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NOTATION

velocity scalar

displacement scalar or variable

ROMAN

1. Italicised Lower Case

a constant

b constant

d diameter

£ frequency

g scalar mass flux

k turbulence kinetic energy
1 length

m index limit

q contact heat flux scalar
r radius

t time

\4

b4

y

variable

2. Ttalicised Upper Case

area
heat capacity

external and mutual energy
total flux

enthalpy

constant

mass

non-dimensional parameter
pressure

gas constant

temperature

internal energy
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volume



3. Bold Lower Case

external and mutual force
mass flux density

unit outward normal
contact heat flux

contact force

velocity

X 4 v o 38 0@ H

displacement

4. Bold Upper Case

D deformation tensor

[

identity matrix

extra stress tensor

5. Computer Programme Variables

NHL index of last heater mass/energy discrete volume

NKF index of first cooler mass/energy discrete volume

NRF index of first regenerator mass/energy discrete volume
NRL index of last regenerator mass/energy discrete volume
GREEK

1. Upper Case

A bulk compressibility
o dissipation

2. Lower Case

constant

constant

oy W R

unit vector component
turbulence kinetic energy dissipation rate

om

iv



B dynamic viscosity

v kinematic viscosity

P density

T extra shear stress tensor component

) generalised scalar, vector, or tensor quantity

w specific dissipation rate

HEBREW

8 transformation tensor

OPERATORS

d total derivative

dde total derivative with respect to time

D substantive derivative

£(O) function of

1(0) quantisation function

0 partial derivative

A incremental change

v divergence

I integral

= summation

E = [éﬁ time average of ¥

[v;$ volume average of ¥

[ﬁﬁi time average of volume average of ¥

Y = [m;¢ time average of time average of ¥

I¢| absolute value or magnitude of ¥

. scalar product of vectors, vector product of vector and
tensor
scalar product of tensors

N intersection

U union

C proper subset



SUBSCRIPTS

a acoustic

ch characteristic

i index

I index

J index

k index

M index limit in two-dimensional space
(m) material body

n momentum discrete volume

N index limit in two-dimensional space
nlL momentum discrete volume, left hand
nr radial momentum discrete volume

nR momentum discrete volume, right hand
nx axial momentum discrete volume

p at constant pressure

Pe Peclet

Pr Prandtl

r regenerator

Re Reynolds

(s) system of particles

T at constant temperature

Va Valensi

X axial

At time increment

SUPERSCRIPTS

(t) turbulent

T transpose

s previous time step

* distinguishing indicator

fluctuating component
per unit mass

time rate of change

vi



CHAPTER 1

INTRODUGCTTION

The activities described in this report do not constitute a continuum
but rather a series of linked smaller investigations in the general area of
one- and two-dimensional Stirling machine simulation. The initial impetus for
these investigations was the development and construction of the Mechanical
Engineering Test Rig (METR) under a grant awarded by NASA to Dr Terry Simon at
the Department of Mechanical Engineering, University of Minnesota. The
purpose of the METR is to provide experimental data on oscillating turbulent
flows in Stirling machine working fluid flow path components (heater, cooler,
regenerator, etc.) with particular emphasis on laminar/turbulent flow
transitions.

Hence, the initial goals for the grant awarded by NASA were, broadly,
to provide computer simulation backup for the design of the METR and to
analyze the results produced. This was envisaged in two phases: first, to
apply an existing one-dimensional Stirling machine simulation code to the METR
and second, to adapt a two-dimensional fluid mechanics code which had been
developed for simulating high Rayleigh number buoyant cavity flows to the
METR. The key aspect of this latter component was the development of an
appropriate turbulence model suitable for generalised application to Stirling
simulation. A final step was then to apply the two-dimensional code to an
existing Stirling machine for which adequate experimental data exist.

The work described herein was carried out over a period of three years
on a part-time basis. Forty percent of the first year'’s funding was provided
as a match to the NASA funds by the Underground Space Center, University of
Minnesota, which also made its computing facilities available to the project
at no charge.

1.1 OBJECTIVES

With the advantage of a posteriori clarity, the following overall
objectives guided the course of the work:

1. Apply an existing one-dimensional simulation code to the METR.

2. Adapt and apply an existing two-dimensional fluid mechanics code
to the METR.

3. Use the METR experimental results to guide the development of a

turbulence model appropriate for generalised application to
Stirling machine simulation.



4. Validate the two-dimensional simulation including its turbulence
model against experimental data for an existing Stirling engine.

1.2 PROJECT EVOILUTION

The basic simulation codes applied to the METR are the fully implicit,
discrete volume simulations developed during the course of the author’s PhD
research program (Go87). The application of the one-dimensional version of
the code to the METR was elementary and provided some design guidance to Simon
and Seume (the graduate student conducting the METR research) in developing
the final design of the rig.

Because a significant delay prior to the commissioning of the rig was
expected, it was decided to proceed with applying the one- and two-dimensional
simulations to a Stirling engine, the latter simulation initially without the
inclusion of a turbulence model. NASA chose the Space Power Demonstrator
Engine (SPDE) as the target engine. This back-to-back, free-piston design is
characterised by an operating frequency of 100 Hz and a mean. pressurisation of
150 bars which, combined with a relatively short working fluid flow path,
yield an engine characteristic number (N.,) (see section 2.6) of about 25.
This means that there are roughly 25 complete information propagation
traverses between the expansion and compression space pistons during each
cycle. This may be compared with a typical characteristic number of 96 for
the GM-GPU3 kinematic engine. In the case of the GM-GPU3 engine, the
characteristic number proved to be large enough so that modelling of
information propagation effects did not prove necessary in order to match the
experimental data (Go87). However, in the case of the SPDE, such modelling of
information propagation did enable agreement between the measured and
simulated piston indicated works to be obtained.

This elicited some controversy not only within NASA but also among
other Stirling engine analysts who expressed doubt whether information
propagation effects are physically relevant at low Mach numbers. Hence, a
significant deviation of the grant was initiated into an investigation of the
information propagation phenomenon in the context of a physical application
remote from Stirling engines. While not settling the controversy, this
investigation did reveal the limitations of the simulation code by
establishing a lower characteristic number limit below which the code was
judged inapplicable.

Within these limits, the two-dimensional fluid dynamics code was
modified and successfully applied to the SPDE. The methodology adopted was to
treat the heater as a two-dimensional entity represented by a single "typical"
tube in an otherwise one-dimensional system. This was intended to facilitate
the application of the METR turbulence data to an actual engine (via the
simulation code) since the rig would be configured to represent just such an
SPDE heater tube. A significant aspect of this application was the
development of a mesh generation scheme enabling a "seamless" junction between
the one-dimensional rectilinear and two-dimensional cylindrical spatial
discretisations.



At this stage, the METR still did not yield quantitative data suitable
for turbulence model development. Nevertheless, the two-dimensional SPDE code
was ported to the METR geometry, albeit without the inclusion of a turbulence
model. Some mean velocity qualification comparisons were made between the
simulated and preliminary experimental data. These comparisons revealed
systematic errors in the experimental data. The errors included flow
anomalies (apparently caused by piston/cylinder "sticking"), the absence of
ambient boundary conditions and hot-wire anemometer calibration uncertainties.
Qualitatively useful data did however become available when Joerge Seume
published his PhD thesis (Se88). Hence, since the grant period was drawing to
a close, development of the turbulence model was initiated without the benefit
of an experimental benchmark. Finally, a single half-cycle of quantitatively
useful turbulence data (despite the continued existence of systematic errors)
for the SPDE heater tube configuration was eventually delivered about three
weeks prior to the termination of the grant. This allowed barely enough time
to make some preliminary turbulence model evaluations and to define the
critical issues in oscillating flow turbulence modelling. The larger
objective of applying the turbulence model to the SPDE could not be fulfilled.

The structure of this report thus reflects the modus operandi of the
grant itself, comprising a compendium of sectional reports delivered to NASA
at the termination of each phase. Chapter 2 summarizes the simulation model
and its theoretical foundations; chapter 3 discusses the simulation of the
SPDE; chapter 4 describes an investigation of the information propagation
issue based upon an analytic description of a transmission line; and chapter 5
is devoted to the simulation of the METR and the development of a turbulence
model. Salient conclusions and some directions for future research arising
therefrom are presented chapter 6.



CHAPTER 2

THE SITMULATION MODETL

2.1 INTRODUCTION

This chapter presents a narrative overview of the physics and numerics
of the simulation model. Included is the postulational basis from which the
conservation equations are derived as well as the definitions of the
discretisation, turbulence and information propagation models. Since the
symbolic development of the simulation model is wvoluminous, the reader is
directed toward reference Go87 for a complete and rigorous derivation of all
the equations presented.

The philosophical basis upon which the simulation model rests is
described by Tisza (Ti66) as the ’postulational’ approach in his discussion of
the evolution of the concepts of thermodynamics. In summarizing the efficacy
of the postulational approach, Tisza makes the following critical observation:

'First, and most important, we claim no absolute validity for our
postulational basis. The validity of the postulates and the usefulness
of the primitive concepts are only tentative and have to be justified
by the experimental verification of the implications of the theory.’

Thus the postulational approach used to develop a symbolic description
of the fluid dynamics of Stirling cycle machines ultimately can be justified
only by the extent to which the results produced can be given validity by
experimental observation.

2.2 THE INTEGRAL CONSERVATION BAIANCES

The integral conservation balances forming the backbone of the
simulation codes are derived from four postulates. The first postulate is
based on the classical concept that matter is uniformly distributed through
space. Even though this postulate is known to be unrealistic in terms of the
quantised, discontinuous nature of matter, its usefulness lies in the
simplicity with which macroscopic phenomena may be described. The following
statement of the first postulate is adopted:

Postulate 1 Matter is continuous and distributed uniformly within an
arbitrary bounded space.

This statement is more restrictive than those usually offered (S181,
ZH76) since the uniform and continuous distribution of matter is postulated
only within a space delineated by boundaries which is defined herein as a
discrete volume. Thus a discrete volume admits the existence of
discontinuities at its boundaries. This means that physical phenomena such as



shock waves and numerical phenomena such as volume-averaged property
discontinuities are accommodated within the piecewise continuum model
postulated.

Having thus definec¢  Aiscrete volume, the essential requirement is to
describe the temporal variat of intensive properties within the discrete
volume from macroscopically cvs. -vable conditions.

For a generalised scalar, ~ctor or tensor quantity ¥ defined by:

Y = P(x,t) (2.1)

the total temporal derivative of ¥ for a cohesive material body is given by:

dde YydvV = (8y/at)dv + Y(ven)dAa (2.2)
Vi Vi Amy

Equation (2.2) indicates that the total change of % for the entire
material body is a function of the change of ¥ at each fixed point within the
body plus the transport of ¥ at the boundaries of the body. This equation,
which is known as the ’transport theorem’ (S181l) places no restrictions on the
nature of the body other than it be regarded as an autonomous entity within a
given discrete volume V iy, and that it have the characteristics of a
continuum. In particular, the degree of cohesiveness of the body is
arbitrary, so that generalisation to a system of particles of arbitrary
cohesiveness (that is, liquids, solids or gases) yields:

dde Pdv = (6¢/3t)dV + ¢(v(s)-n)dA (2.3)
Visy Vis) Aes)

Equation (2.3) is known as the ’‘generalised transport theorem’ (S181) and, in
essence, is the symbolic realisation of the first postulate.

The transport theorem of equation (2.2) provides the means by which
macroscopic conservation postulates may first be transformed into their
microscopic or differential counterparts that apply within the discrete
volume. Thereafter, the generalised transport theorem permits the
differential conservation balances to be applied to a system of particles such
as that comprising the working fluid of a Stirling cycle machine.

The conservation postulates are expressed strictly in terms of
macroscopic phenomena. Hence the macroscopic conservation of mass for an
arbitrary material body is expressed by the following postulate:



Postulate II The mass of an autonomous material body is independent of
time.

Symbolically, this may be expressed as:

ddtJ pdV =0 (2.4)
Ve

Choosing ¥ = p (that is, mass per unit volume or density is the
transport property) in equation (2.2) produces the differential comnservation
balance:

3p/dt = -(Vspv) (2.5)

in a Eulerian frame of reference.

The integral mass balance applicable to a discrete volume is obtained
from equations (2.5) and (2.3) and is given by:

dM(S)/dt = J p{(V‘V(s))"n)dA (2.6)
Acs)

In this generalised or combined Eulerian/Lagrangian form, the rate of
change of mass of a system of particles is equal to the net advection of mass
across the boundaries of the system. The advection velocity is the relative
velocity between the particles and the boundary itself.

A statement of the macroscopic conservation of momentum for an
arbitrary material body expresses the third postulate, which is generally
referred to as Euler'’s first law (S181):

Postulate IIT The time rate of change of the momentum of an autonomous
material body relative to the fixed stars is equal to the sum

of the forces acting on the body.

Postulate III may be expressed symbolically as:

ddtJ pvdV = I sdA + pEadv 2.7)
Vim) Am) Vimy



where s denotes the contact forces per unit area and f denotes the external
and mutual forces.

Selecting ¥ = pv (the momentum per unit volume) in the transport
theorem (equation (2.2)), allows the following Eulerian differential momentum
conservation equation to be derived:

3(pv) /Ot + Ve (pvv) = VsT - VP + pf (2.8)

It should be noted that the sign convention adopted for the extra shear stress
tensor T is such that T represents the stress acting at any point within a
material body. Modifying Stokes’ hypothesis (Sc79) for gaseous fluids by
including a ‘bulk viscosity’ (BS60) allows T to be expressed by:

T = pu{Vv + (VW)T) + {(A-24/3) (Vev))I (2.9)

Together, equations (2.8) and (2.9) represent the Navier-Stokes equations,
which are usually independently derived on a more intuitive basis (Sc79,
BS60).

The generalised combined Eulerian/Lagrangian form of the integral
momentum conservation balance is obtained by substituting equation (2.8) into
equation (2.3) which produces:

d([v];M(s))/dt = pV{ (V'V(s))"n}dA - PndA - (T"n)dA
Aes) Acs) As)
+ pfdV (2.10)
Visy

Thus the rate of change of momentum of a system of particles is equal
to the net advection of momentum across the boundaries of the system relative
to the system boundary velocity plus the contact, mutual, and external forces
acting on the system.

The fourth postulate is defined by the conservation of energy for a
material body. 1In the context of a discrete volume analysis, the first law of
thermodynamics which is adopted by most authors as their postulational basis
(Sc79, for example) is not specific enough for a macroscopic material body
(Go87). Thus the following formulation advocated by Slattery (S181) is
preferred:



Postulate IV The time rate of change of the internal and kinetic energy of
an autonomous material body relative to the fixed stars is
the sum of the rate at which forces acting on the body do
work on the body and the rate of energy transmission to the
body.

Symbolically, this may be expressed as:

ddtj p (U+v2/2)dV = J (ves)dA + J p(veE)av + J gdA + J pEAV (2.11)

Vim) Acmy Vim Ay Vim

where s and f are defined for equation (2.7), g denotes the contact energy

transmission rate per unit area, and E denotes the external and mutual energy
transmission rate. The first and second terms on the right hand side
represent the work done by the corresponding force terms in equation (2.7)

Choosing the internal plus kinetic energy per unit volume as the
transport property by setting (¥ = p(U+v%/2) ) in the transport theorem
(equation (2.2)), the following Lagrangian differential energy equation may be
derived (Go87):

pD(ﬁ+v2/2)/Dt = p{(v-%)+£} + Ve(Tev) - Ve(Pv) - Veq (2.12)

This equation describes the differential conservation of thermal and
mechanical energy. It can be simplified by observing that the differential
conservation of mechanical energy may be determined separately using postulate
ITII. Forming the scalar product of the Lagrangian form of equation (2.8) with
v yields the differential conservation of mechanical energy equation in a
Lagrangian frame of reference:

pD(v2/2) /Dt = Ve(Tev) - (T:Vv) - (veVP) + p(v-%) (2.13)

The second term on the right-hand side is a tensor scalar product which
represents the irreversible conversion of mechanical energy into thermal
energy, or dissipation. Subtracting equation (2.13) from equation (2.12) and
expressing the result in Eulerian terms produces:

3(ol)at + Ve (pUv) = pE + (T:Vv) - P(Vev) - Veq (2.14)

This equation defines the differential conservation of thermal energy. It may
be noted that equations (2.12) and (2.8) contain a redundancy that is absent
from equations (2.14) and (2.8). Although either set is admissible, and both



sets must ultimately yield identical results, the latter set is preferred
because of the computational simplicity and convenience it affords in
describing Stirling machine fluid dynamics.

Choosing the internal energy per unit volume as the transport property
in the generalized transport theorem (that is, ¥ = pU in equation (2.3)) and
substituting equation (2.14) produces the general Eulerian/Lagrangian integral
form:

Visy Aes)

+ pH{(V'V(s))"n}dA - P(V(s)"n)dA (2.15)
Acs) Acs)

Thus the rate of change of internal energy of a system of particles is equal
to the sum of the following components, which in left to right sequence are:

- the rate of mutual and external energy transmission to the system

- the rate of irreversible conversion of mechanical into thermal
energy within the system boundaries

- the isentropic heat generation rate within the system boundaries

- the net rate of contact energy transmission across the boundaries
of the system

- the net advection of enthalpy across the boundaries of the system
relative to the boundary velocity

- the net rate at which mechanical work is done at the boundaries of
the system.

In order to implement the integral balances for gaseous fluids, an
equation of state is required. 1In keeping with the established practice for
Stirling machine analysis (Scl871, Wa73), the ideal gas equation of state is
used here, namely:

PV = MRT (2.16)

Nevertheless, there are no intrinsic restrictions placed on the form of
the equation of state; other equations describing the behavior of real gases,
such as that of Redlich and Kwong (RK49), may be used. Owing to their
relative complexity, however, such equations are not as numerically convenient
as the ideal gas equation.

Equations (2.6), (2.10), (2.15), and (2.16) thus provide the analytic
basis in terms of a discrete volume continuum model for determining the
working fluid behavior of Stirling cycle machines.



2.3 THE TURBULENCE MODEL

The integral balances of equations (2.6), (2.10), and (2.15) are
strictly applicable in the limit as At - 0 (Hi75). However, when the balances
are applied to systems in which At is finite, then the balances are precise
only for laminar flow conditions. Under turbulent flow conditions, the
transport properties ¥ may experience random fluctuations with periods less
than At, thus invalidating the instantaneous constancy of the temporal
gradients implied by the equations as described. The instantaneous value of ¥
may be represented as the sum of a time-averaged component and a fluctuating
component:

¢=$+¢o (217)

Attention here is focussed on obtaining the time-averaged quantities ¥
directly since the computational effort necessary to obtain % is currently
beyond the scope of practical Stirling machine simulation. The most general
approach to obtaining the time-averaged or turbulent transport balances is to
perform the averaging process on the integral balances directly (S181). This
admits fluctuating discrete volume geometries such as those occurring in
Lagrangian systems. Time-averaging equations (2.6), (2.10), and (2.15)
results in:

Mass:
dMsy/dt = | pl(v-v(sy)--n)da (2.18)
As)
Momentum:
d([v]VM(s))/dt = pV{ (v-v(s))--n}dA - PndA - (T--n)dA
Acs) Acs) Acsy
- pfdv (2.19)
Visy

10



Energy:

d( v, 0M(sy)/dE = J (pE+(T:Vv)+(veVP)dV - J (q+-n)dA
Visy Acs)

+ pH{(V-V(S))°-n}dA e P(V(s)"‘n)dA (2.20)
A(S) i A(S)

Equations (2.18) through (2.20) are by definition also applicable under
laminar flow conditions, since from equation (2.17) ¥ = ¥ when %’ = 0.

The principal difficulty in solving the time-averaged integral balances
is the unavailability of the fluctuating component of the transport
properties. In order to obtain the time-averaged properties directly, the
analytic approach adopted for dealing with the unknown fluctuating components
falls into the category of ‘Reynolds averaged equations’ (Fe83). In this
context, since the integral balances derived include both time- and volume-
averaging, Ferziger makes the following observation:

' The equations describing the mean field contain averages of
products of fluctuating velocities and there are fewer equations than
unknowns - the well-known closure problem. In fact, the set of
equations can never be closed by further averaging; a closure
assumption, or what is the same thing, a turbulence model, has to be
introduced. The closure assumption must represent the unknown higher-
order average quantities in terms of lower-order quantities that are
computed explicitly.’

The minimum set of assumptions constituting the turbulence model
adopted here is stated in terms of the six restrictions discussed below.
These restrictions enable a time-averaged solution of the integral balances to
be obtained with reasonable computing resources. It must be emphasized,
however, that the turbulence model adopted is not definitive and is subject to
amendment by experimental data.

Restriction I

The turbulent flow is stationary such that:

<< At

Atturbulence characteristic analytic time increment (2.21)

Restriction II

The turbulent flow field is spatially homogeneous such that:

11



AViurbulence characteristic << &Vdjscrete volume (2.22)

Rigorously, equations (2.21) and (2.22) are conflicting conditions for
any turbulent flow because if such a flow field is homogeneous, then it is
simultaneously a decaying flow field. However, if it 1is also stationary, then
the dissipation in the field can only be balanced by a non-homogeneity in
order to maintain the decaying characteristic. The following rationale
offered by Hinze (Hi75) is adopted here for proceeding with the stationary,
homogeneous flow field model:

‘... Fortunately, the rate of decay of the mean properties is rather
slow with respect to the time scale of the smaller eddies. Therefore,
the actual state of non-stationarity is considered not to be a serious
drawback in the experimental study of the smaller scale turbulence.

For the theoretical study, this makes it possible to apply the concepts
and theories of stationary random processes.’

Restriction III

The stationarity of the turbulent flow field is sufficient for the
equality of the first and second order time averages, or equation
(2.21) implies that:

v-9 . (2.23)

Hence by taking the time average of equation (2.17) it immediately follows
that:

¥ =0 (2.24)

Restriction IV

The ergodic hypothesis is valid for scalar turbulent fields.

The ergodic hypothesis states that for a stationmary and homogeneous
turbulence:

¥ = P = [ensembler®’ (2.25)

where y* represents a scalar or component of a vector. Hence from restriction
IV and equ.-ions (2.23) through (2.25) it follows that:

[V]Js'calar =0 (2.26)

Hence, in particular, for density and temperature:

12



[v]-p—' = [v]T' = O (2.27)

Equations (2.27) constitute two of the explicit restrictions placed on
the simulation by the turbulence model, namely, that the temporal fluctuation
of the volume-averaged density and temperature are zero under the restrictions
of equations (2.21) and (2.22). Since the ergodic hypothesis is applied to
scalar properties only and equation (2.26) is limited to volume averages, non-
zero fluctuations of volume-averaged vector fields and correlations involving
non-volume-averaged scalar fields are permissible. This requires another
restriction, namely:

Restriction V

The effect on the mean flow resultant from vector turbulent fields may
be modelled.

In particular, the effect of the turbulent velocity field fluctuations on the

time-averaged flow field may be determined using a model such as an empirical

correlation (for example, that between friction factor and Reynolds number) or
a two-parameter turbulence model of the k-¢ variety.

