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PARALLEL IMPLEMENTATION OF THE DIRAC EQUATION
IN THREE CARTESIAN DIMENSIONS

J. C. WELLS!, V. E. OBERACKER!?, M. R. STRAYER!, and A. S. UMAR!?
1 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373
2 Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235

ABSTRACT

We describe the numerical methods used to solve the time-dependent

Dirac equation on a three-dimensional Cartesian lattice. Efficient algo-

rithms are required for computationally intensive studies of vacuum-pair

production in relativistic heavy-ion collisions. Discretization is achieved

through the lattice-collocation method. All numerical procedures reduce

to a series of matrix-vector operations which we perform on the Intel

iPSC/860 hypercube, making full use of parallelism. We discuss our solu-

tions to the problems of limited node memory and node-to-node communi-

cation overhead inherent in using distributed-memory, multiple-instruction,
multiple-data stream parallel computers.

1 Introduction

In this paper, we focus on the time-dependent Dirac equation in three space dimen-
sions and its lattice representation on a distributed-memory hypercube multicom-
puter. Over the past several years, we have developed a new approach to strong-
field relativistic quantum dynamics which combines advanced techniques for solving
boundary-value differential equations with supercomputer technology [1]. Much of
this work has been motivated by the opportunity to study nonperturbative electro-
magnetic electron-pair production from relativistic heavy-ion collisions. Electromag-
netic production from the vacuum of single- and multiple-lepton pairs is estimated to
be a major contribution to the physical background in the search for leptonic signals
from hard hadronic processes occurring in nonperipheral heavy-ion collisions [3] and,
therefore, must be understood in detail. In addition, the process of electron-positron
production with electron capture by one of the participant ions is a principal beam
loss mechanism for highly charged relativistic ions in a storage ring, and thus, plays
a central role in the design and the operation of these machines [2].

A semiclassical approximation is appropriate for the pair-production problem us-
ing the classical, imperturbable nature of the electromagnetic field generated by the
heavy ions, and neglecting lepton-lepton interactions. In this formalism, strong-field
quantum electrodynamics is reduced to numerically solving the Dirac equation cou-
pled to the sharply pulsed fields generated by the heavy ions. We solve the
time-dependent Dirac equation (A = ¢ = m = 1) in a reference frame in which one
nuclei, henceforth referred to as the target, is at rest. The target nucleus and the lep-
ton interact via the static Coulomb field, A}. The only time-dependent interaction,



(A.‘p(t), AR(t)), arises from the classical motion of the projectile. Thus, it is natural
to split the Dirac Hamiltonian into static and time-dependent parts. Accordingly,
we write the Dirac equation for a lepton described by a spinor ¢(7,t) coupled to an

external, time-dependent electromagnetic field as

[Hs + Hp(2)lg(,t) = i

where the static Hamiltonian, Hg, is given by

Hg=—id -V + 8 —eA%,

and the time-dependent interaction of the lepton with the projectile is

Hp(t) = €@ - Ap(t) — eAd(t) ,

where ag, ay, a,, and (3 are the 4 x 4 Dirac spin matrices.

2 Numerical solution

The solution of the Dirac equation coupled
to such an external field is a difficult numeri-
cal task. At extreme relativistic velocities, the
retarded electromagnetic interaction breaks all
symmetries of three-dimensional space. In ad-
dition, the relativistic wavefunctions associated
with the K-shell of a heavy ion are highly local-
ized in space and present a rather simple pic-
ture which is easy to interpret. For these rea-
sons, methods used in this work are designed
for the lattice solution of the Dirac equation
in unrestricted configuration space using three-
dimensional Cartesian coordinates. In addi-
tion, multiple length scales enter the electron-
position pair-production problem with heavy
ions; the radius of the heavy ion, i.e. Rjon =
10 fm, the Compton wavelength of the lep-
ton, i.e. Ae = 400 fm, and the radius of the
heavy ions K-shell, i.e. Rx = 10A.. The nu-
merical methods implemented must overcome
the problems posed by the unbounded, non-
positive-definite energy spectrum of the Dirac
Hamiltonian. In addition, naive lattice imple-
mentations of the Dirac equation suffer from an
anomaly of the Dirac-energy dispersion relation
known as fermion doubling.

