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CALIOPE AND TAISIR AIRBORNE EXPERIMENT PLATFORM

Clifford J. Chocol
Lawrence Livermore National Laboratory, Livermore, CA 94551

Abstract. Between 1950 and 1970, scieatific ballooning achieved many new objectives and made a substantial
contribution to understanding near-earth and space environments. In 1986, the Lawrence Livermore National
Laboratory (LLNL) began development of ballooning technology capable of addressing issues associated with
precision tracking of ballistic missiles. In 1993, the Radar Ocean Imaging Project identified the need for a low
altitude (1 km) airborne platform for its Radar system. These two technologies and experience base have been
merged with the acquisition of government surplus Aerostats by Lawrence Livermore National Laboratory. The
CALIOPE and TAISIR Programs can benefit directly from this technology by using the Aerostat as an experi-
ment platform for measurements of the spill facility at NTS. ’ '

Scientific ballooning contributed a vast amount of information regarding the atmosphere, effects
of space-like environment, and a host of other areas, to the scientific community between 1945 and
1975. Payloads like Stratosphere I and II in the 1960's studied astronomy from a near space condi-
tion and allowed some of the first ultraviolet images to be taken. Project Skyhook was instituted by
the Navy in the 1960's to develop sea launched balloons for fleet communications. In addition, both
NASA and many Universities have developed sensor systems in the infrared, ultraviolet, cosmic ray
and other regions of the electromagnetic spectrum and have used the National Scientific Balloon Fa-
cility at Palestine, Texas or Holloman Air Force Base, New Mexico for a ride into the stratosphere
(see Figure 1). Today, miniaturized electronics and lightweight materials allow highly-sophisticated -
payloads to be flown with high reliability.
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Figure 1. Typical Scientific Balloon Launch |



Figure 3. Kestrel Mission Profile
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In 1986, the Lawrence Livermore National Laboratory (LLNL) began development of a balloon-
ing technology capable of addressing issues associated with precision tracking of ballistic missiles.
This system was called Kestrel (see Figure 2). The Kestrel system allowed a small team to launch a
large balloon at sea or on land with a minimal effort by using a tow balloon to carry the payload and
main balloon canister to low altitude where the main balloon could be deployed safely. This system

.also allowed the balloon to be launched “On-call” as most wind effects could be negated by motion
of the ship. Upon reaching float altitude, the tow balloon remained on top of the main balloon as an

. appendage and the mission proceeded (see Figure 3). At termination of the mission, the payload

canister was released from the main balloon and would free-fall under a drogue chute to an altitude
. of about 6000 feet where a main parachute was deployed for a water recovery. For land recovery, a
steerable paraglider can be used in conjunction with GPS to land the payload in any small body of
water that is inland.

Motivated by the Radar Ocean Imaging Project, LLNL has acquired two government surplus
Aerostats and all associated handling hardware. These Aerostats can carry about 450 kg. to 1 km and
are tethered for station keeping (see Figure 4 & 5). The tether as shown in Figure 6, carries power
(10KVa) to the Aerostat from the ground station and also carries commands to and from the Aero-
stat/experiment via three fiber optic links each copable of 900 megabits/second. One link is used for
the Aerostat housekeeping and the other 2 for the experiment. A typical Radar payload is shown in
Figure 7. The experiment platform is a two axis steerable gimbal and can also be used for optical/
laser types of payloads. Standard hardware upgrades to this system can improve the 200yt radian
stability of the gimbal platform and lengthen the tether to 2 or 3 km.

Aerostat System Notmal Flight tiludé

* 32 meter in length

+ Helium volume of 1,700 cubic meters T ;._».:m:ﬁ’

SMALL AIR RESERVE FOR

« Lifting capability of up to 450 Kg PRESSURE CONTROL

Flight altitude —
* Operates in winds of up to 50 knots 1,100 meters
with gusts to 70 knots Ascent Up
e ! Operating Allitude As A

Land/barge-based deployable
tethered to 1,100 meters

AIR AUTOMATICALLY VENTED TO
MAINTAIN PRESSURE AS HELIUM EXPANDS

700 meters

BALLONET FILLED
WITH AIR e

—_—

Moored

Figure 4. Low Altitude Aerostat System



* Aerostat il ° System: 32 M Aerostat
~ Overall length: 3 * Operating altitude:
32M (97Ft.) 165—1,100 M
-~ Hull diameter: | (500—3,500 Ft.)
10M (30 Ft.) ¢ Aerodynamic for
~ Hull volume: : good stability
1700 M* (60,000 F¢.’) d » Payload
~ Weight: i - 300—450 Kg
400 Kg (650900 Lb) -
- 16 Ft, 172
 Tether S B spherearea
- Length: r— WRNMBMNSMRESRIEES + 24 hour} per day
l,mogtll:i (4,200 Ft.) d-based mooring system * All w:;;mr operation
— Power: (50 knot wind, gusts
208 VAC 30, 400 Hz ¢ Land, barge, ship based mooring system up to 70 knots)
~ Lightning protection ~ Self contained « Ship power available
— Fiber optic cable - 360° rotatable * Minimal crew
transmission ~ In haul/out haul speed 200 ft/min availability
~ Breakstrength: ~ Hydraulic winches
6,400 Kg .
Figure 5. Aerostat System Parameters
Breakstrength: Lightning braid
6,400 Kg Multiple KEVLAR strength
(14,000 Lbs.) member layers
Lightning protection Fiber Optics:
Three single
Power: Power Conductors:  umode fibers
Three conductors composed
10 KVa of AWG No.20 stranded wire N % ;
120/208 VAC i
3 phase
400 Hz
3 serial data link: Length:
900 M bits/second per link 1,400 (4,500 Ft.),
1 link Aerostat housekeeping operating 1,100 M
2 links for experimental payload (3,500 Ft.)
Serves both as a means of securing the Aerostat
and as a source of power and communication