The last restriction is defined by:
Restriction VI
The discrete volume boundaries do not experience temporal fluctuations.

This may be expressed symbolically as:

Ay = 0 (2.28.1)
which in turn implies that:

V'sy = 0 and p+n = Pen (2.28.2)

Equations (2.28) do not place a restriction on the Lagrangian condition
v = v(g) as suggested by equation (2.3). Under turbulent conditions, this is
achieved by setting v(gy = v and admitting a turbulent flux as a function of
Vv - V(s (which is equal to v') across the Lagrangian boundary. In effect
this converts a turbulent Lagrangian boundary into a combined
Eulerian/Lagrangian boundary. In the context of Stirling machine numerical
analysis, restriction VI enables generality to be maintained without the
necessity of allowing turbulent discrete volume boundary movement, enabling a
significant simplification of the subsequent analysis.

13



At this stage, it is convenient to introduce the mass flux g into the
equations as a means of simplifying the numerical model. g is defined by:

g = PV (2.29)

Applying equation (2.29) and the six restrictions of the turbulence
model to the time-averaged conservation balances of equations (2.18) to (2.20)
yields (in combined Eulerian/Lagrangian form):

Mass:

dM(s,/dt = J_ {(8-PV(sy)+-n}dA . (2.30)
Aes)

Momentum:

d([t.V]g E’_(S))/dt—' = J_ E( (;‘;(s))°-n}dz - J_ Fnﬁ

Acsy As)
- J_ ((T+T®))«-n)dA + [_ p£dV (2.31)
Acs) Visy

Energy:

E'Vd([tv]'f M(s))/dt = J_ (pE + (T:Vv) + (V+VP)}dV + J_ ((q+q‘®))+-n)dA

V(S) A(S)
- J_ (Pv(sy*n)dA + Cp J_ (T(g-pv(s))*-n)da (2.32)
As) As)

Expressing the equation of state (equation (2.16)) in volume-averaged
terms and applying the turbulence model yields:

P = wnpRenT (2.33)

The Reynolds stress tensor T‘®) in equation (2.31) is given by:

T = (gv - g visy) - (8v - 8Y(s)) (2.34)
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Analogously, the turbulent enthalpy flux vector q‘*) in equation (2.32) is
defined by:

q‘®) = Cp{(S—T - pvsHT) - (8T - ;’T’(s)?)’ (2.35)

Equations (2.34) and (2.35) cannot be solved since they contain
additional unknowns for which there are no additional equations (the closure
problem). Hence a turbulence model is required to solve these equations.

2.4 THE SPATIAL DISCRETISATION SCHEME

In his comprehensive review of computational fluid mechanics, Roache
(Ro82) describes a variety of spatial and temporal discretisation schemes for
the numerical application of the differential conservation balances which may
be loosely categorised into ‘coincident’ and ’‘staggered’ mesh systems. These
mesh systems may be applied both spatially and temporally, thus yielding a
multiplicity of schemes involving coincident and staggered mesh systems.

In a coincident mesh scheme, the three differential transport
properties--density, velocity, and temperature--are evaluated at the same time
and/or at the same spatial location. However, in a spatially staggered mesh,
generally the density and temperature are computed at one set of grid points
while the velocities are computed at an offset grid point mesh. 1In a
temporally staggered mesh, the velocity is computed at a half time step offset
from the density and temperature. In recent years, a de facto consensus has
emerged that spatially staggered, temporally coincident discretisation schemes
are convenient and useful for fluid flow modelling (Fe83, Pa80). Roache
infers that the first use of a version of the spatially staggered mesh may be
attributed to Harlow and Fromm (HF64) although its apparent reinvention over
the intervening two decades is an attestation of its efficacy.

In the field of Stirling machine analysis, Urieli (Ur77) applied the
temporally coincident, spatially staggered grid to a simple generic machine
geometry. Schock, by contrast, used a temporally and spatially coincident
grid and invoked volumetrically weighted averages for computing flow rates
between grid points (Sc78). Both of these discretisation schemes involve the
application of the differential conservation balances in a one-dimensional
Eulerian frame of reference.

Although the spatial discretisation scheme used in the simulation model
contains elements employed by Urieli and Schock, it has its origins in the
mesh structure used in the ’'Marker and Cell' (MAC) method of Harlow and Welch
(HW65) . In particular, the general precepts of a temporally coincident,
spatially staggered numerical discretisation scheme suitable for the
application of the differential conservation balances are applied to the time-
averaged integral balances described in section 2.3. This application admits
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a three-dimensional space in a combined Eulerian/Lagrangian frame of
reference.

As the mass, momentum, and energy balances are fundamentally based upon
the concept of a discrete volume, the spatial discretisation scheme naturally
devolves to partitioning a given space into an assemblage of discrete volumes
with coincident boundaries. All the intensive parameters are thus expressed
in volume-averaged terms so that, by definition, the value of any intensive
parameter at a point within a discrete volume is extrinsic to the conservation
equations. Estimates of the intra-discrete volume intensive parameter
distribution may be made using ’'volume functions' whose complexity is a
function of the boundary conditions imposed on the discrete volume.

The essence of the spatial discretisation scheme involves a method of
constructing the discrete volume grid so that, within any discrete volume,
scalar intensive parameters are assigned a position and vector intensive
parameters are assigned a plane, respectively. This introduces the concept of
a 'volumetric filtration’ process which may be defined for a scalar field as
the assignation of a point to a discrete volume so that volume-averaged scalar
intensive parameter at that point satisfies the mean value theorem (TM72) for
the discrete volume. Similarly, for a vector field, volumetric filtration
assigns a plane to a discrete volume such that the value of a vector intensive
parameter over the plane (and perpendicular to it) normalised with respect to
the area of the plane satisfies the mean value theorem for the discrete
volume.

The characteristics of the discretisation scheme may be illustrated by
a two-dimensional Eulerian space using a triangular mesh as shown in figure
2.1. The mass and energy integral balances are applied to a common discrete
volume while the momentum balance is applied to discrete volumes which are
offset from the mass/energy discrete volume and straddle its boundaries. In
this arrangement, the momentum conservation balance is applied to the net
momentum, that is, to as many components as the dimensionality of the field
requires (two in this case). Typically, it is convenient to resolve the
momentum into components perpendicular and parallel to the plane generated by
the volumetric filter.

However, although generalised, this scheme is not necessarily the most
efficient numerically. Consider, for example, the Cartesian mesh shown in
figure 2.2 (the same observations apply to any regular mesh such as
cylindrical or spherical). 1In this case, the net momentum balance may be
split into its vector components so that each component balance is applied to
a unique offset discrete volume. As indicated by the double cross-hatched
area in figure 2.2, the net momentum can be calculated by the vector addition
of the momentum components determined individually for that volume. Thus this
particular case still yields the net momentum over the entire mass/energy
discrete volume as does the general scheme but requires half the computational
effort in two dimensions.
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Generalising these concepts to a three-dimensional space with an
arbitrary coordinate system, the characteristics of the staggered discrete
volume grid may be expressed symbolically by denoting the mass/energy discrete
volume as V g, and any momentum discrete volume as Vh(s). Then considering any
adjacent mass/energy discrete volumes V(g,; and V(g,j;; separated by a boundary
Anesyin
may be defined for the discrete volume grid.

(where i represents an arbitrary sequence), the following attributes

Attribute 1

A momentum discrete volume straddles every mass/energy discrete volume

boundary A, , and is bounded by a convex surface containing the

(s)i+

perimeter of the boundary 4, , and the volume centroids of the

(sHi+
adjacent mass/energy discrete volumes. Symbolically this becomes:

D Vpsyivr) N OVisy1) VIV (gyin) )] € (3(Vigy1) U 3 (Vigyie)) (2.36)

Attribute II

The volume-averaged intensive parameters corresponding to a mass/energy
discrete volume are located at its volume centroid. Thus (% is
located at nn; such that:

[vl; = (| xdav) / V 2.37)
v

Attribute IIT

The volume-averaged intensive parameters corresponding to a momentum
discrete volume are located on the boundary A, ¢,;,,- Therefore f%ﬂ¢ is

determined by:
Ydv = ydv + ydv (2.38)

Vacs) aVis)i BV(syi+

where a,8 < 1 satisfy equation (2.36).
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Attribute IV

The net momentum of any mass/energy discrete volume is uniquely defined
everywhere in the volume by the momenta of its boundary momentum
discrete volumes, or:

gdV = X *gnan(s) (2.39.1)
Vis) Vhes)
where:
b J(V;(s)) = 1(V(sy) (2.39.2)

Applying these attributes to the particular Cartesian mesh of figure
2.2 simplifies equation (2.36) to:

1A Visyi) N 3 (Vpgyin)d ) = Visri/2 (2.40.1)

Visrii + Visyin = Vs, (2.40.2)

which satisfies equations (2.37) and (2.39).

Equation (2.37) implies that in the case of the one-dimensional
Cartesian coordinate system which is most often used for Stirling machine
analysis, a mass/energy discrete volume centroid is defined by a plane
separating two adjacent discrete momentum volumes. In a two-dimensional,
Cartesian system the centroid becomes a line perpendicular to the mesh surface
while only in three dimensions does the centroid become a point.

The attributes of the spatial discretisation scheme enable all the non-
volume-averaged boundary terms in the time-averaged integral balances of
equations (2.30) through (2.32) to be replaced with volume-averaged terms, so
permitting the balances to be numerically discretised directly. The final
forms of the integral balances used in the simulation model are given in
combined Eulerian/Lagrangian form by:

Mass:

dM(sy/de = | _ {([t.vn]g - n,vn1; Viesy)*-n1da (2.41)

An(s)
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where the subscript n denotes that the relevant parameters are associated with
the momentum discrete volume.

Momentum:

d(iev, )8 Vns))/dt = JL (ev18{ ((tvV-V(s))*-n)dA - [_ (ev PndA
A A

(S) (s)
-1 ([V]E(t)"n)dz - _n(S)g
dA(S)
(2.42.1)
- [._ [ ([[tV];(V[t,V]‘_’ + (V[t.vl‘_’)T}
JAcsy

+ {([t,V]K'z[tV];/3)(v'[tV];)}I] -1 d-AT

where T in equation (2.31) is replaced by the volume and time average of
equation (2.9) and the Reynolds stress tensor is given by the correlation:

T = g’ v (2.42.2)
Energy:

CVd([tV]E' M(s))/dt = V(S){[tV]PE + [(tv] (T:VV) + [v]@(t)

+ (eniveViemiP)) - pwwPdVgy/de

(2.43.1)
- ]- [t.Vn];(V[t.V yTe-n)dA - |_ {( ]a(“-—n)dz
A n A n
n(s) n(s)
+Cp |_ [tvn]T{([tvnlg'[r,vn)P nesy) *-nida
A
n(s)
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where nni(“ defines the turbulent dissipation tensor which is modelled and
the turbulent flux vector takes the form:

v 19 = Cpliv e v’ vl - L 1p vV e T) (2.43.2)

2.5 THE NUMERTICAL SOLUTION ALGOKR THM

An implicit (or advanced time) numerical algorithm is used to
temporally integrate the total time-differential conservation balances of
equations (2.41) through (2.43). The algorithm has its origins in the
Implicit Continuous-fluid Eulerian (ICE) technique of Harlow and Amsden (HA71)
and the Semi-Implicit Method for Pressure-Linked Equations, Revised (SIMPLER)
of Patankar (Pa80).

Central to the algorithm is the notion (HA71) that a change in the
pressure field is a function of the information propagation rate, or:

AP = (3P/3p)Thp (2.44)

where (8P/3p)r is the square of the isothermal speed of sound for a fluid with

constant specific heats. Substituting the equation of state (equation (2.33))
and discretising yields:

after multiplying through by V/At. Equating with equation (2.41) produces:

[tV]P V/R [tV]T At = Ms/At + Z {([tvn]g - [t‘vn]; -—n(s))'-‘n}d_AT (2.46)
n(s)

Equation (2.42.1) may be discretised and rearranged to produce:

[t.ang = ([t.ang n(s))s/vn(s) - At _ [tV]PndA + f([tang, [tV]T’ [tV]P)) / Vn(s)
Acs)
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Substituting into equation (2.46) for R%JE and rearranging:

[tV]P |4 / R [t,V]T At + (At/Vn(s))J_ [J_ [tv]PndA * -n ]dA
nesy U JAs)

M/AE + J_ [ [(Ceev18 Vnesy)® + AtE(ev 18, eniTs 1ev1P) ) / Vs
Anes)
- “'Vn]; ;n(S)] "n] dA (2.47)

Equation (2.47) yields an advanced time or implicit pressure field
which is obtained by linking the pressure terms in the conservation of mass
and momentum balances, hence the ’'pressure-linked’ terminology. However,
equation (2.47) can only be solved given the advanced time temperature and
density fields which in turn depend primarily on the advanced time mass flux
field. This dilemma is resolved by using an iterative solution scheme based

on an estimated or guessed mass flux field RV]E* as used in the SIMPLER
algorithm. "

The set of steps comprising the algorithm may be described broadly as
follows (see Go87 for specifics):

1. Guess the mass flux field [y ;8".
n

2. Explicitly compute the discrete volume masses from equation (2.41)

and then infer [un; from known values of V(s).

3. Implicitly compute the temperature field using equations (2.43).
4. Implicitly compute the pressure field from equation (2.47).
5. Implicitly compute the mass flux field from equations (2.42) using

the pressure field determined in step 4.

6. Compare uﬂgg (computed) with uﬁﬂg* (guessed) and return to step 2
with f([tvnlg,[wn]g*) -+ m,nlg* if the mass flux field is
insufficiently converged.

As with all implicit schemes, this algorithm requires the repeated

numerical inversion of matrices. Hence the cost-effectiveness of the
algorithm for transient compressible fluid flow simulation is limited by the
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size of the matrices generated. This arises because a break-even point is
eventually reached when the cost of matrix inversion becomes equal to the cost
of using an explicit algorithm with time steps small enough to satisfy the
Courant criterion (CF67). However, for all the problems described in this
report, the algorithm is constrained to operate within the cost-effectiveness
break-even point by limiting the spatial discretisation (particularly in the
two-dimensional problems).

It should be noted that equations (2.45) and (2.47) are discretised
using a simple first order temporal difference. 1In general, this is not
necessary and other higher order temporal discretisation schemes may be used
(see section 4.7).

2.6 INFORMATION PROPAGATION MODELS

The viability of an implicit analysis for compressible fluid flows
depends on the extent to which the analysis properly accounts for information
propagation both on a cyclic equilibrium as well as on a transient basis. 1In
an explicit analysis, accurate information propagation modelling requires that
the Courant criterion (CF67) is met at each discrete volume. This imposes
limitations on the integration time increment for a given spatial
discretisation. The issue then is to find a similar criterion for selecting
the time increment in an implicit analysis. Consider equation (2.47) in the
following reduced form:

i+m _
Jj=i-m

where i denotes the individual mass/energy discrete volumes of which the flow
area is comprised, m is dependent on the dimensionality of the problem, and Kj
and a; depend on At. On a transient basis for arbitrary At, equation (2.48)
can be applied to a series of pressure domains, one for each discrete
mass/energy volume as illustrated (for a particular two-dimensional Eulerian

field) in figure 2.3,

Each pressure domain has an extent Z}f(viVaI)iAt determined by the

information propagation characteristics where (v,); is the sonic velocity
within each discrete mass/energy volume comprising a particular pressure
domain. Hence by this process of partitioning, a ’'pressure domain splitting’
(PDS) algorithm may be structured to model information propagation phenomena.
This simplified explanation ignores the complexities arising from defining the
pressure domain boundaries under supersonic or sonic flow conditions (that is,
when |[v]|; =2 (v,);). However, it may be mentioned that under these conditions
the PDS algorithm essentially devolves to a standard approach such as the
‘region-to-region’ method (Jo69). Unfortunately, the PDS approach is
computationally quite expensive and hence may not be practical for Stirling
machine analysis.
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Figure 2.3 Structure of the pressure domain splitting algorithm.

However, the principal focus of Stirling machine simulation is the
portrayal of cyclic equilibrium conditions rather than the details of a
specific transient cycle. This suggests a significant simplification by
applying equation (2.43) to the entire flow field (or treating the flow field
as a unitary pressure domain). Two approaches to obtaining the cyclic
equilibrium solution under these conditions may be hypothesized:

1. Infinite information propagation.
This hypothesis states that, at cyclic equilibrium, sufficient

time has passed such that every point in the flow field has received
information from every other point in the flow field for all instants
over the cyclic period. The hypothesis may be implemented by
arbitrarily selecting an integration time increment that is much less
than the smallest information propagation time characteristic of a
particular machine. The time characteristic may be defined as the
interval required for a pressure wave to exactly traverse the unitary
pressure domain once. Henceforward, the infinite information
propagation hypothesis is distinguished by referring to its
implementation as the ’'equilibrium algorithm’.

2. Characteristically determined integration time increment.

Here the integration time increment is treated as a dependent
variable which is instantaneously equal to the machine time
characteristic. This yields the spatially limiting case of the PDS
algorithm and as such approximates the full information propagation
transient solution. The implementation of the characteristically
determined integration time increment hypothesis is termed the ’unitary

pressure domain’ (UPD) algorithm.
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The characteristic number N,; is a convenient way of describing the
information propagation characteristics of a Stirling machine. N, is defined
as the number of complete pressure traverses between the expansion and
compression space piston faces occurring over a cycle or:

Nep = V/£ Z11; / min{ |v;+(v);], |vi-(v);]}) (2.49)

Hence the larger N.j, the more accurate the equilibrium algorithm is likely to
be in predicting cyclic equilibrium performance.

2.7 BOUNDARY ADVECTION

In the light of the attributes of the spatial discretisation scheme
and, in particular, the area normalisation requirement for the volume-averaged
momentum, the interpretation of the momentum advection term in equation
(2.42.1) is not self-evident. The usual approaches to boundary advection do
not translate directly into the discrete volume integral framework where
boundary discontinuities are admissible although not necessary. Several
approaches to dealing with boundary advection are possible. These include a
simple one-dimensional equilibrium approach, a multi-dimensional volume
function analysis and flux corrected transport methods such as those of Book,
Boris and Hain (BB75) and MacCormack (Mc82). 1In the simulation model
described in this report, the simple one-dimensional equilibrium approach has
been adopted as a baseline and modified by empirical models where necessary.

Physical insight to the form of the boundary advection of momentum may
be obtained by solving equation (2.42.1) under equilibrium conditions ignoring
mutual and external forces and turbulent momentum fluxes, that is:

[tVn]_g_([tVn];°'n)dz - (n;vnﬁ"n)dZ =0 (2.50)
Acs) Acs)

Considering the pair of adjacent discrete momentum volumes shown in figure 2.4
in one dimension, equation (2.50) has the general solution (dropping the
averaging notation for clarity):

(8A) = ((8A)pr-(8A)pr){exp(Nppx/1) - 1} / lexp(Npg)-1} + (g4)pn1, (2.51.1)
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Figure 2.4 Adjacent one-dimensional momentum discrete volumes.

where Np, is the Peclet number at the centroid of the discrete mass/energy
volume of length 1 given by:

Npe = 3pvl/bp (2.51.2)

Following Patankar (Pa80) and denoting the net boundary momentum flow
(advection plus diffusion) across boundary A in figure 2.4 as G, equations
(2.51) produce:

if Np, = 0 then:

G = (4/3p1)((gA) - (€A) ) (2.52.1)

if Np, # O then:

G = v[(gA) 1+ (8A) - (8A) nr) (exp(Npg)-1}] (2.52.2)

These equations provide a physically meaningful methodology for
determining the boundary advected momentum flux. Consider a plot of G as a
function of Np, as shown in figure 2.5. Since Np, expresses the ratio between
the advection and diffusion of momentum across a discrete momentum volume
boundary, figure 2.5 shows that even at very low Np, the advection term
dominates. When Np, = O there is no advection while in the intermediate range
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the momentum flow is partly diffusive and partly advective. Furthermore, in
the limit:

As Npg = =, G = v(gA),L (2.53.1)

As Npg =+ -, G = v(gA),p (2.53.2)

Thus figure 2.5 provides a model for determining the boundary advection
of momentum. In keeping with the transient nature of Stirling machine fluid
flow, the diffusion is kept as a discrete term in equation (2.42.1) and is not
lumped together with the advection term. Hence for a discrete momentum volume
boundary contained within a discrete mass/energy volume i, the advected mass
flux is defined in terms of the relative velocity v] perpendicular to the
boundary where:

v' - [tV]; - ;(s) (2.54.1)

Hence:
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If v} = 0 then:

J_ [tv18(V" e -n)dA = (V*[tvnlg ZH(S))J'. (2.54.2)
Acs) i
If v; < 0 then:
J— [tv]-é(v*.-n)dz = VE([tVn]E Zn(s))i+1 (2.54.3)
Acs) i

where i and i+l denote adjacent discrete momentum volumes.

Equations (2.54) intrinsically perform the area normalisation required
for equation (2.42.1) as mandated by the attributes of the discretisation
scheme. This occurs because the transport term is gA (or the mass flow rate)

which allows uv]g to be normalised by the appropriate flow area.
n

It may be noted that equations (2.54) represent a convoluted integral
version of the ’‘second upwind differencing’ method proposed by Gentry, Martin,
and Daly (GM66). An analysis of this method shows that while it is
transportive (as with the classical or first upwind difference), it is also
second order accurate for the advection field (Ro82).

The boundary advection of enthalpy in equation (2.43.1) is determined
analogously to that described for the momentum equation with a similar end
result. Thus for a discrete mass/energy volume boundary contained within a

discrete momentum volume i, the advected enthalpy flux is defined in terms of
the relative boundary mass flux g; perpendicular to the boundary where:

g = ((tvnlg - [t.Vn]; ;H(S)) (2.55.1)

Hence:

If g5 2 0 then:

= (g* [t.V]Zn(s))j_ [t.V]Tj_—]_ (2.55.2)

J_ nng(g'-n)dZ
An 7)

If g% < 0 then:
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J— I:'t.V“]T(g.'n)dZ - (g* [tV]T Zn(s))j_ (2.55.3)

AI’I(S)

where i-1 and i denote adjacent discrete mass/energy volumes.

By nature of its simplicity, the approach adopted for modelling
transient advection does not resolve completely the 'false diffusion’ problem
(Ro82) engendered by any upwind scheme. However, in terms of Stirling machine
simulation, this problem only becomes predominant for the enthalpy advection
in the regenerator. Thus in this case, an empirical model is used to overcome
the false diffusion deficiency of the advection scheme adopted (section 3.5).
More advanced advection modelling schemes based on volume functions have been
developed and indeed do yield better results, but in terms of Stirling machine
simulation, at least in one dimension, it is doubtful whether the improvement
in accuracy (which is small when the empirical model is correctly adjusted) is
worth the additional cost of computation.

