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ABSTRACT

This report details the data, assumptions and methodology for end-use forecasting of appliance
energy use in the U.S. residential sector. Our analysis uses the modeling framework provided by
the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was
developed by the Electric Power Research Institute (McMenamin et al. 1992). In this modeling
framework, appliances include essentially all residential end-uses other than space conditioning
end-uses. We have defined a distinct appliance model for each end-use based on a common
modeling framework provided in the REEPS software. This report details our development of
the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer,
dishwasher, lighting, cooking and misceilaneous. Taken together, appliances account for
approximately 70% of electricity consumption and 30% of natural gas consumption in the U.S.
residential sector (EIA 1993). Appliances are thus important to those 1esidential sector policies
or programs aimed at improving the efficiency of electricity and natural gas consumption.

This report is primarily methodological in nature, taking the reader through the entire process of
developing the baseline for residential appliance end-uses. Analysis steps documented in this
report include: gathering technology and market data for each appliance end-use and specific
technologies within those end-uses, developing cost data for the various technologies, and
specifying decision models (both the functional form and equation parameters) to forecast future
purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework
draws on the extensive technology, cost and market data assembled by LBL for the purpose of
analyzing federal energy conservation standards. The resulting residential appliance forecasting
model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

The proliferation of models and model parameters and the lack of detailed documentation in the
end-use forecasting area have been sources of considerable confusion for practitioners and
policy-makers alike. By making explicit the data and assumptions behind our analysis, we seek
to clear up some of this confusion and move the energy efficiency debate beyond simply the
numerical results of models.
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1. INTRODUCTION

This report details the data, assumptions and methodology for end-use forecasting of appliance
energy use in the U.S. residential sector. Our analysis uses the modeling framework provided by
the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was
developed by the Electric Power Research Institute (McMenamin et al. 1992). In this modeling
framework, appliances include essentially all residential end-uses other than space conditioning
end-uses. The space conditioning end-uses include Heating, Ventilating and Air Conditioning
(HVAC) and are discussed in a separate report (Johnson et al. 1994). For appliances, REEPS
allows the user to define a distinct appliance model for each end-use based on a common
modeling framework provided in the software. Each appliance model can then be configured for
a given end-use with its own structure, data, and functional relationships. This report details our
development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes
washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for
approximately 70% of electricity consumption and 30% of natural gas consumption in the U.S.
residential sector (EIA 1993). Appliances are thus important to those residential sector policies
or programs aimed at improving the efficiency of electricity and natural gas consumption. The
baseline forecast using the REEPS model described here is presented in a separate report
(Koomey et al. 1994a).

Engineering-economic models such as REEPS offer a means of assessing future trends in energy
consumption at the end-use level under differing assumptions, scenarios or policies. Such
models attempt to characterize the long-term structure and patterns of energy consumption in
homes and are also called end-use forecasting models because they generally include
considerable end-use detail. They rely on data regarding the building stock, the equipment
available for supplying energy services, and historical patterns of end-use energy consumption in
homes. For the analysis of appliances, which is the focus of this report, engineering data on
energy-using equipment are combined with economic parameters regarding purchase and usage
of the equipment. At the national level, these end-use forecasting models facilitate the analysis
of energy conservation programs and policy initiatives that are widely applicable and broad in
their scope such as residential appliance standards (US DOE 1989, US DOE 1990, US DOE
1993b) and national energy policy initiatives (EIA 1990). Utilities rely on end-use forecasting
models in order to assess market trends for new technologies (McMenamin et al. 1992) and in
th;9 development of Demand-Side Management (DSM) programs (Hummel and McMenamin
1992).

The report details the supporting data, model parameters, and methodology for appliance models
developed for use with REEPS 2.1. In Section 2 we outline the modelir.g framework provided
by REEPS and the end-use structure and assumptions we adopted for this analysis. In Section
3, we discuss the structure and methodology we have adopted for the decision models that are
used to forecast appliance purchases. In Section 4, we define the structure, data and model
parameters for refrigerators, freezers, and dryers. In Section S, we define appliance models for
the three end-uses associated with water consumption, including water heaters, dishwashers, and
clothes washers. Section 6 details the model structure and baseline data development for the
lighting end-use. Section 7 provides a brief outline of the cooking and miscellaneous end-uses,
which are characterized in a reduced-form representation. In Section 8, we discuss the
technology data for those appliance models that we have characterized with specific technology
options, including the refrigerator, freezer, water heater, clothes washer, dishwasher, and dryer
models. In Section 9, we describe the historical stock of appliances and our methods for
forecasting changes to that stock in future years. In Section 10, we outline areas for future work
in the end-use forecasting of appliances that could not be included in the model due to data and
time limitations. In Section 11 we summarize and conclude the report.




2. MODEL STRUCTURE AND ASSUMPTIONS

In this section of the report we outline the REEPS modeling framework and the assumptions and
data structure we have adopted in configuring the appliance models. In Section 2.1, we briefly
describe the general features of residential end-use forecasting and the particular features of the
REEPS modeling framework, with special reference to those aspects which relate to appliances
rather than HVAC. In Section 2.2, we detail the major steps in model execution and the general
functional relationships among the various algorithmic components. In Section 2.3, we describe
the end-use structure and conventions we adopted in configuring the appliance models. In
Section 2.4, we provide an overview of the data sources we used to develop the structure, inputs
and parameter estimates for the appliance models. In Section 2.5, we discuss some of the
potential applications of the model in analyzing impacts of government policies, utility
programs, changes in technology development and adoption, and-economic scenarios.
™

~.

2.1. REEPS Modeling Framework T~

The basic assumptions and structure of residential end-use forecasting are quite similar across
both different modeling frameworks and different end-uses (Johnson et al. 1992). The household
is considered tie fundamental unit for energy consumption. The physical housing stock is
defined by its thermal properties, while energy-using equipment is described by variables such as
size (or capacity) and efficiency. Macroeconomic and demographic variables that change over
time include the housing stock, household size, fuel prices and household income. Technology
data characterize the existing and/or future stock of equipment and allow the formulation of
functional relationships to use in the forecast. Consumer data describe ownership patterns for
equipment and appliances, generally segmented by housing type. Consumer attitudes toward
energy efficiency investments are typically characterized by parameters that represent economic
tradeoffs between purchase price and operating cost. Market shares are estimated for each
technology or fuel for a given end-use and the models adjust these market shares over time as
households retire and purchase equipment.

The EPRI-REEPS model is one of several prominent end-use forecasting models that have been
developed since the mid-1970s. One of the earliest residential er*-use forecasting models was
developed at Oak Ridge National Laboratory (Hirst and Carney 1978). This model was later
modified at the Lawrence Berkeley Laboratory (McMahon 1987) for the analysis of residential
appliance standards. REEPS has been used since the early 1980s both as a tool for national
policy analysis and subsequently as an analytical tool for electric utilities to forecast long-term
residential energy demand (EPRI 1982). The first version of the model, REEPS 1.0, relied on an
econometric/micro simulation approach to estimate energy consumption for a given sample of
households (Cowing and McFadden 1984). The newest version of the model, REEPS 2.1, is
quite different in that it provides the user with a generalized modeling framework rather than
attempting to simulate a particular set of households. As a result, REEPS 2.1 does not have the
theoretical foundation and household-specific data enumeration offered by the micro simulation
approach in REEPS 1.0 (Cowing 1992).

This latest version of REEPS incorporates the basic features of residential end-use forecasting
into a generalized modeling framework in which the user has considerable control over the
algorithms and model structure (McMenamin et al. 1992). All REEPS users work within a
common software framework, which allows them to focus on the substantive aspects of the
analysis and avoid potential programming errors introduced by changes in the software source
code. This framework provides greater flexibility compared to traditional models which are
"hardwired" for particular formulations of residential sector energy use. Rather than relying on a
fixed set of equations and/or parameters, the user can precisely specify the equations used to
forecast future appliance and housing characteristics. Both the functional form and parameters
included in these equations are open to modification by the user. This enables modeling of a




wide range of scenarios and policies, at varying levels of disaggregation, without ever changing
the computer program itself. This improved modeling flexibility, however, brings with it
considerably more responsibility on the part of the user in configuring the input data. Each
distinct set of data and parameters results in a different model, with the result that there can be
considerable variation in the forecast results even when exogenous variables remain the same. In
effect, the "model" consists of the structure, data, and algorithms developed by the user, with the
REEPS computer program itself as a modeling shell that imparts a higher level structure and
consistency to the analysis.

The REEPS 2.1 Appliance Model! forecasts future purchases and energy consumption of
appliances, using the modeling framework described above. the individual appliance end-use
models in REEPS derive their higher-level structure from other input variables shown in Figure
2.1. Exogenous variables include macroeconomic projections such as income and household
size, along with other external parameters needed by the model. Fuel price projections are
implemented as exogenous time series for each fuel and rate class used in the model.
Households data allow the user to forecast changes to the housing stock based on separate decay
rates for each housing type and vintage block. Demographic segmentation divides the appliance
market into different segments based on household characteristics such as income or household
size, allowing purchase decisions to be differentiated between the segments. These other input
sets precede the specification of the appliance models themselves because they define important
elements of appliance model structure, such as the housing types specified in the Households
module. Data from these input sets are used as drivers in forecasting the size, characteristics, and
usage of the appliance stock. In general, REEPS uses data in the form of an average value within
a market segment (house type, income, etc.), rather than a distribution of values that would more
closely approximate the actual situation. This data structure could potentially introduce
aggregation bias into the forecasts, which the user may attempt to minimize by dividing the
market into smaller segments (thus the average values input to REEPS represent fewer houses).

2.2. Appliance Model Flow and Execution

The REEPS 2.1 Appliance Model is a vintaged capital stock or stock flow-adjustment model that
maintains accounts of appliances by vintage year. REEPS 2.1 uses a state-based approach to
forecasting in which purchase decisions are explicitly modeled at the household level and depend
upon the "state" (or characteristics) of the household and its existing appliance ownership status.
This means that for each housing class a prototypical or average house is specified and purchase
decisions for this house are assumed to apply to all houses in that class, additionally, the decision
model may change based on the characteristics of this average house (Section 3 describes the
various decision models in more detail). The state-based approach differs from a saturation
approach to appliance modeling, in which the saturations or market shares are forecast as a
function of population characteristics and the difference from the current ownership patterns are
attributed to appliance purchases (EPRI 1990, p. A-3).

1 We sometimes refer to the REEPS Appliance Model and other times to a particular appliance model. References
to the former are capitalized in this report. The REEPS Appliance Model refers to the basic modeling structure
provided to the user, and this structure is the same for all end-uses or appliances. A particular application of this
Appliance Model for, say, refrigerators, results in a refrigerator appliance model. This distinction is quite important
because REEPS allows the user considerable control over the structure, data, and functional equations. This means
that a different input set can describe a completely different appliance model rather than simply differing only in the
control data or in particular parameters.



Figure 2.1: Relationships among REEPS Input Sets
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The decision models determine the value of four key variables for a particular appliance type
throughout the course of the forecast: Size, Efficiency, Usage, Market Share. These variables,
when combined with an exogenous forecast of the number of households, determine the
residential-sector energy consumption for that specific appliance type. The five variables are
related through the fundamental energy demand identity used in REEPS:

_ (Usagen, s o) (Sizep s 0)
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where E is the total sectoral energy consumption, g is the generic technology, & is the housing
type, s is the demographic segment, Usage is the intensity of use of the appliance (e.g.,
loads/yr.), Size is the appliance capacity, Efficiency is the level of end-use services delivered per
unit of energy input, Share is the ownership share (saturation), and HH is the number of
households in a particular market segment. Appliance size, efficiency and usage are defined by
the user in the units and values appropriate for a given end-use and/or appliance. The number of
households is exogenous to the Appliance Model, having been derived in the Household Data
module shown in Figure 2.1.

The user specifies the characteristics of the existing stock of appliances so that Equation 2.1 can
be evaluated in the base-year of the forecast. The characteristics include appliance efficiency,
size and market share. The result of Equation 2.1 (without the "HH" term) is then compared to a
known value of Unit Energy Consumption (UEC) as a check for input errors and to calibrate the
model to empirically-observed trends. The user also specifies equipment lifetimes and optional
vintage blocks to differentiate efficiencies across appliance vintages and to facilitate proper
accounting for decay and replacement of appliances over time.

The energy use characteristics of the appliance stocks are primarily affected by the efficiency of
the new stock additions. The level of energy consumption for an appliance may also change as a
result of changing appliance usage (measured as cycles/year or volume/day), based on a user-
specified usage function. The user also specifies characteristics of new appliances purchased in
the first forecast year, allowing the modeling of purchase decisions for new homes and for
replacement of appliances in existing homes. These characteristics include the marginal (new
equipment) efficiency, the purchase price of appliances, an equation for appliance size in future
years, and the market shares of technologies in new homes in the first forecast year.

Additional data on appliances depend on the choice between two modeling approaches, reduced-
form and specific technology, as shown in Figure 2.2. The specification of generic technologies
is the same for both approaches, as illustrated in Figure 2.2 and in Equation 2.1. Generic
technologies are classes of appliances distinguished by fundamental features, such as gas vs.
electric water heaters. For reduced-form specification, the user models efficiency changes as a
function of exogenous variables (such as fuel prices) and demographic segmentation variables
(such as housing type or income). Purchase price is modeled through a user-specified function
based on size and efficiency. Consequently, there can be no feedback effect from purchase cost
to efficiency because cost is determined after efficiency has already been calculated. The
specific technology approach treats these changes differently by allowing the user to characterize
technology options, with an associated purchase price, efficiency and availability. Availability
includes specification of legal availability (appliance standards) and market availability,
describing the relative penetration of the technology in the marketplace as constrained by
maximum production capacity (among other possible causes) for a specific technology. The
purchase decision models based on these characteristics are discussed in Section 3.




Figure 2.2: Specific Technology vs. Reduced-Form
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Three general modeling steps are executed for each end-use: 1) base-year calibration, 2)
decision-model calibration, and 3) forecast execution. In the base-year calibration, the Appliance
Model is compared with the input housing stock and demographic characteristics to check for
consistency. Base-year data on appliance saturations, sizes, efficiency levels and average UEC
values are disaggregated by houting type and demographic segment. Usage is adjusted to be
consistent with stock UEC values and vintage block information on vintage block shares,
efficiencies and sizes. In the second step, decision-model calibration, the decision models are
adjusted to fit the control (or "calibration") values specified in the first forecast year (1991 in this
implementation of REEPS). These control values are referred to later as "control-year" data, and
include the marginal appliance efficiencies and new home market shares. Finally, in the forecast
execution step, decision models are used to predict new appliance ownership shares and
efficiency choices. The algorithmic procedures in each of these three steps are detailed in the
technical documentation for the Appliance Model (EPRI 1990).

2.3 Appliance End-use Structure and Assumptions

We used three housing types in configuring the appliance models: single-family, multifamily and
manufactured homes. In the baseline analysis presented in this report, there is no additional
economic or demographic segmentation beyond housing type, to avoid added complexity. We
analyzed a total of nine end-uses and developed appliance models for use with REEPS for each
of these end-uses. We model six of these end-uses with the specific technology characterization:
refrigerators, freezers, water heaters, dishwashers, clothes washers, and dryers. The decision
models we developed for these end-uses are discussed in Section 3 and the base-year and control
data are discussed in Sections 8 and 9. We model three end-uses using the reduced form
representation: lighting, cooking and miscellaneous. We discuss these end-uses and provide the
base-year and control data in Sections 6 and 7. Due to the lack of data and the reduced form




representation of the models, we have not estimated purchase decision models for these latter
three end-uses.

The REEPS 2.1 modeling framework is data intensive, particularly since it requires data at the
household level. The primary sources of base-year (1990 stock) and control-year (1991 new
units) ownership data are the Residential Energy Consumption Surveys (RECS) conducted by
the U.S. Energy Information Administration (EIA 1989b, EIA 1992, EIA 1993). To estimate the
marginal shares of new homes built in 1991, we use RECS data for homes built in 1985 through
1990. For particular end-uses these data may differ somewhat from other published sources
(such as the US Census Bureau American Housing Survey), but we have used RECS for all end-
uses for the sake of consistency. For appliance stock data -- historic shipments, capacities and
efficiencies -- we use data from the Association of Home Appliance Manufacturers (AHAM
1991). For cost-efficiency option data for new technologies, we use information developed for
the U.S. Department of Energy (US DOE 1989, US DOE 1990, US DOE 1993a) in support of
the National Appliance Energy Conservation Act of 1987 (NAECA) appliance efficiency
standards. For the lighting end-use, we have relied on the results of monitored residential
lighting usage in Washington state (Manclark 1991), lighting surveys from New York and New
Jersey (Robinson 1992), and a recent residential lighting survey by Pacific Gas & Electric
(Kelsey and Richardson 1992).

2.4 Policy Modeling

The flexibility of REEPS 2.1 allows the user to model a number of policies through the judicious
modification of the appropriate parameters, equations, structure, and addition of new
technologies. Government and utility policies have the potential to restrict the availability of
certain appliance efficiency levels, energy prices, financial criteria for new equipmer.t purchases,
early retirement of appliances, and rates of technical innovation. The policy handles in REEPS
2.1 include: energy prices; functional forms and coefficients for choice equations; pre-failure
replacement/conversion decision algorithm; restrictions on legal or market availability of specific
technologies; and modification of specific technologies’ purchase price or efficiencies. Table 2.1
lists policies by area of impact and the corresponding policy handles in REEPS 2.1. .



Table 2.1: Policy Handles in EPRI-REEPS 2.1
Area of Impact Policy Handle
EFFICIENCY LEVEL AVAILABILITY Restrict "legal availability" of specific
Minimum efficiency standards. technologies.
Restrict "market availability” of specific
technologies.
ENERGY PRICES Electricity and fuel prices.
Taxes
energy taxes
| carbon tax
FINANCIAL CRITERIA FOR APPLIANCE | Reduce purchase price of specific technologies.
INVESTMENT
Equipment Subsidies by Utility (via Rate-of-
Retum Regulation)
rebates
low-interest loans
installation at utility cost
direct installation by utility
Equipment Subsidies by Government
performance based tax rebates
investment tax credits
direct government purchases
Information Dissemination Implicit Discount Rate, via parameters in
audit programs consumer utility function for efficiency or fuel
extension services choice equations.
advertising and labeling
trainin
EARLY RETIREMENT OF APPLIANCES Add pre-failure replacement and conversion
Equipment Subsidies by Utility (via Rate-of- | purchase decision state.
Return Regulation)
Equipment Subsidies by Government
Residential Energy Conservation Ordinances
RATE OF TECHNICAL INNOVATION Add new technologies to list of specific
Research and Development Programs technologies.
Demonstration Programs Reduce purchase price of specific technology
"solden Carrot" Programs options ("cost multiplier").
Patent Law Increase efficiency of specific technology
options ("efficiency multiplier").

