply a

function of the relative distance between the two dipoles, but rather a complex function

of absolute dipole position and orientation. We contrast this with the results in (Oshiro

et al. 1992). Through a limited Monte Carlo analysis (Oshiro et al. 1992) erroneously

claimed to show that the error is a only function of the distance between dipoles and does

not depend on the orientation. While this may be true in specific instances, it is clearly

not true in general. By comparing the best and worst standard deviation curves presented

here, we see that their conclusion applies only to limited regions of the sphere. In gen-

eral, the relative orientation between the two dipoles is very important.

$.1.3 Dense 127 Sensor Pattern

The upper hemisphere pattern examined above exhibits some variations near the

inner surface of the cerebrospinal fluid, primarily because of the somewhat coarse 2 cm

spacing of the sensors. Here we examine the same 127 probes, concentrated in a much

smaller region, to observe more directly the effects of spatial sampling. The array was

•constructed as described in Section 8.1.2, with six rings of sensors; however, the spacing
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FIGURE 30. 127 upper hemisphere sensor case for two tangential dipoles, EEG (top) and
MEG (bottom) Cramer-Rao lower bounds. The sensor pattern is identical to that of Fig. 29.
The first dipole is at any given point in the positive x-z plane and the second is located on
the z-axis at 7.5 cm. The contour level (in cm) is the RMS error bound of the first dipole
because of the presence of the second dipole. Dipole intensity and noise levels are the
same as in Fig. 29. The left-side figures show the CRLBs for the best possible orientation
combination, and the right-side show the CRLBs for the worst.
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between each of the circles and the z-axis was in 6 degree increments rather than

15 degrees. The MEG sensors were oriented radially. The result was an array that sub-

tends a 72 degree angle, which is of approximately the same spatial coverage as that of

commercially available 37 channel MEG instrumen!s_bu'fwith a much denser spatial

sampling. Here, the spacing is, in general, less than 1 cm between sensors, which would

prove to be impossibie for the larger MEG coils and daunting for the placement of sur-

face EEG electrodes. Hence, this case might represent one of the densest patterns pres-

ently possible for either modality.

One Tangential Dipole

The analysis procedure here was identical to that of the 127 sensor upper hemi-

sphere pattern. Fig. 31 displays the average RMS results for the EEG and MEG cases.

Here we note the immediate impact of the limited spatial coverage on overall dipole

accuracy, particularly on the increased sensitivity to moment orientation caused by the

array edges. Directly under the array, where array edge effects are minimized, we see an

overall factor of about two improvement in the variance, relative to the upper hemisphere

array, because of the increased number of sensors in the proximity of the dipole. The

error bound rises rapidly in the lower regions of the sphere because of the combined

effects of the squared distance to the sensor array and the poor spatial coverage of the

field peaks. This latter effect is most notable on the deeper dipoles located directly on

the z-axis. By offsetting the deeper dipoles from the center of the array, we are able to

position the peak of the field intensity such that it falls across the array, and achieve a

slightly improved lower bound.

Comparing EEG and MEG results, we see that MEG suffers more rapidly in the

lower regions as a function of the three effects of depth, proximity to the sphere center,
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FIGURE 31. Dense 127 sensor case for a single tangential dipole, EEG (top) and MEG
(bottom) Cramer-Rao lower bounds. The array pattern is constructed as in Fig. 29 for the
case of the 127 sensor upper hemisphere pattern, but is now separated by 6 degrees,
instead of 15 degrees. Dipole intensity and noise levels are the same as in Fig. 29. The
plots show the average RMS lower bound for ali orientations. Increased sensitivity to
moment orientation was noted near the edges of the array pattern. The increased sam-
pling density gives better lower bounds than in Fig. 29, but only in a greatly reduced region
of the head.
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and poor spatial coverage. By comparison, EEG has a more gradually increasing error

as a function of just the two effects of depth and cover'age.

Two Tangential Dipoles

The analysis procedure here was identical to that of the two dipole study for the

127 upper hemisphere pattern. Fig. 32 presents the results of the two dipole study for the

EEG and MEG cases. The lower bounds in the deep regions and regions outside of the

array have risen sharply, compared with their one dipole counterparts. Compared with

the two dipole 127 upper hemisphere pattern in Fig. 30, the increased sensor density in

Fig. 32 allows the two dipoles to be placed somewhat closer together, but the edge of the

array confines the region with low error bounds to a relatively small area.

8.1.4 Thirty-Seven Sensor Pattern Results

In this study, we arranged three rings of sensors, with each spaced in increments

of 12 degrees from the z-axis and each containing 6, 12, and 18 sensors, respectively, for

a total of 37 sensors, as displayed in Figure 6 on page 28. The MEG sensors were ori-

ented radially. This pattern approximates that of commer'-ially available 37-channel

MEG instruments. We note that the upper hemisphere pattern for 127 sensors has a

slightly coarser spatial sami ling than this 37 channel pattern (15 degree spacing versus

12 degree), but the upper hemisphere pattern covers a much wider spatial area. The

dense pattern with i27 sensors has the same spatial coverage as this 37 channel instru-

ment at roughly twice the spatial sampling density (6 degree spacing versus 12 degree).