2.8 CLOSURE

The foregoing discussion has described the manner in which the
fundamental postulates are transformed via a turbulence model and a
discretisation scheme into equations suitable for direct implementation in a
computer code. The derivation of the final equations places no restrictions
on the dimensionality of the implementation--the same equations are applicable
to one-, two- and three-dimensional problems. The information propagation
model and implicit numerical algorithm developed allow the equations to be
integrated temporally so that the influence of information propagation may be
bounded. This permits the impact of information propagation effects on the
performance of Stirling machines to be at least qualitatively investigated.

29



CHAPTER 3

SIMULATION O F THE SPACE POWER

DEMONSTRATOR ENGTINE

3.1 INTRODUCTION

The primary objective in simulating the Space Power Demonstrator Engine
(SPDE) was to provide a test bed for validating the turbulence model developed
from the Mechanical Engineering Test Rig (METR) experimental results. The
SPDE was selected by NASA as the target engine because of its topical
relevance to their Stirling engine program and also because it is a more
complex device in terms of fluid dynamics than previous generations of free-
piston Stirling engines (such as the Sunpower RE1000). This provides a more
severe test of the turbulence model and hence increases its potential
application envelope.

The simulation approach adopted has been to model the SPDE as a one-
dimensional system with the option of replacing the one-dimensional heater
module with a two-dimensional module. The heater was chosen as the two-
dimensional replacement module since it was targeted for fluid dynamic
similarity with the METR. The purpose of performing a two-dimensional
simulation of the heater is to determine on a systems basis the effect of
using one-dimensional friction factor and heat transfer coefficient
correlations in a Stirling heat exchanger in comparison with a model that does
not require such first order empiricism. Nevertheless, the requirement for
second order empiricism, in particular the use of turbulence models, remains.
The development of such a model is described in chapter 5.

In view of the long lead times expected (and later realised) in
producing validation-quality METR experimental data upon which an oscillating
flow turbulence model could be based, prudence dictated that the SPDE
simulation codes be developed first using standard friction factor and heat
transfer coefficient correlations for the one-dimensional components.
Furthermore, the initial two-dimensional heater module simulations would not
include any turbulence modelling, that is, the flow is assumed to be laminar.
This provides the necessary baseline against which the effect of a turbulence
model (as well as any improved one-dimensional correlations based thereon) may
be compared.

A comparison of one- and two-dimensional heater module simulations also
provides - basis against which the efficacy of two-dimensional simulation of
Stirling machines can be judged, that is, whether the improved simulation
accuracy is worth the increased cost of computation. Such a judgement is not
obvious because it can be hazardous to isolate the effects of oscillating flow
in Stirling machine heat exchangers on the overall machine performance. This
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arises since the cyclic energy balance is the product of the synergistic
interaction of several factors including:

- porous flow in the regenerator,

- compressibility effects, particularly the influence of information
propagation, and

- multi-dimensional flow fields in the working space cylinders and
heat exchanger plena.

Hence it is possible that in a systems context, the advantages of single
component two-dimensional simulation are nullified by the transport boundary
conditions imposed by the rest of the closed system. This is an important
consideration in attempting to apply any correlations experimentally derived
from the METR directly to Stirling hardware because of the boundary condition
dissimilarities.

Thus, the intention of the one- and two-dimensional simulations of the
SPDE discussed hereafter is to provide an analytic foundation based on actual
hardware performance for later application of the METR experimental data. The
validity of this foundation is assessed by a comparison of the baseline one-
and two-dimensional simulation predictions against the cyclic performance data
produced by the SPDE test program. Unfortunately, for the reasons noted in
chapter 1, it did not prove possible to include the turbulence model developed
in chapter 5 into the SPDE two-dimensional simulation, nor was it possible to
go one step further and develop one-dimensional correlations from either the
simulated or analytic turbulence data.

3.2 SIMUIATION HARDWARE

A schematic of the SPDE is shown in figure 3.1. The engine consists of
a pair of back-to-back, beta-configuration, free-piston Stirling engines which
share a common expansion space. Work is extracted via linear alternators
attached to the pistons. As the component free-piston engines are
symmetrical, only half the SPDE need be simulated when using a one-dimensional
system model even with the inclusion of a two-dimensional heater module. The
SPDE has a design oscillating frequency of 105 Hz and a pressurization of 150
bars.

The expansion and compression spaces of the SPDE are quite complex in
comparison with those of typical Stirling machines such as the Sunpower RE-
1000 (Sc83) and GM-GPU3 (Th79) engines. Part of this complexity stems from a
restriction of the maximum piston and displacer amplitudes to about 12.7 mm.
The resulting bore-to-stroke ratios predicate that the displacer and piston
function more as flat-plate oscillators than as conventional pistons. For
this reason, the flow in the expansion space / heater plenum (figure 3.1) is
strongly two-dimensional with a significant radial gradient of axial velocity
at the heater entrance. The compression space also exhibits notable two-
dimensional momentum boundary conditions in addition to an unusual geometry,
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namely, two variable volume components joined by a conical annular passage.
Therefore, in the light of these complications and the importance of correctly
accounting for two-dimensional momentum boundary conditions (Go87), a strictly
one-dimensional system model is not a satisfactory description of the SPDE.

From a fluid dynamics perspective, the balance of the SPDE is of fairly
conventional design. A tubular heater and cooler are separated by a square
mesh, woven screen regenerator. The displacer 1s supported via a gas spring
while the piston oscillates against a bounce space. Gas bearings are used
throughout and a bearing gas supply system is built into the engine. As these
details are not essential for implementing the simulation (which relies on
predefined displacer and piston harmonic motions), the reader is referred to
reference Br87 for further information.

3.3 THE SPDE SYSTEM MODEL

The overall system model of the simulated SPDE is shown in figure 3.2
while a listing of the specific geometry used is given in table 3.1. The
regenerator and cooler are treated as one dimensional while the heater may be
one or two dimensional. The expansion space is split into a cylinder cavity
and a heater plenum. The compression space 1Is divided into upper and lower
variable volume components joined by a conical connecting passage which is
also given a one-dimensional discretisation.

1-dimensional pseudo-2-dimensional pseudo-2-dimensional

expansion space upper compression space //lower compression space
g ﬁ\\:::::;;;;iS§§§§§§§§§§§§§§§§§§§§ii:i§\> > /' .
F - Y Ne i s ] K .
- C I 1-dimensional conical
r E connecting passage
|-

2~dimensional
heater

1-dimensional l-dimensional

pseudo- regenerator cooler
2-dimensional

exp. space / heater
plenum

Figure 3.2 SPDE system simulation model.
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Table 3.1 SPDE simulation geometry.

Expansion Space:

Length 57.24 mm
Diameter 114.4016 mm
Wetted area '12.86 cm?
Volume at displacer datum 57.1 cm®
Heater Plenum:
Axial length 1¢.16 mm
Axial flow area 289 .44 cm?
Axial wetted area 71.344 cm?
Volume 298.92 cm®
Radial length 54.515 mm
Radial flow area 53.944 cm?
Radial wetted area 268.77 cm?
Radial entrance area 36.544 cm?
Volume within radial momentum 123.32 cm®
control volume
Heater: .
No. of tubes 1632
Length 90.17 mm
Hydraulic diameter 1.27 mm
Regenerator:
Casing inner diameter 139.6746 mm
Casing outer diameter 223.5708 mm
Length 25.4 mm
No. of layers in gauze stack 350
Gauze mesh 200 ins™!
Gauze wire diameter 0.04064 mm
Volumetric porosity 0.7105

Gauze density

Gauze specific heat capacity

7833.03 kg/m?
502,42 J/kg K

Cooler:
No. of tubes
Length

Hydraulic diameter

1584
95.25 mm
,l-—szam—

Upper Compression Space:
Length
Hydraulic diameter
Midpoint flow area
Upstream boundary flow area
Wetted area
Displacer area
Volume at displacer datum
Axial momentum volume

3.81 mm

21.656 mm
238.3 cm?
115.95 cm
41.462 cm
46.259 cm
89.791 cm
89.791 cm

N

W w NN

Flange Passage:
Length

Hydraulic diameter
Midpoint flow area
Upstream boundary flow area
Wetted area

Volume

24.13 mm
15.457 mm
33.042 cm
33.042 cm
293.71 cm
84.102 cm

[

w NN
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Table 3.1 (continued) SPDE simulation geometry.

Linking Annulus:

Length 10.846 mm
Hydraulic diameter 14.566 mm
Midpoint flow area 40.66 cm?
Upstream boundary flow area 32.086 cm?
Wetted area 121.11 cw?
Volume 44.101 cm®
Joining Ring Passage:
Length 61.488 mm
Hydraulic diameter 11.683 mm
Midpoint flow area 32.086 cm?
Upstream boundary flow area 32.086 cm?
Wetted area 656.73 cm?
Volume _191.81 cm®
Peripheral Compression Space:
Midpoint flow diameter 266.31 mm
Midpoint flow area at piston datum 35.156 cm?
Upstream flow diameter 266.31 mm
Upstream flow area at piston datum 35.156 cm?
Wetted surface diameter 455.72 mm
Wetted surface area at piston datum 355.58 cm?
Piston area 108.83 cm?
Volume at piston datum _169.73 cm®
Central Compression Space:
Length 42.385 mm
Wetted area 144.98 cm?
Displacer area 55.851 cm?
Piston area 56.438 cm?
Volume at piston and displacer datums 242.91 cm®

Initially, attempts were made at using a strictly one-dimensional
description of the upper and lower compression spaces as well as the expansion
space. However, as expected (Go87), this approach was not successful in
enabling the experimental cyclic performance data to be matched. Hence a
"pseudo-two-dimensional” method of including the actual two-dimensional
momentum boundary conditions was developed. This method is illustrated in
figure 3.3. Figure 3.3.1 shows an expanded view of the expansion space
cylinder cavity and heater plenum. The mass fluxes at planes A and B are
evaluated using sequential one-dimensional momentum control volumes. However,
these orthogonal mass flux vectors are advectively and diffusively decoupled
from each other in compliance with the two-dimensional topology. Similarly,
the one-dimensional boundary condition within the cylinder for the mass flux
computed at plane A is g, = 0. Similar principles hold in figure 3.3.2 for
the upper compression space in which radial and axial velocity and mass flux
components are maintained in their proper vectorial relationship. The pseudo-
two-dimensional discretisation of the lower compression space shown in figure
3.3.3 is achieved by dividing the space into peripheral and central zones. A
one-dimensional mass flux is thus computed within the lower compression space
based on physically appropriate boundary conditions.
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In the two-dimensional heater module, the heater is described as a two-
dimensional parallel aggregation of the 1632 separate tubes of which it is
composed. Hence the two-dimensional flow parameters calculated for any
control volume in the single aggregated tube are assumed to prevail in all the
tubes. This assumption is nnt really satisfactory, in view, for example, of
the radial gradient of axial locity that exists in the heater plenum for
positive gas flows (expansior. t. compression space). This implies that the
flow in the inner rows of tubes 1 1likely to be rather different from those in
the outer rows of tubes, particul. ly in terms of turbulence triggering
effects. However, the better alteiiative of specifying several parallel two-
dimensional heater flow paths was nit a pragmatic alternative owing to the
preliminary nature of this investigation combined with the large computation
costs involved. Such an approach deserves to be tested in the future.

The system is discretised spatially by assigning 12, 7, and 3 control
volumes to the regenerator, cooler, and conical connecting passage,
respectively. The heater is modelled using 7 axial and 6 radial control
volumes while all the remaining components are represented by single control
volumes.

3.4 SIMUIATION CONSIDERATIONS

The standard set of equations described in section 2.4 is used. 1In two
dimensions, the equations are mapped onto a cylindrical coordinate system in
the heater module. Hence, all the control volume parameters in the two-
dimensional heater module naturally reflect its inherent radial symmetry as
shown in figure 3.4,

Every mass/energy control volume is associated with two axial (x) and
two radial (r) momentum control volumes in accordance with the discretisation
attributes listed in section 2.4. A linear radial spatial discretisation
(constant Ar) was selected because, computationally, it is a more severe test
of the simulation than other physically more attractive schemes (such as a
logarithmic radial discretisation with the radius decreasing towards the tube
wall). This arises because not biasing the radii to discretise more
accurately the steeper boundary layer velocity gradients stresses the volume-
averaging procedure inherent in the integral equations more severely, thus
increasing the likelihood of any errors in the simulation becoming manifest.
This is particularly true in terms of testing the generality and viability of
a turbulence model in an integral framework.
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The radial momentum flux boundary values are defined as follows:
Tube wall: (8pp)imMe = O
Axis of symmetry: (gpp)j, = 0
LHS boundary:
if .5{(8nxAnx)1.j + (8nxAnx)1,j-1) = O:
(8nr)1,j = O
if .5{(8nxAnx)1,j + (8nxhnx)1,j-1} < 0:

(gnr)l,j - f{ (gnr)l,j}

(3.1)

RHS boundary:

if .5{(8nxAnx)N+1sJ *+ (EnxAnx)Ne»J-1) < O:
8nrlNe,j = 0
if .5{(gnxAnx)N+1sd + (BnxAnx)Ne1 J-1) = 0:

8nrINs,j = TU(8nr)Ne, j)

The interface between the one-dimensional and two-dimensional meshes is
shown in figure 3.5 in terms of an aggregate two-dimensional control volume on
the expansion side of the heater (the regenerator side interface is a mirror
image of the one shown).

1 1
T |
I i
[

® e
'(gnr)I,g—o i
T i

(6 )] ' " -
Ina’ I oot I
(vac)Il _ignx)l,g !
[ 1
1 I
A B C D

momentum interface
region

Figure 3.5 Interface between the one- and two-dimensional meshes.
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The mass and energy transport interfaces between the one-dimensional control
volume I and the two-dimensional control volumes I+l,j (where I+l & {i = 1))
are accomplished naturally in terms of the two-dimensional advective fluxes
(gpx)1,7 at plane C and the diffusive fluxes defined by the properties at
planes B and D and the distance between them perpendicular to plane C. This
arises from the discretisation attributes (section 2.4) which locate the
volume-averaged intensive properties of control volume I at plane B (as
opposed to a point, which would only occur, by definition, in a three-
dimensional discretisation). The radial momentum interface advective fluxes
are defined by equations (3.1) and by noting that (gnr)I,j = 0 in the one-
dimensional control volume I. Diffusive radial momentum interface fluxes are
ignored because of their smallness (compared with the advective fluxes) and
because of the arbitrariness of the definition (gnr)I,j = 0 (which is, of
course, untrue in reality).

The x momentum interface is more problematic because the definition of
the advective velocities (v,)y 5 in the one-dimensional control volume I is

somewhat arbitrary. The diffusive flux is computed naturally from the
gradient between (g,,); ; at plane C and (g,,)r at plane A. After numerical

experimentation, the approach finally adopted for the advective flux interface
is defined via (v,)y 5 for the general case {(Ap,)r * (A,)1 * (Ap,) 14} bY:

(Vidz,5 = Apy)1,5 ((Apadr Gnx)r /(Apy) e + (Gnxda,5)) 7/ 2p1 (Ax)I;j (3.2)

This formulation is mass conservative while allowing (Vx)I,j to vary radially.
The other basic formulation is also mass conservative but assigns a single
value to all (VX)I‘j. This approach did not fare as well as the approach
adopted in tracking the boundary layer growth .

Standard Kays and London (KL64) friction factor and heat transfer
correlations are used in all the one-dimensional control volumes (including
those in the one-dimensional heater module) while all the turbulent terms in
the two-dimensional equations are zeroed, that is:

WT® = 3 = 3 =0 (3.3)

3.5 RESULTS

The two experimental test points used for the validation exercise are
defined by the parameters listed in table 3.2. Test 46 represents a lower
power point while test 42 approaches the maximum power output of the SPDE. As
the test configuration consists of two back-to-back engines, the wall
temperatures as well as the piston and displacer amplitudes are taken as the
mean of the left- and right-hand engine parameters.
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Table 3.2 Simulation input parameters.

SPDE Test 46 SPDE Test 42

(14/3/86) (11/9/86)
Working fluid Helium Helium
Frequency (Hz) 99.385 99.569
Charge pressure (bar) 149.67 150.29
Heater wall temperature? (K) 574.555 677.89
Cooler wall temperature? (K) 308.052 345.11
Displacer amplitude?® (mm) 6.927 7.8016
Piston amplitude® (mm) 6.9255 9.1276
Notes:
a. Taken to be the mean of the left- and right-hand engine test parameters.

Three simulations were carried out for each test point, UPD and
equilibrium algorithm simulations for the one-dimensional heater module and an
equilibrium algorithm simulation for the two-dimensional heater module. The
non-dimensional parameters and correction factors associated with the
simulation runs are listed in table 3.3. All the friction factor and heat
transfer coefficient multipliers operating on the Kays and London correlations
are at their baseline values of unity with the exception of those for the
regenerator matrix friction factor. These latter multipliers reduce the
nominal steady-state friction factor in the regenerator by 35% and 45% for
tests 46 and 42, respectively, in order to match the experimental data
according to the validation protocol developed in Go87. This is thought to be
a consequence of radially non-uniform mass fluxes in the regenerator (owing to
entrance effects) and the high frequency of the flow oscillation.

In view of the large Reynolds numbers resultant from the high frequency
and pressurisation of the SPDE flow field, the false diffusion problem in the
enthalpy advection computation (equations (2.55)) becomes problematic in the
regenerator and leads to significant errors in the simulated heater and cooler
heat transfers. This indicates the appropriateness of activating a
regenerator enthalpy transport model of the kind defined by figure 3.6. 1In
this model, linear upwind spatial extrapolations of the volume-averaged
temperature field lead to a better approximation of the actual advected
temperatures within the regenerator than those determined from equations
(2.55). The particulars of the model are given by equations (3.4) as follows
(the averaging notation has been dropped for clarity):
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Table 3.3 Simulation non-dimensional parameters and empirical correlation factors.

SPDE Test 46 (3/14/86)

SPDE Test 42 (9/11/86)

1-Dim. 1-Dim. 2-Dim. 1-Dim. 1-Dim. 2-Dim.
Heater: Heater: Heater: Heater: Heater: Heater
UPD Equil. Equil. UPD Equil. Equil.
Algor. Algor. Algor. Algor. Algor. Algor.
Characteristic no. 24.3 - - 25.7 - -
No. of integration time 24 80 80 26 80 80
increments per cycle
Maximum Mach no.® 0.020 0.020 0.020 0.033 0.032 0.032
Maximum Reynolds no.? 312944.7 310148.1 309751.4 361334.5 350231.2 349619.3
Global tube friction 1 1. 1 1 1. 1
factor multiplier
Global tube heat transfer 1 1. 1 1 1. 1
coefficient multiplier
Regenerator matrix friction 0.65 0.65 0.65 0.55 0.55 0.55
factor multiplier
Regenerator matrix heat transfer 1 1. 1 1 1. 1
coefficient multiplier
Regenerator matrix porous advection 0.95 0.95 0.95 0.95 0.95 0.95

transport coefficient

Notes:

a. Over the entire working fluid path, not just the heater.
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if (gp)j = 0 then:

(Tp); = T (1 + 0.5K,.(1/1);.,) - 0.5K.(1/1);..Ti, (3.4.1)

if (g,); < O then:

The upwind extrapolation format of these equations is necessary to maintain
the transportive property of equations (2.55). The porous advection
coefficient K. is introduced as a means of accounting for the deviation of
actual regenerator behavior (for example, non-linear matrix temperature
profiles and oscillating flow effects) from the ideal behavior suggested.
Equations (3.4) apply at all the regenerator discrete momentum volume
centroids (NRF to NRL+l) with the following exceptions:

if (gp)wer = O then: (T )wgr = Ty (3.5.1)

if (gn)NRL"'l < 0 then: (Tn)m+1 - Tm (352)

It may be noted that at discrete momentum volume centroid NRF+1l, the adjacent
heater temperature would be used for T;, in equation (3.4.1). Similarly, at

discrete momentum volume centroid NRL, Ty is substituted for T;,, in equation
(3.4.2). This is felt to be physically more consistent than the alternative
of assuming that Tyy occurs at A and Ty occurs at B in figure 3.6. In
practice though, the difference between the two approaches is minimal.
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Owing to the magnitude of the maximum Reynolds numbers occurring over
the flow field (table 3.3) in the SPDE, it was found necessary to set K,
almost at unity to obtain agreement with the experimental heat transfer data.
However, it is important to note in the context of comparing the one- and two-
dimensional heater module simulations that no modifications are made to the
nominal Kays and London empirical correlations in the heater.

The maximum Mach and Reynolds numbers are similar for all three
simulations. The smallness of the Mach numbers attests to the absence of any
choking while the magnitude of the Reynolds numbers is indicative of the level
of flow turbulence. Of particular importance are the low characteristic
numbers (N.;) of 24 to 26 (compared, for example, with a N_; range of 60 to
250, depending on operating parameters, for the GM-GPU3 engine (Go87)). This
indicates that with only about 25 complete information traverses per cycle,
ignoring information propagation effects in a simulation may not be
automatically justified. This is borne out by the comparison of the
experimental and simulation data given in table 3.4 for. the two experimental
test points.

Generally, the one-dimensional UPD simulation and experimental results
are in agreement. The maximum energy balance discrepancy is less than 5.5%
(external heat supply for test 42) while the simulated and measured expansion
and compression space mean cyclic temperature and pressure parameters are in
reasonable agreement. In contrast, the one-dimensional equilibrium simulation
shows an overall discrepancy of about 30% in the indicated piston work. The
major source of this error is the mismatch between the measured and simulated
compression space pressure profile phase angles (which are given relative to
the piston displacement). Since the indicated worl: is proportional to the
sine of the phase angle, a 1.2° discrepancy makes a 19% contribution towards
the indicated piston work discrepancy. It should be noted that no energy
balance errors are reported for the simulations owing to a data output
processing error discovered in the code. This error was discovered and
corrected during the METR simulation runs reported in chapter 5. The
corrected code typically yields energy balance errors of the order of .0l%.

Hence it is possible that the indicated work discrepancy between the
equilibrium and UPD algorithms is a consequence of information propagation
effects. This is suggested by the relative agreement between all the
remaining experimental and one-dimensional equilibrium simulation parameters
with the exception of the mean compression space temperature. This is higher
in the simulation because of the larger predicted pressure profile phase
angle. However, the overall energy balance simulation results produced by the
equilibrium algorithm (for test 46 at least) apparently agree with those
produced by other simulation codes (Te88) such as the Gedeon GLIMPS (Ge86) and
NASA Lewis SNAP (Te83) codes. In contrast, the MTI harmonic analysis code
appears to conform to the UPD algorithm predictions (Te88). However, this
superfici.’ inter-code comparison is probably only of anecdotal significance
because, in this context, a detailed irreversibility comparison at least is
necessary in order to understand how well the codes compare with each other.
Unfortunately, such data is not yet available.
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Table 3.4

SPDE Test 46 (3/14/86)

Experimental/simulation data comparison for the one- and two-dimensional heater modules.

SPDE Test 42 (9/11/86)

Experi- 1-Dim. 1-Dim. 2-Dim.