3. STRUCTURE OF APPLIANCE DECISION MODELS

For those appliances modeled with the specific technology approach, we have configured one
generic technology for each commonly-used fuel type, as shown in Figure 3.1. The refrigerator,
freezer, dishwasher, and clothes washer models are limited to only one fuel type -- electric. The
water heater model has three fuel types -- electric, gas and oil. The dryer model has two fuel
types -- electric or gas. Each generic technology has an associated ownership model, discussed
in Section 3.1. For each generic technology, there is also a set of associated specific
technologies, that can be considered appliance "models" differing in their efficiency levels and
purchase price. We adopt this structure, as shown in Figure 3.2, for each generic technology
shown in Figure 3.1. We developed an efficiency choice model for each of these generic
technology types, and these models are described in Section 3.2. The combined effect of the



ownership models and efficiency choice models determines the purchase decisions over the
course of the forecast.

3.1. Ownership Models

Household ownership of appliances is determined through decision models which estimate the
probability of ownership based on household characteristics and exogenous variables. For each
year ¢t during the course of the forecast, individual probabilities of ownership are calculated using
a multinomial logit (MNL) equation:

exp(Uh,s,n,g)

8~ Zexp(Ung,n,g')
gC

Probability of Ownership], . G.1)

where h is the housing type, s is the demographic segment, n is the decision state, g is the generic
technology of interest, g'is the set of all generic technologies, and U is the "utility function" or
"desirability index."2 The desirability index is specified by the user and may be dependent upon
attributes of the appliance (purchase price, operating cost, warranty, etc.) as well as attributes of
the decision-maker (income, household type, rural or urban, etc.). The individual probabilities of
ownership are aggregated to estimate the overall marginal market saturations for decision st.ite 1
and .narket segment £, s.

There are four user-specified decision states that can lead to the decision to acquire appliances:
1) new home construction, 2) decay and replacement, 3) non-owner acquisition, and 4) pre-
failure replacement and conversion. Decisions to acquire appliances are modeled at the
household level, based upon household characteristics and existing ownership status, and
depending on which of the four decision states are active for a particular end-use. If a
replacement model is not specified, then the model assumes 100% replacement with the same
generic technology. We have activated the new home decision state for all models and the non-
owner acquisition model for those end-uses where the appliance saturation is significantly less
than 100%, namely dishwashers and freezers. We generally assume 100% replacement, except
for freezers (and fuel-switching for water heaters), based on a comparison of historical shipments
(AHAM 1991) and 1990 stock data (EIA 1992). The "pre-failure replacement and conversion"
decision state is not active for the baseline forecasts. This decision state could be used in a
scenario where utilities have appliance "buy-back" programs, or to model some other type of
rebate program.

We have adopted the REEPS 2.1 default ownership models for all appliances covered in this
report, except for water heaters. For water heaters, we developed a new model and estimated the
parameters using data from the 1987 RECS. We discuss the new water heater ownership model
in Section 5, and the REEPS 2.1 default ownership models are presented in the appropriate end-
use sections.

2 The user also has the option in REEPS 2.1 of estimating market shares using a "nested logit" or GEV (generalized
extreme value) model that allows simultaneous modeling of ownership and efficiency choice. Estimation of the
GEV model requires a highly detailed and disaggregated data set, which is not available at the national level.




Figure 3.1: Appliance Model Structure

Generic Technology / Specific
End-use Fuel Technology
Refrigerator Own m"(‘;‘;"y
None
— o B
None
Water Heater Electric gﬁpitf(‘):;cy
oil gf:u?;f‘s“"y
Dishwasher Own g‘;;‘;cy
——| None
Clothes Washer Own gt"gil;cy
None
Dryer Electric g’fmc;";cy
Gas oncions”
None

10




Figure 3.2: General Decision Model Structure

Generic Specific
Technology Technology
—— baseline efficiency
. generic e efficiency option 1
technology 1
— etficiency option nl
Decision State: — baseline efficiency
New Home, —_l generic —l____ efficiency option 1
Replacement, or technology 2
Acquisition : im efficiency option n2
— baseline efficiency
i gemeric i _|___ efficiency option 1
technology m
— efficiency option nm

3.2. Efficiency Choice Models

We use the specific technology approach to model efficiency choice for refrigerators, freezers,
dryers, water heaters, clothes washers and dishwashers. Other end-uses are modeled using a
reduced-form efficiency-choice equation. The lighting end-use has no efficiency choice model,
although the REEPS lighting model has been set-up with specific technologies to allow modeling
of prescriptive policies. With the specific technology approach, the user inputs a list of specific
technology options and the model calculates individual probabilities of purchase for each year ¢
using a multinomial logit equation of the form:

- .t __exp(Un,s,n,ge)
Probability of Ownershlph,s,n,ge > e"P(Uh,s,n-,ge')
ge'

(3.2

where h is the housing type, s is the demographic segment, n is the decision state, ge is the
specific efficiency option of interest, ge' is the set of all specific efficiency options, and U is the
"utility function" or "desirability index." Our model specification for the utility function is
discussed below. The probabilities are then aggregated to estimate the overall marginal market
purchase shares for decision state »n , housing type h, and demographic segment s.

We characterize overall market efficiency outcomes using a concept similar to that of a market
discount rate. Ruderman et al. (1987) describe the concept of a market discount rate:

...the market discount rate characterizes the decisions of the market as a whole. Although different
segments of the market do not necessarily make their decisions on the basis of minimum life-cycle cost, we
can calculate the discount rate associated with a market that is treated in the aggregate as if it optimizes
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efficiency decisions. In other words, we ask the question: if we treat the market conceptually as if the sum
of all the appliance efficiency choices could be characterized by a type of life-cycle cost decision, what is
the discount rate that would characterize the overall market? Decisions by manufacturers on which design
options to produce, decisions by retailers and wholesalers on which models to advertise or discount, and the
purchase decision affect the market discount rate.

Unlike Ruderman et al.'s model, we use a multinomial logit model that characterizes the market
distribution of appliance efficiency choices, rather than just the overall market average. For the
specification of the utility function used to choose among efficiency options, we use a standard
model of consumer choice involving the implicit tradeoff between present purchase price and
future operating cost (Train 1986). Confronted with j discrete appliance purchase options, a
consumer selects the option that maximizes utility as a function of purchase price (PP) and
operating cost (OC) as well as other factors (Z)3. If one assumes a linear utility function, then the
utility, U, of a particular purchase option can be represented as:

Uj=b1PPj+b20C;j+b3Z; 3.3)

where bl, b2 and b3 are unknown parameters to be estimated. The implicit market discount rate
is given by:

bi r

b2 [(1-(1+0'T) a8
where r is the implicit discount rate, and T is the expected lifetime. If the lifetime is infinite, then
the discount rate is simply the ratio of the cost coefficients, by and b. We report the implicit
discount rate for each decision model estimated in this analysis. These discount rates are
provided solely as an intuitive interpretation of the logit parameters and cannot be reliably
transferred to other consumer choice models, such as life-cycle cost minimization models.

Ideally, the parameters of multinomial logit models are estimated on houschold-level sample
data. Unfortunately, such data do not exist at the national level for the application we are
studying here. Thus, we have used aggregate, averaged national data to characterize overall
market outcomes in terms of a "representative individual." To estimate the model parameters,
we employed a least squares procedure developed by Berkson and described in Ben-Akiva and
Lerman (Ben-Akiva and Lerman 1985). Berkson's procedure is based on the fact that a
multinomial logit model with a linear-in-parameters utility function can be transformed into a
form amenable to standard regression techniques. The MNL equation is transformed as follows:

108(*s§§)=bl(PPi‘PPj)+b2(0Ci~0Cj) 35

where S; is the share of option i and j is a generic technology option used as a constant reference.

Estimating the parameters in Equation 3.3 with aggregate and averaged data requires a data set of
market share, purchase price and annual operating cost by efficiency level. We chose a single
product class to represent each generic technology and chose a set of specific technology options
from the supporting analysis for the federal energy conservation standards (US DOE 1989, US
DOE 1990, US DOE 1993a). Purchase prices are estimated for each efficiency level by using a

3 In the modeling framework adopted here, the "consumer” does not refer to specific purchasers or types of
purchasers, but instead represents the bebavior of the market for a particular appliance in aggregate, just as in
Ruderman et al. (1987).
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three-parameter curve that has been fit to the cost-efficiency data for the specific technology
options (listed in Tables B.1, C.1, D.1, D.2, D.3, E.1; F.1, G.1 and G.2 in the appendices). We
assume that the models offered at different efficiency levels do not have any additional attributes
that affect the efficiency choice outcome (i.e., Zj = 0 in Equation 3.3). Operating costs are
estimated using the following equation:

(annual usage)(avg size)
(efficiency)

Annual Operating Cost = (Avg energy cost) (3.6)

Shares of appliance purchases by efficiency level were adopted from the LBL-REM input data
sets with the exception of refrigerators and freezers. The share distributions are estimated so that
the average efficiency matches published efficiency data, either shipment-weighted energy
factors (SWEFs) or model-weighted energy factors (MWEFs) (AHAM 1991, GAMA 1991). In
some cases, they are a combination of SWEFs and MWEFs. Estimations of the model
parameters are discussed in Sections 4.3. and 5.3.

4. REFRIGERATOR, FREEZER AND DRYER MODELS
4.1. General Structure

Both the refrigerator/freezer model and the freezer model have one generic technology class.
REEPS 2.1 normalizes all input saturations to unity, however, because refrigerator saturations
are greater than one it is necessary to use two models, REF1 and REF2. For REF1, the new
home and replacement shares are assumed to be 100% and no ownership model need be
specified. For REF2, the base-year saturation for house type & is:

Market Share} %0, = Market Share}>% o; - 1.0 @1

The ownership models for REF2 and freezers select between ownership or non-ownership. For
dryers, there are three ownership choices: two generic technologies (electric and gas) and non-
ownership.

4.2. Ownership Models
Data from RECS suggest the most important demographic factors affecting refrigerator and dryer
ownership are income level and household size. For freezers, RECS suggests urban/rural status

is also an important factor. We have adopted the REEPS 2.1 default market share equations, as
shown in Table 4.1, which contain the appropriate factors.
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Table 4.1: Appliance Ownership Models for Refrigerators, Freezers and Dryers

Generic Model Type Utility Function
|_Technology
Refrigerators | New Home Uh ref2 = 0.02*Incp +0.5*HHSizep, - 1.0¥PVOC/1000 + Ch ref2
Replacement 100% Peplacement
Freezers New Home or Uh,n,frz = -2.2 + 0.01*Incp, + 0.9*HHSizep, + 0.85*Rural -
Replacement 10*AvgE + Ch n, frz
Electric New Home or Uh,n,de = -5.0¥LCC/1000 + 0.05*Inch + 0.14*HHSizeh + Ch n,de
Dryers Acquisition
Replacement 100% Replacement )
Gas Dryers | New Home or Uh,n,dg = -5.0¥LCC/1000 + 0.05*Incp, + 0.18*HHSizep, » Cp,n,dg
Acquisition
Replacement 100% Replacement
Definitions: % is house type,
n is the decision state,

Inc is the average household income,

HHSize is the average number of household members,

PVOC is the present value of operating cost (averaged over all specific efficiency options) at a
40% discount rate4,

Rural is the fraction of rural household in the total population,

AvgE is the average electricity price,

LCC is the life cycle cost (average) at 40% discount rate,

Ch,n,g is the control-year calibration constant for generic technology g.

4.3. Efficiency Choice Model
4.3.1. Refrigerators and Freezers.

To estimate the multinomial logit efficiency choice model for refrigerators and freezers using
aggregate data, we created disaggregate data sets of 1000 artificial observations using the
following methodology. We chose 1989, the last year before the 1990 NAECA minimum
efficiency standards, to characterize market decisions. Average efficiency choices for
refrigerators and freezers are the 1989 AHAM shipment weighted efficiency for "Top mount
freezer without ice" refrigerators and "Upright, Manual Defrost” freezers, respectively (AHAM
1991). Purchase price and operating costs are described by a three-parameter curve that we fit to
the LBL cost-efficiency option list for "Top mount freezer without ice" refrigerators (Table B.1)
and "Upright, Manual Defrost" freezers (Table C.1) (US DOE 1990). We assume that the
models offered at different efficiency levels do not have any additional attributes which affect the
efficiency choice outcome (i.¢., Zj = 0 in equation 3.3).

We assumed normal distributions of efficiencies with standard deviations based upon 1984
California shipments data for "Top mount freezer without ice refrigerators" and for all freezers
(CEC 1987).5 The distributions of efficiencies were then parsed into seven efficiency bins

4 Note that this discount rate is for the appliance ownership model and is distinct from the "market discount rate"
used to characterize the efficiency choices. In practice, the REEPS default ownership models are relatively
insensitive to the discount rate, so the 40% discount rate has been selected to be generally representative of the
market discount rates observed in the appliance end-uses.

SDespite the age and limited geographical extent of these data, we employ them because they are the only data that
have been developed from true market surveys.
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assuming a normal distribution, creating "market shares" for seven different efficiency levels. A
data set of 1000 observations was created by assigning a market share of, say, 20% for option 2
to be equivalent to 200 observed selections of option 2. Finally, we estimated the models with a
statistical package, SST, that uses maximum likelihood estimation techniques (Dubin and Rivers
1988). The results are presented in Table 4.2. Statistical measurements of goodness-of-fit, such
as t-statistics, cannot be interpreted in a conventional manner from these results because the
artificial observations do not contain variation within each efficiency bin with which to calculate
such statistics, hence we do not report them here.

Table 4.2: Estimated CoefTicients of Refrigerator and

Freezer Efficiency Choice Models

Screen: AM- 6f

End-use Variable Parameter
Estimate

Refrigerator
Purchase Price (b1) -0.0829
Operating Cost (b2) -0.1207
Implicit discount rate* 69%

Freezer
Purchase Price (b1) -0.0590
|Operating Cost (b2) -0.0651
Implicit discount rate* 91%

* Assuming infinite lifetime.

4.3.2. Dryers

No data on shares by efficiency level are available for dryers. We selected the efficiency choice
parameters so that average efficiencies calculated from the predicted shares would match 1990
SWEFs (AHAM 1991). Since there are an infinite number of combinations of parameters that
will match the SWEFs, we normalized the operating cost parameter, bz, to equal -0.1. Then we
selected the parameter by to be closest in absolute value to by while yielding an average
efficiency that matches the 1990 SWEF (using Equations 3.2 and 3.3 to estimate market shares
of specific efficiency options). The results are presented in Table 4.3.

Table 4.3: Estimated Coefficients of Dryer Efficiency Choice Models
Screen: AM- 6f
Generic Technology Variable Parameter
Estimate
Electric, Standard
Purchase Price (b1) -0.120
Operating Cost (b2) -0.1
Implicit discount rate* 120%
Gas, Standard
Purchase Price (by) -0.062
Operating Cost (b2) -0.1
Implicit discount rate* 62%
* Assuming infinite lifetime.
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5. WATER HEATER, DISHWASHER AND CLOTHES WASHER MODELS
5.1. Model Structure
5.1.1. Water Heating and Space Heating Fuel Dependence

There are three fuel choices for water heaters -- electric, gas or oil. A previous study, as well as
analysis of RECS data, strongly suggest that water heater fuel choice is dependent upon space
heating fuel choice (Dubin 1985, EIA 1989a) New homes with electric space heating rarely have
piped gas service and therefore rarely have gas water heaters. New homes with gas space
heating predominately have gas water heaters since, on average, gas-fired units have annual
operating costs about half those of electric water heaters with comparable purchase prices.
Figure 5.1 shows the dependency of the water heater fuel choice upon the space heating fuel
choice in new homes.

To implement this choice structurc in REEPS, we first run the HVAC model to obtain national
average shares of gas space heating in new homes. The shares are used in the appliance model as
an exogenous vector for the gas availability variable. The gas availability variable subdivides the
new home water heater market into those with and those without gas space heating. Only the
new homes with gas space heating are allowed to choose between all three fuel types. Those
with electric and other space heating fuel types are allowed to choose between electricity and oil,
with only a small fraction of these (about 5%) choosing oil.

As shown in Figure 5.2, the choice is similar for replacements. Those houses with gas space
heating are highly likely to choose gas water heaters. The houses with electric space heating are
highly likely to choose electric water heaters due to the lack of gas fuel hookup. Ideally, the
replacement fuel decision would be conditional on the space heating fuel type. The existing
REEPS algorithm, however, does not allow this structure to be implemented. Instead, the
replacement fuel type is conditional upon the old water heater fuel type, which is closely
correlated with the space heating fuel type.

Figure 5.1: Water Heater Model Structure for New

Homes
elec water heater
. 83SSpace gas water heater
beating

oil water heater

New Home ———
— elec water heater

other space

heating

- 0il water heater
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Figure 5.2: Water Heater Model Structure for Replacements

— elec water heater (95%%*)
old water

[ heaterelec ™

L—— gas water heater (5%*)

—— elec water heater (10%*)

| old water

heater gas — |

Replacement

gas water heater (90%*)

old water
" heater oil — 0il water heater (100%*)

* Estimated control year (1991) shares

5.1.2. Water Heater, Dishwasher and Clothes Washer Interactions

Through hot water usage, the water heater, dishwasher and clothes washer models are
interdependent. Figure 5.3 illustrates the influences these end-uses have on each other. Due to
structural limitations in the REEPS algorithms, most of these influences cannot be modeled
endogenously. Instead, they must be modeled iteratively through exogenous vectors. Water
heater fuel and efficiency choices are influenced by saturations and efficiency choices of both
dishwashers and clothes washers. Dishwasher and clothes washer efficiency choice, in turn, is
affected by the water heater fuel and efficiency choices. As shown in Figure 5.3, only one type
of these interactions can be modeled endogenously in REEPS: the interaction between the load
on the water heater and the saturations of dishwashers and clothes washers (the solid line labeled
"share" in Figure 5.3).

To implement this structure in REEPS, the model must be run iteratively. However, since the
water heater fuel choice and efficiency choice models have relatively high discount rates (84%
and 63 to 200%, respectively), their outcomes are relatively insensitive to the operating costs
(and hence so are the hot water heat load outcomes from the dishwasher and clothes washers
models).® Therefore, reasonable hot water loads can be inserted for the water heater hot water
load and the results for the water heater shares and average efficiency choice can be used in the
efficiency choice models for dishwashers and clothes washers (see Equation 5.4). The hot water
load from dishwashers and clothes washers can then be fed back into the water heater model
using exogenous variables in the REEPS water heater usage equation (the exogenous variables
are shown in Tables E.7 and F.7 in the Appendices). If significantly lower discount rates are
used in the water heater fuel and efficiency choice models, this method may no longer be
appropriate,

6 Hot water load is, however, important in the calculation of overall water heater energy consumption.

Furthermore, if the discount rates are lowered, then the efficiency choice will become more sensitive to operating
cost.
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Figure 53 Water Heater, Dishwasher and Clothes Washer Model Interactions
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Interaction Between Water Heater Load and Dishwashers and Clothes washers. Efficiency
choice is partly a function of operating cost (Equation 3.3), which for water heaters is based on
the following relationship’:

where OCge = Annual water heating operating cost of specific option ge, $/year
Pj = Energy price for fuel type j, $kWh or $MMBtu

HWLwh = Average Hot Water Load, kWh.th/HH/year or Btu.th/HH-year8
Effge = Efficiency of option ge, kWh.th/kWh.e or Btu.th/Btu.f

TWater heater efficiency is more accurately described by two terms: recovery efficiency and standby loss. REEPS
2.1 allows specific technology options to be described by only one efficiency term, thus the efficiency parameter
described here is a combined efficiency measure, Energy Factor. A forthcoming version of REEPS will allow water
heater efficiency to be specified using two terms.