Thus the 37 channel suffers in comparison with both poorer spatial coverage and spatial

sampling.
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FIGURE 32. Dense 127sensor case for two tangential dipoles, EEG (top) and MEG (bot-
tom) Cramer-Rao lower bounds. The analysis procedure was identical to that in Fig. 30,
but with the sensor pattern of Fig. 31. Compared with Fig. 30, the increased sampling den-
sity does allow the two dipoles to be placed more closely together, but only in a greatly
reduced region of the head.
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Single Tangential Dipole

The analysis procedure for the single tangential dipole was identical to that of

the127 sensor upper hemisphere study. Fig. 33 (top) shows the average RMS EEG ar.d

MEG case for the single dipole restricted to the tangential plane. The accuracy directly

under the array is comparable to that of the upper hemisphere array, but the accuracy

declines much more rapidly as a function of depth. Also noticeable was a stronger

dependency on dipole orientation, similar to that of the dense array above. The overall

effect is a greatly reduced area directly under the array that has an accuracy comparable

to that of the larger arrays.

Two Tangential Dipoles

The two dipole analysis procedure was identical to that of the 127 sensor upper

hemisphere study. Fig. 33 (bottom) shows the average RMS EEG and MEG error

bounds of a dipole when an additional dipole of equal intensity was placed on the z-axis

at z=7.5 cm. We can see that, in almost ali regions, the dipole's error bound is at least

double that in the single dipole study. In the worst case, we also found that it is impos-

sible to piace two dipoles on the z-axis in the same orientation and still resolve them.

This perfect aaTay ambiguity is a consequence of the three perfectly symmetric rings of

sensors. The general overall accuracy region is greatly reduced from that of either of the

previous sensor patterns.

8.1.5 EEG Single Unconstrained Dipole

The dipole was restricted to the tangential plane in our other studies, so that com-

parisons could be made more readily between EEG and MEG results. In this study, we

allow the EEG dipole to be unconstrained in orientation to study whether there was any

significant improvement for the single dipole case. We used the same 37 ,tensor arrange-
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FIGURE 33. The 37 sensorcasewitha single tangential dipole (top) or with two tangential
dipoles (bottom). EEG (left)and MEG (right)CRLBs are shownfor any given point inthe
positive x-z plane. Ali plots show the average RMS lower bound. The analysis procedures
and scaling factors were identical to those in Fig. 29 and Fig. 30. Compared with the 127
sensor studies, the combination here of relatively coarse spatial sampling and limited spa-
tial coverage resultin overallmarkedlypoorerlowerbour_ds.
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ment, and at each location point, we calculated ali possible combinations of radial and

tangential moment orientations in 10 degree increments over the range 0 to 170 degrees.

The minimization/maximization analysis was carried out in a manner identical to the

two dipole studies above, except in this study the two angles were for the one dipole.

Fig. 34 displays the average EEG RMS error bounds for the single unconstrained

dipole. In the near region of th_ _ray there was only a slight improvement of the best

error bounds and a slight degradation of the worst error bounds, but on average, the

results remained fairly consistent with those presented in Fig. 33. In the deeper regions,

the relaxation of the tangential restriction allowed the dipole to swing into a radial direc-

tion and direct more of its surface potential across the array, thereby smoothing the error

curves in these deeper regions; nonetheless, the error values are quite comparable to the

tangentially restricted dipoles. Overall, the tangential restriction allowed for simpler

studies, because the moment was a function of only one angle parameter, and this restric-

tion does not appear to have degraded the localization accuracy for the single dipole

case.

8.1.6 EEG Ten-Twenty Sensor Pattern Results

Since EEG data have historically been collected in the Ten-Twenty array pattern

using 21 electrodes, we performed a study with this sensor pattern, which features wide

spatial coverage and poor spatial sampling. Fig. 35 shows the average RMS results,

again using the same analysis procedure as was used for the other studies. We note that

a source directly underneath the sensor at approximately x=6 cm and z=6 cm shows no

significant improvement in accuracy over radially deeper sources. Although a shallow

source generates a significantly stronger signal at the surface, the spatial undersampling

is such that only one nearby sensor receives a significant signal. One sensor cannot ade-

quately locate the source, regardless of the source intensity. The deeper sources generate
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FIGURE :34.EEG CRLBs forthe37 electrodecase and a single freelyorienteddipole (the
dipolecan have tangential and radial components) at any given point in the positivex-z
plane. The plotshowsthe average RMS lower boundfor all possibledipole orientations,
The dipole intensityand EEG noise level are the same as in Fig. 29. The tangential restric-
tion used ;_nFig. 33 (topleft) has littleeffect on the lowerboundsin the regionsnear the
sensors;the deeper regionsshow relativelyinconsequentialshifts.

a signal across enough surface sensors to compensate for their relatively weaker surface

signal. The overall effect of this sparse array of sensors is a relatively flat and larger

lower bound error surface compared with that of the other studies.