Experi- 1-Dim, 1-Dim. 2-Dim.
mental® Heater: Heater: Heater: mental® Heater: Heater: Heater:
uPD Equil. Equil. uPD Equil. Equil.
Algor. Algor. Algor. Algor. Algor. Algor.
External heat supplied (J) 295.11 295.41 295.2 303.02 460.86 436.78 437.66 453.74
External heat rejected (J) 262.56 264 .18 220.84 219.66 337.88 349.61 316.22 315.27
Piston indicated work (J) 57.546 56.910 75.34 75.48 89.654 90.809 119.69 118.35
Energy balance error (%) 3.4920 b - L 12.006 . b -
Indicated efficiency based 19.5 19.3 25.5 24.6 19.5 20.8 27.4 26.1
on piston ind. power (%)
External heat supply - 0.10 0.03 2.68 - -5.23 -5.03 -1.55
discrepancy (%)
External heat rejection - 0.67 -8.95 -9.44 - 3.47 -6.41 -6.69
discrepancy (%) '
Piston indicated work - -1.1 30.9 29.4 - 1.29 33.5 32.0
discrepancy (%)
Mean exp. space temp. (°C) 296.83 291.79 296.08 289.20 404.69 390.88 395.69 387.00
Mean comp. space temp. (°C) 23.708 23.408° 30.325° 30.94° 55.908 56.225° 64.82° 64.77°
Comp. space pressure 11.803 12.420° 12.468° 12.459%° 15.472 16.526° 16.496° 16.389°
amplitude (bar)
Comp. space pressure 7.8233 7.5 9.0 9.0 7.0510 6.9 9.0 9.0
angle (deg)
Notes:

a. Taken to be the mean of the left- and right-hand engine test results.

b. Calculated energy balance errors are too large owing to a data output processing error;
errors produced by corrected code are about .01X% at most (see table 5.3).

c. Mean of peripheral and central lower compression space values.



In the face of this dilemma, several other suggestions have been made
to explain the inaccuracy of the equilibrium algorithm, for example, gas
leakage between the expansion and compression spaces which is not explicitly
modelled. In particular, if the inclusion of gas leakage were to eliminate
the equilibrium algorithm error, then it may be concluded that information
propagation is not important and that the apparent accuracy of the UPD
algorithm is a spurious numerical effect.

In the light of the uncertainty about the information propagation issue
and the apparent agreement between the equilibrium algorithm, GLIMPS and NASA
codes for the SPDE, NASA and the principal investigator felt that the two-
dimensional module simulation should proceed using the equilibrium algorithm
only pending further work on the information propagation issue, which is
discussed in chapter 4.

The predictions of the equilibrium simulations for the one- and two-
dimensional heaters are similar, at least from an overall cyclic performance
perspective. For test 46, the simulated external heat supplied using two-
dimensional heater module is 2.6% larger than that predicted using the one-
dimensional heater module (with the latter value being within .03% of the
measured external heat supply). In contrast, for test 42, the two-dimensional
simulated external heat supplied is in closer agreement with the measured
value than the corresponding one-dimensional prediction. The expansion space
mean cyclic temperature (which is strongly influenced by the heat supplied in
the heater) does not exhibit contradictory behavior since, for both tests, the
two-dimensional simulated value is less than the one-dimensional simulated
value which in turn is less than the experimental value.

In this light, a more detailed view of the influence of two-dimensional
effects may be discussed in terms of figures 3.7 to 3.10. Figures 3.7 and 3.8
show the cumulative heater wall/fluid heat transfer as a function of angle for
tests 46 and 42 respectively while figures 3.9 and 3.10 show the volume-
averaged midpoint heater fluid temperature profiles. In all cases, the one-
dimensional heater UPD and equilibrium algorithm profiles are in close
agreement. The two-dimensional heater heat transfer profiles reflect lower
cumulative heat transfers throughout the cycle, converging rapidly towards and
then exceeding the one-dimensional profiles beyond 3207 The two-dimensional
volume-averaged heater midpoint temperatures are less than their one-
dimensional counterparts within a range of about 5 to 10 K over the cycle.
Hence it is evident that the mechanism of heat transfer simulated in the one-
dimensional heater using empirical correlations is different from that
simulated in the two-dimensional heater without such empiricism. 1In the light
of the high cyclic Reynolds numbers and resultant turbulence, the numerical
discrepancy is an expected result since the two-dimensional simulation assumes
laminar flow in the heater. Thus inclusion of a turbulence model in the
heater should at least reduce the instantaneous numerical discrepancy,
although tle extent of the narrowing depends not only on the efficacy of
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the turbulence model but also on the errors inherent in using a steady-state
correlation. These issues can only be satisfactorily addressed by an
experimentally based investigation such as that of the METR (see chapter 5).
However, it must be noted that from an overall or systems cyclic energy
balance perspective, the one- and two-dimensional heater module simulations do
not show any appreciable differences. This emphasizes the limitations of
inferring the validity of a simulation code purely from time-averaged
parameter and cyclic energy balance data. Apparent simulation validation
based on such criteria may be a result of error cancellation effects rather
than an indication of actual Je accuracy.

The aggregate system veloc.ty fields produced for test 42 for the one-
and two-dimensional heater modules are depicted in figures 3.11 and 3.12. 1In
each case, the cyclic angle is plotted on the X axis while the location along
the one-dimensional working fluid path is denoted by the Y axis. 1In terms of
the sign convention of figure 3.1, the expansion space is located on the left
(Y = 0) and the lower compression space on the right, the two spaces being
separated by the heater, regenerator, cooler, upper compression space and
conical connecting passage. The dashed lines indicate negative velocities.
Figures 3.11 and 3.12 exhibit no qualitative differences and are similar in
shape. Quantitatively, there are small differences between the minimum and
maximum velocities amounting to 3% at most. The test 42 one- and two-
dimensional heater module simulation aggregated temperature fields shown in
figures 3.13 and 3.14 exhibit comparative behavior similar to that of the
velocity fields. The notable, yet consistent, exception is that the maximum
temperature in the one-dimensional heater module is 9K greater than that in
the two-dimensional heater module as shown in figure 3.10.

These aggregate system parameter profiles again show that no major
qualitative differences are introduced into the simulation by using a two-
dimensional heater module even on a transient basis when assuming laminar flow
in the heater. Quantitative effects are also relatively small and limited to
the heater itself. Therefore, it seems reasonable to suppose that system-
imposed boundary conditions on the two-dimensional heater module force the
two-dimensional flow in the module to conform on aggregate to that simulated
using a one-dimensional heater module. This in turn suggests that two-
dimensional component simulation may not be an effective way of improving the
system accuracy of Stirling machine simulation. Such improved accuracy is
probably only realisable by simulating most (if not all) of the working fluid
path in two-dimensions. Details of the two-dimensional flow field in the
aggregated heater tube are not presented here since they do not bear directly
upon the systems nature of this discussion. It is sufficient to note that
these profiles are in agreement with laminar oscillating flow results
published in the literature. Details of the two-dimensional flow field are
presented in chapter 5 where they are evaluated against experimental data
produced by the METR.
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3.6 CLOSURE

The baseline comparison of the one- and two-dimensional heater module
simulated and experimental data shows that two-dimensional flow effects do
impact the transient heat transfer predictions in the heater itself. However,
these effects are not proportionately manifest on the system level where they
only minimally affect the cyclic energy balance. Turbulence effects are
likely to be the major cause of the lack of quantitative correspondence
between the simulated flows in the one- and two-dimensional heater modules
since the former nominally includes the impact of turbulence via heat transfer
coefficient and friction factor correlations. While this justifies isolated
component studies of oscillating turbulent flow, it does not alter the
contention that an overall improvement in Stirling machine simulation accuracy
probably is achievable only if a major portion of the fluid flow path (at
least the heater, regenerator, and cooler assembly) is simulated in two-
dimensions.

The information propagation issue has been established as a possible
performance issue in SPDE class (high frequency, high pressurisation) Stirling
engines. This subject is by no means new to Stirling machine simulation and
has been dealt with by others (such as Organ (0r82) and Taylor (Ta84))
although chiefly in the context of method of characteristics simulations. The
information propagation issue has engendered much contention among Stirling
machine analysts with some suggesting that it is not physically relevant. If
the results produced here serve no other purpose than to stimulate debate and
definitive research to resolve the information propagation issue, they will
have served NASA well.
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CHAPTER 4

COMPARISON AGATINST AN ANALYTTIC SOLUTTION

4.1 INTRODUCTION

One of the conclusions from the simulation of the SPDE has been that,
apparently, an accounting of information propagation effects permits
convergence between the simulated and measured cyclic energy performance
parameters to be achieved. In particular, the simulated piston indicated work
can be made to agree with its measured counterpart only when the Unitary
Pressure Domain (UPD) algorithm is used. Invocation of the equilibrium
algorithm consistently leads to an over-prediction of the piston indicated
work. This over-prediction is principally related to the phase angle between
the piston displacement and compression space pressure profiles. The
equilibrium algorithm produces an over-estimate of the phase angle which,
although small in absolute terms (1 to 2 degrees), is significant because the
indicated work is proportional to the sine of the phase angle. This is the
major contributor towards the observed simulation/experimental discrepancies
of about 30%.

The following postulates may be used to explain the apparent fidelity
of the UPD algorithm:

- The information propagation effect is physically significant and
is being portrayed accurately by the UPD algorithm.

- The information propagation effect is physically significant and
its portrayal by the UPD algorithm is a spurious numerical effect.

- Information propagation is not significant and the apparent
accuracy of the UPD algorithm is fortuitous.

A feasible means of testing these postulates is to apply the UPD and
equilibrium algorithms to a problem that has a well-defined and validated
closed-form, analytic solution. Ideally, this problem should closely
correspond with the boundary conditions prevailing in Stirling machines in
general and in the SPDE in particular.

The process adopted has been to apply the existing UPD and equilibrium
algorithms as used in the one-dimensional SPDE simulation to the selected
problem. This enables an assessment of whether information propagation
effects offer a physically reasonable explanation for the observed behavior of
the algorithms when applied to the SPDE. Thereafter, the numerical accuracy
of the algorithms is assessed in order to investigate whether spurious
numerical effects are occurring.
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4.2 PROBLEM SELECTION

A general class of analytically soluble problems involving information
propagation effects revolves around the description of acoustic transmission
phenomena in plain tubes. A classic treatise on these problems by Lord
Rayleigh (S5t26) encompasses analytic solutions including non-linear effects
such as viscous dissipation and finite boundary heat transfer.

Using Rayleigh’s development of Kirchoff’s equations of sound, Iberall
(Ib50) developed a first order analytic solution for the transmission line
problem. This problem is defined geometrically by a length of tube connecting
an infinite cavity with a rigid receiver volume. The analysis seeks to define
the phase lag and amplitude ratio of the pressure profile in the receiver
volume with respect to a sinusoidal pressure variation within the cavity.
Physically, the problem is representative of a transmission line connecting a
signal source to a pressure transducer. The desired outcome of the analysis
is a means of providing design guidelines on the length and diameter of the
transmission line so as to ensure adequate measurement accuracy of the
pressure transducer.

In another investigation, Chester (Ché64) analyzed the behavior of
resonant oscillations in closed tubes. The prescribed boundary conditions are
that one end of the tube is closed while the other is excited by a piston
oscillating at near-resonant frequencies. The objective of the analysis is to
investigate the impact of compressive viscosity and boundary shear viscosity
on the gas oscillations in a well-defined frequency band around resonance in
which shock waves occur.

In another analysis, Jimenez (Ji73) extends Chester’'s analysis to a
case in which the closed end of the tube is replaced with an arbitrary closure
condition ranging from fully open to fully closed. By expanding the momentum
equations in terms of a Mach number series, both the amplitude and form of the
oscillations are predicted in order to show that in both the fully open and
fully closed cases, shock waves are needed to describe the observed resonant
behavior.

Although the problem described by Chester and Jimenez is physically
more in conformity with the SPDE geometry, their analyses do not correspond
with the general flow situation prevailing in Stirling machines, particularly
owing to their appropriate neglect of heat transfer effects. Furthermore,
these analyses are focussed on resonant effects rather than on conditions far
from resonance where the classical linearised theory is assumed to prevail.
Hence, despite its lack of boundary condition conformity with Stirling
machines, Iberall’s analysis is preferred as a means of investigating the
validity of the aforementioned postulates. This is justified by the inclusion
of a more complete fluid dynamic treatment in the analysis and its yield of
information more amenable to intuitive interpretation because of the practical
engineering relevance of the transmission line problem. Furthermore, several
experimental validations of Iberall’s analysis have been performed (Wa65,
Go68) which lend credence to using the analysis as a benchmark against which
the simulation may be compared.
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4.3 IBERALL'S ANALYSIS

The geometry of the transmission line is shown in figure 4.1.

Figure 4.1 Transmission line geometry.

A tube of length I and diameter d is connected between a cavity and an
instrument volume V;. The following assumptions that are significant to the
comparison exercise are made:

1. The walls of the instrument volume are flexible so that the actual
volume may be replaced by a larger equivalent volume that will
store the same mass of fluid per unit of pressure change.

2. The flow is laminar throughout the tube.

3. The gas expands and contracts isothermally in the instrument
cavity.

4. The excitation oscillatory pressure is sinusoidal.

Within these constraints, the following factors are taken into account in the
analysis:

- compressible flow in the tube

- finite excitation pressure amplitudes
- fluid acceleration

- finite length of tubing

- boundary heat conduction

The analytic solution is represented by equation (116) (not repeated
here) in Ib50. Owing to its complexity, the equation may be conveniently
solved via a computer program. A key patt of the solution involves the
computation of Bessel functions. 1In the computerized implementation of the
analysis offered by Watts (Wa65), a normal series solution is used for kinetic
Reynolds (or Valensi) numbers less than 200, while an asymptotic series
solution is used otherwise. Goldschmied (Go68), however, apparently uses a
normal series solution throughout. 1In the implementation used here, Watts'’
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approach 1is preferred due to its demonstrated superior numerical accuracy.
However, while Watts performs the calculations in real arithmetic, complex
arithmetic is used throughout here (following Goldschmied) in order to avoid
what appears to be a coding inconsistency in Watts'’ implementationm.

In both Watts’ and Goldschmied’'s implementations, no details of the
method used to determine the excitation pressure amplitude are given. As the
amplitude is a critical parameter from a simulation point of view, the
methodology adopted here has been to choose approximately the largest
amplitude that produces simulated laminar flow throughout the tube (Reynolds
numbers less than 2000). Under certain conditions (particularly at higher
frequencies) this still yields excitation pressure amplitudes that are very
small in comparison with the mean pressure. This produces some unavoidable
truncation errors in the simulation, which although minimized through the use
of double precision arithmetic, must be borne in mind when interpreting the
results produced.

4.4 THE SIMUILATION MODEL

The standard SPDE simulation programs have been applied without
alteration to the geometry defining a transmission line. The codes have been
modified to accept a pressure profile and a rigid cavity as boundary
conditions which replace the piston/cylinder boundaries of the SPDE codes.
The fluid dynamics of the instrument cavity are modelled in full so that the
isothermal assumption made in Iberall’s analysis is not replicated by the
simulation. The standard Kays and London (KL64) friction factor and heat
transfer coefficient correlations used in the SPDE simulations are applied
without any empirical corrections. Care has been taken to ensure that both
Iberall's analysis and the simulation use identically the same thermodynamic
initial conditions. This has required some reworking of the constants in
Iberall's analysis to reflect the use of temperature rather than density as an
initial condition specifier.

In view of the varying temporal resolution produced by the UPD and
equilibrium algorithms, extracting amplitude and phase information from the
simulated pressure profiles can be subject to large errors, particularly at
low characteristic numbers (less than about 20). Several approaches have been
tested including sine transforms, sine quadratures and globally implicit cubic
spline fits. The last approach has produced the most reliable results and has
therefore been adopted. At each data point, the known excitation amplitude
and phase angle have been used to check the integrity of the cubic spline
fits.

4.5 APPLICATIONS

Two case studies have been performed to compare the analytical and
simulation results. The first geometry corresponds to that used by Watts
(Wa65) to experimentally validate Iberall’s analysis. This geometry is
preferred to that of Goldschmied (Go68) in view of the good agreement of

60



Watts’' experimental data with that calculated, especially under conditions of
resonance.

The second geometry represents a crude approximation of the SPDE in
which the flow passage between the expansion and compression spaces is
modelled as a length of tube with a diameter equal to the average of the
heater and cooler tube diameters. The end effects of the variable volume
spaces are neglected so that the tube termination geometry is identical to
that used in Watts' experiment.

4.5.1 Watts' Experimental Rig

The invariant parameters used to describe the geometry and initial
conditions of the transmission line are listed in table 4.1. These parameters
correspond with those given in Wa65 to describe the 4-ft transmission line
tested. The additional input parameters required, namely, the excitation
pressure amplitude and frequency, are treated as variables.

Table 4.1 Transmission line parameters,

Transmission line length (mm) 1220
Transmission line internal diameter (mm) 7.818
Instrument cavity diameter (mm) 14
Instrument cavity volume (cm”3) RS
Working fluid Alr
Mean excitation pressure (bar) .785
Mean system temperature (deg C) 25.745

Using a constant excitation pressure amplitude of 0.016 bars, Iberall'’s
analysis yields the results plotted in figures 4.2, 4.3, and 4.4. Figure 4.2
shows the exponential decrease in characteristic number as a function of
excitation frequency. Figure 4.3 depicts the variation in amplitude ratio
(that is, the ratio of the instrument cavity pressure profile amplitude to
that of the excitation pressure profile) with excitation frequency. Figure
4.4 shows the corresponding variation in the phase lag of the instrument
cavity pressure profile to that of the excitation pressure. The amplitude
ratio profile replicates that reported by Watts and hence shares the
experimental validity of Watts' data (Watts does not report any phase lag
comparison data). The data span an excitation frequency range centered upon
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the first resonant peak. The topologies of figure 4.3 and 4.4 are typical of
acoustic phenomena occurring in tubes. Of particular note is that the first
resonance occurs at an excitation frequency of approximately 66.6 Hz, which
corresponds to a characteristic number of about 4.3 . This may be compared
against a characteristic number of 2 (Ché64) predicted by acoustic theory. The
difference in characteristic numbers shows the impact of the irreversibilities
and non-linearities included in Iberall’s analysis.

Using figures 4.2 and 4.3 as a guide, the simulation has been exercised
at analytic characteristic numbers of 5.6, 10.0, and 24.1 . These values
correspond, respectively, to conditions close to resonance, midway between
resonance and quiescence, and far from resonance. The comparison between the
simulation and analysis at a characteristic number of 5.6 is summarized by
figures 4.5 and 4.6. 1In these figures, the amplitude ratio and phase lag are
plotted as a function of the number of integration increments per cycle. In
this context, the lower bound of the variation range corresponds to the number
of integration increments produced by the UPD algorithm (that is, the first or
leftmost point plotted is generated by the UPD algorithm) while all the other
points are generated using the equilibrium algorithm. The demarcated profiles
are generated by the simulation while the unmarked horizontal lines depict the
analytical values.

Figure 4.5 clearly shows that the simulated amplitude ratio asymptotes
toward about 2.3 with increasing temporal discretisation (or number of
increments per cycle). At 200 increments/cycle the discrepancy between the
simulated and analytical amplitude ratio amounts to 14%. However, the UPD
algorithm (6 increments/cycle) produces an amplitude ratio discrepancy of
almost 54%. An examination of figure 4.6 shows a similar trend for the phase
angle behavior in which the simulated values asymptote toward about 5.8 deg,
yielding a discrepancy of 48.4% with the 11.251 deg phase lag produced by
Iberall’s analysis. The UPD algorithm produces phase lags of 38 and 34 deg at
the instrument cavity pressure profile minimum and maximum, respectively,
indicating a mean discrepancy of 220%.

These comparison data generated under conditions close to resonance
indicate that two mechanisms are operating simultaneously, one numerical and
one physical. Numerically, at low characteristic numbers (below 20), the
numerical accuracy of the UPD algorithm is insufficient to represent
adequately the transient phenomena taking place. In other words, there is a
certain minimum temporal discretisation below which use of the UPD algorithm
is not warranted as a result of its numerical accuracy limitations.
Physically, information propagation effects similar to those described by
Jimenez (Ji73) are occurring. These effects result in a progressive
steepening of the pressure wave until such time as at the onset of resonance,
a discontinuity, or shock, forms. Because both the equilibrium and UPD
information propagation algorithms do not describe shock formation phenomena,
the algorithms are invalid in the presence of pressure wave discontinuities
(Go87). Hence, should resonance-induced pressure wave discontinuities exist
in the SPDE, for example, then neither the UPD nor the equilibrium algorithm
could, by definition, correctly model the information propagation. However,
in view of the SPDE having N, > 20, the existence of such discontinuities is
considered unlikely.
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Figures 4.7 and 4.8 depict the amplitude ratio and phase lag behavior
at a characteristic number of 10 (excitation amplitude and frequency of .022
bars and 23.8 Hz respectively). The profiles show the same topologies as
those of figures 4.5 and 4.6 except that the phase lags at the instrument
cavity pressure profile maximum and minimum appear to be more divergent
because of the plot scaling. The asymptotic phase lag discrepancy is reduced
to about 33% from the 48% noted under conditions closer to resonance.
Similarly, the asymptotic amplitude ratio discrepancy is reduced to 4%. Hence
the observations made above are applicable under these conditions as well with
the additional note that the influence of information propagation effects
becomes less pronounced the further the operating point from resonance.

Lastly, at a characteristic number of 24.1 (excitation amplitude and
frequency of .05 bars and 11.7 Hz, respectively), figures 4.9 and 4.10 show
that conditions are sufficiently far from resonance that only numerical
effects remain. In figure 4.9, the amplitude ratio discrepancy varies between
1.1% and .9% for the UPD and equilibrium algorithms, respectively. Figure
4.10 effectively shows that the simulated phase lags bound the analytic phase
lag in a somewhat random fashion which, owing to their smallness, is
symptomatic of numerical effects. As the SPDE also yields a characteristic
number of 24, these data show that the temporal accuracy of the UPD algorithm
is just adequate to portray the information propagation behavior of the SPDE
with some qualitative confidence although, quantitatively, the
representational accuracy of the results is probably somewhat less than that
suggested by the small SPDE simulation energy balance errors achieved.

4.5,.2 Pseudo-SPDE Geometry

The invariant parameters used to define the pseudo-SPDE geometry are
listed in table 4.2.

Table 4.2 Pseudo-SPDE parameters.

Transmission line length (mm) 321.25
Transmission line internal diameter (mm) 1.397
Instrument cavity diameter (mm) 14
Instrument cavity volume (cm”3) L4l4
Working fluid Helium
Mean excitation pressure (bar) 150.29
Mean system temperature (deg C) 100
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In selecting this geometrical configuration, no attempt has been made to take
account of the effect of either the expansion or the compression space by
increasing the volume of the instrument cavity. Although Iberall and
Goldschmied report data for volume ratios of as much as 50 to 1, in the case
of the SPDE expansion space for example, using the tube data of table 2, the
cavity-to-tube volume ratio amounts to about 522 to 1. 1In terms of the
validation data reported by Watts and Goldschmied as well as the assumptions
made in Iberall’s analysis (see section 4.3), there does not appear to be any
solid basis for extrapolating the analysis by an order of magnitude in volume
ratio terms. Furthermore, the mechanism of pressure wave generation in the
SPDE is very different from that used by Iberall. Hence the main value of
Iberall’s analysis in terms of understanding the gas dynamics of the SPDE is
to test whether closed tube resonance effects are a likely cause of the
observed phenomena. 1In this context, it thus seems desirable to maintain the
congruency of the tube boundary conditions with those that produced the high
level of agreement between Watts' experimental data and Iberall's analysis.

