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EXECUTIVE SUMMARY

A site-specific earthquake response study was conducted for the U.S.
Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP), located
near Paducah, Kentucky, to provide guidance for the seismic safety analysis
and future design of structures and facilities there. The methods used
generally follow widely-accepted and validated practices of the geotechnical
earthquake engineering profession as documented in professional literature.

Three earthquake events developed using probabilistic methodologies were
considered. Two horizontal components of rock outcrop motion in terms of
acceleration versus time were used independently (uncoupled). The peak
horizontal accelerations at rock outcrop are 0.19, 0.27, and 0.63 g for the
500-year, 1000-year, and 5000-year events, respectively.

Input parameters describing soil column idealization, geotechnical
engineering properties, and seismic velocities for four individual soil
columns were obtained from reports by others summarizing investigations around
the perimeter of the plant area. Soils at PGDP generally consist of
Pleistocene-age alluvium cverlying Tertiary-age deposits and then hard
limestone. Idealized soil column heights range from 322 to 364 ft.

The computer program SHAKE was used to calculate the site response
corresponding to each of the four sites. The predominant site period is in
the range of 0.9 to 1.2 sec. Secondary response peaks occurred at periods
around 0.2 and 0.4 sec. The peak horizontal accelerations at (free field)
ground surface were calculated to be 0.20, 0.27, and 0.36 g for the 500-year,
1000-year, and 5000-year events, respectively. Peak spectral velocities of
18, 26, and 70 in./sec for the 500-year, 1000-year, and 5000-year events,
respectively, occur in this range of periods at 5 percent damping. Peak
spectral accelerations of 0.75, 1.1, and 1.0 g for these three events,
respectively, occur at a period of 0.2 sec.

A sensitivity study was conducted using an average scil column and the
1000-year earthquake event. The effects of including a measured velocity
inversion at Site 3 and reasonable ranges of impedance ratio, depth to
bedrock, and modulus relationships were found to be negligible to small. The
effect of damping ratio relationships and maximum shear modulus using very

large bounds was found to be considerable at lower periods.



PREFACE

This report documents the site response evaluations performed fbr the
U.S. Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP) located
southwest of Paducah, Kentucky. The U.S. Army Engineer Waterways Experiment
Station (WES) was authorized to conduct this study from FY91 to FY93 by the
DOE, Oak Ridge Operations (ORO), Oak Ridge, Tennessee, through Inter-Agency
Agreement (IAG) No. DE-AI05-910R21971. The study was conducted under the
Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program. Dr. Ronald
O. Hultgren and Mr. James A. Reafsnyder, ORO, were the DOE Program Officers.

The IAG was managed for Martin Marietta Energy Systems, Inc., by
Ms. Karen E. Shaffer, Uranium Enrichment, Martin Marietta Energj Systems,
Inc., Oak Ridge, Tennessee. Mr. William R. Brock, Deputy Engineering GDP SAR
Manager, Technical Operations, and Mr. R. Joe Hunt, Center for Natural
Phenomena Engineering, Technical Operations, provided technical requirements
and oversight for the study. The overall project manager was Mr. Anthony
Angelelli, GDP SAR Manager, Uranium Enrichment. A similar study was conducted
for the DOE Portsmouth Gaseous Diffusion Plant (PORTS), located near
Portsmouth, Ohio, under the same IAG and is reported under separate cover. A
reassessment of liquefaction potential and estimation of earthquake-induced
settlements at PGDP are also reported under separate cover.

The WES Principal Investigator was Mr. David W. Sykora, Earthquake
Engineering and Seismology Branch (EESB), Earthquake Engineering and
Geosciences D;vision (EEGD), Geotechnical Laboratory (GL), WES. Ms. Jennifer
J. Davis, a co-op student from Mississippi State University, assisted
Mr. Sykora. Mr. Gregory D. Comes, EESB, provided additional engineering
assistance, and Messrs. William M. McGeehee and Dan®el M. Habeeb, EEGD, helped
to prepare report figures. Dr. Mary Ellen Hynes was the Chief, EESB, during
this study.

Overall direction at WES was provided by Dr. A. G. Franklin, Chief,
EEGD, and Dr. William F. Marcuson I1II, Director, GL.

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.
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CONVERSION FACTORS, NON-SI to SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI
(metric) units as follows:

Multiply

acre

feet

inches

miles (US statute)

pounds (mass) per
cubic foot

pounds (mass) per
square foot

pounds (force) per
inch

Abbreviation

ft
in.
mis.
pcf

psf

psi

By To _Obtain
0.4047 square kilometers
0.3048 meters
2.54 centimeters
1.609 kilometers
6.01846 kilograms per cubic

meter
4.882428 kilograms per

square meter
6.894757 kilopascals



SITE-SPECIFIC EARTHQUAKE RESPONSE ANALYSIS FOR
PADUCAH GASEQUS DIFFUSIQN PLANT,
ucC K CKY

PART I: INTRODUCTION

1. The Paducah Gaseous Diffusion Plant (PGDP), owned by the U.S.
Department of Energy (DOE) and operated under contract by Martin Marietta
Energy Systems, Inc., is located southwest of Paducah, Kentucky. An aerial
photograph and an oblique sketch of the plant are shown in Figures 1 and 2,
respectively. The fenced portion of the plant consists of 748 acres.* This
plant was constructed in the 1950's and is one of only two gaseous diffusion
plants in operation in the United States; the other is located near
Portsmouth, Ohio.

2. The facilities at PGDP are currently being evaluated for safety in
response to natural seismic hazards. Design and evaluation guidelines to
evaluate the effects of earthquakes and other natural hazards on DOE
facilities follow probabilistic hazard models that have been outlined by
Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990)
classify diffusion plants as "moderate hazard" facilities.

3. The U.S. Army Engineer Waterways Experiment Station (WES) was tasked
to calculate the site response using site-specific design earthquake records
developed by others and the results of previous geotechnical investigations.
In all, six earthquake records at three hazard levels and four individual and

one average soil columns were used.