8.1.7 EEG and MEG Fusion

The field pattern generated by a dipole across an array of EEG sensors peaks

roughly along the axis of the dipole moment. In contrast, the MEG pattern peaks to the

sides of the dipole moment, roughly perpendicular to the EEG pattern. In this study, we

assume that both the EEG and MEG data are acquired, and we observe the improvement

generated from this diversity in the information content. The sensor pattern was the satne

as that in the 37 sensor system, except that here we have a total of 74 measurements for
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FIGURE 35. EEG CRLBsfor the 21 electrode arrangement forthe standardTen-Twenty
arrangementanda singletangentialdipoleat anygivenpointinthepositivex-zplane.The
dipoleintensityandEEG noiselevelarethesameasin Fig.29. Theplotshowstheaver-
ageRMSlowerboundforalipossibledipoleorientations.

the two combined sensor systems. The analysis procedure was identical to that in the

other studies. Unlike the other studies, the results do not scale with arbitrary dipole

intensity and noise variance, because both the EEG and MEG noise must be considered

simultaneously. To bring the two modalities into relatively scaled units, we multiplied

one of the arrays by the ratio of the two noise variances, which introduces a more com-

plex relationship between standard deviation, dipole intensity, and noise variances.

Fig. 36 shows the bound for a dipole restricted to the tangential plane. In contrast

with Fig. 33 for the same array pattern and respective noise variances, we note almost

no difference among the best and worst moment orientations. Since the EEG and MEG

arrays complement each other so well in their field patterns, the dipole always points in

a direction that is captured well by one of the two arrays. In the regions directly below

the center of the array, an improvement occurs simply because there is twice as many
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measurement points. In the deeper regions, the EEG sensors have obviously improved

the response near the center, and both sensor modalities have greatly improved the other

deep regions.

This analysis confirms the hypotheses of (Cohen and Cuffin 1983, Anogianakis

et al. 1992, Therapeutics and Technology Assessment Subcommittee 1992) concerning

the potential for directly combining EEG and MEG measurements into an overall supe-

rior resolution ability, unachievable by either modality alone. One extension of this

study would be to augment fixed MEG sensor arrays with a smaller array of EEG sensors

to determine whether similar improvements could be obtained.

8.1.8 Discussion

The results presented in these exemplar studies focus on the single time slice

problem, but the formulas presented for the CRLB are for the more general temporal

problem. The CRLB formulas show the improvement achievable by considering multi-

ple time slices, in which the sample spacing is large enough to decorrelate the noise. In

the simplest case of the fixed dipole moment, the standard deviations are, at a minimum,

improved by the square root of the number of time slices. This effect is analogous to sig-

nal averaging over time. If the time series of the dipole moments have any algebraic

independence, the results are improved further. An addition to the formulas would be the

inclusion of the fixed moment dipole model, which would improve the lower bounds by

incorporating the knowledge that the dipole does not "rotate"; however, the "rotating"

formulas presented here are more general. The work of (Baumgartner et al. 1991, Achim

et al. 1991) may have benefited from using these spatiotemporal CRLBs as a rapid anal-

ysis tool in interpreting their specific case studies of dipole locations and time series.

The RMS errors presented in this study do not consider the directional bias that

could occur. In the case of EEG and MEG, with data measured from external sensors
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FIGURE 36. Combined EEG/MEG CRLBs for the 37 electrode and 37 magnetic sensor
array and a single tangential dipole at any given point in the positive x-z plane. As in the
other studies, (av/Q) = 40 V/(Am), ( (a B/Q) = 3.5x10 -6 T/Am) ; however unlike ali
other results presented in this chapter, these results do notscale linearly with other values
of noise variance and dipole intensity. The best and worst moment orientations are pre-
sented in the left and right plots, respectively. Compared with Fig. 33 (top), notable here
are the greatly improved lower bounds and the lack of any appreciable sensitivity to dipole
orientation.
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(i.e., no invasive probes), the greatest localization error will, in general, be in the radial

direction, because the tangential directions are more accurately measured by the surface

arrays (the "preferred directions," as noted by (Cohen and Cuffin 1983)). If we were to

model the cortex as a simple thin shell beneath the skull, we might be able to ignore this

radial error; the tangential errors were in general much smaller. In reality, the cortical

folds (analyzed in some detail in (Kaufman et al. 1991)) also force consideration of the

radial location of the dipole. In the absence of any prior information regarding the

importance of one direction over another, we argue here that error in ali directions is

equally important.