Using an excitation amplitude of .9 bars, the results of applying
Iberall’s analysis to the pseudo-SPDE geometry are shown in figures 4.11 to
4.13. Figures 4.11 and 4.12 show that the first resonant peak occurs at an
excitation frequency of 504.8 Hz, 5.1 times larger than the nominal 100 Hz
operating frequency. At 100 Hz, the amplitude ratio amounts to 1.05 while the
phase lag is .327 deg (figure 4.13) and the characteristic number is 35.2
Hence even though the pseudo-SPDE geometry characteristic number is greater
than that of the actual SPDE (approximately 24), these results show that
closed tube resonant effects are not likely to be the cause of the observed
SPDE phase angle behavior (the difference in characteristic numbers serves to
increase the conservative nature of this inference).

A comparison of the simulated and analytical data for the pseudo-SPDE
geometry is given in figures 4.14 and 4.15. The comparison is performed at a
frequency of 99.569 Hz (taken from an MTI test) and an excitation amplitude of
.9 bars. Figure 4.14 yields an amplitude ratio discrepancy of .55% for the
UPD algorithm, increasing to .65% for the equilibrium algorithm at 90
increments per cycle. It is interesting to note that in this case the
simulation over-predicts the amplitude ratio while in the previous case (in
which the transmission line is 3.8 times longer) the simulation under-predicts
the amplitude ratio. This is a probable result of the neglect of the
advection terms in the momentum equation which Iberall uses to produce
equation (116) (Ib50).

[In the second paragraph of section 4 on page 100 of Ib50, Iberall makes
reference to the fact that his analysis is based on Kirchoff's equations of
sound. Tracing this to the relevant equation quoted by Rayleigh (St26, page
315, equation 13), in the class of problems being considered, Iberall
apparently agrees with Rayleigh’s assertion (St26, page 3) that "...Whenever
the motion is very small, the (advective) terms u du/dx, etc., diminish in
relative importance, and ultimately, D/Dt = d/dt (or the substantive and total
derivatives are equal)." This assumption does not apply to SPDE conditions
nor does it lend credence to cases in which large instrument cavities produce
fluxes big enough to produce significant momentum transport. These
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limitations should be borne in mind when comparing the simulated results
(which include all the advective terms) with their analytic counterparts.]

Due to the smallness of the phase lags, figure 4.15 is inconclusive in

revealing any trends that cannot be ascribed to systematic numerical effects,
in particular those produced by the cubic spline fitting procedure.

4.6 INTERPRETATION

Under resonant conditions in which information propagation effects are
responsible for the observed transmission line behavior, the inadequacy of the
equilibrium information propagation hypothesis is demonstrated. This is
manifested by the equilibrium algorithm producing results that asymptote
towards values which are not in agreement with those produced by Iberall’s
analysis. Hence, should such effects exist in the SPDE, they would not be
properly accounted for by an equilibrium information propagation hypothesis.

As both the UPD and equilibrium algorithms are based on a temporal
integration scheme which is only first order accurate, the comparison data
show that the algorithms quickly lose their physical validity at temporal
resolutions below 20 to 30 increments per cycle. Hence, use of the UPD
algorithm to simulate the SPDE at an effective temporal resolution of 23 to 24
increments/cycle is somewhat risky as the integration algorithm is operating
in a region of marginal temporal accuracy. Therefore, the comparison exercise
is inconclusive in determining whether the UPD algorithm accurately can
portray the information propagation behavior of the SPDE in a quantitative
sense.

In other words, the data show that the numerical errors produced by a
first order accurate, implicit integration algorithm at time steps large
enough to satisfy the UPD hypothesis at low characteristic numbers do not
permit an assessment of the physical accuracy of the UPD algorithm to be made.
This conclusion in effect reflects the limitations of the pressure-linking
algorithm itself, which is defined in essence by equation (2.47). Since the
off-diagonal pressure term coefficients are given as a product of the time
step At and a geometrical factor A%/V, these coefficients are positive
definite and are independent of the working fluid state. Therefore, an
implicit solution of the pressure equation (2.47) implies infinite information
propagation irrespective of the time step. Thus, satisfying the UPD
hypothesis is necessary physically in order to ensure that the actual and
numerical information propagation rates match. Decreasing the time step
towards the equilibrium limit thus effectively increases the information
propagation rate towards infinity. Therefore the data show that the numerical
effect of the time step size predominates, submerging the simultaneously
occurring physical effect.

Thus before any further assessment of the physical relevance of the

information propagation hypothesis is attempted, the impact of numerical
accuracy on the UPD algorithm in particular needs investigation.
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4.7 NUMERICAL ACCURACY CONSIDERATIONS

The physical adequacy of the first order temporal accuracy of the
simulation code at low characteristic numbers may be evaluated by using a more
accurate temporal integration scheme. The issue of significance in this
endeavour is to find a temporally more accurate scheme which does not destroy
the hypothesized information propagation modelling characteristics of the UPD
algorithm in particular. After studying the Gedeon GLIMPS methodology (Ge86)
and further review of the literature, the following observations can be made:

a. The GLIMPS code is a particular case of a general class of
numerical algorithms which may be conveniently referred to as ‘multi-
step implicit’ methods. In these methods, a given time increment is
resolved into m sub-steps so that each sub-step is solved implicitly
via a single matrix inversion, with both m and the magnitude of the
time increment being arbitrary. Each sub-step m may be further divided
into n increments so that the order of the temporal gradient
approximation used in each sub-step is restricted only by the
requirement that k < n, where k is the number of increments required to
implement a particular integration scheme. For example, a 5th order
backward difference approximation would require n = k = 6.

Hence the GLIMPS code uses a time increment equal to the cycle
period with one sub-step (that is, m = 1) with n apparently being in
the range of 6 to 10 and k = 3. In contrast, the 'UPD simulation’ has
n =k =1 with m set equal to the integer nearest the characteristic
number. Hence, if the numerical accuracy of multi-step implicit
methods is a monotonically increasing function of n, then a generalised
version of the GLIMPS' code (without the cyclic equilibrium closure
restriction, in particular) theoretically should be physically valid
for characteristic numbers > 1. However, as a general proposition,
multi-step implicit methods should be valid for all characteristic
numbers, although it is hard to conceive of Stirling machines being
built with characteristic numbers approaching 1.

b. It is possible to construct a fully implicit temporal integration
procedure based on the Crank-Nicholson scheme, which is second order
accurate, while retaining the information propagation characteristics
of the UPD algorithm.

Another approach to testing the numerical accuracy of the algorithms is
to implement the full pressure domain splitting (PDS) algorithm discussed in
section 2.6. However, in view of the large increment in computational effort
associated with the PDS algorithm and, therefore, NASA's reluctance to pursue
this approach, it was decided to limit the numerical accuracy investigation of
the 'UPD simulation’ to an implementation of the Crank-Nicholson integration
scheme.

4.8 THE CRANK-NTCHOLSON INTEGRATION SCHEME

A generalised two-step temporal integration scheme may be defined by:
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dyp/dt = K dp/dt(psaey + (1-K) d¥/dt(e, (4.1)

If K = 0, equation (4.1) represents an explicit scheme of 0(At); if K =
1, equation (4.1) is an implicit scheme of 0(At); and, if K = .5 then equation
(4.1) represents a Crank-Nicholson scheme of 0(At?).

Thus, choosing K = .5 and discretising:

Yoesaty/DE - .5 dP/At teaty = Y(r)/BE + .5 dy/dE(e, (4.2)

Hence by setting d¢/dt s, of the current time step equal to dy¥/dt tiar)
of the previous time step (which by definition is implicitly determined), the
Crank-Nicholson scheme retains much of the stability of the fully implicit
scheme as confirmed by von Neumann stability analysis (Ro82), although the
method is not unconditionally stable. Stability problems arise when At
becomes large enough for some Fourier modes to overshoot, in which case, the
O(At?) error terms for the Crank-Nicholson scheme will exceed the O(At) error
terms for the implicit scheme. Furthermore, equation (4.2) retains the
information propagation characteristics of the first order implicit scheme
used in the UPD simulation.

4.9 RESULTS
The parameters describing the transmission line used as the basis for

the comparison exercise are listed in table 4.3. These parameters correspond
to those given in Go68 table V and Wa65 figure 6.

Table 4.3 Transmission line parameters.

Transmission line length (mm) 1220
Transmission line internal diameter (mm) 4.66
Instrument cavity length (mm) 1

Instrument cavity volume (cm”3) 414
Gas Air
Mean excitation pressure (bar) .77

Excitation pressure amplitude (bar) .00077
Mean system temperature (deg C) 28.98

The computerised implementation of Iberall’s analysis has been
carefully rechecked against Watts’ results given in Wa65 table 6 to ensure
exact agreement.

The simulation parameters used are given in table 4.4
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Table 4.4  Simulation parameters.

No. of transmission line contrc¢ +volumes 20
Global friction factor corre” ltiplier 1
Global heat transfer coefficie . ‘ation multiplier 1
Convergence energy balance error (%) <.05

The results of exercising the UPD algorithm using both the implicit and
Crank-Nicholson integration schemes against Iberall’'s analysis are listed in
table 4.5 as a function of frequency (and, therefore, of (! aracteristic number
since N_p is inversely proportional to frequency). The tabulated data are
plotted in figures 4.16 to 4.19.

In all cases, the amplitude ratio errors produced by the Crank-
Nicholson scheme (CN-s) are less than those produced by the implicit scheme
(I-s). The CN-s phase angle errors are also less than their I-s counterparts
for N, > 8.15. Below this, the time steps are large enough so that the CN-s
truncation errors exceed those of the I-s as noted in section 4.8 above,

It is also evident that the phase angle differences between the CN-s
and I-s are larger than the amplitude ratio differences, which is consistent
with the notion that information propagation effects are more apparent,
numerically, in the phase angles.

If one accepts that a 10% discrepancy represents a reasonable level of
validation (see Go87, section 7.7.4), then based on the errors reported in
table 4.5, the CN-s is valid for N, = 13.27 while the I-s is valid for Nop 2
20.38 . The accuracy differences are also far more pronounced for the phase
angles than for the amplitude ratios as shown by figures 4.17 and 4.19.

Based on this discussion, the UPD and equilibrium algorithms are
compared at N.p of 8.15, 13.27, and 20.38, respectively corresponding to cases
in which neither the CN-s nor the I-s schemes are valid, only the CN-s is
valid, and both schemes are valid. The results are given in tables 4.6 and
plotted in figures 4.20 through 4.31,

In all cases, amplitude ratio errors decrease with decréasing
integration time step (increasing number of increments per cycle). However,
the amplitude ratios asymptote to a constant value beyond 50 increments per
cycle. With the exception of figures 4.29 and 4.31, the phase angle errors
also reveal this asymptotic behavior except that the limiting error is about
50% for N, < 20. The behavior of the CN-s in figures 4.29 and 4.31 may be
inconsistent and requires further study before comment.
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Table 4.5 UPD algorithm: Comparison of Crank-Nicholson

Data: Watts figure 6; Goldschmeid table V

and implicit integration routines.

Frequency Characteristic Ampl i tude Error
(Hz) No. Ratio (%)
Iberall Crank-Nic. Implicit Crank-Nic. Impticit
14 20.38 1.0719 1.0495 1.0446 2.09 2.55
19 15.02 1.13 1.0941 1.0799 3.18 4.43
21.5 13.27 1.175 1.1219 1.0987 4.52 6.49
28 10.19 1.318 1.2175 1.1497 7.63 12.77
35 8.15 1.56 1.3548 1.1844 13.15 24.08
45 6.34 2.228 1.5943 1.1454 28.44 48.59
55 5.19 3.9611 1.6619 1.0288 58.04 74.03
60 4.76 5.5996 1.65 1.0038 70.53 82.07
65 4.39 6.035 1.0776 0.7562 82.14 87.47
Frequency Characteristic Phase Error
(Hz) No. (deg) (%)
Iberall Crank-Nic. Implicit Crank-Nic. Implicit

14 20.38 1.932 1.8 2.1 6.83 -8.70
19 15.02 2.999 2.8 4.0 6.64 -33.38
21.5 13.27 3.624 3.923 5.308 -8.25 -46.47
28 10.19 5.6 7.2 9.6 -28.57 -71.43
35 8.15 8.6 12.75 16.13 -48.26 -87.56
45 6.34 16.129 32.5 31 -101.50 -92.20
55 5.19 35.783 57.6 43.8 -60.97 -22.40
60 4.76 60,983 67.8 49.8 -11.18 18.34
65 4.39 -78.605 83.25 48
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Table 4.6  Equilibrium algorithm: Comparison of Crank-Nicholson and implicit integration routines.

Table 4.6.1 Ffrequency = 35 Hz Characteristic no. = 8.15

Increments Amplitude Ratio Phase Angle
per Cycle
Magni tude Error (%) Magnitude (deg) Error (%)
Crank-Nic. Implicit Crank-Nic. Implicit Crank-Nic. Implicit Crank-Nic. Implicit

8 1.3548 1.1844 13.15 24.08 12.75 16.13 -48.26 -87.56
16 1.3916 1.3294 10.79 14.78 8.25 12 4.07 -39.53
32 1.4028 1.3824 10.08 11.38 6.375 8.344 25.87 2.98
64 1.4071 1.4001 9.80 10.25 5.297 6.375 38.41 25.87
128 1.4091 1.4064 9.67 9.85 4.852 5.32 43.58 38.14
256 1.41 1.4088 9.62 9.69 4.571 4.969 46.85 42.22

Table 4.6.2 Frequency = 21.5 Hz  Characteristic no. = 13.27

Increments Amplitude Ratio Phase Angle
per Cycle
Magnitude Error (%) Magnitude (deg) Error (%)
Crank-Nic. Implicit Crank-Nic. Implicit Crank-Nic. Implicit Crank-Nic. Implicit

13 1.1219 1.0987 4.52 6.49 3.923 5.308 -8.25 -46.47
26 1.1273 1.1185 4.06 4.81 3.116 3.923 14.02 -8.25
52 1.1294 1.1259 3.88 4.18 2.538 3.115 29.97 14.05
104 1.1302 1.1289 3.81 3.92 2.192 2.481 39.51 31.54
208 1.1305 1.1302 3.79 3.81 2.163 2.135 40.31 41.09
300 1.1305 1.1305 3.79 3.79 1.77 2.15 51.16 40.67

Table 4.6.3 Frequency = 14 Hz  Characteristic no. = 20.38

Increments Amplitude Ratio Phase Angle
per Cycle
Magni tude Ecror (%) Magni tude (deg) Error (%)
Crank-Nic. Implicit Crank-Nic. Implicit Crank-Nic. Implicit Crank-Nic. Implicit

20 1.0495 1.0446 2.09 2.55 1.8 2.1 6.83 -8.70
35 1.0508 1.0486 1.97 2.17 1.8 1.972 6.83 -2.07
70 1.0517 1.0505 1.88 2.00 1.672 1.757 13.46 9.06
140 1.0526 1.0516 1.80 1.89 1.745 1.715 9.68 11.23
230 1.0535 1.0525 1.72 1.81 1.865 1.696 3.47 12,22
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In general terms, these phenomena confirm those observed in section
4.5, namely, that under assumed equilibrium information propagation conditions
at low characteristic numbers, the errors in modelling information propagation
using the equilibrium hypothesis produce incorrectly simulated phase angles
while reducing the simulated amplitude ratio errors. The fact that this
behavior is exhibited by both the CN-s and I-s indicates the existence of a
physical effect that is not properly modelled by either the CN-s or the I-s
techniques owing to their numerical limitationms.

4.10 CONCLUSION

Essentially it seems that numerical integration errors are a reasonable
hypothesis for describing the limited range of applicability of the one-step
implicit application of the UPD algorithm. This conclusion is also consistent
with the apparent success of the GLIMPS code in duplicating Watts'’ amplitude
ratio data for N, < 8.15 . However, a generalised implementation of a multi-
step implicit method would have to be developed and applied to the
transmission line to give this assertion better credence.

A further complicating issue arises from the difference between the
UPD/equilibrium and GLIMPS codes in the numerical implementation of the
conservation balances. The former uses a pressure-linked algorithm (with the
limitations discussed in section 4.6) while the latter does not. This poses
the question as to whether a pressure-linked algorithm is valid at low
characteristic numbers or, for that matter, whether it is valid for gas-
dynamic flows at all. Hence, there is a possibility that such a lack of
validity may synergistically or in isolation account for the behavior of the
UPD/equilibrium simulations when applied to the SPDE as a particular case. 1In
general, such behavior has not been observed (Go87) when, apparently, the
characteristic numbers have been large enough (greater than 60) to make the
assumption of infinite information propagation reasonable.

As a practical consequence of this work, it is recommended that the
SPDE one-dimensional simulation code be converted from an I-s to a CN-s. This
should provide a better margin of safety between the validity limit of the CN-
s and the operating characteristic number of the SPDE.

In terms of the two-dimensional SPDE code, it may be argued that even
the CN-s UPD simulation is inadequate, particularly in terms of implementing
workable turbulence models. This arises because of the apparent conflict
between the smaller time steps required for these models and the larger time
steps required for modelling information propagation using a first order
implicit algorithm. Thus, absent the availability of viable alternatives
(such as PDS or multi-step implicit methods) it seems appropriate at this
stage to concentrate on the turbulence modelling in the two-dimensional code
using the equilibrium hypothesis and simply acknowledge the resulting
existence of information propagation errors at low characteristic numbers.
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4.11 PROGNOSIS

In view of the wealth of information gleaned from comparing the
simulation codes against Iberall’s analysis, it is recommended that such a
comparison be adopted as a universal validity check for Stirling machine
simulation codes.

The development of either a PDS or a generalised multi-step implicit
method (with the latter alternative appearing preferable at this stage) for
Stirling machine simulation as well as an independent investigation of the
validity of pressure-linking both appear to be worthwhile future research
activities.
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CHAPTER 5

SIMULATTION OF THE MECHANTT CAL

ENGINEERTNG TEST RTIG

5.1 INTRODUCTION

The philosophy guiding the simulation of the mechanical engineering test
rig (METR) was to provide a means of using its empirical data in a generalised
simulation of Stirling cycle machines in both one and two dimensions. The
following methodology was conceptualised for accomplishing this goal:

a. Validate a system-based simulation of the METR including a two-
dimensional description of the test section. The primary goal of
this exercise was to define a turbulence model that will enable
the experimental data to be matched in the context of a system
simulation that includes an accurate description of actual
oscillating flow boundary conditions.

b. Based on the validated two-dimensional code predictions, develop a
set of friction factor and heat transfer correlations which may be
used in a one-dimensional simulation.

c. Compare the one-dimensional predictions directly against the
empirical data and, if necessary, refine the correlations.

d. Test the one- and two-dimensional simulations against available
experimental data for actual Stirling hardware, in this case, the
SPDE.

The work described in this chapter represents the progress made in
accomplishing these tasks. The simulation activities listed fundamentally
depend on the availability of METR experimental data of sufficiently high
quality. For this reason, at the termination of the project, sufficient
experimental data were available only to make a preliminary attempt at
completing task a (see chapter 1).

Two sets of experimental data are available. The first set is used to
define a baseline simulation case against which the effect of turbulence
models may be measured. This baseline excludes all turbulence modelling from
the two-dimensional components (that is, the test section is described two-
dimensionally in purely laminar terms) and uses standard Kays and London
(KL64) steady-state friction factor and heat transfer correlations for all the
one-dimensional components.
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A further objective of the baseline simulations was to provide feedback
to Simon and Seume on refinements to the METR instrumentation system and, in
particular, on which additional measurements were necessary in order to
achieve adequate simulation validation. In this context, it must be noted
that the baseline data provided by Seume and Simon are of a preliminary nature
and were intended not only to ’‘shake down' the METR instrumentation system but
also to refine the mechanics of the raw experimental data transfer and
processing. These data are acknowledged to be unsuitable for turbulence model
development and simulation validation (Se88).

The second set of data, which is nominally of sufficient quality for
simulation development and validation, consists only of half a cycle of data
at one probe location. Unfortunately, this data set is really too small and
insufficiently free of systematic errors to allow a truly meaningful attempt
at validating the turbulence model developed. Hence the model proposed is of
a tentative nature only and, therefore, fulfillment of the overall goal as
well as the stated objective (of completely validating the turbulence model
developed) must await the availability of further experimental data.

5.2 DESCRIPTION OF THE TEST RIG

A schematic of the METR as simulated is shown in figure 5.1. The rig
consists of a combination of seven components arranged axially in a
symmetrical pattern about the test section midpoint. A piston/cylinder is
located on the left-hand end of the rig while the right-hand end is open to
the atmosphere. The universal sign convention adopted is that the positive
direction is toward the right-hand or open end of the rig. The MEIR is
simulated as operating with purely isothermal boundaries since no heat
transfer measurements are as yet available. Hence all the boundary
temperatures are kept constant at the ambient value.

The individual rig component descriptions used in the baseline
simulations correspond to those listed in table 5.1. This table is the output
of a geometry definition computer program which enables the rig dimensions to
be arbitrarily altered in terms of the defined rig components and component
sequence. The program may be readily modified to include new component
definitions as well as different sequences of defined components. Table 5.1
reveals that care has been taken to define those minor details of the rig
geometry that are judged to have a more than negligible effect on the fluid
flow.

The spatial discretisations employed (table 5.1) conform to those
established as suitable for an integral description of Stirling machine fluid
dynamics (Go87). The 11 x 8 mesh used in the test section for the two-
dimensional description (21 axial control volumes are used in the one-
dimensional description) is a compromise between adequate spatial resolution
and the available computing power. It should be noted that 'adequate’ spatial
resolution for an integral (or discrete volume) analysis is very different
from that required for a differential analysis. In this context, increasing
the spatial resolution toward differential levels would require the use of a
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Table 5.1 METR baseline simulation input parameter

set.