Purpose

4. The purpose of this study was to calculate a reasonable range of
expected site-specific, free-field earthquake response at PGDP to three
hazard-level earthquakes, a 500-year, a 1000-year and a 5000-year event, using
geotechnical and geophysical information collected by others specifcally for
this site response analysis. The response was calculated independently for

two components of horizontal motion at each hazard level. The emphasis of the

* A table of factors for converting US customary units of measurement to
metric (SI) units is presented on page 8.

9
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evaluation was on the 1000-year event which represents the Design Basis
Earthquake (DBE) for design and seismic evaluation sftudies at moderate hazard
DOE facilities. Calculated free field response spectra will be used by
structural engineers to evaluate the stability of sensitive structures and
facilities and to design future systems at PGDP. To our knowledge, no
previous detailed site response analysis has been conducted for PGDP.
Calculated acceleration records will be used by WES to update the study of
liquefaction potential at the site and estimate earthquake-induced

settlements.

dure o te Response alysis

5. A site response analysis, sometimes referred to as a soil
amplification analysis, involves the determination of components of ground
motion for design or seismic evaluation. Typically, as in this study, that
determination is made for a "free-field" response—the response at the ground
surface of an ideal soil deposit (horizontal layers extending to infinity) to
a spatially-uniform, horizontal motion applied at the base. The conceptual
relationship between free-field response with respect to two other primary
control points—rock outcrop and base rock-in a site response analysis is shown
in Figure 3. The motions at these three points, as well as any other point in
the vertical profile, are unique. Design earthquake motions are most often
specified as corresponding to rock outcrop. Mathematical expressions
(transfer functions) are then used to find the equivalent motion for the
baserock, and then the seismic waves are propagated through the soil column to
determine the free-field motion at the surface.

6. The determination of site-specific earthquake response of soil
deposits generally involves three basic steps:

a. Determination of earthquake hazard and the selection or
derivation of design motionms.

b. 1Idealization of stratigraphy and selection of material properties.

¢. Calculation and evaluation of site response.
For this study, step (a) and part of step (b), listed above, were conducted by

others (Risk Engineering, Inc. 1993, Automated Science Group, Inc. 1991, ERCE
1990b, and Staub, Wang, and Selfridge 1991) and submitted to WES by Martin

12
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Figure 3. Three primary control points for a site response analysis

Marietta Energy Systems, Inc. WES was wholly responsible for the calculation
and evaluation of site-specific earthquake response (step (c) listed above).
WES also derived the average column used for sehsitivity analysis.

7. At the direction of Martin Marietta Energy Systems, Inc., the
computer program SHAKE (Schnabel, Lysmer, and Seed 1972) was used to calculate
site response for purposes of this study. SHAKE is a one-dimensional, total
stress code that solves the wave equation in the frequency domain (complex
response technique). The soil profile is represented with an idealized soil
column of homogeneous, visco-elastic layers of infinite extent.

8. SHAKE is widely used by the geotechnical earthquake engineering
profession for the calculation of site response for horizontal motions.
Several investigators have reported close comparisons between the results
using SHAKE and the measured horizontal response from strong-motion
instruments triggered during earthquakes at periods less than 2 sec (e.g.,
Seed et al. 1987 and Seed, Dickenson, and Idriss 1991). The experience of
these investigators suggest that for periods greater than 4 sec, motions are
likely to be significantly affected by two-dimensional effects and surface

wave energy and are not well represented with SHAKE.**

*%* Personal communication, Prof. Raymond Seed, University of California at
Berkeley, 23 September 1991.
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Special Considerations for Study at PGDP

9. The analysis of earthquake response at a site is not only unique to
the material properties and site conditions but also to other factors such as
the number and spatial distribution of soil columns, assessment of how
representative the soil columns are of the range of site conditions, and
interpretations or assumptions required to provide the necessary complement of
input parameters. At PGDP, some special considerations were required.

10. Soil conditions at Site 1, located on the southern boundary of PGDP
(refer to Figure 2), were reported to be considerably different than those at
the other three sites (ERCE 1990a). A review of the geology there indicates
that this area is underlain almost entirely by Tertiary-age deposits of the
Porter'’s Creek Formation which tends to be stiffer than the Tertiary-age
deposits of the Clayton-McNairy Formation. These deposits are expected to
exist beneath the soutbarn portion of the C-333 processing building. The
calculated response at Site 1 was included to produce a full range of response
that could potentially exist in the near vicinity of PGDP. The results of the
analysis indicate that the response at Site 1 generally lies near the upper-
bound of response but does not differ significantly from the response at other
sites.

11. The four sites are spaced a large distance apart (two sites are
over 2 miles apart) and exist outside of the fenced boundaries. A number of
borings that were made within the fenced area for previous studies suggest
that the profiles at Sites 2, 3, and 4 are representative of the conditions
for the overall plant. The ranges in measured shear wave velocity with depth
at the four sites are relatively small considering the distance between sites.
Furthermore, shear wave velocities measured at the nearby Olmsted Lock and Dam
Project on the Ohio River in the same geologic formation that exists at PGDP
have essentially the same range and variability.

12. A comprehensive sensitivity analysis of inputs was performed to
account for reasonable uncertainties in the depth to bedrock, impedance
contrast, shear wave velocity, and relationships between shear modulus and
damping ratio versus shear strain. Potential variations in shear wave

velocity were addressed using guidance by the Nuclear Regulatory Commission
(1989).

14
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13. The presentation of information henceforth generally will follow
the order of site response analysis listed earlier. First, the synthetic
records used in the analysis are presented in Part I1. Then, stratigraphic
and material property information is presented in Part III. Detailed
descriptions of calculations and methods of presentation are given in Part IV.
The results of calculations for the 500-year, 1000-year, and 5000-year events
are presented in Part V. The sensitivity analysis was conducted using an
average column intended to represent all four sites and the 1000-year event.
This analysis is summarized in Part VI. A summary and conclusions secticn
completes the report. Figures representing many of the computations conducted

for the study are contained in “he appendices for reference.