The approaches presented here will also assist in the analysis of novel sensor

locations, orientations, and parameter sensitivities by providing a preliminary CRLB

baseline. We emphasize that while small CRLB bounds will not guarantee that such

standard deviations will ever be achievable, large CRLB bounds will steer us clear of

situations where the desired accuracy would be impossible.

8.2 Thunderstorm Localization

To motivate the utility of the CRLB equations for the NASA KSC problem, we

specialize the analysis here to a few relatively simple cases of one or two sources. By

examining such simple cases, the attempt is to infer the relatively worse accuracies pos-

sibly encountered with more complicated models.

8.2.1 Point Charge

In this study, a point charge is moved about the KSC area at fixed altitudes of

1000 and 6000 meters. We examine the horizontal and vertical error in locating such a

charge. Fig. 37 presents the results for the charge at 1000 meters. The top figure shows

the lower bound on the root mean square (RMS) error in locating the source in the hor-
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izontal plane. We have isolated out and plotted separately the vertical component in the

bottom figure. Horizontally, we see excellent lower bounds within the cape, with rapidly

increasing bounds outside the cape. This kind of result is consistent with the well known

problem of attempting to extrapolate beyond the bounds of your data. The sources

within the cape represent loosely interpolation, a more accurate approach in general. We

note that the vertical lower bounds are roughly a factor of ten higher. This preference to

the horizontal directions is a consequence of ali sensors lying in the plane of the earth.

We could anticipate reduced vertical bounds if some sort of airborne sensor were in

piace.

Fig. 38 presents the same situation for the charge at 6000 meters. Here we see

much broader lower bound surfaces, in contrast to the 1000 meters. This smoothing is a

consequence of the charge not being too close to a single ground sensor, but rather being

high enough to be accurately located by several sensors.

We emphasize that the linearity of the parameters allows the user to arbitrarily

scale our results to any desired ratio of noise standard deviation versus dipole intensity.

Thus these graphs are not necessarily ,._pecialized to just the 10 coulomb, 10 volts stan-

dard deviation presented here.

8.2.2 Two Positive Charges

Two equal positive charges are placed at 6000 meters, then moved about the

area. We examine the horizontal and vertical error in still locating the 6000 meter charge

in the presence of a second charge. Fig. 39 presents the results, which can be compared

with Fig. 38 for the same charge. Here we see the "jamming" influence the second

source at 10,000 meters has in locating the original source. The vertical error has partic-

ularly climbed. We interpret this result to say that attempting to model a storm cell as

two isolated charges may prove difficult in many regions of the cape, if we insist on
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FIGURE 37. Point charge at a fixed altitudeof 1000 meters.The top figure representsthe
lowerboundonthe horizontalerror,andthe bottomfigureisthe lowerboundon thevertical
error.Values representthe one standarddeviationin meters.
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identifying each charge individually. The situation worsened dramatically when we

modeled a triple charge air mass, with the bottom charge at 2,000 meters suffering very

large error bounds.

The Cramer-Rao bound shows us (l) that within the KSC array the possibilities

are excellent for good localization for simple storm models, and (2) that outside the array

the possibilities are poor. In other words, attempting to accurately localize storm cells

over the Atlantic would be fruitless, since there are presently no sea-based electric field

sensors. On the other hand, research is quite warranted in tracking small storms within

the Cape.
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FIGURE 39. Dual point chargeat 6,000 and 10,000 meters. The figures represent the one
standard deviation error in locating the source (horizontally and vertically) at 6,000 meters.
Compare with Fig. 38.
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Chapter 9

Time-Eigenspectrum Analysis

Time-eigenspectrum (TE) analysis is a novel method of examining the similarity

of the response of several sensors over a prescribed block of time. In MEG data, the

evoked response is quasi-static transient, sometimes separated in time into distinct

response regions. Between the regions lies very low SNR data that corrupts the localiza-

tion estimates. In thunderstorm data, the response of the array between lightning strikes

exhibits a strong degree of correlation, consistent with the simple quasi-static charge

model. The lightning strikes result in field changes quite dissimilar at the sensors, due

to the non-static nature of the excitation and the nonlinear reaction of the nearby sensors.

In either situation, we objectively seek a suitable window in time that surrounds the

quasi-static signal and excludes either the very noisy regions or the dissimilar lightning

strikes.

9.1 Statement of Problem

Least-squares and subspace estimators implicitly or explicitly" make use of the

spatial correlation matrix. In a typical MEG application, we might collect 200 ms of

data, yet observe that the signal only exists from about 75 ms to 125 ms. If we form the

spatial correlation matrix from the entire 200 ms of data, we reduce the SNR in the cor-

relation matrix by effectively averaging in too much noise, which degrades estimator

performance.

As an example, we simulated a spherical head model and 37 sensor array pattern,

as described in Chapter 8 and (Mosher et al. 1993). We simulated the placement of two
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dipoles spaced two cm apart just under the surface of the skull, and gave each dipole a

Hamming window shaped activation sequence with a peak amplitude of 10 nanoamps.