Expansion Space

Piston stroke(mm) : 355.6
Piston end cap thickness(mm) : 6.0
Piston end cap taper(deg) : 30.0
Clearance length at piston TDC(mm) : 3.1750
Cylinder diameter (mm) : 355.6
Angular velocity(rpm) i 11.25
Conical Transition Piece
Axial length(mm) T 212.725
Cylinder mating diameter(mm) : 355.6
Flexible joint mating diameter (mm) : 127.0
# of control volumes : 3
Flexible Joint
Cylinder side axial length(mm) : 21.0
Cylinder side diameter(mm) : 152.0
Cylinder side # of control volumes : 2
Nozzle side axial length(mm) : 63.0
Nozzle side diameter (mm) : 139.7
Nozzle side # of control volumes : 2
Spacer
Axial length(mm) : 63.5
Cylinder side flange length(mm) : 3.175
Nozzle side flange length(mm) : 6.35
Diameter (mm) . 139.7
Cylinder side flange diameter(mm) : 127.0
Nozzle side flange diameter (mm) : 127.0
# of control volumes : 3
Heat Exchanger
Axial length(mm) : 50.8
Cylinder side flange length(mm) : 9.525
Nozzle side flange length(mm) : 12.7
Casing diameter(mm) ¢ 127.0
Hydraulic diameter (mm) : 2.1824
Flow area ratio .556
# of control volumes : 4
Nozzle
Size (l=small, 2=large) : 1
# _of half-nozzle control vols : 3
Test Section
External diameter (mm) : 50.8
Axial length(mm) : 2609.1
# of axial control volumes (4 minimum) : 21 (1-d);
11 (2-4d)
# of radial control volumes (2 minimum) : 8
Wall conductivity(W/m-K) : 1.0211
Wall density(kg/m"3) 1 2466.84
Wall specific heat capacity(J/kg-K) : 753.624

Working Fluid
Working fluid (1=Air, 2=Helium, 3-=Hydrogen): 1
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supercomputer, for which no funds were available. Hence, determining the
impact of radically changing the test section spatial resolution must of
necessity be neglected here.

5.3 BASELINE CASE SIMULATION APPLICATION

The one- and two-dimensional simulation codes used to model the METR are
in essence identical to those used for the SPDE. The codes are rearranged to
conform to the geometry of the METR by excluding the regenerator and the
compression space and by reconfiguring the connecting ductwork. The two-
dimensional heater module is adjusted to represent the geometry of the single
tube test section. The pseudo-two-dimensional heater boundary condition used
at the expansion space side of the SPDE heater is replaced with a one-
dimensional boundary condition appropriate to a nozzle (with an axially
varying flow area).

In converting the SPDE codes to the METR geometry, the following
revisions to the numerical algorithm have been implemented:

- The energy balance reporting error has been corrected yielding
typical energy balance percentage errors of order 1072 or less
(compared with errors of order 10° previously).

- Computationally more efficient discretisation methods have been
developed for calculating the dissipation and reversible
thermal/kinetic energy conversion terms.

- Provision has been made for describing control volumes that may be
generated as bodies of revolution based on continuous functions
(cones, paraboloids, etc.).

In order to fulfill the objective of generating a baseline laminar flow
case for the two-dimensional simulation of the test section, the following
adjustments to the code have been made:

- The Reynolds stress tensor, turbulent heat flux and dissipation
terms have been removed from the momentum and thermal energy
equations, respectively (equations 3.3).

- Mass flux fluctuations generated by the iterative integration
algorithm are numerically filtered out (such fluctuations are a
manifestation of a chaos model implicitly embedded in the
algorithm). A radially polarised cut-off amplitude of 107!
kg/m?.s is imposed, which has the effect of removing all the
turbulence with RMS amplitudes larger than the cut-off amplitude;
the smaller scales remain.
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5.4  BASELINE CASE RESULTS

The primary focus of the following discussion is directed towards a
comparison of the available experimental data with its simulated counterparts.
This does not constitute a rigorous validation but does serve to expose those
areas requiring further experimental and analytic attention.

5.4.1 Experimental Data

The experimental data set made available by Seume and Simon for
validating the simulation consists of:

- bulk mean velocities, that is, area-weighted, one-dimensional flow
velocities

- axial ensemble-averaged mean velocities and root-mean-square (RMS)
velocity fluctuations at seven locations on two radial planes (at

the midpoint and toward the cylinder end of the test section)

These data were gleaned for the parametric conditions shown in table 5.2.

Table 5.2 Parameters for the baseline case experimental data.

Date Engine Speed Probe Position (mm)
(rpm) (relative to cylinder end)

4/22/88 11.3 1304 (midpoint)

4/24/88 11.3 609

4/26/88 33.5 1304 (midpoint)

The data set supplied is not entirely adequate for simulation validation
purposes since several key data are missing. Specifically, the missing data
include:

- ambient pressure and temperature conditions
- transient leakage flow rates past the piston

The actual rig geometry is considered to be adequately represented by
the description encompassed within table 5.1 with the usual uncertainties
present in the fin surface geometry assumed for the heat exchangers. On the
advice of Seume, a standard Kays and London (KL64) louvered plate-fin surface
designated 'l1/4(b)-11.1' has been assumed together with its steady-state
friction factor and heat transfer coefficient correlations.

In the absence of any cylinder leakage data, the simulation is performed

on the basis that no leakage occurs in the cylinder. This may produce
discrepancies between the experimental and simulated bulk flow velocities.
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Should cylinder leakage actually occur, then the discrepancies may be used as
an a posteriori means of assessing what leakage should be incorporated into
the simulation to match the experimental data.

The unavailability of measured ambient temperatures and pressures is of
much greater significance because the rig operates as an open system.
Furthermore, since the two tests at a constant rig speed of 11.3 rpm were
performed on different days, local weather conditions are such that 7 to 10 %
variations in barometric pressure are possible between tests. This can
produce significant discrepancies in comparing the simulation and experimental
data. Nevertheless, for the purpose of carrying out the validation exercise,
it is necessary to assume an ambient temperature and pressure. Values of
26°C and 0.98274 bar, respectively, were chosen, these being typical averages
for the days during which the tests were conducted.

5.4.2 Comparison of System Results at 11.3 rpm

Figure 5.2 shows a comparison of the experimental bulk velocity profiles
at 11.3 rpm with those simulated in one dimension. The difference between the
profiles simulated at probe positions of 609 and 1304 mm are so small relative
to the scale of the graph that the two profiles appear coincident. Figure 5.3
compares the experimental bulk velocity at 11.3 rpm at the 1304 mm probe
position with that produced by the two-dimensional simulation. There is no
discernable difference between the one- and two-dimensional bulk velocity
profiles at the 1304 mm probe position, which is also true for the system
axial velocity profiles shown in figures 5.4 and 5.5. Other than the
difference in axial discretisation, the one- and two-dimensional simulated
profiles are identical.

The phase of the simulated and measured profiles in figures 5.2 and 5.3
are in agreement, while the difference in amplitude of the profiles shows the
extent of the piston leakage. This leakage is less than that expected by
Seume and Simon, who used an ideal velocity profile to make their
determination. The irregularity of the measured profiles at peak flow
velocities is believed to be caused by adhesion of the piston seal to the
cylinder wall and/or other mechanical effects.

Of particular concern in figure 5.2, however, is the large difference in
experimental amplitudes relative to the coincidence of those measured. When
the flow is negative between 0° and 180° (by convention, flow toward the
piston), the pressure at 1304 mm is greater than that at 609 mm since the
pressure gradient is opposed to the shear forces acting on the flow. This is
confirmed by the both the one- and two-dimensional simulated pressure profiles
shown in figures 5.6 and 5.7. Hence, since the system is essentially
isothermal over the test section (see figures 5.8 and 5.9), the density at
1304 mm is greater than that at 609 mm. Hence, between about 80 and 100
degrees of crank angle when the flow acceleration is small or zero, in order
to conserve mass, the velocity at 609 mm should be greater than that at 1304
mm, which is indeed the case (also shown by the simulated data).
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Conversely, during positive flow (between 180° and 360°) the velocity at
609 mm should be less than that at 1304 mm (shown by the simulated data),
which does not agree with the experimental observations. Furthermore, the
magnitude of the experimental velocity drop is not intuitively credible in
view of the small pressure drops expected in an atmospheric rig with piston
leakage. After consultation with Seume, it was concluded that the most likely
cause of the discrepancy is a systematic error in the hot-wire anemometer
calibration. The 609 and 1304 mm tests were performed on different days and
the anemometer calibration procedures used did not account for barometric
pressure differences. Hence, because hot-wire anemometry is dependent on
velocity as well as density, an ambient pressure variation of about 5 to 7 %
could account reasonably for the apparent axial velocity gradient measured.
An additional source of systematic error is the manner in which the radial
mean velocities measured are spatially integrated to yield the bulk flow
velocity. It was thus agreed that future tests should include anemometer
calibration procedures that include the effect of ambient pressure. Also, a
better method of computing the bulk velocity was suggested.

A comparison of the system pressure profiles generated by the one- and
two-dimensional codes at 11.3 rpm is shown in figures 5.6 and 5.7. The
pressure drop across the test section predicted by the one-dimensional code is
larger than that predicted by the two-dimensional code over the cycle. Hence
the pseudo-steady-state friction factor assumption used in the one-dimensional
code generates larger dissipation than that produced by the two-dimensional
code. The differences in profile topology apparent principally at the
nozzle/test section interfaces are a manifestation of the difference in bulk
fluid temperatures produced by the one- and two-dimensional codes. The two-
dimensional code produces a lower bulk temperature over the test section than
its one-dimensional counterpart (see figures 5.8 and 5.9). This is
intuitively reasonable since the one-dimensional code, which uses a pseudo-
steady-state heat transfer correlation, does not describe radial temperature
gradients. Such gradients are shown clearly by the radial temperature profile
(figure 5.10) produced by the two-dimensional code. Over most of the cycle,
the temperatures adjacent to the wall are relatively larger than those of the
flow core even though the net temperature difference of .3 K is small. Thus,
in the two-dimensional code, the actual wall/fluid heat transfer occurs in the
boundary layer with the radial temperature gradient being constrained chiefly
by turbulent enthalpy transport. Hence the extent to which the bulk
temperatures predicted by the one- and two-dimensional codes differ is
probably a direct effect of the exclusion of such transport from the two-
dimensional simulation.

Another difference between figures 5.6 and 5.7 is the relative
smoothness of the one-dimensional plot. The jaggedness produced by.the two-
dimensional code is caused by residual simulated turbulence below the cut-off
of the numerical filter used to exclude such turbulence deliberately. It is
interesting to note that the occurrence of the low level noise passing the
filter is approximately in phase with the corresponding high levels of
measured RMS velocity fluctuation shown in figures 5.11 and 5.12. The
magnitudes of the pressure drops simulated across the test section are less
than 500 Pa. An assessment of the accuracy of these predictions requires the
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FIGURE 510 SIMUL. RADIAL TEMPERATURE PROFILE AT 1304mm: 11.3rpm
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installation of appropriate pressure transducers on the test rig. Hopefully,
this will be accomplished in the future.

The system temperature profiles of figures 5.8 and 5.9 share a common
topology but the two-dimensional profile magnifies the deviations from the
isothermal mean over the test section. The adiabatic temperature variation in
the cylinder is readily apparent, although the physical significance is
exaggerated by scale effects (1 to 4 K in 300 K).

The measured root-mean-square (RMS) velocity fluctuation profiles shown
in figures 5.11 and 5.12 reveal the structure of the turbulence occurring in
the test section. From figure 5.11, it may be observed that when the flow is
negative, the centerline turbulence is considerably greater than that
occurring when the flow is positive. This shows the extent to which
turbulence is advected down the tube in the flow direction. 1In the positive
flow direction, the 609 mm probe location is towards the tube entrance where
the turbulence is nominally small by design. Hence the centerline fluctuation
is smaller than that occurring during negative flow when the measurement
location is toward the test section exit. Concomitantly, figure 5.12 shows
that the centerline velocity fluctuation is largely independent of flow
direction since the measurements in this case are made at the test section
midpoint; the advected turbulence is thus the same regardless of the flow
direction. It is also noteworthy that the largest fluctuations occur close to
the boundary layer interface in all cases and, further, that the magnitude of
these fluctuations is largely unaffected by flow direction (figure 5.10).

.5.4.3 Comparison of System Results at 33.5 rpm

A comparison of the bulk velocity profiles at a rig speed of 33.5 rpm is
shown in figure 5.13. The piston leakage effects observed in this case are
different from those observed at 11.3 rpm (figure 5.2) since no net leakage is
apparent; there may even be a net mass gain. Figures 5.16 and 5.17 reveal
pressure variations about the ambient pressure of 0.98274 bars (as do figures
5.6 and 5.7 at 11.3 rpm). Hence, a possible mechanism for the absence of net
cyclic leakage at 33.5 rpm is that pressure differential driven leakage across
the piston in one flow direction is canceled by mass gain when the flow
reverses. However, this is not a totally satisfactory explanation in light of
figures 5.6 and 5.7 (reversing pressure gradient with net leakage (figure
5.3)). A more probable hypothesis is that at 33.5 rpm, the period during
which leakage flow exists is significantly smaller than that at 11.3 rpm. It
may also be true that at higher speeds, the piston seals function better as a
result of increased seal temperatures caused by greater friction. The net
conclusion, therefore, is that piston leakage is an important boundary
condition for the test section simulation and it requires more sophisticated
experimental and modelling attention.

Ignoring the irregularity in the experimental bulk velocity profiles
alluded to earlier (particularly at about 122°), the predicted and
experimental bulk velocity profiles of figure 5.13 are generally in phase.
The phase agreement of the one-dimensional profile is better than that of the
two-dimensional profile, which may be ascribed to differences in dissipation
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modelling. As noted above, the pseudo-steady-state friction factor based
calculation method used in the one-dimensional code produces more dissipation
than the two-dimensional code. The reduction in simulated dissipation at 33.5
rpm (peak Reynolds numbers greater than 131,000) caused by neglecting
turbulence in the two-dimensional model is thus manifest on a system basis, a
manifestation absent at 11.3 rpm (see figures 5.2 and 5.3).

The system axial velocity profiles depicted in figures 5.14 and 5.15 are
identical in shape; the reduction in axial discretisation is apparent in the
profile generated by the two-dimensional code. Comparing these figures with
those generated at 11.3 rpm (figures 5.4 and 5.5), it is evident that the
system axial velocity profile topology is independent of rig speed, which
principally affects the peak flow velocity. This is consistent for an open-
ended system operating at atmospheric conditions,

The system pressure profiles produced by the one- and two-dimensional
codes at 33.5 rpm shown in figures 5.16 and 5.17 are similar in shape to their
counterparts at 11.3 rpm given by figures 5.6 and 5.7, respectively. The
features of these latter figures are accentuated at 33.5 rpm, particularly in
the two-dimensional case (figure 5.17). The impact of lower bulk mean fluid
temperatures simulated by the two-dimensional code in the test section is
readily apparent. Figure 5.20 reveals a radial temperature difference between
the wall and the centerline exceeding 2° compared with .3° at 11.3 rpm. This
is prima facie evidence of the importance of explicitly including turbulence
phenomena in the simulation as well as the garnering of sufficient
experimental heat transfer data to investigate the validity of the two-
dimensional code thermal predictions. The jaggedness of figure 5.17 compared
with its one-dimensional counterpart in figure 5.16 is notable since the
jaggedness is more pronounced than that occurring at 11.3 rpm (figure 5.7).
The observed pressure perturbations are a direct result of the temperature
striations shown in figures 5.18 and 5.19 (which again are significantly
greater than at 11.3 rpm as reflected by figures 5.8 and 5.9). This is
largely ascribable to the increased turbulence level, which produces peak RMS
velocity fluctuations of 5.6 m/s at 33.5 rpm (figure 5.21) compared with only
1.6 m/s at 11.3 rpm.

Ignoring the unfiltered turbulence effects, further comparison of
figures 5.18 and 5.19 shows that the basic temperature profile of the rig at
33.5 rpm is more complex and less isothermal than at 11.3 rpm. A comparison
of figures 5.8 and 5.18 (one-dimensional predictions) shows that the flow is
not nearly as isothermal over the test section at 33.5 rpm as it is at 11.3
rpm. Of particular note is the relatively large drop in temperature between
the heat exchangers and the test section. Part of this temperature gradient
occurs as a result of the flow acceleration/deceleration in the nozzles where
the reversible thermal/mechanical energy transfer (vdp) is greatest (see
figures 5.16 and 5.17). This emphasizes the importance of generating accurate
boundary condition data for any two-dimensional simulation of the test
section. It also suggests that the rig instrumentation should be upgraded to
include as complete a definition of transient test section boundary conditions
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as possible. This is extremely important when attempting to apply the rig
test data to actual Stirling hardware, which generally has very different
heater and cooler tube boundary conditions than those of the rig.

Furthermore, it is Important to ascertain the influence of boundary conditions
on the test data since, particularly at elevated rig speeds, boundary
condition effects may overwhelm the physical similarity between the rig and
Stirling machine heat exchangers.

At 33.5 rpm, the radial temperature profile of figure 5.20 is comparable
in shape to that at 11.3 rpm (figure 5.10). Other than the radial temperature
difference noted above, careful inspection shows figure 5.10 (at 11.3 rpm) to
have irregularities at the points of flow reversal (0° and 180°, figure 5.5)
which are absent at 33.5 rpm. The reasons for this are not clear and require
further investigation.

Many of the features of the RMS velocity fluctuation profile measured at
11.3 rpm (figure 5.12) are evident at 33.5 rpm in figure 5.21. The centerline
fluctuations appear to be relatively smaller in magnitude at 33.5 rpm while
the degree of irregularity toward the tube wall apparently is not much
affected by the rig speed. The monotonic relationship between rig speed and
peak RMS fluctuation is also evident; a threefold increase in rig speed
produces a peak RMS velocity fluctuation ratio of 3.5. This may prove useful
in devising better friction factor and heat transfer factor correlations for
use in one-dimensional simulations.

5.4.4 Comparison of Test Section Results at 11.3 rpm

Cyclic perspectives on the simulated and measured radial profiles of
mean axial velocity at 11.3 rpm and at the center of the test section (probe
position of 1304 mm) are given in figures 5.22 and 5.23. The absence of
negative velocities in figure 5.22 is a result of hot wire anemometry yielding
data that have no flow direction discrimination. Clearly the simulated and
experimental profiles have different shapes, with the experimental profile
being more rounded. As noted for figures 5.2 and 5.3, the peak velocities
simulated and measured are not dissimilar, their difference being related to
piston leakage effects. Mechanically induced flow irregularities are also
apparent in figure 5.22 (as discussed previously). Of particular note in
figure 5.23 is the slight occurrence of positive and negative flows (the "S"
shape velocity profile) existing at the flow reversal points of 0 and 180°
(visible at 0° and 360°). Bearing in mind the absolute nature of the
experimental data, the same effect is discernable in figure 5.22 at 360° where
the absolute value of the velocity is greater toward the tube wall than at the
centerline, which is not usually the case.

A better comparison of the shape of the radial velocity profiles is
depicted 1. figures 5.24 and 5.25 which are superimposed in figure 5.26. At
210° to 275°, the simulated profiles are much flatter than their experimental
counterparts although their terminating values at the tube centerline and at
about 18.5 mm are comparable. At 200°, both experimental and simulated
profiles have a negative radial gradient in the core flow region although the
simulated gradient negativity is more pronounced.
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FIGURE 521 EXP. RADIAL PROFILE OF AXIAL RMS VEL. FLUCT. AT 1304mm: 33.5rpm
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An alternate explanation for the disagreement between the shape of the
simulated and measured profiles could be sought in a mismatch of experimental
and simulated test section boundary conditions. In other words, if the
experimental flow at the test section / nozzle interface contains an embedded
radial gradient of axial velocity, then the roundness of the experimental
profiles could be a distorted version of the embedded boundary gradient. The
absence of an embedded boundary gradient in the simulation (slab flow
conditions are assumed at the test section entrance) would account for the
observed discrepancy. However, figures 5.29 and 5.30 do not substantiate this
hypothesis since the velocity profiles at a probe position of 609 mm from the
entrance are much flatter than those at the test section midpoint. This
behavior is consistent with the existence of slab flow at the test section
entrance under experimental conditions. Thus it appears necessary to seek an
explanation for the observed discrepancies in terms of other factors such as
the exclusion of turbulence from the simulation.

5.4.5 Comparison of Test Section Results at 33.5 rpm

The difference in shape noted for figures 5.22 and 5.23 at 11.3 rpm is
more pronounced at 33.5 rpm as shown by figures 5.31 and 5.32. 1In this case,
the roundness of the experimental radial profile of mean axial velocity
(figure 5.31) is sharply contrasted against figure 5.32, whose flatness at
33.5 rpm is more marked than that of figure 5.23 at 11.3 rpm, particularly at
the boundary layer interface. The reversed boundary flow (relative to the
direction of the flow core) at 0 and 360° is less than that revealed by
figures 5.22 and 5.23; indeed, its existence in figure 5.31 is arguable.

The shapes of the radial profiles at discrete crank angles are shown
separately for the simulated and experimental data in figures 5.33 and 5.34
respectively and together in figure 5.35. The reduction in roundness of the
simulated profiles at 33.5 rpm compared with those at 11.3 rpm (figure 5.24)
is evident. Figure 5.35 shows that the turbulence-induced radial flow effects
are more apparent at 33.5 rpm than at 11.3 rpm. This is consistent with an
increase in peak measured RMS fluctuation from 1.6 m/s at 11.3 rpm to 5.6 m/s
at 33.5 rpm. The simulated peak radial flow velocity shown in figure 5.36 is
still small at -0.011 m/s; two orders of magnitude smaller than the turbulence
fluctuations. Thus momentum conservation dictates that including higher
negative radial velocities in the simulation would coerce the concurrence of
figures 5.33 and 5.34. In this regard, it may also be noted that the
volumetric flow rates produced by integrating the experimental and simulated
axial velocity profiles with respect to radius would be similar (allowing for
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piston leakage effects) as expected from the bulk velocity profiles shown in
figure 5.13; in other words, the experimental and simulated results are
consistent on a mass conservation basis.

The absence of any discernable radial pressure gradient in figure 5.37
is in accordance with the smallness of the radial velocities displayed by
figure 5.36. The behavior revealed by figure 5.36 (as well as by figure 5.27
at 11.3 rpm) does not appear to be in conflict with the experimental data,
namely, a radial flow reversal corresponding with the axial flow reversal at
0° and 180° (see figures 5.23 and 5.32). The extent to which this radial flow
reversal is important in the laminar/turbulent flow transition process should
be an important ingredient of future simulation and experimental
investigations.

5.4.6 Simulated Cyclic Performance

An overview of the simulated cyclic performance of the test rig is given
by table 5.3. The ’'net kinetic energy conversion’ is the sum of the
irreversible kinetic/thermal energy conversion (or dissipation) and the
isentropic heat generation rate (or veVP ‘work’). A positive value indicates
that over the cycle, there is a net conversion of kinetic into thermal energy;
a negative value indicates the reverse. Negative ’'indicated work done’
denotes that work is done on the fluid by the piston.

Table 5.3 Base case cyclic energy balances.

Engine Simul. Net Heat Net Heat Net Kinetic Indicated Energy
Speed Code Input Output Energy Con- Work Done Balance
(rpm) QD) J version(J) J Error(%)
1-d 3.3101 23.1855 -0.0165 -19.8918 0.000065
11.3
2-d 1.2399 13.5442 3.887 -8.4173 0.000241
1-d 20.8935 155.8568 -0.0259 -134.9901 0.000534
33.5
2-d 6.5336 45.4136 -1.4571 -40.332 0.006644

The magnitude of the difference in dissipation modelled by the one- and two-
dimensional codes is manifested by the large difference in indicated work
predictions. At 11.3 rpm, the one-dimensional code predicts an indicated work
input 2.4 times greater than the two-dimensional code, while at 33.5 rpm, the
one-dimensional prediction is 3.3 times greater. The net heat output required
to balance the indicated work input follows this trend while the net heat
input is adjusted to close the energy balance. The two-dimensional net
kinetic energy conversion values are large relative to their one-dimensional
counterparts. This also is consistent with the under-prediction of
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dissipation in the two-dimensional code owing to the neglect of turbulence in
the test section. All the energy balance errors are less than .0l% at worst
with the worst error being achieved after 3 cycles from rest.