15



PART II1: DESIGN EARTHQUAKE EVENTS

14, The determination of earthquake hazard and the selection or
derivation of appropriate design records represent the first step of a site
response analysis. Based on current DCE guidelines and the moderate hazard
classification assigned to PGDP, probabilistic methods of hazard analysis were
used to derive parameters defining the design events and to develop
corresponding synthetic records.

15. The probabilistic assessment of seismic hazard was conducted by

-

Risk Engineering, Inc. (1993). They used an extended-source seismic hazard to
represent the New Madrid Seismic Zone (NMSZ) for site-specific evaluations at
PGDP. Recent seismic activity in the NMSZ is shown in Figure 4. The
extended-source model of the NMSZ is a system of parallel faults running in a
north-northeasterly direction. Earthquake magnitudes and epicentral distances
were smoothed with the drminant magnitudes and epicentral distances being 7.1
at 65 km for the 500-ycar event, 7.3 at 52 km for the 1000-year event, and 7.3
at 38 km for the 5000-year event. Uniform hazard response spectra were
generated at these three levels of hazard.

16. Three sets of synthetic earthquake records representing rock
outcrop motions were developed corresponding to three median levels of hazard
(500-year, 1000-year, and 5000-year events). Synthetic earthquake records
were developed by Risk Engineering, Inc. (1992) to completely envelop the
uniform hazard spectra. Two horizontal components of motion were provided for
each earthquake event. A time step of 0.01 sec (i.e., 100 samples per second)
was used corresponding to a Nyquist frequency of about 50 Hz, a value well
above the free-field natural frequency at the site. Records of the variation
of acceleration, velocity, and displacement with time and absolute
acceleration response spectra are pi:sented below for the three design events
using a constant vertical plot scale for consistency. The acceleration and
velocity records were integrated exactly by WES to allow inspection of the

variations of velocity and displacement, respectively, with time.

00-Ye vent

17. The two components of the synthetic 500-year design earthquake

event for rock outcrop are shown in Figure 5, and particular characteristics

16
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are summarized in Table 1. The peak horizontal ground accelerations are 0.19
and 0.18 g for the Horizontal 1 and Horizontal 2 components, respectively, and
the durations of strong motion (accelerations > 0.05 g) are 11 and 15 sec.

The variation of acceleration, velocity, and displacement for the two

horizontal components of the 500-year event are shown in Figure 6.

Table 1

Characterjstics of 500-Year Event Outcrop Motions

Duration
Peak Peak Strong
Acceleration Peak Velocity Displacement Motion
Component (cm/sec?) (cm/sec) (cm) (sec)
Horizontal 1 183 11.0 8.0 11
Horizontal 2 178 6.8 2.9 15

18. The variations of velocity and displacement for the two horizontal
components differ noticeably both in the peak amplitude and the number of
times that the zero amplitude line is crossed. The peak velocity and
displacement for the Horizontal 1 component are on the order of twice those
for the Horizontal 2 component. |

19. The absolute acceleration response spectra at six levels of systenm
damping for the 500-year event are shown for both components of rock outcrop
motion in Figure 7. The spectra corresponding to 5 percent damping are
similar with spectral accelerations ranging up to 0.50 g. At 5 percent
damping, the Horizontal 1 component has a peak ordinate of 0.5 g at 0.042 sec,
and the Horizontal 2 component has dual peak ordinates at 0.021 and 0.035 sec.
The Horizontal 2 component consistently has a greater response at periods less
than 0.04 sec.

1000-Year Event

20. The two horizontal components of the synthetic 1000-year design
earthquake event for rock outcrop are shown in Figure 8, and particular

characteristics are summarized in Table 2. The peak horizontal ground

19
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accelerations are 0.26 and 0.27 g for the Horizontal 1 and Horizontal 2
components, respectively, and the durations of strong motion (accelerations >
0.05 g) are 15 and 17 sec. The variation of acceleration, velocity, and
displacement for the two horizontal components of the 1000-year event are

shown in Figure 9.

Table 2
Charactexristics of 1000-Year Event Outcrop Motions

Duration
Peak Peak Strong
Acceleration Peak Velocity Displacement Motion
Component (cm/sec?) (cm/sec) (cm) (sec)
Horizontal 1 258 18.1 13.7 15
Horizontal 2 265 14.7 11.1 17

21. The variations of velocity and displacement for the two horizontal
components are similar. The Horizontal 1 component has slightly larger peak
values of velocity and displacement. The variations of displacement for each
component are slightly skewed to one direction or the other.

22. The absolute acceleration response spectra at six levels of system
damping for the 1000-year event are shown for both components of rock outcrop
motion in Figure 10. The spectra corresponding to 5 percent damping are
similar with peak spectral accelerations up to 0.77 g. At 5 percent damping,
the peak spectral accelerations are 0.68 and 0.77 g, about one-and-a-half
times greater than the peaks for the 500-year event. Predominant periods for
the two components are again 0.042 and 0.035 sec, and the Horizontal 2

component has a consistently greater response at periods less than 0.04 sec.
2000-Yeax Event

23. The three components of the synthetic 500C-year design earthquake
event for rock outcrop are shown in Figure 11 and particular characteristics

are summarized in Table 3. The peak horizontal ground accelerations are 0.54
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and 0.63 g, respectively, and the durations of strong motion (accelerations >
0.05 g) are 15 and 16 sec. The variation of acceleration, velocity, and
displacement for the two horizontal components of the 5000-year event are

shown in Figure 12.

Table 3
ct stics o 000-Yea v Outcrop Motions
Duration
Peak Peak Strong
Acceleration Peak Velocity Displacement Motion
Component (cm/sec?) (cm/sec) (cm) (sec)
Horizontal 1 525 53.5 45.9 13
Horizontal 2 615 59.0 41.8 15

24. The variations of velocity and displacement for the two horizontal
components are very similar. The Horizontal 2 component has a slightly larger
peak value of velocity, and the Horizontal 1 component has a slightly larger
peak value of displacement. The variation of displacement for the
Horizontal 1 component is slightly skewed to one direction. The peak values
of acceleration, velocity, and displacement for the 5000-year event are about
three times the peak values for the 1000-year event.