The sequences were arranged such that the first dipole fired completely, then the second

dipole fired with no overlap with the first. The overlay of ali simulated time series mea-

sured at tile 37 sensors is shown in the top portion of Fig. 40.

A nonlinear least squares estimator (as described in Chapter 4 and in (Mosher et

al. 1992)) was then run with 200 different realizations of white random noise with a stan-

dard deviation of 70 femtoteslas. The choice of signal strength and noise selections are

d_::-_ribed in Section 8.1 and in (Mosher et al. 1993). The standard deviations on the

localization error for the two dipoles was 1.81 mm and 2.14 mm, when estimated using

ali of the data.

We then partitioned the sequence in half, reducing the estimation to two one-

dipole problems. The standard deviation on the |ocflization error drops to 1.00 mm and

1.13 mm for the two dipoles. Thus the partitioning of the data from one two-dipole prob-

lem into two one-dipole problems improved the efficiency of the estimator.

This simulation assumed known model order. By focusing the problem to two

one-dipole problems, the nonlinear estimator can discard noisy snapshots that degrade

its performance. As discussed in Chapter 5, MEG-MUSIC was introduced to overcome

some of the problems with order selection and local minima encountered' in nonlinear

least-squares. However, estimating the subspace also requires careful attention to parti-

tioning, since the subspace estimates are sensitive to noisy snapshots.

In order to improve the subspace and localization estimates, we must identify the

extents o_ the events of interest and partition the time series accordingly. Most signal

detection algorithms rely on an explicit temporal model, but temporal models in MEG

research are subject to controversy. Consequently, a nonparametric approach to parti-

tioning is more appropriate.
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9.2 Solution Approach

We approach the partitioning problem by using the temporal coherence across

the sensors evident from the quasi-static formulation of the problem. As the intensity of

a dipolar source fluctuates, its signal arrives simultaneously at ali sensors. If we piace an

appropriately sized window at the proper instance in time around a single dipole, we find

that the rank of this window is one, i.e., the temporal signals arriving at ali sensors are

perfectly coherent. If two independent signals are active in this window, we observe that

the rank is two.

At a particular instance in time, we begin the analysis by creating a window of

width one. Obviously, a single time slice is perfectly similar with itself. We proceed by

adding the previous time slice to form a window of width two, then three, four, etc., until

we reach some upper window width by design or data limitation. For each window

width, we take a measure of the similarity of the window, described below. We then slide

this window forward one time slice, and repeat the process. The result is a two-dimen-

sional function,f (t,w), with one dimension corresponding to the most recent sample, t,

in the window and the other the window width, w.

The similarity measure we employ is multidimensional and is derived from the

singular values obtained from an SVD of the window. We form a matrix from w sequen-

tial snapshots of the data, ending at time slice A(t). Denoting the singular values by the

ordered vector s(t,w), we form a vector of the cumulative square of the singular values,
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normalized by the sum of the squared singular values. Thus, thejth element of the vector

similarity measure at time t for window width w is calculated as

s(t, w) = svd([A(t-w+ 1)...A(t)])
J

si(t, w) (EQ 75)

: f(t,w)
Ils(t,w)ll

for j = 1,..., min(w,m), where m is the number of sensors.

The element of our measure vector that approaches unity is our indication of the

rank of the window; the last element off is always unity. Thus a rank two window would

have its second and greater elements equal to 1. In practice, noise always prevents such

a perfect rank estimate, but this SVD-based measure fallows us to observe at which ele-

ment we are "close enough" to a lower rank matrix.

9.2.1 Simulation

Using the Hamming-shaped activation sequence described in Section 9.1, we

simulated two dipoles firing sequentially. The noiseless time series was five points of no

signal, then a 40 point Hamming sequence for the first dipole, then a 40 point Hamming

sequence for the second, then finally 5 points of no signal, for a total of 90 samples. The

time trace across ali 37 simulated sensors is shown in the top portions of Fig. 40 and

Fig. 41, with additive random white noise; the standard deviation was 70 femtoteslas.

The bottom portions of these figures show the rank 1 and rank 2 time-eigenanalysis con-

tours, i.e.,fl(t,w) andf2(t,w ) respectively. The abscissa gives the time index of the lead-

ing edge of the window, and the ordinate gives the width of the sliding window.

The contour intervals indicate the percentage of total "energy" (square of the

Frobenius norm) in the window contained in the subspace. In Fig. 40, the contours are

above 80% for small windows centered on the responses, indicating that 80% of the sig-
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FIGURE40.SimulationTime-Eigenspectrum.Therank1contourplotsrevealthatthetwo
signalstogetherare insufficientlydescribedbya rankonesubspace.Eachsignalcan
howeverbe temporallyisolated.

nal energy in the given window can be described by the first eigenvalue. The contours

rapidly drop for small windows centered on the noise intervals, and the contour shows

that the first eigenvalue only accounts for 25% of the signal energy in the transition and

end regions. Although the center of the responses is visible in this simulated data, the

transitions in the contours more clearly show the segments dominated by either noise or

signal.