8 We adopt the following conventions:

1kWh =3412 Bu

kWh.th or Btu.th = thermal heat content of the outlet hot water, in kWh or Btu,

kWh.e = energy content of input electricity, in kWh of electricity,

Btu.f = energy content of input fuel, in Btu of natural gas or oil.
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The average hot water load, in turn, is calculated as a function of dishwasher and clothes washer
average hot water loads and shares as shown in Equation 5.2.

HWLwh = B+ HWL gy + HWL (5.2)

where HWLwh = Average Hot Water Load, kWh.th/HH-year
B = Average Base Hot Water Load, kWh.th/HH-year

HWL 4w = Average Dishwasher Hot Water Load, kWh.th/HH-year
= (HWL4w) (Shareqw)

HWLcw = Average Clothes Washer Hot Water Load, kWh.th/HH-year
= (HWL,y) * (Sharecy,)

Derivation of the Base Hot Water Load. The base hot water load is all hot water uses other than
dishwashers and clothes washers. It is calculated as follows:

shflow +2 ftflow
bskflow bftlow

B =68.3 (19.71+10.9°HHsize) (X + Y ) (5.3)
where B = Average Base Hot Water Load, kWh.th/HH-yr,

68.3 converts gal/day to kWh.th/yr @ 77 F temperature rise (kWh.th-day/gal-yr),

(19.71+10.9-HHsize) is the average non-dishwasher/clothes washer household hot water usage (gal/day),

HHsize = Number of household occupants (exogenously forecast),

X = 0.36 (volume-dominated fraction of base load),

Y = 0.54 (shower (flow-dominated) fraction of base load),

Z = 0.10 (faucet (flow-dominated) fraction of base load),

shflow = stock average showerhead flowrate in future years,

bshflow = stock average showerhead flowrate in 1990,

ftflow = stock average faucet flowrate in future years, and

bftflow = stock average faucet flowrate in 1990.

The derivation of Equation 5.3. has two major components: developing a relationship between
household hot water usage and HHsize (the first part of the equation), and disaggregating this
base usage into end-use points to allow modeling of water conservation policies (the latter part of
the equation). The fundamental relationship between base household usage and HHsize is
derived from the Bonneville Power Administration's Regional End-use Metering Project (REMP)
(Taylor et al. 1991). This report provides metered usage of electricity for water heating (kWh/yr)
as a function of HHsize for 201 homes in the Pacific Northwest. These electricity usage data
were used to estimate total hot water usage (gal/day-household) as a function of HHsize?.

To determine the base hot water usage, dishwasher and clothes washer hot water usage was
removed from the usage levels determined from the REMP data. This process is illustrated in
Table 5.1. Using appliance saturations stratified by HHsize from the 1987 RECS (EIA 1989b)
and assuming that appliance hot water usage varies as a function of HHsize, we subtracted the
weighted-average appliance hot water usage from the total hot water usage by HHsizc. This
yielded the base hot water load for each integer value of HHsize, which we then scaled so that
the average usage equaled the base, non-appliance hot water usage (47.9 gal/day-household)
reported in Koomey et al. (1994b). This usage estimate is based on the most internally consistent
data and we therefore feel that their average usage value is representative of actual usage levels.
We then used the scaled hot water usage to derive the linear regression values in Equation 5.3.

9Because the sample of homes had electric resistance water heating, we assume 100% recovery efficiency to convert
from electricity consumption to hot water usage. Hot water usage is a quadratic function of HHsize because the
REMP report notes the non-linear relationship between HHsize and kWh.
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Table 5.1: Water Heater Base Usage Data Summary

% of Houses # of Predicted Total Hot Saturation-Wtd. Hot Base Hot Scaled
in1990 | Household| UEC (2) |Water Usage (3)| Water Use (gal/day) (4)] Water Use (5) | Base Use (6)
stock (1) | Occupants | (kWh/yr) (gal/day) CWash DWash (gal/day) (gal/day)

0% 0 1,154
25% 1 2,790 24.0 3.7 1.0 19.2 29.0
33% 2 3,784 38.5 83 26 276 41.6
17% 3 4,672 51.5 11.7 35 363 548
15% 4 5,505 63.7 16.4 49 424 64.0
7% 5 6,303 754 20.5 6.3 48.6 733
4% 6 7,077 86.7 25.0 5.7 56.0 84.4
|_Wstd. Avg. 2.6 4,248 45.3 10.4 31 31.8 479
Notes:
1(1) From 1990 RECS (EIA 1992).

(2) Based on REMP data, assuming that hot water usage is a quadratic function of HHsize, of the form:
STANDBYLOSS + a(HHsize) + b(HHsize*).5), where STANDBYLOSS=1154 kWh/yr, a=539, and b=1098.

(3) Assumes 77F temperature rise, and 100% electric resistance water heater recovery efficiency.

(4) Water use is weighted by the saturation of clothes washers and dishwashers within each HHsize bin. Assume.
that 3-member households use the average amount of hot water (14.19 gal/day for clothes washers and 7.39 gal/da
for dishwashers, based on 1990 stock average UEC (AHAM 1991)). 6-member households use 2x average, 14
member households use 0.5x average. Other household sizes are linearly interpolated between these values.

(5) Hot water used by faucets and showers, net of clothes washer and dishwasher use.

(6) Base hot water use within each HHsize bin has been scaled so that weighted average matches 47.9 gal/day base
usage estimated in Koomey et al. (1994b).

Household hot water usage is further disaggregated into household end-use points to allow
modeling of the impacts of the showerhead and faucet efficiency standards in the Energy Policy
Act of 1992 (EPAct 1992). We subdivided the base hot water load into flow-dominated
endpoints (showerheads and some faucet use) and volume-dominated endpoints (filling of sinks
and bathtubs). The flow-dominated endpoints will be impacted by future changes in fixture
flowrates, whereas volume-dominated endpoints are not affected since usage in these cases is
determined by volume. The household end-use point disaggregation is from Koomey et al.
(1994b), who estimate the portion of base hot water usage that is volume-dominated (36%),
flow-dominated for showers (54%), and flow-dominated for faucets (10%).

Shflow and Fiflow, the estimates of average flowrates of the showerhead and faucet ("plumbing
fitting") stock in future years, are calculated outside of the model, and account for changes in the
stock from new purchases and replacements. The average flowrates of the stock in 1990 are
input as the denominators in the equation. We estimate that typical "high" flowrate fittings use
3.5 gallons/minute (gpm), and that 10% of households already have low-flow fittings (2.5 gpm).
Thus, the base average flowrates for each are 3.4 gpm (Koomey et al. 1994b). EPAct standards
(EPAct 1992) mandate 2.5 gpm or less flowrates beginning in 1994. We calculate average stock
flowrate in future years assuming a 20-year lifetime for the fittings and a constant replacement
rate (implying that 5% of the fixture stock is replaced each year). Table 5.2 shows the resulting
time series of average flowrate used as an exogenous input for the variables Shflow and Fiflow in
Equation 5.3. 85% of the fitting stock existing in 1993 has been replaced by the year 2010,
leading to a 21% reduction in total, non-appliance base hot water load from the 1990 level.

20




Table 5.2: Showerhead and Faucet Flowrates Resulting from
EPAct Standard
Showerhead & Faucet % Decline in
Year Stock Average Base Hot Water Usage
Flowrate as a Result of
(gpm) _ EPAct Standard
1990 3.40 0
1991 3.40 0
1992 3.40 0
1993 3.40 0
1994 334 2
1995 3.27 3
1996 3.21 5
1997 3.16 6
1998 3.10 7
1999 3.05 9
2000 299 10
2001 294 11
2002 2.89 13
2003 2.84 14
2004 2.80 15
2005 2.75 16
2006 271 17
2007 2.66 18
2008 2.62 19
2009 2.58 20
2010 2.54 21
Source: Hot water load disaggregated into end-use points based on
data in Koomey et al. (1994b).
(1) Stock tumover assumes 20 year fitting lifetime and constant
replacement rate of 5% per year. EPAct plumbing standard does not
take effect until 1994,
(2) Base hot water usage is total, non-appliance hot water usage,
including sink- and bathtub-filling uses which are not affected by
EPAct standard.

Interaction Between Dishwasher and Clothes Washer Efficiency Choice and Water Heaters. As
indicated in Equation 3.3, the desirability index for the efficiency choice model is a linear
function of purchase price (PP) and operating cost (OC) of the specific efficiency option.
Operating cost for dishwashers and clothes washers can be expressed as:

&ge = Ocnthe + OCthe (54)

where &ge = Average Operating Cost for efficiency option e of generic technology g, $/unit/year

OCnhwge = Average Operating Cost for non-hot water load, $/unit/year

OChwge = Average Operating Cost for hot water load, $/unit/year
The average operating cost of the non-hot water load is the motor operating cost for clothes
washers, and the motor, heater and dryer operating costs for dishwashers. It is calculated from

the efficiency data specified in the input data sets for the specific technologies (Tables E.1 and
F.1 in the Appendices). We do not include the cost of water or detergent in these operating costs
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because the units with which these parameters are specified (gallons/cycle or $/cycle) are
incompatible with the electrical energy operating costs specified above (cycles’kWh). The only
significant impact of this simplification is on horizontal axis clothes washers, which consume 50-
75% less water and detergent than the other specific efficiency options.

The average operating cost for the hot water load is estimated as a linear combination of the
electric water heating and gas water heating costs as follows:

5.5

S ShareyhePe Sha.l'ewhg'Pg
h = (hwlge)* o J WG |
OChwge = (hwlge)*(usage) { Eff whe + Effwng

where OChwge = Average Operating Cost for efficiency option e of generic technology g, $/unit/year,
hwlge = Hot water load for efficiency option e of generic technology g, kWh.th/year/unit,
usage = Usage index normalized to 229 cycles/year for dishwashers and 380 for clothes washers,
Effwhe,g = Efficiency (Energy Factor) of electric or gas water heater,
Sharewhe,g = Average saturation of electric or gas water heater,
Pe g = Price of electricity or gas.

The shares and efficiencies are exogenously specified variables, shown in Table D.13, that vary
over time and are determined as discussed in the water heater ownership and efficiency choice
sections. The shares are based upon the average market shares of the water heater fuel types.
The water heater efficiencies are average efficiencies for the electric or gas water heating stock.
The fuel prices, Pe and Pg, are exogenously specified.

Energy Sales Accounting. All hot water usage is accounted for under the water heater end-use.
The energy consumption reported for dishwashers and clothes washers is for all other energy not
associated with hot water heated by the hot water heater. For dishwashers, it is energy
consumption for the motor, heater and dryer. For clothes washers, it is energy consumption for
the motor only.

5.2. Ownership Models
5.2.1. Water Heaters

We estimated an ownership model for water heaters with a desirability index of the same form as
our efficiency choice model:

Ug=b1PPg+b20C, (5.6)

PPg is now the average purchase price of generic technology g and OCg is the average operating
cost of generic technology g. The costs are averages across the specific efficiency options using
shares predicted by the efficiency choice model.

Our ownership model for water heaters has three generic technologies based on fuel choice:
electric, gas and oil. Since these generic technologies are differentiated by fuel, and we assume
that all households have a water heater, the ownership decision model reduces to a fuel choice
model. Estimation of the model parameters requires data describing recent purchases of water
heaters, including information on the households as well as information on the annual operating
cost and purchase price of the water heaters in each household. Household-level price data are
generally not available, so we chose a data set of households in the 1987 RECS who had
purchased water heaters within the previous two years (i.e., 1986 or 1987). This data set
included water heaters purchased for new homes and for replacement of existing water heaters.
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There were a total of 575 households in this RECS sub-sample, which after weighting each
sample by its statistical weight in the RECS, produces a weighted representation of 8.77 million
households.

For each household in this sample, we extracted relevant information from RECS. This included
the water heater fuel choice, space heating fuel, number of bathrooms, number of bedrooms,
number of occupants, ownership of a clothes washer, and ownership of a dishwasher. We used
this information to estimate the hot water usage and the capacity of the water heater for each
kousehold. The hot water usage is based on the DOE test procedure (64.3 gal/day-household)10,
which has been disaggregated by household size according to the relationship described in
Section 5.1.2. The annual operating cost is then based on this usage profile and 1986-87 fuel
prices. Since the RECS does not have data on purchase prices, we estimated the purchase price
as a function of the fuel type, capacity, and average efficiency for each water heater in the RECS
sub-sample. We assigned a capacity to the water heater for each household based on the number
of bedrooms, aumber of bathrooms and the number of occupants (ASHRAE 1991), assuming
only three choices for water heater capacity: 30, 40, and 52 gallons. The relationship between
cost and capacity (for each water heater fuel type) was derived from cost estimates published by
R.S. MEANS (1991). The relationship between cost and efficiency was based on information
used in analyzing federal energy conservation standards (US DOE 1993a). The operating cost
and purchase price estimates were used in Equation 5.6 to estimate the ownership model
parameters shown in Table 5.3.

Table 5.3: Estimated Coefficients of Water
Heater Fuel Choice Model
Variable Parameter
Estimate

Purchase Price (b1) -0.0107

~ [Operating Cost (b2) -0.0127
Implicit discount rate* 84.2%
* Assuming infinite lifetime.

To estimate the model parameters, we employed Berkson's procedure as described in Section 3.2.
The generic technology market shares (S; in Equation 3.5) are from the 1987 RECS purchase
sample described above.

5.2.2. Dishwashers and Clothes Washers.

We adopt the REEPS 2.1 default ownership models for dishwashers and clothes washers, shown
in Table 5.4.

10The DOE hot water usage level was initially used to estimate the water heater ownership model, but is not entirely
consistent with the revised usage estimate (61.4 gal/day-household) described in Section 5.1.2. We did not re-
estimate the water heater ownership model using the updated hot water usage because the effect on the ownership
model parameters is minimal.
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Table 5.4: Appliance Ownership Models for Dishwashers and Clothes Washers

Generic Model Type Utility Function
Technology
Dishwasher New Home Uh,dw = 0.045*Inch + 0.04*HHSizep, - 0.2*Rural - 3.0¥AvgE +
Ch,dw
Replacement | 100% Replacement
Acquisition Uh,dw = -3.5 + 0.045*Inch + 0.04HHSizep, - 0.2*Rural - 3.0*AvgE
+Ch,dw
Clothes Washer | New Home or | Up p cw = 0.04Incp, + 0.262HHSizep, + 0.041(Year-1987) +
Replacement Chncw

Definitions: & is house type,
n is the decision state (new construction, replacement, or non-owner acquisition),
Inc is the average bousehold incoine,
~‘HHSize is the average number of household members,
Rural is the fraction of rural households in the total population,
AvgE is the average electricity price,
Ch,n,g is the control-year calibration constant for generic technology g.

5.3. Efficiency Choice Model

Efficiency choice model parameters were derived using data sets described in Section 3.2. For
electic and gas water heaters, the efficiency data are shown in Table 5.5. No data on market
share by efficiency level is available for oil water heaters. Thus, for oil water heaters we selected
the efficiency choice parameters so that average efficiency calculated using the estimated market
shares and the efficiency options in Appendix Table D.3 will match the shipment weighted
energy factor (0.55) in the LBL-REM input set (US DOE 1993a). This is similar to the
technique used for dryers described in Section 4.3.2. For dishwashers and clothes washers, the
efficiency distribution data used to estimate the efficiency choice model are shown in Table 5.6.
We employed Berkson's procedure, as described in Section 3.2, to estimate the efficiency choice

parameters. The results are shown in Tables 5.7 and 5.8.

Table 5.5: Water Heater Efficiency Distribution Data
Electric Gas
Energy Factor | Market Share | Energy Factor | Market Share

0.74 0.2% 046 1.9%

0.76 0.2% 047 15%

0.78 1.9% 049 1.9%

0.80 0.4% 0.53 02%

0.87 39% 0.54 12.5%

-~ 0.88 20.8% 0.55 26.4%
0.89 12.0% 0.56 25.4%

0.90 19.3% 057 5.1%

0.91 3.0% 0.58 9.0%

0.92 8.6% 0.59 2.7%

0.93 54% 0.60 43%

0.94 11.6% 0.61 1.9%

0.95 39% 0.62 5.5%

0.96 1.1% 0.63 1.0%
0.97 1.9% 0.72 0.5%

0.74 0.3%

0.91 100% 0.56 100%

Source: US DOE (1993a).
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Table 5.6: Dishwasher and Clothes Washer Efficiency Distribution Data

Dishwasher Clothes Washer
UEC (1) Market Share UEC (2) Market Share

709.9 0.5% 1672 0.3%
687.0 1.0% 1558 0.6%
664.2 22.1% 1482 0.6%
641.2 9.3% 1406 8.1%
618.3 10.3% 1330 0.6%
5954 14.7% 1254 4.9%
572.5 8.8% 1178 19.5%
549.6 17.6% 1102 9.9%
526.7 9.3% 1026 9.0%
503.8 6.4% 950 11.9%
874 16.6%

798 15.4%

722 2.6%

596 100% 1037 100%

Source: US DOE (1990)

(1) UEC includes motor, booster heater, dryer and hot water energy, assuming 229 cycles/yr and
electric water heater with no standby losses (EF=1).

(2) UEC includes motor and hot water energy, assuming 380 cycles/yr, 2.6 ft3 capacity, and electric water
| beater with no standby losses (EF=1).

Table 5.7: Estimated Coefficients of Water Heater Efficiency

Choice Models

Generic Technology Variable Parameter

Estimate

Electricity
Purchase Price (b1) -0.0216
Operating Cost (b2) -0.0195
Implicit discount rate* 111%

Gas
Purchase Price (b1) -0.0719
Operating Cost (b2) -0.1136
Implicit discount rate* 63%

il

Purchase Price (b1) -0.10
Operating Cost (b2) -0.05
Implicit discount rate* 200%

* Assuming infinite lifetime.

25



Table 5.8: Estimated Coefficients of Dishwasher and Clothes
Washer Efficiency Choice Models
End-use Variable Parameter
Estimate

Dishwasher
Purchase Price (b1) -0.2738
|Operating Cost (b2) -0.2463
Implicit discount rate* 111%

{Clothes washer
Purchase Price (b1) -0.3811
Operating Cost (b2) -0.0974
Implicit discount rate* 391%

* Assuming infinite lifetime.

6. LIGHTING MODEL

This section documents the baseline energy consumption for residential lighting. There has only
recently been an effort by energy analysts to characterize the lighting end-use in the residential
sector. Typically lighting has been treated as one of the miscellaneous energy uses in residences,
but recent surveys!! suggest that lighting may represent a more significant use than originally
thought. We estimate that lighting accounts for approximately 10% of residential electricity
consumption, and is thus a major end-use. For this reason, we treat lighting separately from the
miscellaneous end-use category. Our understanding of the lighting end-use, however, only
encompasses current equipment saturations and usage patterns. Thus, for implementation in
REEPS we did not have sufficient data to estimate ownership and efficiency choice models, so
we omit these models from the discussion. Nevertheless, the lighting baseline is quite useful
because it allows modeling of prescriptive policies and provides a better understanding of
potential market niches for lighting technologies.