Lattice-collocation methods have been devel-
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Figure 1: Errors in basis-spline col-
location and finite-difference represen-
tations of a single linear-momentum
eigenvalue as a function of the order of
the representation in a periodic space.
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Figure 2: Fermion doubling is

demonstrated by plotting the positive
branches of the energy spectra for a
few lattice representations of the free
Dirac equation in one dimension.

oped as state-of-the-art approachs to solving partial-differential equations [1, 4]. Using
this approach, one forsakes a continuous representation of the quantum-state vector
and coordinate-space operators in favor of a representation only on a discrete set of
spatial lattice points, e.g. x(¥) = Xa,8,1- Therefore, Dirac spinors become discrete



vectors of 4N, N, N, complex numbers, and the Dirac Hamiltonian becomes a matrix
of the same rank. Local operators like the electromagnetic interaction become diag-
onal matrices with the values along the diagonal being simply the value of the inter-
action at & given lattice point. Nonlocal operators, like coordinate-space derivatives,
are represented by full matrices, whereas, operators are banded matrices in a finite-
difference approach. The memory requirement of large three-dimensional problems is
dominated by storage for the wavefunction, not the Hamiltonian matrix, because of
the separability of the kinetic-energy operator in Cartesian coordinates. Therefore,
high-order methods which reduce the total number of lattice points required, even at
the expense of dense lattice operators, have an advantage.

2.1 Lowest-energy bound state

The complete eigensolution of Hg, providing its full spectrum of stationary states, cur-
rently approaches the state-of-the-art in computational capabilities due to the size of
Hs, which is equivalent to a rank 8 V3 real matrix. We believe convergent calculations
will be achieved for N ~ 100, based on the length and momentum scales involved,
and experience with one-dir :msional calculations. For this reason, we compute the
lowest energy bound state (1s) needed as the initial state for our time-dependent
problems by a partial eigensolution of Hs. Standard methods for partial eigensolu-
tion of large matrices, which are designed to converge to the lowest energy eigenstate
of the spectrum, are not directly applicable for computing the 1s state of Hs because
its spectrum extends to negative energies. We have developed an efficient iterative
Lanczos algorithm to compute the initial state [2]. The Lanczos algorithm proves
attractive for our purposes as the memory requirements are relatively small and the
method approximates extremal eigenvalues in the spectrum very well. Since conver-
gence is most rapid for extremal eigenvalues, we solve for the lowest energy eigenstate
of Hg?, which has a positive-definite spectrum. By solving for the ground state of
Hs?, we obtain the lowest-energy bound state of Hs.

2.2 Time evolution

The formal solution of the time-dependent Dirac equation (Eq. (1)) is ¢;(t) =
U(t,to)#;(to), where the unitary time propagator U(t,1p) is given in the Schrodinger
picture by the time-ordered exponential

02, to) = Texp (—i [ dt' [Hs + Hp(t')]) . (4)

We discretize time in the sense that the electromagnetic interactions are taken
as constant in successive small intervals of possibly varying size Aty, i.e. tyy; =
i + Ate+1,A {=10,1,..., 4, and express the evolution operator in successive factors
U(t, to) = U(t, tL—l)s sy U(tl, to).

A number of different methods have been used to approximate the time-evolution
operator

U(tesr,te) = exp (—i[Hs + Hp(ter1)] Ateyr) (5)
particularly in studies of the time-dependent Hartree-Fock method applied to atomic
and nuclear collisions. The choice of a method usually depends on the dimensionality
and structure of the Hamiltonian matrix. Several methods which work well in one- and
two-dimensional problems are impractical for unrestricted three-dimensional problems



bacause they require the inversion of part or all of the Hamiltonian matrix. In our
three-dimensional solution of the Dirac equation, the exponential operator, Eq. (5),
is implemented as a finite-number of terms of its Taylor series expansion.

3 Hypercube implementation

Th=iPSC/860 at ORNL is a distributed-memory, multiple-instruction, multiple-data-
stream multicomputer containing 128 processors with 8 MBytes of memory per pro-
cessor connected via a hypercube topology. The details of our implementation of the
lattice representation of the Dirac equation on this computer are discussed in detail
in Ref. [2] and briefly described here. As with many parallel implementations, we
face the problems of limited memory per node and the optimization of the algorithm
to minimize the communication between nodes.

We choose to parallelize the lattice Dirac equation by data decomposition. In prac-
tice, we partition the y and z dimensions of the lattice, of size N, and N,, respectively,
into subblocks while maintaining the full z dimension on each node. These subblocks
are distributed onto the processors using a two-dimensional Gray-lattice binary iden-
tification scheme [2]. To maximize the occurrence of nearest-neighbor communication,
the number of lattice points in the y and z directions are chosen to be powers of two.
If the number of allocated nodes, p, is an exact square, we allocate p, = ,/p and
py = /P nodes in y and z directions, respectively. This results in a square Gray
lattice. For intermediate powers of two, the partition is performed by p, = 1/2p,
Py = ‘/;/_2, thus resulting in a rectangular Gray lattice. We determine the number
of lattice points kept on each node by m, = N,/p,, and m, = N,/p,. Thus, all local
arrays have a spatial dimension of N;m,m, on each node.