In Fig. 41, the contours represent the percentage energy contained by the first

two dipoles. The windows containing only one active dipole show small increases in per-

centage energy that those containing both dipoles. The 75% contours are beginning to

126



Secondcumulativeeigenvalue
120

100

80[ , .

60 ,................. . ..... _...._..: ....................

i i
4o @_7_ ......._5...........

i 'i O:

20......... Ii.........._5!....._.

10 20 30 40 50 60 70 80 90

FIGURE 41. Simulation Time-Eigenspectrum (cont'd). The rank 2 contour plots reveal that
the individual responses are not much improved with a second eigenvalue.

merge in the upper regions which represent windows that encompass both dipoles.

Although the noiseless data is rank two, the proximity of the dipoles and the intensity of

the noise make it difficult in this simulation to distinguish the overall data as rank two;

however, we do appear clearly justified in partitioning the data into two distinct sets.

This simulation is somewhat transparent, since the two response sequences are

mostly visible, and prudent partitioning might be possible by inspection alone. However,

the simulation was simplified to highlight some of the contours seen in actual data and

to assist in their interpretation. In this next example, we show the utility in partitioning

a less obvious simulation.
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FIGURE 42. Rank I analysis of one simulated signal buried inside the other. The sym-
bols "A" and "B" delineate the rank 1 regions.

In this simulation, one signal is of a relatively constant amplitude for about 60

samples, while the second signal is a bipolar signal of about 30 samples, generated from

a double Hamming sequence. The second signal begins about 25 samples into the sim-

ulation. Fig. 42 and Fig. 43 show the rank 1 and rank 2 analysis. The rank 2 analysis

clearly shows only two signals exist, while the rank 1 analysis allows us to partition the

region around the second signal. The letters "A" and "B" in the contours correspond to

the partitioned regions similarly marked in the overlay.

In the next example, we apply this technique to MEG somatosensory data.
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FIGURE43. Rank2 analysisof simulatedsignalburiedwithinanother.The signalis
everywheredescribedbya rank2 model.

9.2.2 Somatosensory Response

In this experiment, biomagnetic sensors at 77 positions about the surface of the

head recorded the evoked response of the ring finger to piezoelectric stimulation. Fig. 45

and Fig. 45 show in their top portions the overlay of the response (averaged from 300

trials) across ali sensors. The time index corresponds to 2 ms intervals, and the first 20

samples visible are part of the pre-stimulus interval. A stimulus artifact is present at time

sample 55, and the first dominant neural response occurs 40 ms later at time index 75.

A secondary response is evident beginning around time sample 100.
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FIGURE 44. Ring Finger Stimulation, Rank 1 analysis.

We ignore the stimulus artifact and focus on the two evoked responses. The con-

tours indicate that the first response is of low rank for only about 15 samples and is pre-

ceded and followed by relatively incoherent and low power regions. The second

response appears to lie more appropriately in a rank 2 subspace, but only up to about

time sample 125. Although the signal levels remain relatively active beyond sample 125,

the contours indicate a drop in similarity.

The contour transitions guide how we might partition the data to extract the two

responses. The first response region is also obvious in the data, but not so obvious is the

high rank of the low power regions surrounding it. The onset "pfthe second response is
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FIGURE 45. Ring Finger Stimulation, Rank 2 analysis.

also somewhat visible in the data, but the contours assist in trimming the late time of the

response, where visible inspection of the data does not indicate where we should trim.

Finally, we comment on the computational load in performing the numerous

SVDs required. The examples presented each required about five minutes on a SPARC

330 or fifteen minutes on a 486-33 MHz, both running MATLAB.

9.3 Thunderstorm Time-Eigenspectrum

The thunderstorm application of time-eigenanalysis offers a novel method for

isolating the lightning strikes from the more static regions of the field mill data streams.

Present NASA KSC methods center on attempting to detect large discontinuities in indi-
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vidual mill streams, then confirming that several other mills have observed a similar

jump. The time-eigenspectrum displays graphically display the lightning strikes quite

visibly, and the time-eigenspectrum images appear to proportionately respond to the

intensity of the flash; distant flashes appear only as minor changes in the images, but

they are apparent.

If the window contains a lightning strike segment, the dissimilarity (or signal

processing incoherence) of the event will decrease our similarity measure. For the quasi-

static MUSIC processing, we desire as large a processing window as possible, yet still

avoid these incoherent lightning strikes. Interpretation of the time-eigenanalysis gives us

just such a partitioning tool objectively.

We present a simulated thunderstorm example, then follow with two actual thun-

derstorm studies.