25. The absolute acceleration response spectra at six levels of system
damping for the 5000-year event are shown for both components of rock outcrop
motion in Figure 13. The spectra for the two components are significantly
different. The Horizontal 2 component produces significantly greater response
at periods less than 0.04 sec, muci. wore pronounced than the stronger response
at these periods noted for the other two'events. For a damping ratio of
5 percent.,, the peak spectral accelerations are 1.32 at 0.048 sec and 1.55 g at
0.03 sec, about two times the peaks for the 1000-year event and three times

the peak values for the 500-year event.
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PART III: SITE DESCRIPTION AND SOIL COLUMNS

26. PGDP is located about 10 miles west of Paducah, in McCracken
County, Kentucky, about 4 miles south of the Ohio River and about 3 miles
south of the Ohio River Valley. This area is at the northern boundary of the
Coastal Plain Province and the plant is situated on an upland surface that was
graded during construction in the early 1950’'s to between el 370 and
380 MSL.+ (ERCE 1990b) The region around the plant is relatively flat with
some upland erosion from nearby streams.

27. An attempt was made at the initiation of this study to obtain
information from investigations conducted by USACE in the 1950’'s at PGDP for
original construction of the plant. Despite considerable effort, this
information was not found. Therefore, only recently-obtained information was

involved.

Site Geology

28. Soil deposits at PGDP are part of the Mississippi Embayment which
consists of Cretaceous-age (pre-Tertiary) to Pleistocene-age deposits. .The
Mississippi Embayment has undergone several cycles of uplifting with
consequent erosion and downwarping with consequent deposition. Tertiary-age
deposits were placed in marine environments. Pleistocene-age continental
deposits were deposited in fresh-water environments on erosional surfaces of
Tertiary-age deposits. "These deposits may represent part of a large alluvial
fan, and may consist partly of reworked glacial outwash." (ERCE 1990b) The
results of consolidation tests were not available to determine the degree of
overconsolidation of foundation materials. Based on the history of deposition
and erosion, however, soil deposits at PGDP are expected to be normally
consolidated or possibly slightly overconsolidated.

29. Soil deposits can be generally described as consisting of a
surficial veneer of loess, alluvial continental deposits that consist of
gravel, sand, silt and clay overlying Tertiary-age deposits of predominantly
clay interbedded with sands and silts, and occasionally a "rubble zone." Fill

is expected at the ground surface in isolated locations. Hard limestone

+ Mean Sea Level
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underlies the entire site. The soil deposits and limestone dip gently
downward to the south (ERCE 1990b). An illustrated cross section showing the
primary soil deposits along a line projected north-south through the plant
area is shown in Figure 14. This figure is not to scale, but it generally
shows the distribution of materials along the profile. Brief descriptions of
the soil deposits and bedrock are presented below.
Fill

30. Fill was encountered in the upper five feet at Site 2. The fill
material is essentially a silty clay with limestone fragments (ERCE 1990b).
For this analysis, this material was generally lumped together with loess.
Loess deposits

31. Wind-blown loess deposits cover nearly the entire fenced area of
PGDP. These deposits are of Pleistocene age and vary in thickness from 15 to
40 ft (ERCE 1990b). At the four sites used for site response analysis, the
thickness only ranged from 10 to 20 ft. The loess generally classifies as a
silty clay (CL) with some CL-ML material. The liquid limits and plasticity
indices range from 22 to 35 and 4 to 14, respectively; moist unit weights
range from 120 to 124 pcf. The range in Standard Penetration Test (SPT) N-
values is 5 to 26 with an average of 11 blows per foot indicating a firm to
very stiff consistency.
Continental deposits

32. Continental deposits appear to underlie the entire area around
PGDP. These alluvial deposits are of Pleistocene age (possibly pre-
Pleistocene); they vary in thickness from 20 ft at Site 1 to 93 ft at Sites 3
and 4 and 95 ft at Site 2, and consist of low plasticity clays and silts,
silty and clayey sands, and gravels. The liquid limits and plasticity indices
range from 14 to 40 and non-plastic to 20, respectively; moist unit weights
range from 97 to 136 pcf. The range in SPT N-values is 4 blows per foot to
refusal with an average of about 45 blows per foot confirming that there is a
wide variation in material densities and consistencies.
Tertiary-age deposits

33. Three primary formations of Tertiary-age exist in the area of the
PGDP: the Clayton, McNairy, and Porter’s Creek. The Clayton and McNairy
Formations are combined for engineering purposes of this study because the
materials are very similar. The Porter’s Creek and Clayton-McNairy Formations

are described separately below.
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34. Poxter's Creek Formation., The Porter's Creek Formation was

encountered at Site 1. The thickness of the deposits within this formation is
84 ft. These materials are micaceous silts and clays with intervals of fine
sand, in part glauconitic (ERCE 1990b). The plasticity of these deposits is
high and the Atterberg Limits plot well below the "A-line." The liquid limits
and plasticity indices range from 88 to 106 and 11 to 25, respectively; moist
unit weights were not measured. The range in SPT N-values is 43 to 170 blows
per foot with an average of 92 blows indicating a hard to very hard soil
consistency.

35. Clayton-McNairy Formation. The Clayton-McNairy Formation was
encountered at all four sites beneath Continental Deposits (at Sites 2, 3, and
4) or Porter's Creek Clay (at Site 1). These materials consist of interbedded
clay, silt, and fine sand. The thickness of these deposits ranged from 210 to
225 ft at the four sites. The liquid limits and plasticity indices of these
materials range from 22 to 43 and non-plastic to 18, respectively; moist unit
weights were not measured. The range in SPT N-values is 45 blows per foot to
refusal with more than half of the N-values being greater than 100 indicating
a hard to very hard soil consistency.