Figure 6. Acrostat Tether System




N e X-band (9-12 GHz)
* Fully coherent operation
Ny, ;. * Pulse compression

¢ 2 axis gimbaled
antenna mount

¢ Slant range—2 Km

HH and VYV polarization

Range swath 750-800 M

[ ]

1.8 M range resolution

Admuth beam width —20

Radar

¢ s°= 50 db/CNR = 1§ db

Figure 7. Typical Radar Installation on Aerostat
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Figure 8. Aerostat Flight Test for CALIOPE.



The transition of the Aerostat and Kestrel technologies into the Solar-Electric Unmanned Light-
er-Than-Air Vehicles, is of significant importance to LLNL. The Non-Proliferation Project at LLNL
is interested in developing sensors to alert the U.S. of research or production activity of both chem-
ical and nuclear weapons. Tests planned for the FY 94 through FY 97 time frame at the Nevada Test
Site include measurements using imagery and Lidar of various effluents from the spill facility.
These tests also include measurements from an airborne platform to determine the effects of back-
ground and to eliminate the ground effect of “seeing” on the data. The low altitude aerostat meets
the requirements for these tests (see Figure 8).

Extending the aerostats capability to an operational vehicle for Non-proliferation, requires some
development. The Solar-Electric Aerostat is a practical candidate for this mission (see Figure 9).
Station keeping in the stratosphere over a suspected nuclear or chemical facility allows measure-
ments 24 hours a day for months at a time. Wind models for specific locations that are of interest,
have shown station keeping at about 85% of any 6 month period. The aerostat can be flown at alti-
tudes between 18 and 20 km and brought back for servicing. For example, the wind profile at 20 km
for the month of January is shown in Figure 10. The station keeping position is shown in Figure 11.
When the wind exceeds the aerostat capability, the aerostat drifts off course until the wind subsides
and then it returns to its station. The length of time “out-of-position” could be 3 to 4 days in January
and O days in June. Communications links can be line-of-sight or by satellite relay, dependent on the
area of interest.

« Performance capabllities complement « Several recent technology advances
conventional UAVs make this performance feasible
- Payloads up to a few thousand pounds - high-density energy storage
- Altitudes up to 20 km (69,000 ft) - amorphous-silicon solar cells
- Wind speed up to 30 m/s (67 mi/hr) -~ composite structural materiais
- Endurance of a year or more possible - balloon materials
— computational aerodynamics
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Figure 9. The emergerice of critical technologies make high-altitude solar-electric ULV flight feasible.
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* Battery technology available after 5 years will increase performance further

- 1000-kg payloads in mean winds

- 300-kg payloads in high winds

- power for sophisticated payloads

- point-to-point flight except in highest winds
mean winds

3-s winds
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volume = 80,000 m*
length=110m

total lift = 5750 k

shaft power = 12 kW
balloon mass = 3200 kg
cell mass =160 kg

cell area =9 %

battery mass =660 kg
structural mass = 860 kg

payload mass =860 kg
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volume = 100,000 m*
length=120m

total lift =7188 kg

shaft power = 33 kW
balloon mass = 3700 kg
cell mass =400 kg

cell area = 20 %

battery mass =1700 l:)%
structural mass = 1000 kg

payload mass =380 kg

Figure 12. Operational-system payload capacity at 20 km: Li Solid Polymer batteries at 300 W-

hr/kg — 1 kW payload.

 Lowering altitude to 18.3 km (60 kft) significantly reduces balloon size
- 1000-kg payloads in 3-c winds
- 100-kg payloads in high winds with relatively small balloon

* Detailed altitude "optimization" required for each application
3o winds

mean winds

8 2noo |
x
g 1500 |

¥ oo

500

D000 =2
mheesmget
o A e

volume = 70,000 m’
length=110m

total lift = 6700 kg

shaft power = 31 kW
balloon mass = 2900 kg
cell mass =390 kg
cellarea=24%

battery mass =1600 kg
structural mass = 790 kg

payload mass =940 kg

volume = 30,000 m®
length =80 m

total lift =2900 k

shaft power = 7.5 kW
balloon mass = 1600 kg
cell mass =100 kg
cellarea=11%

battery mass =420 kg
structural mass = 450 kg
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wind speed (nlY)

payload mass =190 kg

Figure 13. Operational-system payload capacity at 18.3 km: Li Solid Polymer batteries at 300 W -

hr/kg — 1 kW payload.



Solar-electric balloons offer a unique solution to high altitude, long duration applications and
provide a capability not offered by aircraft or satellites. The characteristics of the Solar-Electric-
Aerostat are shown in Figures 12 through 14. As an example, an aerostat with a volume of 70,000
cubic meters can carry a 940 kg payload to an altitude of 18.3 km and station keep in winds up to 20
meters per second using emerging energy storage technology batteries. Energy storage technology
and aerody:.amic design improvements, are expected to enhance this performance such that winds up
to 30 meters per second can be handled. The solar cell area would increase, however the available
area used in the study was only 24% allowing considerable expansion.
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Figure 14. Solar-electric balloons and aircraft provide a unique capability for high altitude long
endurance applications.
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