Residential lighting exhibits a great deal of diversity in usage (hours) and equipment size (lamp
wattage). This situation is further complicated by the fact that the usage level affects the service
life of the device. For instance, an incandescent bulb used one hour per day will last
approximately three years, while the same bulb operated three hours per day will last less than
one year. The lifetime, in turn, largely determines the cost-effectiveness of energy-efficient
lighting technologies. For these reasons, we account for the heterogeneity in lighting usage by
modeling several discrete usage levels as separate end-uses in REEPS. This allows for more
accurate comparisons between lighting applications of differing usage intensity.

The fundamental unit of analysis used in this analysis is the individual incandescent light socket.
However, for modeling in REEPS the baseline UEC is over all light sockéts in the house. The
saturation of each end-use (discrete usage level) is based on the fraction of light bulbs having the
designated usage level in the average house. Baseline consumption is further disaggregated into
three housing types: single-family, multifamily and :»:nufactured homes.

1Such as the PG&E residential lighting survey documented by Kelsey and Richardson (1992) and another survey
by Grays Harbor PUD (1992). '
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6.1. Baseline Lighting Usage

We divide the current stock of light sockets into five usage bins: less than 1 hour, 1 to 2, 2 to 3,
3 to 4, and greater than 4 hours per day. This distribution includes both interior and exterior
lighting. The fraction of sockets assigned to each bin (Table 6.1) is based on monitored
residential lighting usage in Washington state (Manclark 1991). Although these data come from
a limited sample of houses, the usage distribution is similar to another monitoring study in
Washington state (Grays Harbor PUD 1992) in which the weighted average usage is 2.5
hours/day. Moreover, the mean usage used here is lower than generally cited in some other
studies (see Appendix H).

Table 6.1: Monitored Lighting Usage Characteristics
Daily Usage Average Fraction of Weighted-
Usage in Bin Bulbs Average Usage
(hours/day) (hours/day) (%) (hours/day)
0-1 0.5 40% 0.20
1-2 1.5 20% 0.30
2-3 25 10% 0.25
34 3.5 10% 035
>4 5 20% 1.00
Total 100% 2.10
Source: Manclark (1991). Measured data from Yakima, WA. Adapted
from a study of 52 homes.

We believe that the usage distribution in this study (Table 6.1) is representative of residential
lighting usage in the US, and any bias it may contain would tend to understate lighting usage.
There are two significant reasons why earlier studies have overestimated lighting usage. First,
most studies only concentrate on high-use sockets because these are generally the locations
where more efficient lighting technologies are most cost-effective. Second, most studies
estimate hours of usage by surveying the building occupants, but it is difficult for lighting users
to accurately gauge the average annual usage of each lighting socket. Moreover, the surveys are
usually conducted in the course of utility programs to identify high-usage sockets and retrofit
them with compact fluorescent lamps. This gives the building occupants an incentive to
overestimate usage in order to maximize the number of utility-provided retrofit lamps. In one
study by the New England Electric Service (NEES), users who kept diaries of lighting usage
reported 37% lower hours of usage than they originally had estimated for the same sockets
(Granda 1992).

6.2. Baseline Installed Wattage

In this study, we principally consider the consumption of incandescent lamps because they
comprise the vast majority of lighting in the residential sector. For instance, a comprehensive
lighting survey in Northern California found that 88% of the existing lamps in residences were
general service or reflector incandescents (Kelsey and Richardson 1992). Because California's
residential building code requires fluorescent lighting in kitchens and bathrooms of new houses,
the fraction of incandescents in California is probably lower than other parts of the US. We take
this as a lower bound on the fraction of incandescents in houses nationwide. The largest
saturation of non-incandescent lamps, however, are linear fluorescent tube lamps (four or eight
feet long). For this reason, we inciude full-size fluorescent lamps as a separate REEPS end-use,
but do not differentiate between housing types. In addition, compact fluorescent lamps (CFLs)
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have a small, but growing, saturation. The PG&E lighting survey found CFLs in approximately
2% of the light sockets surveyed (one CFL in half the homes) (Kelsey and Richardson 1992).
Due to this small saturation, we do not treat CFLs separately from the incandescent lighting
stock in the REEPS lighting model, but rather as a generic technology within the incandescent
lighting end-uscs. In the baseline REEPS model, CFL saturation is assumed to be fixed at the
current level because we have no data with which to estimate an ownership decision model. The
user can model prescriptive policies by exogenously increasing CFL saturation.

To disaggregate the stock incandescent lamp wattages we have assumed that all lamps are one of
the most common wattages — 40, 60, 75, 100, or 150 Watts. We used a survey of homes in New
York and New Jersey (Robinson 1992) as the basis for the relative frequency of each lamp size.
The wattage distribution has been modified somewhat by aggregating the smallest and largest
wattages (e.g., bulbs smaller than 40 watts are added to the 40W bin) as shown in Table 6.2. The
aggregated distribution retains sufficient detail for forecasting purposes, yet simplifies the
analysis.

Table 6.2: Installed Incandescent Wattage Distribution
Estimated Installed Wattage | Aggregated Installed Wattage Distribution
Distribution (1) Used for this analysis
Incandescent| Average Size Share of Weighted- | Average Size] Share of Weighted-
Bulb Size | for Category |Incandescent [Average Watts| for Category | Incandescent |Average Watts
(Watts) (Watts) Bulbs (Watts) Bulbs
<40 25 9% 23
40 40 16% 6.4 35 25% 88
60 60 37% 222 60 37% 222
75 75 20% 15.0 75 20% 150
100 100 12% 12.0 100 12% 120
150 150 5% 7.5 150 6% 9.0
>150 175 1% 1.8
Total / Weighted-Average: 100% 67.1 100% 67.0
(1) Source: Robinson (1992)

6.3. Baseline Energy Consumption

The baseline lighting UEC is calculated at the level of the individual light socket, and then
aggregated to estimate a whole-house lighting UEC. Two types of data are needed to calculate
the baseline lighting consumption: The annual consumption for each socket, and the average
number of sockets per house. Table 6.3 shows the calculation of socket UECs, based on the
usage and wattage distributions presented above. Each combination of lamp wattage and daily
usage leads to a unique annual socket UEC (25 levels, ranging from 6 to 274 kWh per year). In
Table 6.4, these individual UECs are then weighted according to their frequency of occurrence in
the housing stock (the bulb and wattage fractions in Table 6.4), in order to calculate an average
socket UEC. Table 6.4 also disaggregates this average socket UEC to indicate which
wattage/usage combinations are the largest contributors to a house's lighting consumption.
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Table 6.3: Annual Incandescent Socket UEC
(cross-tabulation of usage and wattage: annual kilowatt-hours)
Wattage (Mean Wattage in bin)
<40 60 75 100 >150
35 60 75 100 150
D‘:,',{,f;‘;“ M““;Jif,"ge in Unit Energy Consumption (UEC) per socket
0-1 0.5 6 11 14 18 27
12 1.5 19 33 41 55 82
2-3 25 32 55 68 91 137
34 35 45 77 96 128 192
>4 5 64 110 137 183 274
Source: Wattage - Robinson (1992); Usage - Manclark (1991)

Table 6.4: Fraction of Incandescent Lighting UEC
(cross-tabulation of usage, waltage, and saturation)
Wattage (% of Installed Wattage) Total
<40 60 75 100 2150
25% 37% 20% 12% 6% 100%
Da(ll:ﬁfrss?ge Me;lnnlg;age FrE:tlil())n Fraction of Average Socket UEC
0-1 0.5 40% 1% 3% 2% 2% 1% 10%
1-2 1.5 20% 2% 5% 3% 3% 2% 14%
2-3 25 10% 2% 4% 3% 2% 2% 12%
34 35 10% 2% 6% 4% 3% 2% 17%
>4 5 20% 6% 16% 11% 9% 6% 48%
Total] 100% 13% 33% 22% 18% 13% 100%
Average UEC per socket (kWh/yr): 514

Thus far, the data presented have described the usage and wattage of individual lamps;
multiplying these data by the number of sockets per house yields the whole-house UEC. Starting
with the average socket UEC calculated in Table 6.4, we use the number of incandescent sockets
per house as a variable in order to calibrate the incandescent lighting power density (installed
watts per square foot) to the value found in the PG&E survey (Kelsey and Richardson 1992).
The calibration accounts for the fact that the floor areas used in this study are different than the
average floor area in the PG&E survey, and our assumed usage is slightly higher. Table 6.5
illustrates the calibration process. The resulting number of sockets per house is well within the
range of several surveys recently conducted, some showing well in excess of thirty sockets per
(single-family) house (see for example Manclark (1991) and Robinson (1992)).

In residential lighting analyses, the whole-house lighting UEC is typically used for comparison
to determine if a survey or calculation is yielding approximately the correct results. We use the
whole-house lighting UEC in a similar way to assure the accuracy of the aggregate lighting
consumption. The annual lighting UEC is thought to vary between 750 and 1500 kWh per year,
depending on the location and type of house. We estimate that the whole-house lighting UEC is
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1469 kWh/yr (1313 kWh/yr for incandescent and 156 kWh/yr for fluorescent) averaged over all
housing types. This is approximately 20% higher consumption than PG&E's lighting survey,
which yielded a whole-house UEC of 1274 kWh per year (Kelsey and Richardson 1992). The
principal reasons for the higher UEC in this study are larger floor areas and slightly higher hours
of usage.

Table 6.5: Calibration of Lighting Intensity (W/sf) to PG&E survey value

Housing Type
Parameter PG&E (2) Single- |Multifamily | Mobile Total
Family Homes

% of 1990 households: 69% 26% 6% 100%

Lighting UEC (kWh/yr) 1,274 - - - -

Fluorescent UEC (kWh/yr) 156 - - - -

Incandescent UEC (kWh/yr) 1,118 - - - -
Floor area (sq ft) 1,400 1,865 928 921 1,569
Installed incandescent watts 1,552 2,052 964 1,013 1,712
Avg. incandescent usage (hr/day) 1.94 2.10 2,10 2.10 210
Annual incandescent UEC (kWh/yr) 1,008 1,574 739 777 1,313
Inc. UEC per socket (KkWh/socket/yr)]  44.7 514 514 514 514

Sockets/house 25 31 14 15 26

(1) Source for 1990 housing stock: RECS (EIA 1993)
(2) Results of PG&E Lighting Survey are documented in Kelsey & Richardson (1992).

(3) Lighting UEC in first row includes incandescent and fluorescents together. Incandescent UEC is net of|
tube fluorescent lamps. Fluorescent UEC calculated based on Kelsey & Richardson (1992), 3.2 lamps
per house @ 41.1 Watts/lamp used 3.8 hrs. per day and 5 out of every 6 days during the year.

(4) PG&E floor area from survey. Floor area by house type from 1990 RECS (EIA 1992).

(5) Installed wattage based on PG&E survey; 1.25 W/sf for single-family and mobile home, 1.18 W/sf for
multifamily, reduced by 12% to account for the fact that incandescent lamps are 88% of installed wattage.

(6)PG&E average usage value based on customer-reported usage; US value from Table 6.1.

(7) PG&E value for UEC per socket based on survey data; US value from Table 6.4.

(8) Annual UEC (kWh/yr) equals average usage * installed watts * 365/1000.

(9) PG&E value for sockets/house based on survey data; US values = annual UEC + UEC per socket.

The final step in estimating the lighting baseline is to convert the data presented above into a
form usable by REEPS. As mentioned previously, we model lighting as several REEPS end-uses
to reflect the different usage socket levels. In this model formulation, all incandescent sockets
operated between one and two hours per day are accounted for in their own end-use and have a
unique saturation in the housing stock. In this case, the end-use saturation is not the fraction of
houses owning light bulbs, but rather the fraction of bulbs that are operated at a particular usage
level in the average house. To calculate the annual whole-house UEC, we multiply the annual
hours of operation for a particular end-use by the average bulb wattage and the number of light
sockets in each house type. The results of these calculations are shown in Table 6.6. The end-
use UECs appear to be quite different from the PG&E survey data presented earlier. However,
the values in Table 6.6 are calculated as if all sockets in the house were operated at the usage
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level indicated by the end-use. In fact, each end-use actually represents only a portion of the
total number of bulbs in a house, and the true whole-house UEC is a weighted average of all the
REEPS end-uses in Table 6.6.

We have also modeled full-size fluorescent lamps as a separate end-use, but we do not have
sufficient data to disaggregate fluorescents according to usage or house type. The PG&E survey
indicates that full-size fluorescents comprise approximately 9% of the installed wattage, or 135
Watts of fluorescent lamps. Thus the fluorescent stock (and UEC) is small in comparison with
the incandescent end-uses (due to fluorescents' higher efficacy, however, the lumens provided by
fluoroescents are a significant fraction of the total delivered lumens).

Table 6.6 also includes the weighted average UEC for each housing type and usage bin. These
data are for informational purposes only, since they are not used as input to REEPS. Finally, the
rightmost column in Table 6.6 (total incandescent lumens) is not an end-use but rather is an input
to REEPS indicating the level of lighting service demanded by each house type. This
information will be useful in implementing size and efficiency choice models at a future date.

Table 6.6: Lighting Model Input Data for REEPS

Lighting End-uses for REEPS Total Total
House Type |0-1 Hours | 1-2 Hours| 2-3 Hours| 3-4 Hours | >4 Hours | Wtd. Avg. | Fluor- | Lighting | Incand-
UEC UEC UEC UEC UEC Incand. |escent | UEC escent
UEC UEC Lumens
(kWh) | (kWh) | (kWh) | (&kWh) | (kWh) | (kWh) |&Wh)| (kWh)

Saturation:] 40% 20% 10% 10% 20%

Single-Family| 379 1137 1895 2653 3790 1668 156 1824 | 32,369
Multifamily 171 514 856 1198 1712 753 156 909 14,618
Manufactured 183 550 917 1284 1834 807 156 963 15,662
Homes

(Wetd.-Avg. 314 943 1571 2200 3142 1383 156 1539 | 26,836

(1) UEC:s calculated assuming all incandescent bulbs in the house are operated at the indicated usage level.
(2) Weighted-averages calculated using housing type distribution from Table 6.5.

(3) Weighted-average incandescent UEC (1383 kWh/yr) differs slightly from value in Table 6.5 (1313 kWh/yr)
l because the number of incandescent sockets per house has been constrained to an integer value.

The REEPS lighting data presented here are based on an analysis methodology similar to that
used in LBL's Lighting Policy Analysis (LPA) (Atkinson et al. 1992). The current analysis,
however, uses updated data on lighting usage and installed wattage from surveys and monitoring
studies. The general effect of these updates is to increase the number of light sockets and
decrease the average hours of use per socket, leading to a small increase in annual household
UEC (1469 kWh/household-year vs. 1294 estimated in the LPA). In essence, the lighting
characterization presented here includes many low-use sockets that have been left out of previous
studies. These low-use sockets are not significant for their energy consumption (accounting for
only about 10% of the household lighting UEC), but rather because they are an important part of
the lighting stock and lamp market.

7. COOKING AND MISCELLANEOUS MODELS
The cooking end-use includes several types of appliances, such as ranges or cooktops, gas or

electric ovens and microwave ovens. A full technology characterization and cost analysis
appears in the recent appliance standards analysis (US DOE 1993b) for ranges, ovens and
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microwave ovens. Due to the recent publication of this source, we have not been able to
incorporate its findings and instead have used the default data for cooking equipment provided
by Regional Economic Research (McMenamin et al. 1992). This approach aggregates cooking
equipment into a reduced-form model for each generic technology, which in this case is simply
by fuel: electric, gas and other. The "other" category for cooking includes miscellaneous minor
cooking fuels such as oil, LPG and wood. Table 7.1 shows the Unit Energy Consumption for the
three classes, along with the base year stock and new home market shares.

Table 7.1: Cooking Model Input Data
Screens: AM-3a, AM-3f, AM-4e
Housing Type Stock Shares New Home UEC
Shares
(percent) (percent)

Electric Cooking KWhiyr
Single-Family 62 75 617
Multifamily 45 76 486
Manufactured Homes 41 60 567

Gas Cooking kBtu/yr
Single-Family 32 23 5153
Multifamily S5 4 4256
Manufactured Homes 29 18 4514

Other Fuels-Cooking KBtwyr
Single-Family 6 2 5000
Multifamily 0 0 N/A
Manufactured Homes 30 2 4700

Source: REEPS default input set (McMenamin et al. 1992)

The miscellaneous end-use encompasses those appliances not covered in the end-uses we have
outlined thus far. We consider only electric appliances in this category, although it is possible
that a rather small amount of energy consumption may remain unaccounted for among fuels due
to outdoor equipment and other fuel-using appliances with low saturations in the current housing
stock. The miscellaneous category of electricity end-uses actually includes many different minor
appliances and appears to represent a growing share of electricity consumption, in some cases
accounting for as much as 20% of total household electricity consumption (Meier et al. 1992,
Rainer et al. 1990). A few appliances in the miscellaneous category, such as televisions and pool
heaters, were also covered in the recent appliance standards analysis (US DOE 1993b). Again
due to the recent release of this document, we rely on the default characterization provided for
the miscellaneous end-use (McMenamin et al. 1992). Since the REEPS default miscellaneous
category includes lighting, we subtract the lighting UECs as given in Table 6.6 for each housing
type. The lighting-adjusted miscellaneous UECs are given in Table 7.2. The saturations (market
shares) are 100% because the end-use describes an aggregation of appliances present in the
typical home, rather than a particular appliance.
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Table 7.2: Miscellaneous End-Use Input Data
Screens: AM-4a, AM-4b, AM-4e
Housing Type Stock Shares New Home |REEPS Default] Lighting Adjusted
Shares Misc. UEC UEC(1) Misc. UEC (2)
(percent) (percent) (kWh/yr) (kWh/yr) (kWh/yr)
Miscellaneous Electric
Single-Family 100 100 3085 1824 1261
Multifamily 100 100 1525 909 616
Manufactured Homes 100 100 2307 963 1344
Source: REEPS default input set (McMenamin et al. 1992)
|(1) Lighting UEC from Table 6.6.
(2) Adjusted Miscellaneous UEC = REEPS default UEC - Lighting UEC.

8. SPECIFIC TECHNOLOGY OPTIONS DATA

Table 8.1 lists the product classes defined in NAECA. The historic data used in this report (i.e.,
vintage block data) are averages over all product classes. However for new appliances, we
choose one product class to represent each fuel type in a given end-use. Typically, one or two
classes dominate sales, making the choice of product class straightforward. For refrigerators,
"Top mounted auto defrost” was selected to represent the end-use because it accounts for over
two-thirds of all refrigerator shipments and, as shown in Figure 8.1, its shiiament-weighted
efficiency closely tracks the average efficiency for all refrigerators (AHAM 1991). For freezers,
" fpright, Manual Defrost” was selected because, as shown in Figure 8.2, its historic average
efficiency closely tracks that of the average efficiency for all freezers (AHAM 1991). For
dishwashers, appliance efficiency standards taking effect in 1995 will require that "Standard
Dishwashers" include water heaters, effectively making them "Water-Heating Dishwashers,
Standard.” Hence, we elected to use water-heating dishwashers rather than the soon-to-be
eliminated class of standard dishwashers. For clothes washers and dryers, a single product class
dominates sales in each generic technology.