5.4.7 Closure

The salient conclusion to be drawn from the comparison of the baseline
simulated and experimental results is that the two-dimensional simulation
should include an adequate turbulence model in order to match the experimental
data. The major physical impact of the measured turbulence appears to be a
large increase in the radial advection fluxes in the test section compared
with those generated under assumed laminar flow conditions. The effectiveness
of the 'turbulence model’ used in the one-dimensional code (that is, the
pseudo-steady-state friction factor correlation) in replicating experimental
conditions cannot be judged definitively due to the absence of adequate
measurements. At the very least, such measurements should include ambient
pressure and temperature as well as a transient pressure drop profile across
the test section.

However, the comparisons performed appear to confirm that the use of the
pseudo-steady-state friction factor approach to dissipation modelling is at
least an approximation that produces the correct qualitative trends in the
simulated results. The importance of correct boundary condition modelling as
an integral part of the two-dimensional test section simulation is also
highlighted. Hence, it is doubtful whether generic two-dimensional codes that
just simulate the test section can be expected to yield good quantitative
answers which may be generalised to Stirling machine heat exchangers with
arbitrarily complex boundary conditions.

In terms of practical design application, these results point to the
continued efficacy of a one-dimensional system analysis of Stirling machine
fluid dynamics. The simulation/experimental result comparison shows that
there is promise for modifying the pseudo-steady-state approach to reflect
adequately the turbulence effects which, based on these data, seem to be a
major cause of some of the anomalies in one-dimensional simulation so often
cited in the literature.

5.5 COMPARTSON CASE SIMUIATION APPLICATION

The METR experimental parameters chosen for the development of the
turbulence model are selected to represent the heater of the Space Power
Demonstrator Engine (SPDE) operating at relatively high power. These
parameters are shown in table 5.4.

144



Table 5.4 Comparison case experimental parameters.

Operating point: MTI Experimental test no. 42 of 9/11/86
Experimental indicated power: 17.9 kW
Max. Reynolds number within the heater over a cycle: 13,985.3
Maximum Valensi number within the heater over a cycle: 91.3
Minimum Valensi number within the heater over a cycle: 71.7
Maximum heater bulk Reynolds number over a cycle: 11,706.4
Maximum heater bulk Valensi number over a cycle: 86.9
Minimum heater bulk Valensi number over a cycle: 72.2

where:
(Ngedpulk = d Z(gV) / Z(uV) (5.1)
(Nya)bulk = .5xfd? (M) / Z(uV) (5.2)

Two sets of Reynolds and Valensi numbers are defined. One set
corresponds to the maxima and minima occurring within the heater while the
second set defines ‘bulk’ values, namely those obtained from volume averages
over the entire heater (equations (5.1) and (5.2)). In terms of the METIR
operating philosophy, the rig parameters were chosen to reflect the bulk
Reynolds and Valensi numbers with the latter taken as the mean of the minimum
and maximum values.

The adjusted rig parameters for the comparison case are noted in table
5.5. The chief differences from the baseline case occur in the expansion
space, conical transition piece, and flexible joint parameters. The test
section length is reduced by 323 mm and a ‘transition length’ within the test
section has been defined to contain the transition from a one- to a two-
dimensional spatial discretisation. Previously, this transition was contained
within the nozzle and hence occurred under axially varying flow area
conditions. Placing the transition in the constant diameter test section is
analytically preferable although no discernable numerical differences can be
detected.

5.6 THE TURBULENCE MODEL

The only difference between the equation set used in the baseline and
comparison cases is that the Reynolds stress tensor and turbulent heat flux
terms have been reintroduced into the momentum and thermal energy equations
respectively (equations (2.42.1) and (2.43.1)).

The six restrictions constituting the turbulence model are listed in
section 2.3. However, of principal concern in this discussion is the
selection of a model fulfilling the stipulation of restriction V. Currently,
the relevant turbulence terms in the momentum and thermal energy equations are
represented by pseudo-steady-state friction factor and heat transfer
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coefficient correlations. The purpose here, therefore, is to replace these
correlations with a more fundamental turbulence model.

The selection of the turbulence model is based upon the following

criteria:

a.

General coordinate and dimensional invariance.

Essentially, this means that the form of the model should be
independent of the spatial discretisation scheme and system of
units used. Casting the model in tensor form and using
dimensionless constants meets this criterion.

Full realizability (Lu78).

In particular, this requires that all the components of the
turbulent kinetic energy are non-negative for any possible flow
condition. Further, full realizability means that the turbulence
model must be capable of evolving positive turbulent kinetic
energy from a rest state (that is, zero momentum) without the
necessity of defining an artificial rest-state positive turbulence
field. This is particularly important under oscillating flow
conditions during which repeated laminar-to-turbulent transitions
occur, since under these circumstances, numerically ill-
conditioned models show steady-state solutions that are dependent
on the initial conditions. However, physical realizability alone
is insufficient in a numerical context since models that are
physically realizable can still produce negative turbulent kinetic
energies due to the errors inherent in a discrete numerical
process, particularly in laminar-to-turbulent transitions. Thus
the model must also be numerically realizable in the sense that
its numerical or discrete analog will also yield non-negative
turbulence kinetic energies under all flow conditions.

Material frame indifference.

This requires that the form of the Reynolds stress term (equation
(2.42.2)) in a two-dimensional turbulence field be the same ’'in
all non-inertial frames of reference which can undergo arbitrary
time-dependent rotations and translations relative to an inertial
framing’ (Sp87). Basically, this implies that if the Reynolds
stress is dependent upon the mean velocity gradient tensor Vv,
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Table 5.5 METR comparison simulation input

parameter set.

Expansion Space

Piston stroke(mm) 251.46
Piston end cap thickness(mm) 0.
Piston end cap taper(deg) 90.
Clearance ‘length at piston TDC(mm) 67.9
Cylinder diameter (mm) 127.
Angular velocity(rpm) 33.75
Conical Transition Piece
Axial length(mm) 219.1
Cylinder mating diameter (mm) 127.0
Flexible joint mating diameter (mm) 127.0
# of control volumes 3
Flexible Joint
Cylinder side axial length(mm) 15.875
Cylinder side diameter (mm) 152.4
Cylinder side # of control volumes 2
Nozzle side axial length(mm) 73.025
Nozzle side diameter (mm) 139.7
Nozzle side # of control volumes 2
Spacer
Axial length(mm) 63.5
Cylinder side flange length(mm) 3.175
Nozzle side flange length(mm) 6.35
Diameter (mm) 139.7
Cylinder side flange diameter (mm) 127.0
Nozzle side flange diameter(mm) 127.0
# _of control volumes 3
Heat Exchanger
Axial length(mm) 50.8
Cylinder side flange length(mm) 9.525
Nozzle side flange length(mm) 12.7
Casing diameter(mm) 127.0
Hydraulic diameter (im) 2.1824
Flow area ratio .556
# of control volumes 4
Nozzle
Size (l=small, 2=large) 1
# of half-nozzle control vols 3
Test Section
External diameter(mm) : 50.8
Axial length(mm) : 2286.0
Transition length(diameters) 2
# of axial control volumes (4 minimum) 11 (2-d)
# of radial control volumes (2 minimum) 8
Wall conductivity(W/m-K) : 1.0211
Wall density(kg/m"3) 1 2466.84
Wall specific heat capacity(J/kg-K) 153.624

Working Fluid

Working fluid (1-Air, 2-Helium, 3<Hvydrogen):
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then Vv must always be non-zero in a two-dimensional turbulence
field and a transformation tensor ¥ must exist such that:

V'v' = Vv + dual ®
where * indicates the target non-inertial frame of reference.

A fourth (although non-rigorous) selection criterion is that the model
should be amenable to the induction of and the response to temporal
discontinuities. This arises because of the nature of the turbulence
triggering occurring in oscillating flows. An example of such a discontinuity
is evident in figure 5.38 (Se88), which is the closest test point in Seume’s
data set to the conditions of table 5.4. The abrupt onset of turbulence at
255° and to a lesser extent at about 20° as well as the decay of turbulence at
303° point to discontinuous phenomena. In this case, Seume postulates that
the turbulence is triggered advectively and decays rapidly after passage of a
turbulent fluid slug. In contrast, Hino et al. (HK83) concluded from their
oscillating flow experimental data taken in a rectangular duct that turbulence
is generated 'explosively’ at the onset of flow deceleration, which suggests
that local fluid acceleration is the trigger mechanism. Hence in this case as
well, the turbulence triggering is a discontinuous event.

The approach decided upon for implementing these empirically observed
discontinuities in the model is via a foldback function formulation. This
formulation has the advantage of introducing and controlling discontinuities
by continuously changing selected parameters, an ideal characteristic for a
numerical implementation. An example of a simple foldback function is given
in figures 5.39 to 5.42. Consider a parabolic function of the form:

y = ax? + bx = £(x) (5.3)

Hence, initially if:

y1 = axo? + bxq = £(xp) (5.4.1)

then, if y,; is folded back into f(x), that is:

y2 = £(y1) = ay,? + by, (5.4.2)

equations (5.4) represent a foldback function. This function is depicted in
figure 5.39 where the dashed line represents the foldback process as the
output of the function is reflected by the 45° line back into the function
input. Hence if a = -1 and b = 3, the function is 'ordered’ since the
solution converges to a unique value. Setting b = 4 produces the effect of
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figure 5.40, where the solution converges to a ’‘stable’ condition by tracing a
closed coordinate path. Increasing b to 5 yields a 'transition’ condition in
which the solution gradually degenerates into chaos (figure 5.41)., Finally,
figure 5.42 shows a fully chaotic condition when a = -.5 . Hence a continuous
change in a and/or b produces a discontinuous change in the stability of the
foldback function so that the chaos 'evolves’ in a fashion simulating that
observed empirically without creating numerical anomalies.

The foldback function methodology invoked in this analysis was selected
initially because it is ideally suited to the iterative structure of the
numerical algorithm used (section 2.5), which strongly motivated its initial
selection. Yet it must be emphasized that other classes of ’chaos’ models
(such as fractal methods) are potentially useful if not superior for modelling
laminar-to-turbulent (and turbulent-to-laminar) transitions. Time
constraints, however, did not permit the investigation of alternates to the
foldback function methodology chosen.

5.6.1 Selection of the Turbulence Model

Consider the Reynolds or turbulent shear stress term in the momentum
equation (2.42.1):

wiT® = -8’ v’ (5.5)

In terms of the rigorous discrete volume analysis used as the basis of the
simulation (Go87) together with the six restrictions defining the turbulence
model, the ideal choice of turbulence model would be a functional form
yielding the correlation on the right-hand side (RHS) of equation (5.5)
directly. By a manipulation of the Navier-Stokes equations (Hi75), the exact
differential transport equations for the Reynolds stresses may be expressed as
(HL72):

D(givj)/Dt - ‘(ngk aVi/an + givk avj/axk)

generation
-2p(3v}/3x)) (3v/3x)) + P'(dvi/x; + @v5/dx;) (5.6)
dissipation redistribution

-a[givjvk - p{a(vivj)/axk + P'(6jkvi + 6ikvj)]/axk
diffusion

where the subscripts i, j, and k imply the usual tensor summations. 1In its
exact form, equation (5.6) is not soluble since the RHS contains a number of
new correlations (for example, in the dissipation and diffusion terms) for
which closed form determinations must be found, that is, the ubiquitous
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closure problem. Typically, these closures are achieved (for example, see
HL72, LR75, GE76) by specifying the unknown correlations in terms of algebraic
functions of known correlations, the turbulence kinetic energy (k), and the
rate of dissipation of turbulence kinetic energy (e¢), which are defined as
follows:

k = 0.5(v})? (5.7.1)
€= u(avi/GXJ)z (5.7.2)

Employing these techniques expands equation (5.6) into a set of six equations
for the two-dimensional field simulated in the METR test section, namely, four
transport equations for the Reynolds stresses and two for k and e,
respectively.

However, it is also possible to determine the Reynolds stresses directly
from a k-¢ equation set using Boussinesq’s eddy-viscosity concept, which
assumes that the turbulent shear stresses are proportional to the mean-
velocity gradients (analogous to the viscous stresses in laminar flows) or:

r{) = w®(3vi/0x; + v/ 9x;) - 2k; ;/3 (5.8)

The turbulent viscosity u(*) can be obtained from the Kolmogorov-Prandtl
expression (Ro84):

pt) = pK k%/e (5.9)

Equation (5.8), however, suffers from a major disadvantage because it yields
isotropic principal Reynolds stresses, that is:

i) = rﬁ? - 7% (5.10)

This has the consequence of erroneously predicting uni-directional flows in
non-circular ducts as well as producing substantial inaccuracies in the
calculation of separated turbulent flows (such as that occurring over a
backward facing step). Speziale (Sp87) has proposed solving this problem by
replacing the linear form of equation (5.8) with a non-linear, quadratic form.
He has solved several test problems successfully using this approach.

Therefore, in the context of the METR analysis, since a closure model of

the two-parameter or k-e¢ type is in any event necessary for implementing the
desirable full Reynolds stress model, in terms of the imposed temporal and
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fiscal constraints, it was judged prudent to limit the turbulence model in the
METR simulation to such a two-parameter model, at least as a first step.
Equations (5.8) and (5.9) are thus used to generate the necessary Reynolds
stresses. Clearly, the limitations of equation (5.8) must be acknowledged,
but, fortunately, they are of second order significance for the constant area,
axi-symmetric METR test section to which the turbulence model is being applied
in two dimensions. Hopefully, the experience gained with the k-e¢ class of
two-parameter turbulence model as applied to oscillating flows will provide a
basis for future work leading to the implementation of a full Reynolds stress
model.

5.6.2 The k-¢ Turbulence Model

Examination of the classic k-e¢ turbulent model provides a convenient
starting point for the model selection process. A general form of the k-e¢
model in common usage is referred to as the ’'low Reynolds number’ version,
which is purportedly valid throughout the laminar, semi-laminar, and turbulent
regions of the flow (LS74). Usually, these characteristics are attributed to
the model under steady-state flow conditions. It is not clear from the
literature whether the model is intrinsically capable of handling general
laminar-to-turbulent transitions (including those where the fluid is
accelerated from rest), although local turbulent-to-laminar transitions have
been modelled (JL72). The general form of the k-¢ model also includes wall
correction terms not only to account for near-wall effects but also to allow
setting ¢ = 0 at the wall (JL72). In terms  of the turbulence model
restrictions, a tensor notation version of the low Reynolds number k-¢ model
suitable for compressible fluids has been adapted from LS74 and is given by
the following differential transport equations:

pDk/Dt = Ve ((p+Kpft)Vk) + 2p8(D:Vv) - 2u(VKY/2)2 - pe (5.11.1)

diffusion production wall correction dissipation

PDe/Dt = Vo { (p+Kpt)Ve) + Kye2u ) (D:Vv)/k
diffusion production

(5.11.2)

- Kipe2/k + 2uptt) (V;+Vv)?

destruction wall correction

These equations share a common form having diffusion, production,
destruction (or dissipation), and wall correction terms on the RHS. Of
particular note is the form of the production terms which are defined by the
scalar pro¢vct of the deformation tensor (equation 5.11.4) and the velocity
gradient. As this product is non-negative under all flow conditions, the
creation or evolution of k and € is dependent on the value of u(*’, itself a
function of k and ¢ (equation 5.11.7). Hence, the system of equations is
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indeterminate even though it is closed. The balance of the equations filling
out the complete model implementation are given by:

T() = 24D - 2,kI/3 (5.11.3)
D = 0.5(Yv + (VW)T) (5.11.4)
-g4vy = 1% (5.11.5)
giT' = p'®)(3T/dx;) /NE (5.11.6)
ul®) = Kopk?/e (5.11.7)
Ky =1 K, = 1/1.3 Ky = 1.44

Ky = 1.92(1 - 0.3exp(-N§J 2)) (5.11.8)

Ks = 0.09exp(-2.5/(1 + Nif2/50)

N = pk?/pe (5.11.9)

Equation (5.11.6) defines the method by which turbulent enthalpy transport
(equation (2.35)) is determined from the model while the constants K, and Ks
+ are dependent on the turbulent Reynolds number (equation (5.11.9)).

Examination of equations (5.11.1) and (5.11.2) reveals that the k-e¢
model satisfies the first selection criterion (general coordinate and
dimensional invariance) while equation (5.11.3) satisfies the third criterion
(material frame indifference). However, the second criterion (full
realizability) is not satisfied.

First, equations (5.11.7) and (5.11.9) are indeterminate if ¢ = 0, and
equation (5.11.2) is indeterminate if k = 0. Hence the equations are
intrinsically incapable of evolving a positive turbulence while either k or e
is zero. The usual methodology for dealing with this situation is simply to
pre-initialise the k and ¢ fields to values that are compatible with the
realizability criterion; namely, the source terms in equations (5.11.1) and
(5.11.2) should be positive, or:

(25 (D: V) - 2u(VKY2)2 - pe)j,i, > 0 (5.12.1)
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(Kae2p® (D:VV) - Kype2/k + 2up(V7eW) 2} 50 > O (5.12.2)

In this sense, the k-¢ model may be termed 'weakly’ realizable.

However, in oscillating flows where k and ¢ can be zero in the flow core
as well as in the laminar boundary layers, such initialisation techniques
mitigate against the prediction of strict laminar-to-turbulent transitions
(that is, from kK = 0 to kK > 0) by the model per se. Furthermore, from a
numerical perspective, there does not appear to be a physically credible way
of ensuring that the k source terms (LHS of equations (5.12.1)) will always
interact with the transport terms in such a way as to unconditionally produce
positive values of k when considering the model from a full realizability
perspective.

As a result of its system indeterminacy, the k-¢ model is suitable for
implementation as a foldback function, so fulfilling the fourth selection
criterion. This may be readily achieved by casting equations (5.11.1) and
(5.11.2) in implicit or advanced time form, thus rendering them naturally
amenable to iterative solution. There are then a number of possibilities
(notably in the generation terms) for introducing foldback parameters for
continuously controlling the triggering and evolution of the turbulence. This
capability opened the possibility that full realizability could be achieved
for the model when cast in foldback function form, thus warranting a numerical
investigation.

After much tedious experimentation, it eventually became clear that the
realizability problem proved to be the main detractor in obtaining anything
resembling the type of laminar-to-turbulent transition observed empirically by
Seume as shown in figure 5.38. The model could be made to ’'work’, that is,
portray discontinuous transitions, by treating the flow as being 'turbulent’
throughout the cycle (that is, k and ¢ > 0 for all t) simply by setting u(*) =
0 when Npe < Np,e transition) (taken to be 2,000). Further difficulties were
encountered with{n the coarse grid framework of the discrete volume analysis
(eight control volumes radially) as a result of the wall correction terms in
equations (5.11.1) and (5.11.2). The spatial discretisation near the wall
strongly determines the influence of these terms, thus violating the
scalability inherent in the discrete volume analysis. Alternate wall
correction procedures such as the logarithmic wall function method (LS74) were
¢1so tested with mixed results. Such empirical procedures by definition are
not spatially scalable or generalized.

These experiences prompted a search of the literature for alternate two-
parameter turbulence models which could meet the full realizability criterion
and also avoid the necessity of special wall functions. Accurate prediction
of steady-. tate turbulence or turbulent-to-laminar transition phenomena alone
(commonly used for validation) was not regarded as a qualifying criterion.
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5.6.3 The Wilcox k-w Turbulence model

Wilcox (Wi88) has proposed a k-w two-parameter turbulence model which,
when implemented in a foldback function, nominally comes much closer than the
k-¢ model to achieving full realizability (which appears to be necessary for
modelling discontinuous transitions). Although still not possessing complete
system determinacy, the Wilcox k-w model does appear to offer a better
opportunity of meeting the full realizability criterion than most of the two-
parameter models reported (Ro84, TL72). It may be noted that Spalding also
published a report on the k-w model (Sp72), but it is not known to what extent
the Spalding k-w model differs from the Wilcox k-w model. w is referred to as
the specific dissipation rate and is related to € via:

w = ¢/Kk (5.13)

After a series of numerical applications, Wilcox claims that the k-w
model is ‘much more accurate than comparable two-equation models’ although
such a claim is, of course, disputable. The Wilcox k-w model does not include
any wall correction terms since the model can be integrated through the
viscous sub-layer at the boundary. Hence these characteristics make the k-w
model an ideal candidate for implementation in a discrete volume analysis.

In terms of the turbulence model restrictions, a tensor notation version
of the k-w model given in Wi88 may be expressed by the following differential
transport equations:

pDk/Dt = Ve {(p+K,pt))Vk) + (TV:Vv) - K pwk (5.14.1)
diffusion production dissipation

pDw/DEt = Ve {(p+Kapt)) Vo) + Ksw (T :Vv) /k - Kgpw? (5.14.2)
diffusion production destruction

These equations are similar in form to their counterparts in the k-¢ model
(equations (5.11.1) and (5.11.2)) except that the wall correction terms are
absent. Another notable difference is that the production terms are expressed
in terms of the Reynolds stress tensor rather than the deformation tensor. By
an argument similar to that invoked previously, the k-w equation system is
also indeterminate in explicit form. The balance of the equations and
constants comprising the complete model are given by:

T = 250D - (VW)I/3) - 2pkI/3 (5.14.3)

D = 0.5(Vv + (Vv)7) (5.14.4)
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-g:’iv'. = 7t (5.14.5)

J TN
p®) = K.pk/w (5.14.6)
giT' = p®)(8T/8x;) /NK: (5.14.7)
K1-0.09 KZ-O.S K3='0.5;
(5.14.8)
kK, -1 Ks = 5/9 Kg = 3/40

In this case, none of the constants show a turbulent Reynolds number
dependence. However, the methodology employed by Wilcox to derive the model
constants (equation 5.14.8) is open to question since it relies partly on
numerical evaluation (as opposed to being entirely based on experimental
data). This has particular significance in the light of the scalability
requirements of a discrete volume application.