9.3.1 Two Charge Simulation

In this simulation, rather than simulate lightning strikes, we instead abruptly

jump the storm cell to the next spatial position in a sequence of positions. Fig. 46 pre-

sents the time-eigenspectrum of the simulated data. The top portion of the figure repeats

the overlay of ali time series for reference. The middle portion of the figure is the rank

one spectrum and the bottom portion the rank two. We see in the rank one analysis ver-

tical drops in the contour lines. These lines occur on the transition boundaries between

two distinct storm positions. In this simulated data, we could select a horizontal thresh-

old boundary to trigger on these collapsing spectral contours and partition the data

accordingly.
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FIGUFIE 46. Simulation time eigenanalysis. The top portionof the figure shows the same
overlay as shown in Figure 21 on page 70 for reference here. The lowerportion of the fig-
ure showsthe rank 1 time-eigenanalysis. The abrupt vertical changes in the time-eigenan-
alysis match identically with the obvious changes in the field overlay. Thus time-
eigenanalysis gives us an objective indicator of sudden changes in the field.

9.3.2 Intense lightning example

Fig. 47 is 200 seconds of thunderstorm data during heavy lightning activity. In

contrast to the simulation above, the discontinuities in the data are now due to lightning

strikes disrupting the quasi-static electric field of the charged sources. The maximum

window width was arbitrarily set to 60 seconds, and we see particularly in the rank one

analysis no window that would have allowed such a wide window without including

some lightning activity. We observe how each lightning strike apparent in the field mill

data corresponds to a rapid vertical collapse of the contour lines in the time-eigenspec-

trum analysis. In the time window immediately preceding many of the major strikes, we

see relatively clear time-eigenspectrum regions, represented by the right triangular

shapes in the lowest portions of the contours. We thus have many small windows that

can be extracted oct of the overall disrupting lightning activity for further processing.
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FIGURE47.Time-elgenspectrum.Overa 200 secondsegment,weseetheelectricfields
climbingto about10 kV/mbeforea strike.Afterthestrike,thespectrumlinescondense,
thegraduallyrelaxas thefieldmilldataresumesa quasi-staticstate.Thesequasi-static
regionsareexactlytheregionsweneedto processforsuccessfulpointchargemodeling.

Using the initial time-eigenanalysis, we stripped out many of the large lightning

events, reducing 600 seconds of thunderstorm data down to 360 seconds. We then reran

the time-eigenanalysis to again check the coherence of these mill data without many of

the intervening lightning strikes. We note that this "strip and reanalyze" method can be

repeated until most significant lightning events have been detected and removed. Here

we stopped the process after just one iteration to test the robustness of the MUSIC algo-

rithm. We also note the significant coronal damping of the fields, as seen by the expo-

nential clamping of the signals.

Fig. 48 presents the time-eigenanalysis of these 360 seconds. Now we note much

wider processing windows of high coherence. Rather than handpick these windows, we
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FIGURE 48. Time-eigenspectrumfor trimmed data. 600 secondswere trimmed of major
lightningevents into the 360 total seconds seen here. Significantcoronaldampingof the
fieldswere occurring,as seen by the exponential clampingof the signals.Rather than
carefullyselect time segments, we evenly dividedthe entire time segment intosix seg-
ments of 60 secondseachto test the robustnessof the MUSIC algorithm.

instead divided these data into six even windows of 66 seconds each. Clearly some of

these six windows contain incoherent time slices, as indicated by the vertical contour

lines. We reasoned that an on-line processing algorithm may unavoidably retain such

incoherent data, since an experienced operator may not be available to hand pick these

processing windows. We therefore sought to examine the MUSIC results under a range

of data quality, to stress the emphasis of successful processing under somewhat realistic

on-line decisions. The MUSIC results for this set of parsed windows is presented in

Figure 25 on page 75.
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9.3.3 End-of-Storm-Oscillations example

We present here an intriguing novel look at an End-of-Storm-Oscillation

(EOSO). In Fig. 49, the figures are an enlargement of just the last hour of the August 5,

1991 data, shown completely in Figure 4 on page 14. The MUSIC processing was

applied to test the robustness of the point charge model with relatively static data, yet

this data is believed to be degenerating from a point charge into wide spread electrical

storm debris. No lightning strikes were observed during the EOSO.

Fig. 50 is the EOSO time-eigenspectrum. The spectrum shows relatively good

coherence over five minutes, but does not appear to warrant a much wider window. This

observation would be consistent with a storm cell either moving or dispersing. We

selected a five minute segment early and late in the EOSO for MUSIC processing.

Fig. 51 is the EOSO MUSIC scans. The top figure is approximately 20 minutes

into the EOSO, the bottom figure approximately 50 minutes. Both MUSIC spectra were

based on a five minute window. Although the field levels were still above 2 kV/m in the

right figure, and the eigenspectrum indicated good coherence, the point charge model

intersected quite poorly with the data. We contrast this result with the earlier EOSO data

at the top, where still get relatively good intersection of the MUSIC scan. This lack of

intersection in the late time is quite consistent with the belief that the storm center should

then be well dispersed and poorly modeled as a point charge.