Little Bear Soil

36. Little Bear Soil (rubble zone) was apparently encountered at Site 3
at depths between 334 and 364 ft but not at any of the other three sites.

This deposit is believed to generally consist of silty clay with chert
fragments and limonite nodules (ERCE 1990b). This material is described from
the drilling log as "Probably siliceous limestone and chert fragments (rubble
zone)." An SPT sampler could not penetrate material in this zone.

Bedrock

37. Bedrock beneath the plant area at PGDP generally consists of
limestone of Mississippian Age, presumably of the Warsaw Formation (Martin
Marietta Energy Systems, Inc. 1991b). The limestone tends to be moderately
hard to hard with a relatively high shear modulus. Two borings for this study
fully penetrated the soils (at Sites 3 and 4) and were extended 5 to 35 ft,
respectively, into limestone using a roller bit.

38. Previous investigations by others for major projects in the region
on similar types of bedrock provided additional insight into the
characteristics of the limestone, particularly on representative shear wave

velocities. These previous investigations were for the Bellefonte, Browns
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Ferry, and Watts Bar Nuclear Power Plants and the Tennessee Valley Authority
(TVA) Yellow Creek Project.

Individual Soil Columns

39. A "soil column" is a one-dimensional idealization of a layered soil
deposit. This representation assumes that the soil layers and surface of the
deposit are horizontal and that the material properties do not vary over the
thickness of any one layer. The primary components of a soil column are:
geometry (number of layers and thickness of each layer), geotechnical
engineering data, and seismic geophysical data. General descriptions of each
of these categories are provided in the following sections.

40. Four individual soil columns were derived from recent drilling and
geotechnical engineering investigations (ERCE 1990a) and geophysical
measurements (Automated Science Group, Inc. 1991) performed at general
locations shown in Figure 2 (ERCE 1990a). Seismic velocities were assimilated
by Staub, Wang, and Selfridge (1991). A summary of geotechnical tests and
shear wave velocity measurements made at each of the four sites are shown in
Figures 15 through 18.

41. All four of the sites are located outside the fenced boundary of
PGDP and are separated by great distances. Site 2 is the closest to a large,
important building, about 1,500 ft from building C-337. Site 1 is 2,000 ft
from building C-333 and Site 3 is 4,000 ft from building C-720. Site 3 is
located near the edge of the upland surface where the cooling water pipes
emerge and is about 11,700 ft from buildings C-335 and C-337. The distances
between each pair of sites are listed in Table 4. Coordinates and surface
elevations for all borings drilled at each site are presented in Appendix A.

42. The four idealized soil columns developed by ERCE (1990a) are shown
in Figures 19 through 22. Minor modifications to the original soil columns
were made by WES by combining some adjacent layers with similar material types
and shear wave velocities. Changes in material types are designated with
solid horizontal line segments across the column whereas changes in parameters
for the same material type are designated with a dashed horizontal line

segment. Specifics about each component are described below.

34



S50

100

150

Depth (ft)

250

300

350

Shear Wave Velocity (fps)

500 1000 1500 2000
1 [ | | ‘ I 1 | ! I 1 1 [ | [ ] I 1
Loess X -
— — - - i
Alluvium | .
b S x
= A G x —
2 xl
—8 x -
=] X
|2 | -
_g AG X x -
2 p |
—g AG| O -
._.g }e ‘ -
@  AG| T -
L& < | _
B -
(8 AG L — — — A i
o | i
N | i
- I -
o | i
o ‘ —
| | -
- | -
- SITE 1 -
L | -
i | |
- l -
| ‘ l .
x  Crosshole velocity _
B ® Standard Penetration Test |
— 0 Undisturbed sample N
L D Unit weight N
n A Atterberg limits -
G Gradation
— — — l|dealized velocity -
SN NSNS WS VRN VRN SN NN UM MU NN TN NN NS VNN SO NN BUS N |
Figure 15. Depths of geotechnical testing and results

of shear wave velocity measurements at Site 1

35




Depth (ft)

Shear Wave Velocity (fps)

0 500 1000 1500
0 AT T T T 1 1T 1 T T T 1
- O D .%F'i" I X ‘ ] ]
AG Loess X
o - Lo — — o
—g oD AG | x
=] A G X
50 _g OoDAG g |
L ® 2 X
] § X|
EEIE R
-2 xl
B
_g X
100 = I~
_g * — . _|
- — M
= | Cl McN | <
= ayton—McNairy
® AGJ - =
150 l
- l
i |
200 |
n |
- |
- SITE 2
250 |
i |
- I
B |
500 x  Crosshole velocity
B ® Stondard Penetration Test |
— o Undisturbed sample
- D Unit weight
B A Atterberg limits
G Gradation
350 = -~ — |dedlized velocity
N (NN NN WA NN SN TS SRS SN AU SN NN SN SR S S

Figure 16. Depths of geotechnical testing and results
of shear wave velocity measurements at Site 2

36



Depth (ft)

50

100

150

N
O
O

250

300

350

Shear Wave Velocity (fps)

1000 1500 2000
i | 1 | 1 I T 1 | i 1 1 1 ]
— = :
f.
S -
BRI i SITE 3 ]
® X
—au[)A 2 .
® 3 h
K = x ]
-2 | -
2 AG —_ =
—B x -
® AG
-8 | x -
8
—8 x -
T m — x | 7
2 g -
—
L ® AG -
- £ -
[e]
| ® Z -
B = _
| 8 S .
- ) -
AGg| ©
2 x Crosshole velocity 7
- Downhole velccity =
| B Standard Penetration Test -
B 0 Undisturbed sample N
e D Unit weight
~ A Atterberg limits n
— G Gradation -
| 2 AG — — lidealized velocity —
@ -
B -
@ AG -
| & ° ‘ -
- 2 -
>
i E |
| 41 | i | Il 1 4 | 1 | 1 i | 1 1 1 1 1
Figure 17. Depths of geotechnical testing and results

of shear wave velocity measurements at Site 3

37




Depth (ft)