The foldback function formulation of the k-w model is achieved via the
following manipulation. Substituting equation (5.14.6) into equation (5.14.3)
yields:

T®) = 2K, pk(D - (VW)I/3}/w - 2pkI/3 (5.15)

Substituting equation (5.15) into the production term of equation (5.14.2)
produces:

pDw/Dt = Ve { (p+Kapt?)Vo - Kgpw? + 2pKs | [K4(D-(VW)I/3) - wI/3]:Vv (5.16)

Casting equation (5.16) into advanced time (or implicit) form by discretising
the LHS and rearranging the source (production and destruction) terms yields:

;w[l/At + {(2K5I/3):V;} + Kgw] - V.{(;+K3”(b))vw}
= pw*/At + 2pKKs[(D - (V¥)I/3):Vv] (5.17)

Equation (5.17) is fully realizable. It is also determinate 1If in
equation (5.14.6):
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w=0 = p® =0 (5.18)

Notice then that as long as the velocity gradient Vv is non-zero, equation
(5.18) will evolve positive w even when w = 0 regardless of the value of k.
This implies a much different physical description of turbulence than the k-e¢
model, which will only evolve positive ¢ when k > 0. A determination of which
model is physically ’correct’ under oscillating flow conditions (particularly
during laminar-to-turbulent transitions) requires a level of analysis beyond
the scope of this project and a very detailed experimental oscillating flow
data base, which is not yet available (at least from the METR). Nevertheless,
Wilcox has demonstrated that under steady-state conditions and during
turbulent-to-laminar transitions, the k-w model is at least as physically
‘correct’ as the k-e¢ model. Hence for the sake of expediency, it will be
assumed here that the physical implications of equation (5.17) are valid on
the basis that the production term of equation (5.17) is a logical consequence
of equations (5.14).

Casting equation (5.14.1) in implicit form yields:
Pk(1/At + Kyw) - Ve{(p+Kp(t))Vk) = pk/At + (TV):Vv) (5.19)

Equation (5.19) is also realizable (not as fully as equation (5.17) though)
but it still suffers from the system indeterminacy of the k-¢ model in that
positive k can only be evolved if k > 0. Hence some additional empiricism is
necessary to trigger the creation of turbulence.

5.6.4 k-w Model Enhancement and Foldback Function Parameters

Dropping the implicit notation for the sake of clarity and transforming
equations (5.17) and (5.19) into generalised discrete volume form (see chapter
2) yields:

d(vk Msy)/dt = J__ v 1k ((ev 18- 12y, )P Vi(s)) s -n}dA
An¢s)

- J_ ([t.Vn]l—‘ + K [V]l_;(t))(v[vnji' -n)dA (5.20)
Anes)

+ Vi) (Ka (T Ve V) - Ky eyl vi@ vik)

and:
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d(yy@ Mesy)/de = J._ v 190 (rev 18- (ev, i Vn(s)y) *-n}dA
(s)

A

- J_ ([t-Vn]I_" + K [V];(t‘))(vlvn];"n)dz (5.21)
n(s)

+ KsKeMsy[20e0iD = (Vo (ouiV-(vi@)I/3) 1V ey V]
- KM w?
Ms)y

for the k and w transport equations, respectively. Note that the constants K
in these integral equations do not correspond exactly to those used in the
equations of section 5.6.2.

The remaining equations and constants constituting the implemented
version of the k-w model will be listed first and discussed thereafter. Two
turbulence triggering modes are investigated and are distinguished by
referring to them as the ’'discontinuous’ and ’'continuous’ modes. The first
block of equations and constants are common to both triggering modes and are
given by:

Wi = KsKyg ip mk / o (5.22.1)
Ks = {1 - exp (-r* / 26.5))% (5.22.2)
r* = (P wnTwall)®? Fwall - O / b (5.22.3)
K, =0.09 K =1 K, = 0.5

. (5.22.4)
Ks = (3 + 5Kg)/9 X, = 3/40
N3 - 1P vik/Ky ek v (5.22.5)
D = 0.5 (Vv + (VW) T) (5.22.6)
WiT® = 200 (oD - (VeuWI/3) - 2(wip wmKII/3 (5.22.7)
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w®® = K e mk e (5.22.8)
. A —_— —_
v 19 = Cp vV ey ) T/NEP (5.22.9)

The second block of equations and constants are differentiated by triggering
mode as follows:

discontinuous: Ky = 5[log(1+Kg) " {1l+exp(l-Kg)}]/3

(5.23.1)
continuous: Kg = min ( [5[log(1l+Kg) " (1+exp(1-Kg)}1/3, 1)
discontinuous: Kg = N{J / (N cricical

(5.23.2)
continuous: Kg = (NE2-1)/(NED) critical

discontinuous continuous

(Nﬁg)critical = 486 (Nﬁg)critical =25 (5.23.3)
Kz = 1 Kz = Ka (5.23.4)

Kig =1 l Kig = 1 (5.23.5)
(NRe) 2 (NRe)transition

=0 '
(NRe) < (NRe)transition

Equations (5.22) and (5.23) embrace the foldback function parameters and
include enhancements to the Wilcox k-w model as discussed below.

a. Near-wall correction methodology

As alluded to previously, the Wilcox k-w model includes no near-
wall correction terms. However, in contrast to the coarse radial
discretisation typifying the discrete volume analysis used, a much finer
spatial discretisation is necessary near the wall to achieve adequate
physical accuracy with the basic model. This requirement substantially
increases the computational cost of implementing a discrete volume
analysis. Inclusion of an appropriate near-wall correction term,
however, enables a much lower computational cost to be achieved while
retaining scalability. Nagano and Hishida (NH87) investigated a range
of existing near-wall correction terms as applied to a k-e¢ turbulence
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model and proposed an alternative which, they concluded, yields better
performance than the existing methods.

Using the k-w model, some investigations with both the Jones-
Launder (JL72) and Nagano-Hishida near-wall correction methods were
performed with the latter method yielding better agreement with the test
data at the chosen test point (section 5.5). Hence on this basis, the
Nagano-Hishida method was selected pending the availability of further
experimental data. The model consists of equations (5.22.2) and
(5.22.3) which serve to reduce exponentially the magnitude of the
turbulent viscosity as the wall is approached. A dimensionless distance
(zero at the wall) defined in terms of the wall shear stress is used as
the independent parameter. This ensures that the method is independent
of spatial discretisation, so retaining the scalability characteristic
of the discrete volume analysis.

b. Constant modifications

Other than the introduction of K5 (wall correction term), K,
(continuous turbulence trigger parameter) and Kg (foldback function
parameter), with one exception, the constants are the same as those in
the Wilcox k-w model. The exception concerns the turbulent diffusion
term constant K, in equation (5.14.1) which Wilcox assigned a value of
0.5 (equation (5.14.8)) based on numerical experiment. When applied to
an oscillating flow, changing this constant to a value of unity (X3 in
equations (5.20) and (5.22.4)) yielded better agreement with the
experimental data at the test point. Jones and Launder (JL72) and
subsequent workers have also used a value of unity for the constant in
the k equation turbulent diffusion term (equation (5.11.1)).

c. Turbulence triggering

As noted in the discussion of equation (5.19), the k-w model can
only evolve positive turbulent kinetic energy if k is made positive
independently. In general, it seems that two approaches to introducing
this independence can be considered.

As a first option, the advective triggering mechanism postulated
by Seume (Se88) may be used to inject positive k into the two-
dimensional test section of the METR. This is adequate for the general
case provided that such positive k can be generated outside the test
section, that is, in the one-dimensional duct between the test section
and the heat exchangers. Once a positive k thus has been established,
the turbulence evolution may be controlled via a foldback function
parameter such as the turbulent Reynolds number (equation (5.22.5)).

A second, more fundamental, option is based on the local
acceleration triggering postulate of Hino et al. (HK83). Such a
postulate devolves to a triggering model based upon microscopic level
entity (molecules or ’‘clumps’ of molecules) dynamics in which random
cross-stream or turbulence-inducing momentum arises when the microscopic
viscous forces are exceeded by the inertial forces. This mechanism is
depicted on a macroscopic level in contained flows by the usual Reynolds
number transition criterion. Proceeding further, a microscopic entity
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approach also would allow the discontinuous increase in turbulence
observed by Seume (apparently caused by the passage of a turbulent fluid
slug) to be naturally modelled so harmoniously blending Hino et al.'s
and Seume’'s observations.

The microscopic turbulence triggering mechanism is considered
preferable by the author; however, the project time and budget
constraints mitigated against investigation of this concept. Hence, by
default, it was decided to proceed with the advective triggering
methodology even in the presence of concerns about its physical
credibility.

The advective triggering methodology is implemented by creating a
pseudo-transport equation for k which is used only in the one-
dimensional sections of the METR between the test section and the heat
exchangers, All turbulence is assumed to be extinguished in the
serpentine passages of the heat exchangers. The one-dimensional pseudo-
transport equation for k is given by:

d([v]-i(— E(S))/dt = J [vn]E(([tvn]g - [t'vn]; ;n(s))i'n}dz (5.24.1)
An(s)
if: _ _ _
[V]k < [tv]‘rwall / [tV]p and NRe > 2000
(5.24.2)
then:

ik = tviTwall / 1P

Equation (5.24.1) just reflects advective transport of k while equation
(5.24.2) initialises k to a floor value of the square of the friction
velocity if the Reynolds number is greater than a transition value of
2000. 1If k is greater than the floor value (irrespective of the
Reynolds number) it retains the value computed using equation (5.24.1).
This approach yields a fully realizable turbulence triggering method
including laminar-to-turbulent transitions from the rest state without
the necessity of any k or w pre-initialization.

d. Foldback function implementation

Control of the foldback function is achieved through constants K,
and Kg (equations (5.23.4) and (5.22.4), respectively) together with
their threaded substituent constants.

A stability analysis of the k-w model showed that the w production
term in equation (5.21) is an appropriate vehicle for controlling the
stability of the foldback function. In particular, the stability
boundary hypersurface (Go87) for the model can be intersected for a
value of Kg between 7/9 and 8/9 (all other constants remaining at their
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listed values). If Kg < 7/9, the model exhibits chaos increasing in
magnitude until a fully chaotic condition (figure 5.42) is reached for
Kg = 3/9. For Kg = 8/9, the model exhibits 'ordered’ behavior (figure
5.39). Thus, continuous variation of Kz between 3/9 and 8/9 enables the
k-w model discontinuously to evolve turbulence in a random fashion.

The continuous variation of Kg is achieved via Kg (equation
(5.23.1)), which varies as an inverse exponential between 0 and 1,
asymptoting to a straight line of small positive slope (0.084) for Kg =
1. Kg is defined as the ratio between the actual turbulent Reynolds
number and a ’‘critical’ value determined numerically on the basis of
matching the available experimental data.

e. Turbulence triggering modes

The discontinuous turbulence triggering mode is implemented using
the classic Reynolds number transition criterion for pipe flow as shown
by equation (5.23.5). In essence, this zeroes u‘*> for all Reynolds
numbers less than the transition number, which is set at 2000. Note
that K, is maintained at unity, thus placing no additional restrictions
on the production of k while (N{2).,irica] 15 assigned a relatively
high value of 486, again, based on purely numerical considerations.

The continuous turbulence triggering mode is achieved by allowing
p‘®) to exist regardless of the value of k as long as w > 0 (equation
(5.23.5)). However, the foldback function control parameter is modified
slightly from its discontinuous form (equation (5.23)) and applied not
only to the w production term in equation (5.21) but also to the k
production term in equation (5.20). Production of k and w is thus
independent of the bulk flow Reynolds number (Kg has a floor value of
unity in its continuous form). (N¥2).,rirical 1S assigned a value based
on the criterion that k is equal to the square of the friction velocity
under laminar flow conditions. Physically, this implies a 'continuous’
model of fluid turbulence in which all flows contain some level of
turbulence except that under laminar conditions, such turbulence is
small, stable or ‘ordered’ and does not increase in the presence of
imposed stimuli. Atmospheric flows, for example, are often considered
in this light.

Thus, in summary, the k-w model is implemented as defined by equations
(5.20) to (5.24) at the chosen experimental test point. In view of the
foldback function methodology employed, the empirical nature of its
constituent parameters, the uncertainty as to which triggering mode is
physically accurate and the basic reservations expressed about the advection
triggering methodology, this version of the k-w model should be viewed as
entirely experimental and subject to even drastic revision.

5.7 COMPARISON CASE EXPERIMENTAL DATA

The experimental data made available for the comparison case simulation
application consists of a half cycle of axial ensemble-averaged mean
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velocities and root-mean-square (RMS) velocity fluctuations at 12 locations on
one radial plane. The flow during the half cycle is in the negative
direction, that is, from the open end toward the cylinder. The parameters
defining the experimental data are listed in table 5.6.

Table 5.6  Parameters for the comparison case experimental data.

Engine speed: 33.75 rpm -
Probe position: 1676.4 mm from the cylinder end
Dry bulb temperature: 25.5°C

Wet bulb temperature: 15.8°C

Ambient pressure: 981 bar

No. of cycles for ensemble averaging: 500

No, of probe radial locations: 12

Since 500 cycles are used for computing the ensemble averages, in this
respect, the data are felt to be adequate for validation purposes. The probe
position is located toward the open end of the METR, so enhancing the yield of
the comparison and validation process because any experimental flow
asymmetries would stress the simulation to a greater extent. Unfortunately,
since only negative half-cycle data are available, this aspect of the
comparison cannot be accomplished.

Unlike the base case data, no bulk mean velocitles were provided for
simulation calibration purposes. Hence these velocities are computed from the
mean velocities provided using an area-weighted aggregation procedure. The
resulting bulk velocity comparisons for the discontinuous and continuous
triggering modes (henceforth referred to as the DTM and CTM simulations,
respectively) are shown in figures 5.43 and 5.44. The simulated velocity
profiles are identical showing that the triggering mode has no influence on
the bulk velocities, as expected from a conservative set of transport
equations. The experimental data reveal a small phase shift relative to the
simulated data which is apparent at 0° and 180°. However, of major concern are
the large amplitude, higher order harmonic fluctuations in the experimental
data between 60° and 120°. Apparently, these fluctuations are related to
piston/cylinder stiction and/or sealing effects. Nevertheless, their
magnitude and shape has a major impact on the behavior of the flow turbulence,
so complicating the comparison of the experimental and simulated k between 60°
and 120° because the simulated k is not subject to the samé production stimuli
as the experimental k. Clearly, these fluctuations in the mean experimental
data should be removed before any further comparison or validation work is
undertaken.

5.8 COMPARISON CASE RESULTS

An overview of the cyclic energy balances for the DTM and CTM simulation
runs is shown in table 5.7,
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Table 5.7 Comparison case cyclic energy balances.

Triggering mode Net Heat Net Heat Net Kinetic Indicated Energy

Input Output Energy Con- Work Done Balance

(J) (I version (J) (J) Error (%)
discontinuous 0.2482 0.7023 0.2847 -0.1693 0.01016
continuous 0.223 0.4347 0.0578 -0.1538 0.015098

The energy balance errors reported were realised after three simulated cycles.
Of significance is that the net kinetic energy conversion for the DIM
simulation is four times greater than that of the CTM simulation. This is
attributable to the turbulence magnitude being larger in the DTM simulation
(see figures 5.55 and 5.56).

The mean velocity pfofiles at the test section are compared in figures
5.45 to 5.47. The fluctuations apparent in figures 5.43 and 5.44 are also
evident in figure 5.45 and are manifest through the boundary layer. The
magnitude of the 12.5% discrepancy in the simulated and experimental maximum
mean velocities is mainly attributable to the fluctuations in the experimental
mean velocities. Although figures 5.46 and 5.47 are similar, the DTM
simulation appears to correspond more closely to the experimental data over
the first quarter of the cycle than the CTM simulation. This is confirmed by
figures 5.48 and 5.49, particularly below 50°. As noted above, because the
difference in core velocities is largely due ta systematic experimental
effects which are not included in the simulation, the impact of turbulence
model errors on the mean velocity profiles cannot be readily determined.
Hence, ignoring the magnitude discrepancies, figure 5.50 shows that the CTM
simulation yields velocity profiles that parallel their experimental
counterparts fairly well in the core flow region. However, the simulated
velocity profiles in the boundary layer do not agree well with the
experimental data beyond 116.5°. Returning to figures 5.48 and 5.49, the DTM
simulation seems to yield a closer correspondence to the experimental data in
the boundary layer than the CTM simulation. Comparing figures 5.48 to 5.50
with figure 5.35 (showing data produced without a turbulence model), it is
evident that inclusion of a turbulence model does yield significantly better
correspondence between the simulated and experimental data in the core flow
region.

The discrepancies between the experimental and simulated boundary layer
mean velocity profiles most likely are attributable-to the turbulence
triggering mechanism used in the simulation. The experimental axial RMS
velocity fluctuations are shown in figure 5.51. These fluctuations are
converted into turbulent kinetic energy (k) in figure 5.52. Strictly, this k
cannot be compared with that simulated because the simulated k includes both
axial and radial components while the measured k consists of an axial
component only. The k-w and k-¢ models assume that k is isotropic (that is,
the axial and radial components are equal) which may not be true in
oscillating flows. However, without experimental radial velocity fluctuation
data, no further determination on this issue can be made here.
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With this reservation, the experimental and simulated turbulent kinetic
energies are compared in figures 5.52 to 53.54. The effects of the
experimental mean velocity fluctuations on the turbulent kinetic energy is
readily apparent in figure 5.52, which thus does not display the same
smoothness as figures 5.53 and 5.54., The overall shape of the DTM simulation
k surface corresponds better to the experimental data than that of the CTM
simulation (figure 5.54). However, the DTM simulation turbulence triggering
occurs too early compared with the experimental observations, that is, the
discontinuous triggering level (based on bulk flow considerations) of Np, =
2000 is too low. It may thus be inferred that discontinuous triggering is
physically more accurate but that a bulk flow parameter such as the Reynolds
number is inadequate as a trigger parameter. As suggested in section
5.6.3(c), use of a microscopically based trigger parameter may prove to be
physically more realistic.

The CTM simulation depicts the existence of relatively large k over the
entire half cycle (figure 5.54) and thus does not correspond to the physical
. behavior depicted in figure 5.52. In contrast, the DTM simulation yields a
maximum k 3.8 times greater than that measured while the CTM simulation and
measured k are within 20% of each other. Assuming that the isotropic
turbulence assumption is valid for the experimental flow, then a net maximum
experimental k of .811 (m/s)2? falls one-third of the way between the CTM and
DTM simulated values. This warrants a suspicion that the CTM simulation is
more accurate in predicting the evolution of turbulence once it has been
triggered while the DTM simulation better reflects the triggering mechanism
itself. Lastly, the differences in turbulence triggering revealed in figures
5.52 to 5.54 can be seen to account for the discrepancy in the mean velocity
profiles evident in figures 5.48 to 5.50.

The full-cycle DTM and CTM simulations produce radically different
surfaces as shown in figures 5.55 and 5.56. As there is no experimental data
against which the simulated full-cycle k data may be directly compared,
qualitative recourse again must be made to figure 5.38, which is the closest
data point in Seume’'s thesis to the comparison case test point. Based on a
comparison of figures 5.38, 5.55 and 5.56, it is apparent that, topologically,
the DTM simulation produces far better correspondence with the experimental
data than the CTM simulation. Examination of figure 5.55 reveals that the
magnitude of the negative half-cycle turbulence (0° to 180°) is slightly less
than the positive half-cycle turbulence, thus mimicking the trend of figure
5.38. However, the simulated relative positive and negative half-cycle
kinetic energies are probably in error. Figure 5.56 bears little resemblance
to figure 5.38 revealing inverted behavior, that is, negative half-cycle k
greater than the positive half-cycle k. Based on this comparison, it must be
concluded that continuous triggering does not appear to be physically viable,
at least for the two-parameter, k-w model evaluated.
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FIGURE 5.55 SIMULATION FULL CYCLE DATA (Re=11706; Va=78.6)
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5.9  CONCLUSION

In the context of the limited experimental data available, the results
show that a two-parameter, k-w foldback function turbulence model
incorporating a discontinuous triggering mode is capable of producing
qualitatively reasonable turbulence predictions. 1In terms of the mean flow
parameter predictions, which are important to Stirling machine design and
analysis, two-parameter turbulence models of the k-w type may be adequate for
most purposes, so making use of a more sophisticated (although rigorously
preferable) Reynolds stress turbulence model unnecessary.

Viewing the simulation and testing of the METR as a whole, it seems that
the advective turbulence triggering hypothesis of Seume is the predominant
triggering mechanism, while the local acceleration has more influence on
controlling the evolution of the turbulence once triggering has occurred.
This triggering mechanism is fundamentally discontinuous, requiring the
development of a turbulence triggering parameter which is fully realizable in
terms of the turbulence model variables. The bulk flow Reynolds number does
not appear to be suitable because it is macroscopically rather than
microscopically defined. The experimental and simulated data both suggest
that a microscopically based triggering parameter is required for physical
accuracy.

The turbulence model development and testing reported should be viewed
only as an exploratory first step that has highlighted the turbulence
triggering issue as being cardinal to the successful simulation of oscillating
turbulent flows. More experimental data and simulation development is
necessary before the k-w tuybulence model presented is suitable for
application to the oscillating flows found in Stirling cycle machines.
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CHAPTER 6

CONCLUSTION

Three of the issues that have emerged during the course of this project
as being of significance to Stirling machine simulation are:

1. Two-dimensional component simulation of Stirling machines does not
necessarily yield any improvement over one-dimensional simulation
in overall performance prediction.

2. The ability to model information propagation effects at low Mach
numbers may be a necessary attribute for Stirling machine
simulation codes. This determination may be made in terms of the
characteristic number (N,j) which appears to be a useful
additional non-dimensional parameter for describing Stirling
machine oscillating flows.

3. Turbulence triggering is a key element in implementing a
successful turbulence model for oscillating flows.

While simulating the METR turbulent flow field, the need for reliable
oscillating turbulent flow experimental data spanning a broad range of
boundary conditions has become apparent. As advective boundary conditions
have a major, if not overriding, significance on the turbulence triggering
mechanism in oscillating flows, particular care should be taken to quantify
these boundary conditions completely. However, it must be recognised that
turbulence models validated using experimental data generated with non-
Stirling advective boundary conditions may not be immutably applicable to
Stirling machines themselves because of the inherently chaotic nature of the
triggering process. Thus, ultimately, such turbulence models may have to be
validated against turbulent flow data gathered in Stirling machines directly.

Although two-dimensional component simulation is clearly of value in
understanding the flow details of Stirling machines, from the work carried out
here, it is not yet evident that such component simulation provides any better
prediction of overall machine performance than one-dimensional simulation.
From a design perspective, two-dimensional component simulation thus may serve
best as a means of generating improved turbulence correlations for use in
existing one-dimensional codes. Nevertheless, the continuing evolution of
computer hardware will eventually make end-to-end, two-dimensional simulation
of Stirling machines a cost-effective reality.

Use of qualifying benchmark tests for Stirling machine simulation codes
may prove to be an effective means of ensuring that these codes meet a minimum
standard of validity, particularly if they are used to design novel (and
expensive) Stirling hardware. Iberall’s (Ib50) experimentally validated
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(Wa65, Go68) analytic solution of the transmission line problem is an ideal
candidate for a qualifying benchmark test.

As a general proposition, numerical methods are an important facet of
Stirling machine simulation to the extent that the numerical method itself
emulates a physical process. Thus, simulation errors may be a result of the
physical implications of a particular numerical method, rather than just its
numerical accuracy implications. In this light, an isolated investigation of
pressure-linking as a legitimate numerical algorithm for simulating low
characteristic number compressible flows is warranted.
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