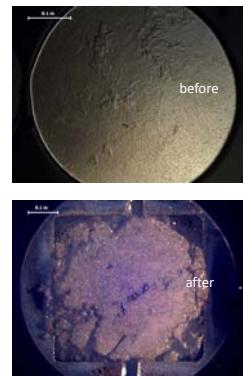


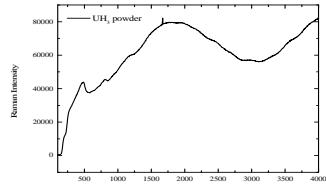
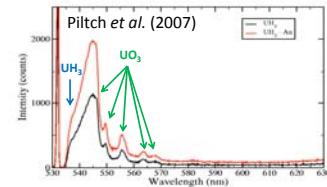
N. Smyrl, A. C. Stowe, G. L. Powell
Y-12 National Security Complex, Oak Ridge, TN

Introduction

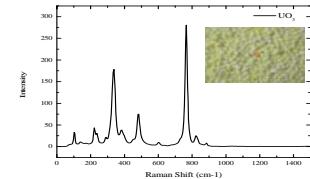
- Hydrogen reacts with a uranium surface to form a fine, pyrophoric metal powder (UH_3).
- Few spectroscopic studies have been conducted to study this reaction.
- Advances in Raman spectroscopy permit the application of the Raman method to formally difficult areas of chemistry such as the hydrogen corrosion of uranium.
 - availability of multiple laser excitation wavelengths
 - fiber optics delivery and collection systems
 - upgraded instrumentation and detection techniques
 - development of special enclosed *in situ* reactor cells
- UH_3 vibrations are expected to occur at low frequencies due to extended U-H-U structure.


In situ Spectroscopic Cell

- Aluminum design prevents hydrogen outgassing providing a cleaner reactor chamber.
- Multiple gas inlets for introduction of reactive and cover gases in close proximity to the sample.
- Glass, quartz, and sapphire conflat windows can be interchanged depending on light transmission and gas pressure characteristics of the specific experiment.
- Sample sits on variable height thermowell with cartridge heater assembly.
- Aluminum conductivity transfers heat rapidly from the sample zone throughout the reactor body limiting maximum heating to 300 °C.
- Similar vessel with stainless steel construction achieves 550 °C, but suffers from hydrogen outgassing.

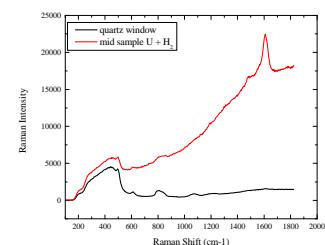


Sample Preparation

- Uranium metal disk (*before*) was placed in a stainless steel vacuum reactor chamber with a quartz window.
- Sample exposed to 7.6 mmol H_2 gas pressure at 25 °C for one week.
 - Sample surface darkened.
- The sample was heated to 500 °C under high vacuum to remove H_2 .
 - Not all H_2 pressure was recovered.
 - Surface oxide layer was conditioned.
- Sample exposed again to 400 torr H_2 at 25 °C
- 5.4 mmol H_2 reacted within 12 hrs resulting in significant powdering of the disk and UH_3 powder growth (*after*).
- UH_3 and UO_3 powders were also investigated separately under quartz.
- FT-Raman ($\lambda = 1064 \text{ nm}$) and UV Raman ($\lambda = 325 \text{ nm}$) spectra were collected.



Uranium Hydride Powder

- X-ray diffraction indicates uranium hydride powder to be free of uranium oxides (<1%).
- A Kapton film was used to protect UH_3 powder from exposure to air during the analysis and gives the broad feature in the XRD spectrum centered at 20 degrees.
- Two features appear at low frequency which are potentially UH_3 vibrations.
- These features are similar to the SERS experiments published by Piltsch *et al.*



- Piltsch indicated that the spectrum they collected was primarily comprised of scattering from uranium oxide contaminants.
- The spectrum of UO_3 was therefore collected as a reference oxide to ensure that no features in the hydride spectrum was from residual oxides at quantities smaller than 1%.

Hydring of Uranium

- After the initial hydride, no Raman features were observed, despite visually observing a darkening of the uranium surface typical of hydriding.
- Raman spectra collected of powder on the uranium surface after the second hydriding gave a similar spectrum to the free UH_3 powder.
- A new feature was observed at 1607 cm^{-1} which does not appear in the free UH_3 powder.
- The 1607 cm^{-1} feature is in a region of the spectrum where carbon appears; however, the frequency **does not** correspond to the carbon band observed in the carbon enhanced uranium hydriding work of Shamir (*Shamir (2010)*).
- Excitation with visible wavelengths may provide better Raman spectra in the low Raman shift frequency region due to improved optics and scattering intensity.

Acknowledgements

- This work was funded by the Y-12 Plant Directed research and Development program.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of the information contained in this report. Reference herein to any specific product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily imply or imply that such product, process, or service is to be recommended, selected, or used by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

COPYRIGHT NOTICE

This document has been authored by a subcontractor of the U.S. Government under contract DE-AC05-00OR2200. Accordingly, the U.S. Government retains a paid-up, non-exclusive, irrevocable, world-wide license to publish or reproduce the copyright contained in this report, or to allow others to do so, for U.S. Government purposes. The contractor has retained all proprietary rights, which are express or implied, in all non-government portions of this document that are separately identifiable and treatable as distinct from this report, both lawfully and as provided by contract terms and conditions in the agreement(s) under which this report was developed.