All of our iterative algorithms for the solution of the Dirac equation make use
of the operation of the Dirac Hamiltonian matrix multiplying a Dirac spinor, ¢’ =
(Hs + Hp(t))¢. Furthermore, most of the computational effort needed is required
in computing this generalized matrix-vector product. Using Cartesian coordinates,
this product naturally decomposes into four parts, one for each coordinate direction
(z,y,2), and a diagonal part. This separability makes it easy to define this product
implicitly in a storage-efficient way.

The Dirac Hamiltonian matrix contains local potential terms, which are diago-
nal matrices, and nonlocal derivative terms, which are dense matrices. Performing
matrix-vector multiplications with the nonlocal summations in the y and z dimen-
sions requires node-to-node communication as these dimensions of the lattice are
distributed across the processors. In the execution of the y and z nonlocal sums, we
use a ring algorithm, in which each subblock of the Dirac spinor visits each node once
to perform the nonlocal matrix-vector operations economically [5]. This is achieved
by having loops over the number of y and z nodes performed on each node. All the
derivative matrices are stored in full on each node.

8.1 Performance model

The inner loops of the matrix-vector product may be written as daxpy operation, i.e.
y = ax+Yy, where x and y are vectors and a is a scalar. To optimize the utilization of
the high-performance features of the i860 processor, such as dual-instruction, pipeline,
and quad-load modes, we have written an implemertation of the daxpy in assembler
language [2]. Figure 3 shows the performance results for the daxpy on the i860 for



our assembler language routine. The vector length is measured in 64-bit words. The
execution rate shown is obtained using timing tests that make 10° successive calls of
the basic routine, using a stride of 1, and using the same argument list for each call.
We see that the real performance of the daxpy saturates at about 25 Mflops. Because
of memory constraints on the iPSC/860 hypercube, we currently realize modest vector
lengths of 8 to 64 words in our solution of the Dirac equation. The performance of
the daxpy cver this range varies significantly due to pipelining.

In discussing the performance of our appli- .
cation, we will consider only the Hamiltonian-
vector product, as this operation consumes more
than 95% of the CPU time needed in solving
the time-dependent Dirac equation. To execute
this operation once, the total predicted time per
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ations required, multiplied by the time tgop(V) 0 050100 150 200 250 300 350
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operation within a vector of length N words. Fi ) .

. . igure 3: Execution rates as a func-
Assuming that the lattice has an equal num- tjon of vector length for the daxpy op-
ber of points in the three coordinate directions, eration on the Intel i860.

N, =N, = N, = N, the estimated calculation
time for the matrix-vector product is

3
Teue = (48N + 448) NTtﬂop(N) . (6)

The dependence of tgop(/V) on N is caused by the pipelined floating-point units of the
1860 processor. From the performance of the assembler-coded daxpy operation shown
in Fig. 3, we determine that tg,p(/N) varies with N as the inverse of a logarithmic
function 1

taop(N) ~ 35 Tiog (W) —9.9) x 105 “c°°Rd (M
over N ranging from 8 to 128.

Empirically, the communication time for a one-hop node-to-node message is a linear
function of the size of the message [2]. In performing the nonlocal summations in the
matrix-vector product, we are required to pass p, + p, messages of length 8N3/p 64-
bit words. Passing these subblocks of the Dirac spinor around the two-dimensional
Gray lattice ideally consumes the time

N3
TP&“ = (Py + Pz) (S—i)—tcomm + tnm) ) (8)

where tcomm is the typical tim: needed to actually transmit a single 64-bit word of data
between two nodes, and t,ay is the startup time for a single communication request.
Typical times for the iPSC/860 are tcomm = 3.2 X 10~%sec, and tgarn = 1.36 x 10~4sec
[2].

Other overheads associated with communication add to the total communication
time and are difficult to quantify. For example, since the nonlocal operations are
dominated by communication, as we shall see in Section 5, a node must occasionally
pause from performing useful computation until it receives the next subblock of the
Dirac spinor. This waiting leads to additional delays caused by loss of synchronization



Table 1: Presented are execution times in seconds for 2004 iterations of the matrix-vector
groduct for p = 1 and p = N processors usin§ various lattice sizes. Extrapolated values are
cnoted by an asterisk. Speedup and parallel efficiency are computed using these values.

N|{T(p=N) T(p=1) S(p=N) ep=N)
8 48.4 90.5 1.9 0.24
12 - 257.4 -

16| 239.5 718.5 3.0 0.19
20 . 1580.2 ; .

32| 12690  6375.9* 5.0 0.16
64| 64210 55816.8* 8.7 0.14

between the nodes during message passing. We denote these overheads in useful
computation as Topead, and include this in our overall estimate of the communication
time needed to perform a matrix-vector product

N3
Tcomm=(py + pz) [S?tcomm + tstm] +Tohead- (9)

4 Results

Table 1 presents the time in seconds consumed by 2004 iterations of the Hamiltonian-
vector product on the iPSC/860 for lattice sizes of N3, where N = 8, 16, 32, and 64
using one and p = N nodes, respectively, and the corresponding values of the speedup
and parallel efficiency.