8.1 Specific Technology Efficiency and Cost

Specific technology design options for each end-use are listed in Appendix Tables B.1
(refrigerators), C.1 (freezers), D.1, D.2, D.3 (water heaters), E.1 (dishwashers), F.1 (clothes
washers ), G.1 and G.2 (dryers). Each successive option represents a design change that impacts
the efficiency and/or purchase price of the appliance. For a complete description of the design
options, see the appropriate DOE Technical Support Document. The option lists begin with
option "0," which is the base marginal unit in 1987 (US DOE 1989, US DOE 1990) or 1990 (US
DOE 1993a). All costs in the TSDs are quoted in base year 1987 (US DOE 1989, US DOE
1990) or 1990 (US DOE 1993a) dollars. Some designs already exist in models currently on the
market, and others are still being developed. Arthur D. Little developed the original lists in the
early 1980s (ADM 1987), and Lawrence Berkeley Laboratory updated and expanded the lists in
the late 1980s (US DOE 1989). The most efficient options on the lists are currently
commercially available for some end-uses and exist only as prototypes in other end-uses. In
some policy forecast cases, restricting our options to these lists may under-predict the potential
for conservation since it does not account for the innovation of new, more efficient appliance
options in future years.
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We inflated the 1987 base-year purchase prices to 1990 dollars using either the Consumer Price
Index-urban (CPI-urban) for Refrigerators and Freezers, the CPI-urban for Laundry Equipment,
the CPI-urban for Stoves, Ovens, Dishwashers and Air conditioners, or in the case of water
heaters, the Producer Price Index (PPI) for Household Equipment, Other. Appendix Tables A.1
and A.2 give the CPIs and PPIs for recent years. Another influence on the price of refrigerators
and freezers is the 1996 CFC ban. Tables B.2 and C.2 show the price effect of the CFC ban (in
the column labeled "Cost multiplier without CFCs").

Table 8.1 NAECA Product Classes

Refrigerators and RefrigeratorsFreezers
1) Refrigerators and Refrigerator-Freezers with manual defrost
2) Refrigerator-Freezers-partial automatic defrost
3) Refrigerator-Freezers-automatic defrost with:
a) Top mounted freezer without ice (1)
b) Side mounted freezer without ice
¢) Bottom mounted freezer without ice
d) Top mounted freezer with through the door ice service
¢) Side mounted freezer with through the door ice service
Freezers
1) Chest, Manual Defrost
2) Upright, Manual Defrost (1)
3) Upright, Automatic Defrost
Water Heaters
1) Gas-fired Storage (1)
2) Electric-fired Storage (1)
3) Oil-fired Storage
4) Gas-fired Instantaneous (2)
Dishwashers
1) Compact Dishwasher
2) Standard Dishwasher
3) Water-Heating Dishwasher, Compact (115V)
4) Water-Feating Dishwasher, Standard (115V) (1)
5) Water-Heating Dishwasher, Compact (220V)
‘ 6) Water-Heating Dishwasher, Standard (220V)
Clothes Washers
1) Top-Loading, Compact
2) Top-Loading, Standard (1)
3) Top-Loading, Large
4) Top-Loading, Semi-Automatic
5) Front Loading
6) Suds Savers (2)
Dryers
1) Electric, Standard (1)
2) Electric, Compact 120V
3) Electric, Compact 240V
4) Gas, Standard (1)
5) Gas, Compact ,
Notes: (1) Product classes in bold type were chosen 1o represent the
fuel-specific end-use in the LBL version of REEPS 2.1.
(2) Not analyzed.
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Figure 8.1: Shipment Weighted Energy Factors--Refrigerators
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Figure 8.2: Shipment Weighted Energy Factors--Freezers
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8.2 Spedﬁc Technology Market Shares and Availability

As described in Section 3.2, REEPS is unique in that it can model specific equipment
technologies and forecast the market share of these options using multinomial logit models.
While this technique can be quite powerful, it requires comprehensive market data in order to
specify the logit models. As described in Sections 4 and 5, we did not have access to detailed
purchase data at the national level and therefore estimated the specific technology efficiency
choice models using aggregate and average data. These data were sufficient to specify the
efficiency choice models, but we did not have a second, independent data source for control-year
market shares to calibrate the efficiency choice models. For this reason, the control-year market
share data in the Appendices are simply outputs from the efficiency choice models, for use as
place holders in REEPS. The specific technology market shares shown in Tables B.2, C.2, D .4,
D.5, D.6, E.2, F.2, G.3, and G.4 are based on operating costs using 1991 fuel prices and the
specific technology options available in 1991. REEPS uses these market share values to
calibrate the efficiency choice equations during forecast execution, but the calibration constants
are assigned near-zero values because the control-year market shares are outputs of the model
being calibrated. This is admittedly not an effective means of calibrating the efficiency choice
models, but we are forced to use this method due to the requirements of the REEPS model and a
lack of sufficiently detailed appliance purchase data.

In describing specific technology options, REEPS allows the user to restrict the choice of options
in particular years if it is believed that certain options will not be available for purchase by
consumers. There are two types of availability parameters: market and legal availability.
Market availability refers to the maximum market share that can be met by manufacturers.
Options that are not fully available on the market represent technologies that are produced in
limited quantity due to manufacturing constraints or because manufacturers target them at niche
markets. In years when future options are not available on the market (temporary market
availability of zero), those options are simply ignored in REEPS 2.1 when the efficiency shares
are calculated. Legal availability refers to technology options that are no longer offered because
they do not meet minimum efficiency standards. In REEPS 2.1, options that are not legally
available after some year (due to minimum efficiency standards) are then assigned a "legal
availability" value of zero.!2 Once standards take effect, REEPS 2.1 models the impacts of
standards by allocating the predicted shares of options not legally available to the next available
option on the list.

Legal and Market Availability, Refrigerators. The base 1987 unit (option 0) is more efficient
than the 1990 NAECA minimum efficiency standards, and is therefore still legally available in
1990, along with options 2 and 3. We assume that the remaining options require further
development not completed until 1992. The five least efficient options -- 0, 2, 3, 4 and 5 -- are
not available starting in 1993 due to federal efficiency standards taking effect that year. For the
remaining years, we assume all other options are available on the market. The input data for
refrigerator legal and market availability are shown in Table B.2.

Legal and Market Availability, Freezers. Due to the 1990 minimum efficiency standards, the
base 1987 unit (option 0) is not available in 1990. We assume that only options 1 and 3 are
available on the market in 1991. Examination of the 1991 AHAM appliance directory suggests

12] egal availability is a binary function, in other words partial availability is not possible. In reality, appliance
models that do not meet the standard may still be available (for a year or two) as dealers' inventories clear. While
this can be an important effect in particular regions or markets, we ignore this effect on the national level and
assume that models not meeting the standard are unavailable in the year the standard becomes effective.
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that this is a reasonable assumption (AHAM 1992). In 1992, we assume options 4 and 5 become
available, and thersafter all other ¢ptions are assumed to be available on the market, except
options 1 and 3, which are not available starting in 1993 due to minimum efficiency standards
taking effect that year. The legal and market availability of freezer technology options are shown
in Table C.2.

Legal and Market Availability, Water Heaters. Tables D.4, D.5, and D.6 show the availability of
water heater technology options. Some of the more advanced water heater technology options
were not availuble on the market during the period 1990-92 because they required further
development. For electric water heaters, we assume only options 0, 1, and 2 were available
during this period. Similarly, we assume option 14 for gas water heaters, and option 4 for oil
water heaters were not available during the 1990-92 period.

Legal and Market Availability, Dishwashers, Clothes Washers and Dryers. Minimum efficiency
standards take effect in 1994 for dishwashers, clothes washers and dryers. For standard water
heating dishwashers, the standards will eliminate options 0, 1, and 2, as shown in Table E.2. For
standard clothes washers, the 1994 standards eliminate options 0 and 1, as shown in Table F.2.
For dryers, the 1994 standards eliminate the first two efficiency options (options O and 1) for
both electric and gas dryers. Generally, the technology for dishwashers, clothes washers and
dryers is not developing at a rapid rate, thus most specific technology options are available on the
market at the beginning of the forecast (1990). The only exception is for the clothes washer end-
use, in which all technology options more efficient than option 2 are assumed not available in
significant quantities until 1992.

9. APPLIANCE STOCK DATA

Stock Characteristics. To maintain accounts of appliance stocks, REEPS 2.1 requires data on
efficiency, capacity, and base-year shares, disaggregated by vintage blocks (the year of appliance
purchase). These appliance stock vintage data are presented in Tables B.3, C.3, D.7, D.8, D.9,
E.3,F.3,G.5, and G.6. In addition, the user specifies stock decay function parameters, described
below. The average efficiency and capacity data shown in the tables are calculated from AHAM
shipments data (AHAM 1991).

9.1 Base-Year Vintage Shares

Base-year shares by vintage for refrigerators, freezers, water heaters, dishwashers, clothes
washers and dryers are based on the number of the appliances in each vintage block that survive
from the year of purchase to the base year 1990, using the decay function described below.

Decay Function. REEPS 2.1 computes survival and decay rates for appliance vintage blocks
using a stepwise linear decay function in which 100% of the vintage block survives until a
minimum lifetime and thereafter decays linearly so that no appliances survive beyond the
maximum lifetime. To accurately estimate the minimum and maximum lifetimes, we varied
these lifetime parameters to find the best fit to the following formula:

Stock1990 = Z(Shipmemsvy . Sl.lfViV&!Ratevy, min, max) “.1)
vy
where vy is the vintage year, Stock;g9g is the 1990 RECS appliance stock, Shipments,y are the

AHAM shipments for vintage year vy, and Survival Rate is the fraction of appliances of vintage
year vy surviving in 1990, computed from the decay function using lifetime parameters min and
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max. The resulting best-fit lifetime parameters are shown in Tables B.4, C.4, D.10, E.4, F.4, and
G.7.

We rely on AHAM shipment data to disaggregate the stock of refrigerators, freezers, water
heaters, dishwashers, clothes washers and dryers into vintage blocks (AHAM 1991). For vintage
blocks earlier than the first year in the AHAM data, we assumed the first year of shipment data
holds true for the entire period prior to the first year of shipment data. For example, since
AHAM shipments data start in 1972, we assumed 1972 shipment levels for the period prior to
1972. In cases where data were missing for intervening years, we linearly interpolated the
shipments data. We used refrigerators and freezers as sample end-uses for a cross-check of this
method, as shown in Figures 9.1 and 9.2. Comparing our results to the 1990 RECS (EIA 1993)
cross-sectional vintage data on refrigerators and freezers shows that our method approximately
re-creates the RECS vintage distribution.

9.2, Base-Year Ownership Shares and UEC

1990 ownership shares (total saturation for each generic technology) by housing type are from
the 1990 RECS (EIA 1993). In the case of common water heaters in multi-family buildings, we
count each housing unit served by a common water heater as a single individual unit for
saturation purposes. We assume the average UEC (unit energy consumption) is the same for all
housing types (except for water heaters, due to the strong interaction of housing type and usage
in water heating). The average UEC is a weighted average of the vintage-block UECs, using the
1990 vintage-block shares as weights (from Appendix Tables B.3, C.3, D.7,D.8, D.9, E.3, F.3,
G.5, and G.6). The resulting average UEC values, along with the 1990 ownership shares by
housing type, are shown in Appendix Tables B.5, C.5,D.11, E.5, F.5, and G.8.

Figure 9.1: Shares of 1990 Stock by Vintage -- Household Refrigerators
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Figure 9.2: Shares of 1990 Stock by Vintage -- Household Freezers
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9.3. Control-Year Data

During forecast execution, REEPS 2.1 adjusts the decision model parameters to fit the values
specified for the first forecast year, 1991. In order to allow this calibration process, the user must
provide control-year values for: new home shares (i.e., the saturation of generic technologies in
new homes), appliance replacement rates (e.g., the fraction of homes choosing to replace a
decayed appliance), and the marginal size of new equipment. These data are presented in
Appendix Tables B.6, C.6, D.12, E.6, F.6, and G.9.

The new home shares for all end-uses are derived from the 1990 RECS data tapes, and represent
the shares for homes built during the period 1985 to 1990 (EIA 1993).

We generally assume that 100% of existing appliances are replaced when retired, except in the
case of freezers. We estimated freezer replacement rates, RR, by calculating the best fit to the
following equation:

87
Y [(NHShares-87 o HS tarts},) - (ADecay}, « (RR ~ 1))]

81

AStock1981-1990 = 9.2)

m .
+Y [(NHSharest®® o HStarts}) - (ADecay} « (RR ~ 1))]
88

The change in stock from 1981 to 1990, AStock;gs;.1990, is calculated from RECS data (EIA
1983, EIA 1992)). The new home shares for the period 1980 to 1987, NHSharesp30.%7, were
derived from the 1987 RECS data tapes, and represent the shares for new homes built during the

period 1981 to 1987 (EIA 1989a). The housing starts, HStartsy!, are from the Census Bureau
Current Construction Reports (U.S. Bureau of the Census, various years). Appliance decay
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totals, ADecayy!, are estimated as the difference between the AHAM shipment data (AHAM
1991) and the RECS appliance stock data (EIA 1983, EIA 1992). Replacement rates, RR, are
assumed to be constant over time and for all housing types. The results of these estimates are
shown in Appendix Table C.6. For water heaters, we assume that the overall replacement rate is
100%, but that some substitution between fuel types may occur at the time of replacement. The
water heater replacement rates shown in Appendix Table D.12 account for these fuel-switching
replacements. These replacement rates are calculated so as to reconcile new home shares with
historical shipments data.

The marginal size of new equipment is from AHAM shipment data (AHAM 1991). If these data
are not available for a particular end-use the marginal size is assumed to be constant (constant
equipment sizes are normalized to a value of 1).

10. FUTURE WORK

The following are ways the REEPS appliance model can be enhanced, given sufficient data
and/or code changes to the REEPS software.

Estimate ownership (market share) models. In the current version of the model, we have relied
upon the REEPS default ownership models for refrigerators, freezers, dishwashers, clothes
washers and dryers. Although ownership shares forecast with these models are generally
consistent with historical trends, it would be preferable to re-estimate these models with more
recent and more detailed data on technologies and market shares. Cross-sectional as well as
longitudinal data are necessary for proper estimation. The source of the data would most likely
be RECS from various years. This is an econometric task, requiring the testing of various model
specifications in order to determine the most statistically valid model.

Make relationships endogenous in Water Heater Model. As discussed in Section 5.1.2 and
shown in Figure 5.3, REEPS is unable to endogenously model four important interactions
between the water heater model and the dishwasher or clothes washer models. This limitation
forces the user to undertake a time-consuming, iterative approach to run a forecast. Making
these relationships endogenous requires changes to the REEPS computer code.

Make replacement water heater fuel type conditional on heating fuel type. Currently, we model
the replacement fuel type as conditional on the old water heater fuel type. Heating fuel type is a
better indicator of the availability of gas hookup. This task also requires modification of the
REEPS computer code.

Vary decay function by product class. This is relevant for those products with multiple fuel types
or product classes (i.e., water heaters, dryers, lighting). For instance, it is thought that electric
water heaters have a longer lifetime than gas water heaters, due to, in part, less corrosion. The
current REEPS code has a single decay function for each product; upgrading to multiple decay
functions would require software changes to the REEPS code.

Replace cooking model. The model currently in-place is the REEPS default. A more detailed
model could be added with specific technology options based on the recently published appliance
standards analysis (US DOE 1993b).

Lighting model As better monitored usage data and lighting inventories become available, we
will incorporate these into the REEPS lighting model. The lighting usage equation should also
be a function of floor area, to incorporate the effect of changing floor area on the number of
sockets. We also could define specific efficiency options for the lighting end-uses and estimate
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an efficiency choice model in order to forecast naturally-occurring improvements to the lighting
stock.

Additional models. Other end-uses which might be given a more detailed treatment are
microwaves and televisions. This will hopefully improve modeling of the miscellaneous
category of end-uses because televisions and microwaves are currently included in that end-use.

11. CONCLUSIONS

Using the REEPS modeling system, we have created an appliance forecasting model with nine -
end uses: refrigerators, freezers, water heaters, dishwashers, clothes washers, dryers, lighting,
cooking, and miscellaneous. For the first six of these end-uses, we have configured cost and
efficiency data on specific technologies and estimated models to predict the efficiency choice for
these technologies. The decision models are based upon the tradeoff between purchase price and
operating cost. For water heaters, we have also estimated a decision model to predict market
shares based on fuel type. The other end-uses (except lighting) have ownership models based on
the REEPS default models.

This report has described the theoretical basis, methodology and input data used to develop a
new configuration of the REEPS 2.1 forecasting model. Future reports in this series will
describe results from the model and use these results to investigate alternative policy scenarios.
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Building Type

Control Data

Decay

Decision Model

DOE
EPAct
EPRI

Generic
Technology

HVAC

Logit Model

Market Share

MWEF

NAECA
RECS

REEPS

GLOSSARY

A class of buildings with similar characteristics, such as the number of
households living within one building, relationship to neighboring
buildings, floor area, and construction practices. Typical building types
include single-family detached, multifamily, manufactured homes, etc.

Observed data from the first forecast year (1991 for the LBL REEPS
implementation) describing actual characteristics of the appliance stock
(market shares, sizes, etc.). These data are used to calibrate the REEPS
model before forecast execution.

The process by which an appliance reaches the end of its useful life and is
removed from the appliance stock.

A mathematical representation of the purchase decisions made in the
appliance market. Four classes of decision models are available in
REEPS: a) ownership in new construction, b) decay and replacement
decisions, ¢) non-owner acquisition, and d) pre-failure replacement and
conversion.

US Department of Energy

Energy Policy Act of 1992

Electric Power Research Institute

A group of appliances distinguished by their product class, fuel type,
physical configuration, mechanical methods, or general level of efficiency.
For example, electric and gas water heaters are separate generic
technologies.

Heating, Ventilation, and Air Conditioning

A form of qualitative choice model that estimates the probability of a
decision-maker selecting a specific option among several discrete choices.
See Appendix I for a more detailed discussion.

For a given year, the fraction of units shipped that belong to a Specific
Technology group.

Model-Weighted Efficiency Factor = the average efficiency of all models
offered for sale in a given year.

National Appliance Energy Conservation Act of 1987

Residential Energy Consumption Survey, conducted by DOE's Energy
Information Administration (EIA).

Residential End-Use Energy Planning System
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RER

Saturation
Specific
Technology

State-Based
Decision Model

SWEF

UEC

Vintage Block

Regional Economic Research, Inc. Developers of the REEPS end-use
forecasting model under contract to EPRI.

12520 High Bluff Dr., Suite 220

San Diego, CA 92130-2062

(619) 481-0081

The fraction of households owning a particular appliance.

A narrowly defined equipment category (represented by one efficiency
level) within a generic technology group. Also called a specific efficiency
option.