9,3.4 Time-Eigenanalysis Summary

Time-eigenanalysis is an effective tool for measuring the subspace dimension of

the KSC array. During time regions of low dimensionality, namely between lightning

strikes, then we have a greatly improved opportunities for applying the simplistic point

charge model and the MUSIC processing. Conversely, the high rank regions give an
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FIGURE49. End-of-stormoscillationstudy.Thefiguresareanenlargementofjustthelast
hour of the August 5, 1991 data. The time-eigenspectrum and MUSIC processing were
applied to test the robustness of the point charge model with relatively static data.
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FIGURE50.Thetime-oigenspo_rumshowsrelativelygoodcoherenceover fiveminutes.
butdoesnotappearto warranta muchwiderwindow.Thisobservationwouldhe consis-
tentwitha stormcelleithermovingordispersing.We selectedfiveminutesegmentsearly
andlateintheEOSOforMUSICprocessing.

excellent indication of the lightning strike temporal extent. These regions could be

extracted for further lightning based processing. Proper thresholding of the time-

eigenspectrum contour lines would allow the automatic switching between source mod-

els and lightning models during the real-time progress of the storm.
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Chapter 10

Summary and Further Research

Somet#nes a scream is better than a thesis. ---Ralph WaldoEmerson

We have presented general descriptive models for spatiotemporal data and have

shown the separability of the linear moment parameters and nonlinear location parame-

ters in the MEG problem. A forward model with current dipoles in a spherically sym-

metric conductor was used as an example; however, by the superposition of

electromagnetic sources, other more advanced MEG models, as well as many EEG mod-

els, can also be formulated in a similar linear algebraic framework. A subspace method-

ology and computational approach to solving the conventional least-squares problem

was then presented. A secondary application of these techniques to the thunderstorm

localization problem was also presented.

A new scanning approach, equivalent to the statistical MUSIC method, was

developed. This subspace method scans three-dimensional space with a one dipole

model, making it computationally feasible to scan the complete head volume. Least-

squares and MUSIC demonstrations were presented using simulated noisy data, phan-

tom data and somatosensory MEG data. In general, MUSIC may fail when the noise is

of sufficient strength to corrupt the estimates of the noise subspace, when the time series

are strongly correlated, or when the sources are closely spaced. Many other authors have

analyzed the performance of MUSIC, particularly the sensitivity of the results to errors

in estimation of the noise subspace, and have also suggested many modifications of the

algorithm (Stoica and Nehorai 1989, Stoica and Sharman 1990, Cadzow 1990, Viberg

1989, Viberg and Ottersten 1991). These results may prove useful in improving the sub-
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space scanning method described here. The challenge lies in advancing these methods

for actual data where the noise statistics are unknown. The appeal lies in the relative sim-

plicity with which the entire head region is scanned.

General formulas were presented for computing the lower bound in localization

and moment error. Specific MEG and EEG formulas were presented for multiple dipoles

in a head model with four spherical shells. Localization error bounds were presented for

MEG, EEG, and thunderstorm models with different sensor and source configurations.

Both one and two dipole cases were examined for ali possible dipole orientations and

locations within a head quadrant. The results showed a strong dependence on absolute

dipole location and orientation. The results also showed that fusion of the EEG and

MEG measurements into a combined model reduced the lower bounds. The thunder-

storm results showed good localization potential within the Cape Canaveral region.

The time-eigenspectrum analysis provided a novel and objective means of pars-

ing the time data into processing segments. Simulations were presented for multiple

sources, then the technique was applied to somatosensory and thunderstorm data. The

results appear useful in characterizing the temporal extent of the MEG transient evoked

response, and the results appear particularly useful in removing unwanted lightning

strikes from the thunderstorm data.

In the application of these methods to data, practical questions arise which are of

future interest. Overspecifying the signal subspace domain by one or two dimensions

does not appear to significantly alter the results. The original peaks increase somewhat,

but spurious peaks do not necessarily appear; however, it is not immediately obvious as

to what degree we can exceed the true dimension of the subspace. Linked to this problem

is distinguishing a "significant" MUSIC peak from a local maximum in the MUSIC

images, i.e., how far reduced from unity are the noisy source peaks. The SNR threshold
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and signal subspace small perturbation work of Li and Vacarro (1991) appears to provide

preliminary approaches to the problem.

This work has investigated the modeling for the spatial component of the spa-

tiotemporal data matrix. Models for temporal component of the data are more difficult

to assign, yet their inclusion will assist in an overall better understanding of the neural

signals. The preliminary models must be quite general, to prevent us from unduly con-

straining the class of signals accepted. High dimensional state-space identification tech-

niques such as Kung's (1979) appear promising for exploiting the multi-channel data

information available from the array of sensors.
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