50

100

150

N
o
®)

2350

300

350

Shear Wave Velocity (fps)

0 500 1000 1500 2000
IDAG %££§554 ._l T T 1 | N L L N ]
8., © - - 4
o AG Ix -
2 A
b E x -
 SoBA 3 | _
B A _5 —
—g A = - -
& x -
® x|
—& X —
B X
-] x e -
® G x
-2 —— > i
L ! -
8 AG L — = - 1
- -
L= AG -
- -
& —
| ® AG —
8 A - _
-.® 0D ‘§ -
& acl| 3 SITE 4 1
|-® . -
| ® < -
| ® G 8 -
o .
| ® B
| ® AG -
e -
LB i
| ® G -
| B . .
8 G x  Crosshole velocity
u Downhole velocity ]
@ G ® Stondard Penetration Test -
| O Undisturbed sample B
O Unit weight
i A Atterberg limits B
— G Gradation -
- — — ldealized velocity -
i 1 J | | | | i i | { ! 1 i 1 1 ! |

Figure 18. Depths of geotechnical testing and results
of shear wave velocity measurements at Site 4

38



Depth (ft)

a5

S0

75

100

125

150

175

200

Surfoce Elsv. = 3803

Lean Clay (CL)
Pl=7-13%, v,*125 pct
V, = 770 fps

Pl=2%, ~,=135 pct

Siity Sand (SM)
\ V, = 1,085 fps

Sity Clay & Gravel ||
(CL-ML, SM, SC, & CL)
PlzNP-15%, ~,=115 pcf

V, = 1,065 fps

Clayey Siit (CL & MH)
Pl=15-25%, v,=105 pct
V, = 1,085 fps

Siity Clay & Clayey Silt
(SM & MH)
Pl=11-19%, +,=105 pct
V, = 1,065 fps

Siity Sand (SM)
Non-Plastic, v,=125 pcf
\ V, = 1,550 fps /

Interbedded Sand,
Siit, & Clay (SM-SC)
Pl=7%, 7,125 pcl
V, = 1,550 tps

(CL & SM)
Pl=NP-18%, 7,=125 pcf

Figure 19.

_\/\_

Soil column for Site 1

Vi

39

200

225

230

275

300

325

—

Silty Sand (SM)
~v=125 pet
V, = 1,550 fps

Sandy Clay (CL)
Pl=13%, ,=130 pcf
V; = 1,550 fps

Limestone, «,=165 pct
V, = 8,500 fps



Depth (5

235

S0

75

100

125

150

175

200

Surface Elev. = 3800

Sity Clay (CL)
. Pl=8%,7,120 pct
V; = 65S fps

s omn Gm awn G— — — e od

Pl=12-14%, ~,=125 pct
V; = 655 fps

Silty Clay &
Clayey Sit (CL-ML)

Pl=4%, «,#120 pcf
L V; = 1,140 fps

- e . memn me — g

(CL & SM-SC)
\' Pi=5~8%, 77,2125 pct
(CL)
Pi=18-20%

200

2e5

250

Clayey Sand &
Silty Sand (SC & SM)
Pl=NP-8%, 74,2125 pct
V, = 1,140 fps

Silty Sandy Gravel
74=125 pct
V¢ = 1,260 tps

joe mut e ewen w— G e

V; = 1,485 fps

Silty Clay
71,2125 pct
V, = 1,485 fps

——
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Figure 20.
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Soil column for Site 2
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=130 pct
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V, = 8,500 fps

Figure 21. Soil column for Site 3
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Figure 22.
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Silty Sand (SM)
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Sandy Clay (CL)
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V, = 1,550 fps

Sity Sand (SP & SM)
72125 pct
V; = 1,550 fps

Limestone, -,=165 pef
V, = 8,500 fps

Soil column for Site 4



Table 4

a wee tes
Distance (ft)

Site Site 2 Site 3 Site 4
1 7,100 18,100 6,970
2 - 11,900 5,500
3 - - 13,600

Geometry
43. Three or four boreholes were drilled at each of the four sites. At

Sites 1 and 2, three boreholes were drilled to depths ranging from 70 to

125 ft. Boreholes were not extended to limestone bedrock at either of these
sites. At Sites 3 and 4, four boreholes were drilled, three to depths of
about 125 ft and the last terminated in bedrock (encountered at depths of 364
and 322 ft, respectively).

44, Soil columns for site response analysis should extend to sound
bedrock. It was desirable to include information from all four sites
investigated at PGDP for the site response study even though boreholes were
extended to bedrock at only two sites. Therefore, Martin Marietta Energy
Systems, Inc., through ERCE (1990a), interpreted soil column parameters at
depth for Sites 1 and 2 based on available geologic, geophysical, and
seismologic data at PGDP to allow the analysis of four (semi-) independent
soil columns. ,

45, Soil layers within a soil column represent depths at which
significant changes in material occur. This includes soil classification and
material properties. The number of soil layers used for PGDP varied between
12 for Site 3 and 17 for Site 2 as shown in Figures 19 through 22.

G ec e neering data

46. Geotechnical engineering data for this study refer to gradation and
plasticity index (PI), the unit weights (densities), and the variations of
shear modulus and damping ratio with shear strain. One of the three "shallow"
holes was used as the primary source of geotechnical data at each site.

Geotechnical data was also obtained from the two "deep" holes at Site 3 and
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Site 4. SPT's were generally performed at 2.5-ft depth intervals in the upper
strata and 5-ft intervals in continental deposits. The depth to the phreatic
surface was not of importance for the site response analysis (but is for
liquefaction and earthquake-induced settlement calculations subsequent to this
study) .

47. Gradations and Atterberg limits. A number of these tests were
performed at each site, particularly in the loess and continental deposits.
The gradation and Atterberg limit values were used to classify the soil to
determine the appropriate number of layers and the thickness of each layer.
The PI was also used to assign appropriate relationships defining the
variation of shear modulus and damping ratio with shear strain as described
below.