Models consumer decisions based on the “state” of the decision-maker,
i.e., the characteristics of the household and their existing appliance
ownership status.

Shipment-Weighted Efficiency Factor = the average efficiency for all units
shipped in a given year, weighted by the relative number of units shipped
within each efficiency level.

Unit Energy Consumption. Annual energy consumption for an individual
appliance unit.

A group of appliances shipped (or houses built) during a specific time
period.
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APPENDICES

The following appendices provide a complete listing of the REEPS input data generated by this
analysis. There 1s one appendix for each residential end-use. Many of the tables of REEPS
inputs have the caption "Screens:" beneath the table heading, followed by codes such as "AM-
4f." These refer to the specific REEPS appliance model screen(s) in which the data in that table
would be entered.

Appendix A documents macroeconomic data (such as consumer price indices) used in this
analg'sis, as well as exogenous variables used for appliance forecasting. Appendices B-G present
REEPS inputs for individual end-uses. The specific efficiency options described in these
appendices (such as Table B.1) are listed by option number from the appropriate DOE Technical
Support Document. The option numbers are not necessarily consecutive, but are drawn directly
from the TSD appliance design lists. Appendix H contains a summary of residential lighting
usage surveys. Appendix I describes the qualitative choice models used in REEPS, and the
theory underlying our implementation of the models.
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APPENDIX A: MACROECONOMIC DATA AND EXOGENOUS VARIABLES

Table A.1: Consumer Price Indices (1982-84 = 100)

House Appliances, inc. Major Refrigerators Laundry' Stoves, ovens,
Furnishings electronic Household and home Equipment |dishwasher, and
Year equipment Appliances freezers air conclitioners
1986 102.2 928 100.0 104.8
1987 103.6 914 100.5 100.2 104.1 100.6
1988 105.1 90.2 101.0 101.0 105.1 100.6
1989 105.5 89.1 101.5 103.0 105.9 99.7
1990 106.7 878 101.2 102.6 107.2 98.5
1991 107.5 86.0 100.1 101.5 106.2 97.1
Source: (US Bureau of Labor Statistics various years)
Table A.2: Producer Price Indices (1982 = 100)
Finished Major Household Household -
Consumer Household Cooking Other

Year Goods Appliances

1986 108.9 100 108.7 109.3

1987 111.5 99.7 109.3 106.5

1988 113.8 100.4 107.8 108.6

1989 117.6 102.9 109.2 111.6

1990 1204 105.2 110.7 116.9

1991 106 110.7 119.1

Source: (US Bureau of Labor Statistics various years)
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Table A.3: REEPS Piped Natural Gas Exogenous Variables

Year Piped Gas Availability Piped Gas Space Heating
Saturation

New Existing New Existing

Construction Homes Construction Homes
1990 52% 67% 37% 55%
1991 54% 67% 37% 55%
1992 55% 66% 36% 54%
1993 55% 66% 36% 54%
1994 55% 66% 36% 54%
1995 55% 66% 36% 53%
1996 55% 65% 36% 53%
1997 55% 65% 35% 53%
1998 55% 65% 35% 53%
1999 55% 65% 35% 52%
2000 55% 64% 35% 51%
2001 55% 4% 35% 51%
2002 55% 4% 35% 51%
2003 55% 64% 35% 51%
2004 55% 63% 35% 51%
2005 55% 63% 34% 51%
2006 55% 63% 34% 50%
2007 55% 62% 34% 50%
2008 55% 62% 34% 50%
2009 55% 62% 34% 50%
2010 55% 62% 34% 50%

Source: LBL-REM
(1) These data are forecast by LBL-REM and are used as an exogenous input to
the REEPS water heater fuel choice module.
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APPENDIX B: REFRIGERATOR DATA

Table B.1: Specific Efficiency Data,
Top Mount Auto Defrost without Through the Door Features with CFCs (1)
(Adjusted Volume = 20.8 cf)
Screens: AM-4f, AM-5d
Option Specific Technoiogy Design | Unit Energy Purchaser's Cost Efficiency
Number Consumption(3)
(kWh/yr) 1987 $ 1990 $(2) | (cfkWh/day)
0 Baseline, 1987 947 512.38 524.68 8.02
2 J0 + 4.50 Compressor 841 519.54 532.01 9.03
3 1 + 5.00 Compressor 7817 522.32 534.86 9.65
4 3 + k=0.11 Foam Insulation 745 528.74 541.43 10.19
5 4 + 5.30 Compressor 714 540.32 553.29 10.63
6 S + 2" Door 683 559.21 572.63 11.12
9 7 + k=0.10 Foam Insulation 615 618.86 633.71 12.34
10 8 + 2.5" Thick Sides 595 638.33 653.65 12.76
11 10 + 2.5" Door 582 657.93 673.72 13.04
12 8 + Evacuated Panels 515 719.54 736.81 1474
Notes: (1) (US DOE 1989).
(2) Inflated using CPI for Refrigerators and Freezers, CPI(1990)/CPI(1987) = 1.028.
(3) UEC based on DOE test procedure.
Table B2 Specific Efficiency Options, Shares and Availability,
Top Mount Auto Defrost without Through the Door Features, with CFCs
Screens: AM-4f, AM-5¢
Option Number Control -Year Legal Availability | Market Availability | Cost Multiplier
(1991) Shares(1) without CFCs (5)
(percent)
0 334 not available after constant 1.04
1992 (2)
2 28.0 not available after constant 1.03
1992 (2)
3 38.6 not available after constant 1.02
1992 (2)
4 0 not available after |available after 1990 (3) 1.02
1992 (2)
S .. 0 not available after |available after 1990 (3) 1.03
' 1992 (2)
6 0 constant available post-1992 (4) 1.04
9 0 constant available post-1992 (4) 1.10
10 0 constant available post-1992 (4) 1.13
11 0 constant available post-1992 (4) 1.16
12 0 constant available post-1992 (4) 141
Notes: (1) Predicted by logit efficiency choice equation.
(2) Below 1993 Federal Standard. Predicted shares are added to share for next available option (6).
(3) Market availability is "zero” in 1990 so that control year calibration does not set the "desirability
index" of these options to -100, which would effectively give them zero market share for the entire
forecast.
(4) These high-efficiency options are assumed to be unavailable until 1993,
(5) Calculated from data in US DOE (1989). Cost multiplier reflects higher design and production costs
of models using non-CFC refrigerants.
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Table B.3: Refrigerator Stock Data
Screens: AM-2d, AM-3¢

Year of Purchase# Unit Energy Average Average Share of 1990
Consumption | Efficiency (1) Adjusted Stock(2)
(kWh/yr) Volume(1)

(cfkWh/day) (ch (percent)
pre-1973 1726 3.84 18.16 14.7
1973, 1974 1655 4.09 18.55 6.7
1975, 1976 1561 446 19.08 5.7
1977, 1978 1473 4.86 19.61 8.0
1979, 1980 1320 543 19.63 84
1981, 1982 1191 6.10 19.91 8.0
1983, 1984 1150 6.48 20.41 10.6
1985, 1986 1065 6.78 19.79 11.6
1987, 1988 969 1.53 19.99 13.1
1989, 1990 925 1.96 20.18 13.1

Source: (1) AHAM shipment data, 1972-1990, averaged over two-year intervals (AH
1991). Pre-1972 vintages assumed same as 1972.
(2) Calculated from AHAM shipments data , minimum lifetime of 7 years an
maximum lifetime of 29 years. Shares are generally consistent with 1990 RECS
vintage data (EIA 1992).

Table B.4: Refrigerator Minimum and Maximum{

Lifetimes (years)

Screen: AM-2b

Minimum Lifetime 7
Maximum Lifetime 29

Notes: (1) Minimum and maximum lifetimes
calculated to match historical shipment data with
1990 RECS stock of 99.8 million units (AHAM 1991,
EIA 1992).

(2) REEPS assumes a linear decay between the
minimum and maximum lifetimes.
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Table B.5: Refrigerator Base-Year 1990 Stock Average
Screens: AM-3a, AM-3f

Housing Type Share of 1990 Stock(1) Unit Energy
Consumption(z)
(percent) (kWh/yr)
Total REF1 REF2
Single Family 1216 100 21.6 1273
Multi-Family 1025 100 2.5 1273
Manufactured Homes 103.5 100 3.5 1273

Source: (1) 1990 RECS (EIA 1993).
(2) Calculated from AHAM shipments data (AHAM 1991) and vintage shares
(Table B.3).

Table B.6: Refrigerator Control -Year 1991 Marginal Shares
Screens: AM-4a, AM-4b, AM-4e

Housing Type New Home Shares(1) Replacement| Marginal
Rates(2) Size(3)
(percent) (percent) (ch)
Total REF1 REF2
Single Family 123.5 100 235 100 2045
Multi-Family 101.6 100 1.6 100 20.45
Manufactured Homes 102.8 100 2.8 100 20.45
Source: (1) New home shares are from 1990 RECS for houses built during the period 1985-1990
(EIA 1993).
(2) Replacement shares are assumed to be 100% for REF1. Replacement share for REF2
is described in Table 4.1.

(3) From 1990 AHAM shipments data (AHAM 1991). cf = cubic feet.
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APPENDIX C FREEZER DATA

Table C.1 Specific Efficiency Data, Upright Manual Defrost Freezers with CFCs (1)
(Adjusted Volume = 26.95 cf)
Screens: AM-4f, AM-5d
Option | Specific Technology Design | Unit Energy Purchaser's Cost Efficiency
Number Consumption (2)
kWh/yr 1987 $ 1990 $ (3) cf/kWh/day
0 Baseline, 1987 777 361.00 369.66 12.66
1 |0 + 4.50 Compressor 704 366.21 375.00 13.97
3 1 + 5.00 Compressor 606 37442 383.41 16.23
4 3 + k=0.11 Foam Insulation 544 381.16 390.31 18.08
5 4 + 5.30 Compressor 511 392.70 402.12 19.25
7 5 + 2" Door 489 400.04 409.64 20.12
8 7 + k=0.10 Foam Insulation 453 417.54 427.56 21.71
10 8 + 2.5" Thick Sides 431 440.55 451.12 2282
11 10 + 2.5" Door 416 448.01 458.76 23.65
12 8 + Evacuated Panels 343 505.05 517.17 28.68
Source: (1) US DOE (1989)
(2) UEC based on DOE test procedure.
(3) Inflated using CPI for Refiigerators and Freezers, CPI(1990)/CPI(1987) = 1,028.

Table C.2: Specific Efficiency Opticas, Shares and Availability, Upright Manual Defrost Freezers with

CFCs
Screens: AM-4f, AM-5e
Option Number Control -Year Legal Availability Market Availability Cost Multiplier
Shares (1) without CFCs (6)
(percent)
0 0.0 not available (2) constant 1.021
(30.66)
1 64.39 not available after constant 1.021
(33.73) 1992 (3)
3 356 not available after constant 1.021
1992 (3)
4 0 constant available by 1992 (4) 1.021
5 0 constant available by 1992 (4) 1.021
7 0 constant available by 1993 (5) 1.021
8 0 constant available by 1993 (5) 1.021
10 0 constant available by 1993 (5) 1.021
11 0 constant available by 1993 (5) 1.021
12 0 constant available by 1993 (5) 1.021

available option (Option 1).

available option (Option 4).

uction costs of models using non-CFC refrigerants.

Notes: (1) Shares adjusted for legal availability of option 0. Numbers in parentheses are actual inputs.

Because option 0 has a legal availability of "0" in 1991, REEPS calibrates the "actual inputs” (in
parentheses) to the desired values (values not in parentheses).
(2) Below 1990 NAECA Standard. Predicted shares after 1990 are added to the share of the next

(3) Below 1993 NAECA Standard. Predicted shares after 1992 are added to the share of the next

(4) Market availability is "zero” in 1990 so that control year calibration does not set the "desirability
index" of these options to -100, effectively giving them zero market share for the entire forecast.

(5) These high-efficiency options are assumed to be unavailable until 1993.
(6) Calculated from data in US DOE (US DOE 1989) Cost multiplier reflects higher design and
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Table C.3: Freezer Stock Data

Screens: AM-2d, AM-3c
Year of Purchase] Unit Energy Average Average Share of 1990
Consumption | Efficiency (1) Adjusted Stock(2)
Volume(1)
(kWh/yr) (cf/kWh/day) (ch) (percent)
pre-1973 1461 7.290 29.18 17.7
1973, 1974 1318 7.911 28.56 12.7
1975, 1976 1171 8.680 27.85 10.1
1977, 1978 1011 9.761 27.03 89
1979, 1980 909 10.603 26.41 114
1981, 1982 824 11.212 25.30 7.6
1983, 1984 807 11.477 25.36 8.1
1985, 1986 770 11.809 2492 7.6
1987, 1988 681 12.920 24.09 8.1
1989, 1990 597 14.240 23.28 7.8

Source: (1) AHAM shipment data, 1972-1990 (AHAM 1991). Pre-1972 vintages assumed
same as 1972 vintage.
(2) Calculated from AHAM shipment data , minimum lifetime of 11 years and
maximum lifetime of 31 years. Shares are generally consistent with 1990 RECS
vintage data (EIA 1992).

Table C.4: Freezer Minimum and Maximum Lifetimes]

(years)

Screen: AM-2b

Minimum Lifetime 11
Maximum Lifetime 31

Notes: (1) Minimum and maximum lifetimes

calculated to match AHAM historical shipment data
with 1990 RECS stock total of 32.4 million units

(AHAM 1991, EIA 1992).
(2) REEPS assumes a linear decay between the

minimum and maximum lifetimes.

(3) REEPS constrains lifetimes to integer values.
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Table C.5: Freezer Base-Year 1990 Stock Average
Screens: AM-3a, AM-3f

Housing Type Share of 1990 UEC (2)
Stock(1)
(percent) &Wh/yr)
Single Family 44 1027
Multi-Family 9.6 1027
Manufactured Homes 28.9 1027

Source: (1) 1990 RECS (EIA 1993)
(2) Calculated from AHAM shipments data (AHAM

1991) and vintage shares (Table C.3).

Table C.6 : Freezer Control-Year 1991 Marginal Shares
Screens: AM-4a, AM-4b, AM-4¢

Housing Type New Home Replacement Marginal
Shares(1) Rates(2) Size(3)
(percent) (percent) (ch)
Single Family 324 69 2331
Multi-Family 9.8 69 2331
Manufactured Homes 26.7 69 23.31

Source: (1) New home shares are from 1990 RECS for houses built during th
period 1985-1990 (EIA 1993).
(2) Replacement shares are calculated to be historically consistent wi
new home shares. Assumed to be constant over period 1982-1990 an
over all housing types.
(3) From 1990 AHAM shipments data (AHAM 1991). cf = cubic feet.
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APPENDIX D: WATER HEATER DATA

Table D.1: Specific Efficiency Data, Electric Storage Water Heater(1)
Screens: AM-4f, AM-5d

Option Specific Technology Design | Unit Energy Purchaser’s Cost Efficiency
Number Consumption
kWh/yr) 1990 $ (kWh.th/kWh.e)
0 Baseline 5096 265.31 0.862
1 |0 + Reduce Heat Leaks 5024 268.00 0.874
2 1 + Heat Traps 4900 272.16 0.896
9 2 + R-25 Insulation 4737 307.35 0.927
3 2 + Add On Heat Pump 2479 626.67 1.772
7 3 + R-25 Insulation 2317 659.69 1.896
5 2 + Integral Heat Pump 1731 1099.62 2.538

Source: (1) Source: US DOE (1993a)
(2) kWh.th’kWh.e is the thermal efficiency of the design.

Table D.2: Specific Efficiency Data, Gas-fired Storage Water Heater(1)
Screens: AM-4f, AM-5d

Option | Specific Technology Design | Unit Energy Purchaser’s Cost Efficiency
Number Consumption (2)
(MMBtw/yr) (1990 $) (Btu.th/Bu.f)
0 Baseline 27.55 281.60 0.544
1 10 + Heat Traps 27.22 286.72 0.551
2 1 + Reduce Heat Leaks 27.07 288.95 0.554
3 2 + R-16 Insulation 26.31 305.65 0.570
14 3 + R-25 Insulation 26.02 341.20 0.576
12 3 + [ID w/ Flue Damper 23.37 390.15 0.641
24 |0 + Condense Flue Gases 17.01 11834 0.881

Source: (1) Source: US DOE (1993a)
(2) Some gas water heater designs also use electricity for the intermittent ignition device (IID), but
REEPS only considers one fuel for each generic technology..

Table D.3: Specific Efficiency Data, Qil-fired Storage Water Heater(1)
Screens: AM-4f, AM-5d

Option | Specific Technology Design | Unit Energy Purchasers Cost Efficiency
Number Consumption (2)
(MMBtu/yr) (1990 3) (Btu.th/Btu.f)
0 Baseline 28.32 724.66 0.529
1 0 + 1 in Foam 25.71 738.55 0.583
4 3 + Reduce Heat Leaks 25.12 745.49 0.597
? 24.87 758.25 ‘ 0.603
h) 4 + 2 in Foam 23.78 785.99 0.630
6 5 + Flue Damper 2.1 857.21 0.678
7 6 + Multiple Flues 21.39 991.68 0.701
8 0 + Condensing 19.01 2241.08 _ 0.788

Source: (1) Source: US DOE (1993a)
(2) All oil water heater designs also use electricity for the burner ignition , but REEPS only considers
one fuel for eack generic technology..
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until 1993.

Table D.4 : Specific Efficiency Options, Shares and Availability,
Electric Storage Water Heaters
Screens: AM-4f, AM-Se
Option Number Control -Year Legal Availability Market Availability
(1991) Shares (1)
_(percent)
0 31.80 constant constant
1 32.80 constant constant
2 35.81 constant constant
9 0 constant available by 1993 (2)
3 0 constant available by 1993 (2)
7 0 constant available by 1993 (2)
5 0 constant available by 1993 (2)
Source: (1) 1990 RECS (EIA 1993).

(2) These high-efficiency options are assumed to be unavailable in significant numbersl

Table D.5: Specific Efficiency Options, Shares and Availability,
Gas-fired Storage Water Heaters
Screens: AM-4f, AM-Se
Option Number Control -Year Legal Availability Market Availability
(1991) Shares (1)
__(percent)
0 32.82 constant constant
1 28.04 constant constant
2 26.28 constant constant
3 12.86 constant constant
14 0 constant available by 1993 (2)
12 0 constant available by 1993 (2)
24 0 constant available by 1993 (2)
Source: (1) 1990 RECS (EIA 1993).

(2) These high-efficiency options are assumed to be unavailable

in significant numberf'

until 1993.

Table D.6: Specific Efficiency Options, Shares and Availability,

Oil-fired Storage Water Heaters

Screens: AM-4f, AM-5e

Option Number Control -Year Legal Availability Market Availability
(1991) Shares (1)
(percent)

0 60 constant constant
1 40 constant constant
4 0 constant available by 1993 (2)
? 0 constant available by 1993 (2)
5 0 constant available by 1993 (2)
6 0 constant available by 1993 (2)
7 0 constant available by 1993 (2)
8 0 constant available by 1993 (2)

until 1993.