Since we are only interested in understanding, in general terms, the balance between
communication and computation in the matrix-vector product, we will use a simple,
indirect approach to obtain communication and calculation times. Our method is
based on the fact that node-to-node communication occurs only in the nonlocal sum-
mations in the y and z dimensions. Also, if N; = N, = N, = N, each of the three
nonlocal operations performs the same amount of useful work. We give these z, y,
and z dimensional summations the names xprd, yprd, zprd, respectively, and the
full operation of the matrix-vector product is named hdprd. We attribute the differ-
ence in time needed to execute xprd and yprd, or xprd and zprd to node-to-node
communication, and, thus, estimate this time as

Teomm = Typrd + szrd - 2Txprd ’ (10)

where Ty,a is the time spent in xprd, and so on. To obtain our estimate of the time
Thapra spent performing useful calculations, we simply subtract Tcomm from the total
time needed to compute a single matrix-vector product,

Teare = Thdprd ~ Teomm - (11)

Execution times for xprd, yprd, and zprd are presented in Table 2 for 2004 it-
erations of the matrix-vector product. Calculation and communication times are
determined using Eqs. (10) and (11) and are also presented in Table 2 along with the
fractional communication overhead, f. = Tiomm/Tealc

We observe good agreement between our model for the calculation time and the
measured result. The predicted fractional communication overhead obtained using



Table 2: Execution times in seconds for 2004 operations of the matrix-vector product on a
lattice with N3 points using an Intel iPSC/860 hypercube with p = N nodes.

N Txprd ﬂprd szrd Tcalc Teomm f c

8 6.1 109 239 25.6 22.6 0.88
16 | 22.3 1029 96.1 84.2 1545 1.84
32 | 97.7 422.0 7024 349.6 929.0 2.66
64 | 479.7 3006 2963 1659 5010 3.02

Eqgs. (6) and (9), and the measured values of this quantity listed in Table 2 are com-
pared in Fig. 4. Notice that the predicted and measured values for this quantity agree
well throughout the range of problem sizes, 8 < N < 64, and that the communica-
tion overhead increases rapidly up to N = 64. This initial increase in overhead with
problem size at first seems counterintuitive, but is explained by pipelining.

The large communication overheads in Table

2 and the small efficiencies in Table 1 indicate

a poor balance between computation and com-
munication for current problem sizes. There
are two main reasons for our program being
communication-bound. The first results from
the slow speed of node-to-node communication
relative to the speed for performing floating-
point operations on the iPSC/860. The ratio
of the time to communicate one node-to-node
message of length 64 bits to the time to per-
form one double-precision floating-point opera-
tion, Eq. (7), in large, i.e.

beomm _ 48.310g N - 31.7.
flop

(12)

Another reason for the low efficiency of our ap-
plication is its large memory requirement result-
ing is large messages being passed from node to
node. The number of these messages passed in-
creases roughly as 2,/p with the number of pro-
cessors used.

In Tig. 5, we compare the performance of
our solution of the time-dependent Dirac equa-
tion on the iPSC/600 with its performance on
two other computers to which we have access:
a Cray-2 supercomputer and an IBM RS/6000
320H workstation. In computing the floating-
point performance of the i860 for the purposes of
this comparison, we use the overall time Thapra
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Figure 4: Plotted is the fractional
communication overhead f, as a func-
tion of the lattice size N obtained from
the predictions in Eqs. (6) and (9) and
from the measurements given in Table
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Figure 5: A comparison of the per-

formance of implementations of the

Hamiltonian-vector product on the In-

tel iPSC/860 with p = N processors,

5121 z;{ Cray-2, and on an IBM RS/6000
0H.

without factoring the communication. We see that for N = p = 64, the iPSC/860
performs better than the Cray-2 by a factor of 2.2, with the trend for larger problem

sizes clearly in favor of the hypercube.

We present preliminary results for muon-pair production with capture into the
ground state in collisions of " Au + 97 Ay at energies of 2 GeV per nucleon in a




collider frame of reference. In Fig. 6, we show the time-evolution of the muon-position
probability density. When the projectile is very far away from the target, the initial
density of the ground state is spherical. As the projectile passes the target, this
spherical density deforms, expands, and develops both positive and negative energy
continuum (free) components. The muon density was computed for a grazing impact
parameter collision of " Au +197 Au at energies of 2GeV per nucleon in the collider
frame of reference.

Figure 6: Plotted is the negative logarithm of the muon-position probability density (top)
and the scalar-component A%(7,t) of the muon’s interaction with the time-dependent elec-
tromagnetic field (bottom) for projectile positions of z, = —20,0, and 18)..
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