48. Unit weights., The values of unit weight for each layer of the soil
columns (ERCE 1990a) were derived from measurements made in the laboratory,
interpretations of downhole geophysical measurements (Automated Science Group
1991), and assumptions. All but one unit weight was measured in the
laboratory on samples of loess and continental deposits at depths less than
55 ft. Measured values of moist unit weight ranged from 95 to 136 pcf. The
unit weight of rock was assumed to be 165 pcf. The range of unit weights for
soil column idealizations is 105 to 135 pcf.

49. The report by ERCE (1990a) indicates that some of the unit weights
were measured on soil samples obtained with an SPT split-spoon sampler. This
practice is not widely accepted in the geotechnical engineering profession so
these values were not used for this analysis. Unit weights of samples taken
using shelby tube samplers indicate that suggested values for the soil columns
are representative.

50. Shear modulus and damping ratio relationships., The geotechnical
study at PGDP did not include a site-specific evaluation of the variation of
shear modulus and damping ratio with shear strain. Rather, standard
relationships published by others were used which typically represent a best-
fit of numerous compiled data from investigations conducted throughout the
U.S. In the absence of site-specific data, these relationships have proven to
work well in most applications for site response analyses. Upper-bound and
lower-bound relationships are also considered for some applications as with
this study. The results of Atterberg Limit and grain size distribution tests

were used to select the best-suited relationships.

44



51. Nine different modulus degradation relationships and seven
different damping ratio relationships were considered. The relationships
representing shear modulus included the best-fit for rock (Schnabel 1973), the
best-fit for gravel (Seed et al. 1986), the best-fit, upper bound, and lower
bound for sand (Seed and Idriss 1970), and the best-fit for four ranges of PI
for cohesive soils (Sun, Golesorkhi, and Seed 1988). The curves for soil are
shown in Figures 23a and 24a. Relationships representing damping ratio
include the best-fit for rock (Schnabel 1973), the best-fit, upper-bound, and
lower-bound for cohesionless soils (Seed and Idriss 1970 and Seed et al.
1986), and the best-fit, upper-bound, and lower-bound for cohesive soils (Seed
and Idriss 1970). The curves for soil are shown in Figures 23b and 24b. The
collection of relationships are shown in Figure 25 and include the recommended
cap of 15 percent for damping ratio (Nuclear Regulatory Commission 1989).

52. The initial assignments of standard modulus relationships made for
each soil layer are listed in Tables 5 and 6. These assignments are based on
soil classification as described above. The dotted horizontal lines in the
tables show where contrasts in shear wave velocities exist for the soil
columns that will be presented in the next section. Rubble (bottom of column
at Site 3) was represented with the best-fit relationship for gravel. Sand
and gravel deposits were represented by the lower-bound relationship for sand.

53. The assignment of standard damping ratio relationships was also
made based on soil classification. Rubble and cohesionless soils were
assigned the best-fit relationship for cohesionless soils. Cohesive soils
were assigned the best-fit relationship for cohesive soils. The upper and
lower bound damping relationships shown in Figures 23a, 24a, and 25a were only
used in the parametric analyses described in Part VI.

54. Effect of confining stress, Confining pressure has been shown to
affect the normalized modulus and damping ratio relationships. As the
confining stress increases, the normalized modulus and damping ratio
relationships shift to the right (larger shear strains required to produce
same modulus or damping). At low confining stresses, the relationships shift
to the left. For shear modulus, Iwasaki, Tatsuoka, and Takagi (1976)
presented data for sands and Stokoe and Lodde (1978) presented data for San
Francisco Bay mud. A summary of these findings are shown in Figure 26.
Others have shown similar results (e.g., Zen et al. 1978, Geotechnical

Engineers, Inc. 1991). In general, the effect of confining pressure on
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modulus relationships increases as plasticity index decreases for cohesive

soils; the effect is greatest for cohesionless soils.

Table 5
e odulus Depgradation Assignments Based on Sojl
Classification fo es 1 and
Site 1 Site 2
Thickness Classification Thickness Classification
Layer (ft) Best Estimate (ft) Best Estimate
1 15 C10 11 Ccl0
2 3 S 10 c20
3 10 C10 9 C10
4 40 Cc20 10 "
5 55 " 18 c20
6 6 S 17 S
7 35 C10 | 38 SG
8 10 " 7 "
9 60 Cc20 3 a0
10 23 S 15 S
11 17 c20 32 Cl10
12 7 " 10 "
13 41 S 60 c20
14 23 S
15 17 c20
16 7 "
17 33 S
Total 322 322

Cl0: 5 < PI <10 S: Sand

C20: 10 < PI < 20 SG: Lower-bound sand

C40: 20 < PI < 40 G: Gravel

55. The family of curves shown in Figure 26a indicates that the best-
fit relationship for sands (shown in Figure 23a) generally corresponds to a
confining stress of 0.5 ksc. The upper-bound relationship for sands generally

corresponds to a confining stress of 2.0 ksc. Therefore, sands confined at

50



stresses greater than 1 ksc may be better represented by the upper-bound sand
relationship. To be consistent, sands confined at stresses less than 0.25 ksc
would then be represented by the lower-bound sand relationship. This process
of selecting an appropriate relationship from the proposed suite shown in
Figure 25a can be applied to cohesive soils (although with less impact) and

relationships can be extracted for higher stress regimes.

Table 6

Shea odulus Degra io ssignments Based on Soi

Classificati fo ites 3 and 4

Site 3 Site 4
Thickness Classification Thickness Classification
Layer (ft) Best Estimate (ft) Best Estimate
1 12 Cl0 9 Cl10
2 16 " 14 "
3 41 " 15 c20
4 6 " 20 S
5 25 SG 30 SG
6 30 Cl0 10 "
7 24 Cc20 5 "
8 41 " 6 S
9 10 Cl0 14 Cl0
10 11 S 32 "
11 58 " 10 "
12 30 G 60 C20
13 23 S
14 17 C20
15 7 "
16 50 S
Total 364 322

Cl0: 5 < PI < 10 S: Sand

C20: 10 < PI < 20 SG: Lower-bound sand

C40: 20 < PI < 40 G: Gravel
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56. The confining stresses likely to exist in situ at PGDP are within

the range considered to affect the variation of normalized shear modulus.