Source: (1) 1990 RECS (EIA 1993).
(2) These high-efficiency options are assumed to be unavailable in significant numbers
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Table D.7: Electric Storage Water Heater Stock Data
Screens: AM-2d, AM-3c

Year of Purcbasﬁ Unit Energy Average Average Share of 1990

Consumption (1§ Efficiency (2) Volume (2) Stock (3)

(kWh/yr) kWh.th’kWh.e) | (normalized) (percent)
pre-1973 5508 0.798 1.0 10.5
1973, 1974 5492 0.800 1.0 55
1975, 1976 5471 0.803 1.0 59
1977, 1978 5451 0.806 1.0 1.5
1979, 1980 5416 0.811 1.0 79
1981, 1982 5348 0.822 1.0 89
1983, 1984 5274 0.833 1.0 124
1985, 1986 5189 0.847 1.0 139
1987, 1988 5101 0.862 1.0 139
1989, 1990 5016 0.876 1.0 136

Source: (1) UEC assumes DOE test procedure hot water usage (64.3 gal/day).
(2) GAMA shipment data (GAMA 1991). Efficiencies from US DOE (US DOE
1979) and estimated from GAMA directories. 1990 efficiency value from NAECA
standard (NAECA 1987).
(3) Calculated from GAMA shipment data, minimum lifetime of 5 years and
maximum lifetime of 30 years. Shares are generally consistent with 1990 RECS
vintage data (EIA 1992).

Table D.8: Gas-fired Storage Water Heater Stock Data
Screens: AM-2d, AM-3c

Year of Purchasg Unit Energy Average Average Share of 1990
Consumption (1) Efficiency (2) Volume (2) Stock (3)
(MMBw/yr) (Btu.th/Buu.f) (normalized) (percent)
pre-1973 316 0474 1.0 14.7
1973, 1974 315 0476 1.0 5.1
1975, 1976 313 0.479 1.0 6.0
1977, 1978 312 0.481 1.0 7.1
1979, 1980 309 0.485 1.0 1.5
1981, 1982 30.7 0.489 1.0 8.5
1983, 1984 304 0.493 1.0 10.6
1985, 1986 29.5 0.508 1.0 12.5
1987, 1988 28.5 0.527 1.0 139
1989, 1990 215 0.545 1.0 14.1

Source: (1) UEC assumes DOE test procedure hot water usage (64.3 gal/day).
(2) GAMA shipment data (GAMA 1991).. Efficiencies from US DOE (US DOE
1979) and estimated from GAMA directories. 1990 efficiency value from NAECA
standard (NAECA 1987).
(3) Calculated from GAMA shipment data, minimum lifetime of 5 years and
maximum lifetime of 30 years. Shares are generally consistent with 1990 RECS
vintage data (EIA 1992).
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Table D.9: Oil-fired Storage Water Heater Stock Data
Screens: AM-2d, AM-3c

Year of Purchase Unit Energy Average Average Share of 1990
Consumption (1) Efficiency (2) Volume (2) Stock (3)
(MMBtu/yr) (Btu.th/Btu.f) (normalized) (percent)
pre-1973 30.7 0.488 1.0 13.5
1973, 1974 30.7 0.488 1.0 54
1975, 1976 30.7 0.488 1.0 54
1977, 1978 30.7 0.488 1.0 54
1979, 1980 30.7 0.488 1.0 54
1981, 1982 30.7 0.489 1.0 11.2
1983, 1984 30.5 0.491 1.0 11.2
1985, 1986 304 0493 1.0 12,9
1987, 1988 30.3 0.495 1.0 14.6
1989, 1990 30.1 0.498 1.0 15.0

Source: (1) UEC assumes DOE test procedure hot water usage (64.3 gal/day).
(2) GAMA shipment data (GAMA 1991).. Efficiencies from US DOE (US DOE
1979) and estimated from GAMA directories. 1990 efficiency value from NAECA
standard (NAECA 1987).
(3) Calculated from GAMA shipment data, minimum lifetime of 5 years and
maximum lifetime of 30 years. Shares are generally consistent with 1990 RECS
vintage data (EIA 1992).

Table D.10: All Water Heaters, Minimum and Maximum|

Lifetimes (years)

Screen: AM-2b

Minimum Lifetime 5
Maximum Lifetime 30

Notes: (1) Minimum and maximum lifetimes
calculated to match GAMA historical shipment data
with 1990 RECS stock total of 90.1 million units
(EIA 1992, GAMA 1991).

(2) REEPS assumes a linear decay between the
minimum and maximum lifetimes.

(3) REEPS constrains lifetimes to integer values.
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Table D.11 Water Heater Base-Year 1990 Stock Average
Screens: AM-3a, AM-3f
Housing Type Shares of UEC (2)
1990 Stock (1)
(percent) (units)
Standard Electric Storage Water Heater kWh/yr
Single Family 36.4 4508
Multi-Family 339 3718
Manufactured Homes 64.6 4193
Standard Gas-fired Storage Water Heater MMBuw/yr
Single Family 58.3 25.66
Multi-Family 571 21.16
Manufactured Homes 35.2 23.86
Standard Oil-fired Storage Water Heater MMBuw/yr
Single Family 4.6 26.07
Multi-Family 8.8 21.51
Manufactured Homes 0.2 24.25
Source: (1) 1990 RECS (EIA 1993). Common units in multi-
family housing modeled as individual storage water
heaters.
(2) Calculated from AHAM shipment data (AHAM
1991) and vintage shares (Tables D.7-9).

Table D.12: Water Heater Control-Year 1991 Marginal Shares

Screens: AM-4a, AM-¢b, AM-4e
New Home Shares(1) Replacement Rates(2)
Housing Type (percent) Replacement (percent)
Type
Electric Storage Water Heater
Single Family 523 Electric 95
Multi-Family 82.0 Gas-fired 5
Manufactured Homes 73.4 Qil-fired 0
|Gas-fired Storage Water Heater
Single Family 45.1 Electric 10
Multi-Family 18.0 Gas-fired 90
Manufactured Homes 26.6 Oil-fired 0
Qil-fired Storage Water Heater
Single Family 2.1 Electric 0
Multi-Family 0 Gas-fired 0
Manufactured Homes 0 Qil-fired 100

housing types.

Source: (1) New home shares are from 1990 RECS for houses built during the
period 1985-1990 (EIA 1993).
(2) Replacement shares are calculated to be historically consistent with
new home shares. Assumed to be constant over period 1982-1990 and all
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Table D.13: Water Heater Exogenous Variables

(Used in Dishwasher and Clothes Washer Efficiency Choice
Models)

Stock Average
Year Electric  |Water Heater Energy Factor
Water Heater

Saturation Electric Gas
1990 8% 0.83 0.50
1991 38% 0.84 0.50
1992 39% 0.84 0.52
1993 39% 0.84 0.51
1994 40% 0.85 0.51
1995 41% 0.85 0.52
1996 41% 0.86 0.52
1997 42% 0.86 0.52
1998 43% 0.86 0.53
1999 44% 0.87 0.53
2000 45% 0.87 0.53
2001 46% 0.87 0.53
2002 47% 0.87 0.54
2003 48% 0.88 0.54
2004 49% 0.88 0.54
2005 50% 0.88 0.54
2006 51% 0.88 0.54
2007 53% 0.88 0.55
2008 54% 0.88 0.55
2009 55% 0.88 0.55
2010 56% 0.88 0.55

Source: Preliminary run of REEPS water heater model
described in this report.
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APPENDIX E: DISHWASHER DATA

Table E.1: Specific Efficiency Data,
Standard Water Heating Dishwasher (1)
Screens: AM-4f, AM-5d

Option |Specific Technology Energy Purchaser's Cost Efficiency Hot Water
Number Design Consumption [Motor+Dryer+ UEC (4)
[Motor+Dryer+ Heater Only]
|Heater Only] (2)

(kWh/yr) (19878) [(19909$) (3)| (cycle/kWh) (kWh.e/yr)

0 Baseline 178 320.03 313.35 1.28 539

1 Reduce Water Use 168 330.81 32390 1.36 431

2 {J+ Reduce Booster 147 333.71 326.74 1.56 431

se
3 2 + Improved Motor 134 339.90 332.80 1.7 431
4 3 + Fill Control 134 35243 345.07 1.71 418

Source: (1) US DOE (1990).
(2) Assuming 229 cycles/year.
(3) Inflated using CPI for stoves, ovens, dishwashers and air conditioners, CPI(1990)/CPI(1987) = 0.98.
(4) Hot water UEC assumes electric water heater with EF=0.85 and 229 cycles/year. Used in operating cos
calculations.

1

Table E.2: Specific Efficiency Options, Shares and Availability,
Standard Water Heating Dishwasher
Screens: AM-4f, AM-5e
Option Number |Control Year (1991) Legal Availability Market Availability
Shares (1)
(percent)
0 64.9 not available after 1994(2) constant
1 188 not available after 1994(2) constant
2 13.1 not available after 1994(2) constant
3 31 constant constant
4 0.1 constant constant
Source: (1) Shares predicted by logit equation.
(2) Below 1994 NAECA Standard. Predicted shares after 1994 are added to the share of
the next available option (option 3).
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Table E.3: Dishwasher Stock Data

Screens: AM-2d, AM-3c
Year of Purchncf Energy Average Average Share of 1990
Consumption Efficiency Adjusted Stock (3)
[Motor+Dryer+ | [Motor+Dryer+ Volume
Heater Only] (1)| Heater Only] (2)
(kWh/yr) (cycle/kWh) (normalized) (percent)
pre-1973 178 1.285 1.0 6.2
1973, 1974 178 1.285 1.0 55
1975, 1976 178 1.285 1.0 5.7
1977, 1978 178 1.285 1.0 83
1979, 1980 178 1.285 1.0 84
1981, 1982 178 1.285 1.0 7.1
1983, 1984 178 1.285 1.0 114
1985, 1986 178 1.285 1.0 143
1987, 1988 178 1.285 1.0 16.6
1989, 1990 178 1.285 1.0 16.6

Source: (1) Assuming 229 cycle/yr.
(2) 1987 Baseline [Motor+Dryer+Heater] efficiency (US DOE 1990).
(3) Calculated from AHAM shipment data (AHAM 1991, US DOE 1990),

minimum lifetime of 0 years and maximum lifetime of 23 years.

Table E.4: Dishwasher Minimum and Maximum

Lifetimes (years)
Screen: AM-2b
Minimum Lifetime 0
Maximum Lifetime 25

Notes: (1) Minimum and maximum lifetimes

calculated to match AHAM historical shipment data

with 1990 RECS stock total of 42.7 million
units(AHAM 1991, EIA 1992).
(2) REEPS assumes a linear decay between the
minimum and maximum lifetimes.

(3) REEPS constrains lifetimes to integer values.

Table E.5: Dishwasher Base-Year 1990 Stock Average
Screens: AM-3a, AM-3f

Housing Type Shares of UEC (2)
1990 Stock (1)
(percent) (kWh/yr)
Single Family 50.6 178
Multi-Family 37.2 178
Manufactured Homes 20.1 178

Source: (1) 1990 RECS (EIA 1993)
(2) Calculated from AHAM shipment data (AHAM

1991) and vintage shares (Table E.3).




Table E.6: Dishwasher Control-Year 1991 Marginal Shares(1)

Screens: AM-4a, AM-4b, AM-de

Housing Type New Home Acquisition Marginal
Shares(2) Rates(3) Size(4)
(percent) (percent) (normalized)
Single Family 84.8 1.2 10
Multi-Family 83.7 03 1.0
Manufactured Homes 31.8 1.5 1.0

Source: (1) Replacement rates assumed to be 100%.
(2) New home shares are from 1990 RECS for houses built during the
period 1985-1990 (EIA 1993)
(3) REEPS default data set values.
(4) From 1990 AHAM shipments data (AHAM 1991).

Table E.7: Dishwasher Hot Water Load
Exogenous Variable; Used in Water
Heater Usage Equation

Year Stock Average Hot Water Load
(kBtw/yr)
1990 505
1991 495
1992 487
1993 479
1994 473
1995 467
1996 454
1997 42
1998 432
1999 423
2000 416
2001 409
2002 403
2003 399
2004 394
2005 391
2006 388
2007 385
2008 382
2009 379
2010 377

Source: Forecast by REEPS baseline dishwasher

model described in this report.
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APPENDIX F: CLOTHES WASHER DATA

Table F.1: Specific Efficiency Data,
Standard Clothes Washer (1)
(Capacity = 2.6 cf)

Screens: AM-4f, AM-5d

Option Specific Technology Energy Purchaser's Cost Efficiency Hot Water
Number Design Consumption of Motor UEC 4)
of Motor (2) Only
(kWh/yr) (1987%) (19903 (3)] (cycle/kWh) (kWh.e/yr)
0  |Baseline 5 Settings 102 400.04 409.20 3.72 848
1 Eliminate Warm/Warm 102 400.04 409.20 3.72 644
Setting
2  |Eliminate Warm Rinse 102 400.04 409.20 372 571
6 |2+ Improved Motor 89 411.53 420.95 4.29 571
7 6 + Plastic Tub 88 421.07 430.71 431 569
8 |7 +Thermal Mix. Valve 89 441.79 45191 429 565
3 |2+ Horizontal Axis 57 570.86 583.93 6.66 205
4 |3 + Plastic Tub 57 580.41 593.70 6.69 204
5 |4 +Thermal Mix. Valve 57 601.14 614.91 6.66 202
Source: (1) US DOE (1990).
(2) Assuming 380 cycles/yr.

(3) Inflated using CPI for Laundry equipment, CPI(1990)/CPI(1987) = 1.023.
(4) Hot water UEC assumes electric water heater with EF=0.85 and 380 cycles/year. Used in operating cost

calculations.
Table F2: Specific Efficiency Options, Shares and Availability,
Standard Clothes Washer
Screens: AM-4f, AM-5Se
Option Number |Control Year (1991) Legal Availability Market Availability
Shares (1)
(percent)
0 95.0 not available after 1994 (2) constant
1 25 not available after 1994 (2) constant
2 25 constant constant
6 0 constant available by 1992 (3)
7 0 constant available by 1992 (3)
8 0 constant available by 1992 (3)
3 0 constant available by 1992 (3)
4 0 constant available by 1992 (3)
5 0 constant available by 1992 (3)
Source: (1) Shares predicted by logit efficiency choice equation using 1991 fuel prices.
(2) Below 1994 NAECA Standard. Predicted shares after 1994 are added to the share of
the next available option (option 2).
€)) 'I'tlxegsgezhigh-eﬁiciency options are assumed to be unavailable in significant quantities
until .
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Table F.3: Clothes Washer Stock Data
Screens: AM-2d, AM-3c

Year of Purchase| Energy Average Average Share of 1990
Consumption Efficiency Adjusted Stock (3)
[Motor Only) (1)| [Motor Only] 2] Volume (2)

(kWh/yr) (cycle/kWb) (normalized) (percent)
pre-1973 102 3.717 1.0 7.42
1973, 1974 102 3.717 1.0 5.35
1975, 1976 102 3.717 1.0 541
1977, 1978 102 3.717 1.0 7.24
1979, 1980 102 3.7117 1.0 8.06
1981, 1982 102 3.717 1.0 8.20
1983, 1984 102 3.717 1.0 10.74
1985, 1986 102 3.717 1.0 13.70
1987, 1988 102 3.717 1.0 16.58
1989, 1990 102 3.717 1.0 17.30

Source: (1) Assuming 380 cycles/yr.
(2) AHAM shipment data, 1972-1990 (AHAM 1991

)

(3) Calculated from AHAM shipment data (AHAM 1991, US DOE 1990),
minimum lifetime of 2 years and maximum lifetime of 25 years. Shares are
generally consistent with 1990 RECS vintage data (EIA 1992).

Table F.4: Clothes Washer Minimum and Maximumr

Lifetimes (years)

Screen: AM-2b

Minimum Lifetime 2
Maximum Lifetime 25

1991, EIA 1992).

Notes: (1) Minimum and maximum iifetimes calculated to
match AHAM historical shipment data with 1990
RECS stock total of 71.7 million units (AHAM

(2) REEPS constrains lifetimes to integer values.

Screens: AM-3a, AM-3f

Table F.5: Clothes Washer Base-Year 1990 Stock Average

Housing Type Shares of 1990 Energy
Stock (1) Consumption
[Motor Only] (2)
(percent) &Wh/yr)
Single Family 92.7 102
Multi-Family 319 102
Manufactured Homes 81.5 102

Source: (1) 1990 RECS (EIA 1993)

cycles/yr.

(2) Calculated from AHAM shipment data (AHAM
1991), vintage shares (Table F.3) and assuming 380
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Table F.6: Clothes Washer Control-Year 1991 Marginal Shares

Screens: AM-4a, AM-4b, AM-4e

Housing Type New Home Non-Owner Marginal
Shares (1) Acquisition Size
Rates (2)
(percent) (percent) (normalized)
Single Family 96.7 0.50 1.0
Multi-Family 73.2 0.25 10
Manufactured Homes 91.8 0.40 10

Source: (1) New home shares are from 1990 RECS for houses built during the
period 1985-1990 (EIA 1993).

(2) Data are REEPS default values.

(3) Replacement rate assumed to be 100%.

Table F.7: Clothes Washer Hot Water Load
Exogenous Variable; Used in Water
Heater Usage Equation

Year Stock Average Hot Water Load
(kBtu/yr)
1990 969
1991 952
1992 936
1993 922
1994 909
1995 898
1996 865
1997 834
1998 806
1999 781
2000 758
2001 737
2002 718
2003 700
2004 634
2005 670
2006 656
2007 643
2008 631
2009 620
2010 610

Source: Forecast by REEPS baseline clothes washer

model described in this report.
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APPENDIX G: DRYER DATA

Table G.1: Specific Efficiency Data,

Standard Electric Dryer (1)
(Capacity =5.9c¢f)
Screens: AM-4f, AM-5d
Option Specific Technology Design | Unit Energy Purchaser's Cost Efficiency
Number Consumption (2)
(kWh/yr) (1988%) (1990 %) (3) (Ib/kWh)
0 Baseline 1023.1 300.03 308.96 2.60
1 Automatic Termination 901.7 313.01 322.33 2.95
2 1 +Insulation 883.7 323.72 333.36 3.01
3 2 +Recycle Exhaust 828.7 372.34 383.43 3.21
4 2 +Microwave 653.6 46745 481.37 4.07
5 2 +Heat Pump 308.9 695.31 716.02 8.61
Source: (1) US DOE (1990).
(2) Assuming 2660 Ibs/yr (=380 cycles/yr x 7 Ib/cycle).
(3) Inflated using CPI for Laundry equipment, CPI(1990)/CPI(1988)=1.03.
Table G.2: Specific Efficiency Data,
Standard Gas Dryer (1)
(Capacity = 5.9 cf)
Screens: AM-4f, AM-5d
Option Specific Technology Design | Unit Energy Purchaser’s Cost Efficiency
Number Consumption (2)
(MMBtuw/yr) (1988 8) }(1990)$ (3) (Ib/kBtu)
0 Baseline 395 340.03 350.16 0.674
1 Automatic Termination 348 353.02 363.53 0.765
2 1 +Insulation 340 363.72 374.55 0.783
3 2 +Recycle Exhaust 3.20 412.34 424.62 0.832
Source: (1) US DOE (1990).
(2) Assuming 2660 Ibs/yr (=380 cycles/yr x 7 Ib/cycle).
(3) Inflated using CPI for Laundry equipment, CPI(1990)/CPI(1988)=1.03.
Table G.3: Specific Efficiency Options, Shares and Availability,
Standard Electric Dryer
Screens: AM-4f, AM-5e
Option Number Control -Year Legal Availability Market Availability
(1991) Shares (1)
(percent)
0 55.6 not available after 1994 (2) constant
1 33.2 not available after 1994 (2) constant
2 112 constant constant
3 0.1 constant constant
4 0 constant constant
5 0 constant constant
Source: (1) Shares predicted by logit efficiency choice equation using 1991 fuel prices.
(2) Below 1994 NAECA Standard. Predicted shares after 1994 are added to the share of
the next available option (option 2).
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Table G.4: Specific Efficiency Options, Shares and Availability,

Standard Gas Dryer
Screens: AM-4f, AM-5e
Option Number |Control Year (1991) Legal Availability Market Availability
Shares (1)
(percent)
0 522 not available after 1994 (1) constant
1 30.6 not available after 1994 (1) constant
2 16.3 constant constant
3 09 constant constant

Source: .(1) Shares predicted by logit efficiency choice equation using 1991 fuel prices.
(2) Below 1994 NAECA Standard. Predicted shares after 1994 are added to the share of
the next available option (option 2).

Table G.5: Standard Electric Dryer Stock Data
Screens: AM-2d, AM-3c
Year of Average Averzge Share of 1990
Purchase Efficiency (1) Adjusted Stock (3)
Volume (2)
(1b/kWh) (normalized) (percent)
pre-1973 2.480 1.0 12.7
1973, 1974 2492 10 6.6
1975, 1976 2.510 1.0 5.8
1977, 1978 2.527 1.0 79
1979, 1980 2.544 1.0 8.2
1981, 1982 2.561 1.0 7.7
1983, 1984 2.578 1.0 104
1985, 1986 2.595 1.0 12.7
1987, 1988 2612 1.0 14.3
1989, 1990 2617 1.0 13.6
Source: (1) AHAM shipment data, 1972-1990 (AHAM 1991). Assumes
2660 1bs/yr usage (Proctor and Gamble usage data).
(2) No data available.
(3) Calculated from AHAM shipment data (AHAM 1991, US
DOE 1990), minimum lifetime of 9 years and maximum lifetime
of 30 years. Shares are generally consistent with 1990 RECS
stock data (EIA 1992).
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Table G.6: Standard Gas Dryer Stock Data
Screens: AM-2d, AM-3c

Year of Average Average Share of 1990
Purchase Efficiency (1) Adjusted Stock (3)
Volume (2)

(Ib/kBtu) (normalized) (percent)
pre-1973 0.616 1.0 17.2
1973, 1974 0.638 1.0 6.1
1975, 1976 0.669 1.0 58
1977, 1978 0.699 1.0 7.1
1979, 1980 0.728 1.0 7.6
1981, 1982 0.738 1.0 71
1983, 1984 0.742 1.0 9.1
1985, 1986 0.746 1.0 12.0
1987, 1988 0.750 1.0 14.1
1989, 1990 0.750 10 13.9

Source: (1) AHAM shipment data, 1972-1990 (AHAM 1991). Assumes
2660 Ibs/yr usage (Proctor and Gamble usage data).
(2) No data available.
(3) Calculated from AHAM shipment data (AHAM 1991, US
DOE 1990), minimum lifetime of 9 years and maximum lifetime
of 30 years. Shares are generally consistent with 1990 RECS
stock data (EIA 1992).

Table G.7 Dryer Minimum and Maximum Lifetimes|

(years)

Screen: AM-2b

Minimum Lifetime 9
Maximum Lifetime 30

Notes: (1) Minimum and maximum lifetimes
calculated to match AHAM historical shipment data
with 1990 RECS stock total of 64.9 million units

(AHAM 1991, EIA 1992).

(2) REEPS constrains lifetimes to integer values.

71




Table G.8 Dryer Base-Year 1990 Stock Average
Screens: AM-3a, AM-3f
Housing Type Shares of 1990 UEC (2)
Stock (1)
(percent)

Standard Electric Dryer kWh/yr
Single-Family 64.1 920
Multifamily 19.3 920
Manufactured Homes 63.5 920

Standard Gas Dryer kBtw/yr
Single-Family 21.0 3384
Multifamily 59 3384
Manufactured Homes 8.3 3384

Source: (1) 1990 RECS (EIA 1993)

(2) Calculated from AHAM shipment data (AHAM
1991) and vintage shares (Tables G.5 & G.6), assuming
. 2660 Ibs/year usage.

Table G.9: Dryer Control-Year 1991 Marginal Shares
Screens: AM-4a, AM-4b, AM-4e

Housing Type New Home Non-Owner Marginal
Shares (1) Acquisition Size
Shares (2)
(percent) (percent) (normalized)
Standard Electric Dryer
Single-Family 859 1.5 10
Multifamily 409 1.0 1.0
Manufactured Homes 68.6 1.5 1.0
Standard Gas Dryer
Single-Family 14.2 0.5 1.0
Multifamily 19 0.3 1.0
Manufactured Homes 8.5 0.5 10

Source: (1) New home shares are from 1990 RECS for houses built during the
period 1985-1990 (EIA 1993).
(2) REEPS default data set.
(3) Replacement rates assumed to be 100%.
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APPENDIX H: LIGHTING DATA

Table H.1: Residential Lighting Usage Studies

Daily Usage Source Type (1) Notes
(hours)

31 Goett, et al. (1992) M Metered during March (equal to user-reported value for
same period)

36 Goett, et al. (1992) U Annual average for 18 watt CFL (user-installed)

39 Goett, et al. (1992) U Annual average for 27 watt CFL (user-installed)

275 Gordon (1992) U Range = 0.5 to 6.7 hrs./day (calibrated w/ Yakima & Grays
Harbor metered data)

25 Grays Harbor PUD M 10-17 fixtures meterad in 6 houses in Grays Harbor, WA;

(1992) December-June metering period

45 Hewitt, et al. (1992) U Northeast Utilities post-retrofit survey (user installation)

5.6 Hewitt, et al. (1992) U Northeast Utilities phone survey of CFL usage (utility
installation based on minimum usage)(2)

32 Horowitz & Spada (1992) U Telephone survey of CFL purchasers

2.1 Manclark (1991) M 2 post-retrofit bulbs metered in 53 houses in Yakima, WA;
spring/summer metering period

27 Robinson (1992) U User-reported for post-retrofit CFLs. NJ program not
limited to high-use sockets

53 Robinson (1992) U User-reported for post-retrofit CFLs. NY program -- limited

to high-use sockets

Average Usage Reported by Lighting Users = 3.85 hours/day.
|Average Usage from Metering Studies = 2.57 hours/day.

Notes: (1) Study types: U = User-reported; M = Metered. The studies collecting user-reported data were nearly
all for the purpose of identifying high-use sockets for CFL retrofit, and are therefore not representative
of all residential lighting sockets.

(2) CFL = Compact Fluorescent Lamp
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APPENDIX I: QUALITATIVE CHOICE ANALYSIS

Qualitative Choice Analysis (QCA) provides the theoretical framework for the appliance
decision models we adopted in this analysis. In this appendix, we provide a brief overview of
several key ideas of QCA. The material herein is taken primarily from Train (Train 1986) and
from notes from a workshop sponsored by the Econometrics Laboratory on the U.C. Berkeley
campus (McFadden et al. 1992).

Two of the hallmarks of neo-classical economic analysis are a focus on aggregate-that is, market-
level-phenomena and the assumption of continuity (and usually differentiability) of the variables
under study. The latter assumption is reflected both in the basic theory of consumer choice,
including the assumption of smooth indifference curves, and in the econometric estimation of
market demand functions; at the market level, where individual differences are too fine to be
captured, the modeling assumption of continuity is generally thought to be a good
approximation to reality.

It is arguable, however, that 1) phenomena such as aggregate demand, being just the sum of
many individual decisions, should ideally be studied with methods that explicitly capture
individual-level behavior, and 2) at the level of the individual, many if not most real-life choices
have a discrete rather than continuous quality to them. Thus, for example, a consumer buying a
refrigerator will ultimately choose between, for example, manual defrost and auto defrost, rather
than some combination of the two. In buying a car, a consumer must ultimately purchase a
Toyota or a Honda or a Ford or a Chevrolet--not some combination of the four. Qualitative
choice analysis was devised for the economic analysis of such situations. Train describes QCA as
"[onc of a variety of] methods for examining the behavior of individuals when continuous
methods are inappropriate.” "Methods" here refers to both a theoretical or conceptual approach
to the choice problem and to the econometric techniques that have been developed for this type
of analysis.

Before providing a more technical description of these methods, an informal discussion may be
helpful. To begin, the individual ("consumer") is seen, as suggested above, as choosing one from
among a number of discrete alternatives. The individual is conceived of as a decision-making
"black box:" she evaluates the options in terms of their various features as well as her own
preferences, and chooses what she considers the best alternative (in economic terms, the one that
maximizes her utility). So for example, she may be choosing between a manual and an auto-
defrost refrigerator; she will (in some manner that is left unspecified) evaluate, for example, the
purchase prices, operating costs, convenience features, colors, styles, and possibly other features,
and then choose one in a way that may also depend on such factors as her income or beliefs.
Several things about this picture deserve emphasis. First, exactly "how" the decision is made--for
example, the psychological process involved--is essentially ignored by saying that the decision is
a matter of "maximizing utility." (This approach is, of course, characteristic of economic
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modeling.) Furthermore, in this way in thinking, the decision-maker is a deterministic black
box; that is, the output (the decision) is a non-probabilistic function of the inputs (the features of
the alternatives and her own characteristics).

As the reader may know, however, QCA models themselves are probabilistic in nature. The idea
is that the observer cannot possibly see everything that went into the decision, such as "beliefs."
So the observer can, in principle, predict only imperfectly what decision will be made even
knowing such things as certain characteristics of the alternatives and the decision-maker. The
probabilistic elements of QCA arise from this state of partial ignorance of the observer. In
particular, the aim of QCA models is not to elicit or to study (directly, at least) the form of the
function transforming inputs into decisions. Rather, it is to derive numerical estimates of the
probabilities that the decision-maker will make various choices, given certain assumptions about
(among other things) the form of the decision-maker's utility function, and given observations of
the decision-maker's actual choices and information about the decision-maker herself. There are
several interpretations of what concept of "probability" is at work here. One can think, for
example, of a decision-maker repeatedly facing the same choice; then the probability that a
particular alternative will be chosen can be interpreted as the limiting proportion of the number
of times that alternative is in fact chosen as the number of repeats becomes "large." Or, one can
think of a number of decision-makers with the same observable characteristics being observed,
sequentially, facing the same choice situation; then the probability can again be interpreted as a
limiting proportion. The point is, again, that the probabilistic nature of the models is interpreted
in terms of the relationship between the observer and the decision-maker; QCA models are not
models of "decision-making under uncertainty" as these are typically defined in economics or
operations research.

To begin a more precise description, the technical specification of the decision-maker's situation
is that the possible alternatives form a finite partition of her universe of choice, that is, the
alternatives are a) finite in number, b) mutually exclusive, and c) exhaustive (that is, she must
choose one and only one alternative). It is often possible to adjust the model so that these
conditions are satisfied in situations in which they are not readily apparent.

Now suppose one wishes to analyze some such situation, for example, a choice among
appliances or cars. Following is a description of the generic qualitative choice model (Train's
notation will be used for the duration). A particular decision-maker will be indicated by the
index n. Denote the set of alternatives she faces by J,, the observed (by the researcher)

characteristics of alternative i as faced by decision-maker n as the vector z,,, and the observed
characteristics of the decision-maker as the vector s, . Then the probability that decision-maker
n chooses alternative i is a parametric function of the form

P,',, = f(Z;,,,Zj,,Vj € J,,,j # i,s,.,B),

where the expression " Vj € J," means "for all j in J,," and B is a vector of parameters. This

equation describes, conceptually, the overall framework of QCA analysis. The details and the
applications have to do primarily with first specifying the function fand then estimating the
vector of parameters.
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The first step in implementing this abstract framework is to examine more carefully the relation
between what the decision-maker is doing and what the observer is seeing, and to introduce
notation that reflects this distinction between "observable" and "unobservable." We write the
utility that decision-maker n derives from selecting alternative i as a function of x,,, the relevant

in?

characteristics of the alternative, and r,, the relevant characteristics of the decision-maker; thus,
Un =U(x,.1,)

forall i in J,. Here, U is a function whose form we have yet to describe. We partition x,, into
those characteristics of the alternative that are observed by the researcher, labeled z,, as before,
and those that are not (and are left unlabeled), and we partition r, into characteristics of the
decision-maker that are observed by the researcher, labeled s, as before, and those that are not
(and again are left unlabeled). Finally, we break up U(x,,,r,) into an observed component that is
known up to a vector f of parameters to be estimated and that we label V(z,,s,.B), and an
unknown component which we label e,,. Then we can write the utility derived by the decision-
maker from alternative i as

U, =V(z,.s,.B)+e,.

At this point, a more concrete specification can be provided. To apply the general scheme, one
needs to first view e, as a random variable, and specify a particular form for it, and second to
specify a particular form for the observable (or "representative") utility V(z,,s,.). Different
qualitative choice models, such as logit or probit, arise from particular specifications of the
random variable. For our purposes, the model of interest is the logit. The logit model is obtained
by assuming that the error terms e,, where the index i ranges over all alternatives in J,, are
independently and identically distributed according to the extreme value (also called "Weibull")
distribution. (The adjective "multinomial” in this context simply means that more than two
alternatives are available.) In addition, in our applications (and in many others) it is assumed that
the observable utility function is linear, that is, we assume that this function is of the form

V,, =pBw(z,.s,)

where w is a vector function of the observable data and B is, as before, a vector of parameters.
(Note that the expression Bw(z,,s,) is a vector or inner product.) If we suppress the functional
dependence of the function w on the data and simply write is as w,,, then it can be shown that
the probabilities take the form

eﬁwu

P, =<5

in Ze ™
jed,

(Note that two steps have been combined into one here; the logit probabilities always take this
form of "exponential divided by sum of exponentials;" the exponents themselves are the
representative utilities, which in the case just written--but not in general-- are linear.)
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There are several things to note about this last expression. First, the probabilities defined in this
way sum to one (as they should). Second, if one graphs P, as a function of w,, the familiar "S-
shaped" or logit curve is obtained. (This is also true more generally, that is, it doesn't depend on
the linearity of representative utility.) Third (actually a corollary of the latter observation),
probability is a (highly) non-linear function of the data; this is the source of the oft-mentioned
caution against constructing a model of this form and then plugging averaged data into it.

Another point is worth noting here: the primary reason for the particular stochastic specification
that gives rise to the logit (that is, independent and identically distributed Weibull) is "analytical
tractability." The probit model is based on the more natural assumption that the error terms have
a joint multivariate normal distribution with a general variance-covariance matrix. This model,
however, gives rise to some very difficult integrals in the expressions for the choice probabilities,
with attendant estimation problems. (Hausman used a probit model in his famous 1979 air
conditioner choice paper, which is a good example of that type of approach (Hausman 1979))

We will now write down how the above formalism looks in an example. Suppose that a
decision-maker--a household--is to choose between a gas and an electric oven, and that we
decide that the decision will be made on the basis of (or, "utility depends upon") the purchase
price and operating cost, which we can observe, and upon the household's view of other
characteristics of the ovens, such as appearance, quality, and so forth, which we can't observe. If
we also assume that observed utility is a linear function of these factors, then we can write the
utility of the two choices, respectively, as

U,=B,PP,+B,0C, +e, and U, =B,PP, +B,0C +e,

where the subscripts indicate gas and electric, respectively, PP is purchase price and OC
operating cost, and the beta's are scalar parameters. If the error terms are distributed Weibull,
then the probability that the household chooses the gas oven is

oP1PPuHPI0C,

P‘ = eﬂ;PP."ﬂgOC’ +eﬂlppr+ﬁzocr i

and the probability it chooses electric is analogous.

The parameters in the logit models are estimated by maximum likelihood methods (given certain
assumptions on the character of the sampled data). Briefly, these are statistical optimization
methods in which the maximization of what is called a "(log) likelihood function" yields the
values of the parameters that give the highest probability that the decision-makers made the
choices that are actually observed. The log likelihood is also used to construct what is called the
"likelihood ratio index," which is a measure of goodness-of-fit, and can be used in hypothesis
testing. In addition, standard hypothesis tests can be performed on individual parameters using
the t-test.

One important elaboration of the basic logit model that we should mention briefly is the adding

of constant terms--so-called "alternative-specific constants"--to the linear observable utility
functions. This has several important functions. First, it corrects the (probably false) assumption
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that the errors have zero mean (which is a feature of the standard Weibull distribution). (In this
sense, it is like adding intercept terms in a linear regression.) Second, when the parameters are
estimated, it results in observed proportions in the sample being reproduced exactly in the model.
Third, it allows up to a certain point for the correction of a central potential flaw in the
underlying model, which we now discuss.

One mathematical consequence of the logit model is a property called "the independence of
irrelevant alternatives (IIA)," which means that according to the mcdel the ratio of the
probabilities associated with any two choices is independent of any other alternative.
Conceptually, this property enables one to correctly estimate a model on only a subset of
observed alternatives, and also, given an estimated model, to predict demand for new
alternatives.

There are some situations in which IIA may hold for some pairs of alternatives but not for others,
or, put another way, there are "nests" of alternatives for which IIA holds. Another qualitative
choice model, the "GEV" (for "generalized extreme value") or "nested logit" is appropriate in
these situations. The GEV model is derived from the assumption that the error terms as
described above--the e, --are distributed in accordance with a generalized extreme value (or
GEV) distribution. Under this assumption, one can derive expressions for the choice
probabilities that are analogous to those in the logit (and reduce to them in the case where the
error terms are uncorrelated) but are more elaborate; we won't write down the general form here.
GEV models can also be estimated globally by maximum likelihood techniques. More common,
however, is to perform a "bottom-up" sequential estimation (imagine here the usual upside-down
"tree" diagram with two levels) starting at the lower or "nest" level; this exploits the fact that
GEYV choice probabilities can be decomposed into conditional and marginal probabilities that are
logit.

There are several ways of obtaining aggregate (i.e., population) estimates from QCA models.
The most straightforward is sample enumeration. Each individual in the sample is given a
weight w_ (where the subscript n corresponds to the individual) depending on the characteristics

of the sample, assuming "exogenous" samples, i.e., random or stratified random samples in
which the strata (if any) are exogenous to the choice being studied. If the sample is random and

consists of N observations, the weight is %V for each individual; if the sample is stratified, the

weight varies over strata but is the same for all individuals within strata. In any case, the average
probability for alternative i is estimated as

and the number of individuals in the population predicted to choose alternative i is estimated as

N,=NP,
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