Therefore, modifications were made to the modulus relationship assignments to

account for this influence in accordance with the aforementioned procedure.

The stress-adjusted assignments are listed in Table 7.

Table 7
ent
Effect of Confining Stress
Layer Site 1 Site 2 Site 3 Site 4

1 S S S S
2 " c20 Ccl0 Cl10
3 cl0 Ccl0 " c20
4 c20 " " Cl0
5 " Cc20 S S
6 SS SS C20 SS
7 c20 S C40 "
8 " " " c20
9 Cu0 C20 C20 "
10 Cc10 " " "
11 c40 " " "
12 " " S C40
13 C10 c40 C10
14 C10 C40
15 C40 "
16 " C10
17 Cl0

Cl0: 5<PI <10 S: Sand

C20: 10 < PI < 20 SS: Upper-bound sand

C40: 20 < PI < 40 G: Gravel

57. The results for damping ratio are less conclusive.

does not appear to be applied as often in analyses by the profession.

computer model used to calculate site response did not allow a large
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Il VI

collection of modulus and damping ratio relationships. The large suite of
modulus relationships precluded a complementary collection of damping ratio
relationships. Therefore, the effect of damping ratio relationships was

evaluated through parametric analysis.

Seismic geophysical data

58. Compression and shear wave velocities of materials were measured in
situ using crosshole and downhole seismic geophysical techniques. Compression
wave velocities were not of interest for this study and are, therefore, not
reported. In general, shear wave velocities of loess and continental deposits
were measured using the more accurate crosshole technique with the three
"shallow” holes at each site. Shear wave velocities of Tertiary deposits were
made with downhole measurements in deep holes at Site 3 and at Site 4. An
evaluation of geophysical field and data processing procedures used by
Automated Sciences Group, Inc. (1991) was conducted by Staub, Wang, and
Selfridge (1991) and the results of their study for shear waves is the basis
for this presentation.

59. Accepted values of shear wave velocity measured using crosshole and
downhole techniques are presented in Figures 15 through 18. At Site 1, only
seven values of shear wave velocity to a maximum depth of 65 ft are available
from crosshole measurements. At the other three sites, several more values of
shear wave velocity are available to greater depths (between 115 and 150 ft).
Downhole measurements were made to depths of 334 ft and 322 ft at Site 3 and
Site 4, respectively.

60. The shear wave velocities measured in loess range from 500 to
770 fps. Shear wave velocities in alluvium range from 800 to 1,500 fps.
Measured shear wave velocities in the Tertiary deposits range between 1,000
and 1,200 fps in the Porter's Creek Formation and range between 1,070 and
1,550 fps in the Clayton-McNairy Formation. One interesting finding at Site 3
was the existence of a significant velocity inversion between depths of 265
and 334 ft. The importance of including this inversion was examined in the
parametric analysis presented in Part VI.

6l1. The shear wave velocity for the limestone bedrock was assumed to be
8,500 fps based on reported velocities from the same formation at power plant

projects in the region.++ The other data included calculated shear wave

++ Facsimile communications, Martin Marietta Energy Systems, Inc., Oak Ridge,
Tennessee, 20 February and 5 March, 1991.
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velocities (based on elastic moduli or compression wave measurements) at
Browns Ferry of 8,200 fps, Watts Bar of 5,300 to 7,200 fps, and Yellow Creek
of 6,900 to 9,700 fps and measured shear wave velocities using crosshole
techniques at Bellefonte of 8,300 to 9,300 fps.

62. The idealized profiles of shear wave velocity used for the soil
columns (Staub, Wang, and Selfridge 1991) are also plotted as a function of
depth in Figures 15 through 18 using a dashed line. The idealized velocities
attempt to average crosshole values and correspond to downhole velocities
where available. The variation of measured crosshole values about idealized
velocities is about + 15 percent.

63. A comparison of all measured shear wave velocities, corresponding
shear moduli, and idealized values are shown in Figure 27. Data from
measurements using the crosshole method are available in the upper 135 ft.
Data from measurements using the downhole method are available at depths
between 123 and 334 ft (very little overlap with crosshole data). A shear
wave velocity and unit weight had to be assumed for the rubble zone (below
334 ft). The idealized velocity profiles in the upper 135 ft envelop about 70
percent of the crosshole-measured velocities and appear to be good average
representations for the project.

64. The collection of variations of idealized shear wave velocity and
corresponding shear modulus with depth are shown in Figure 28. These data
indicate that the upper 25 ft (loess) has a consistently low stiffness and
that there is a sharp increase in stiffness at the top of the continental
deposits which continues to increase slightly with increasing depth. The
range in moduli is generally within + 30 percent of a calculated average at
any given depth. The velccity inversion is significant relative to the four
idealized profiles.

65. Seismic velocities were reported by Yule and Sharp (1988) for the
proposed USACE Olmsted Lock and Dam Project, located at river mile 964.4 of
the Ohio River, near Olmsted, Illinois. This site is about 16 miles west of
PGDP. Although the alluvial deposits are expected to be different than
materials at PGDP, the condition of the older, buried Clayton-McNairy
Formation should be similar.

66. The profiles of chear wave velocity measured using crosshole and
downhole techniques at both the Illinois bank and Kentucky bank of the Ohio

River are presented in Figure 29. The velocities measured in the Clayton-
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Depth (ft)

Shear Wave Velocity (fps)
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Figure 29. Measured shear wave velocities at proposed Olmsted
Lock and Dam Project, Ohio River (Yule and Sharp 1988)
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McNairy Formation are shown as solid lines, whereas the dashed lines represent
shear wave velocities measured in alluvium. A comparison of the data shown in
Figures 28a and 29 shows consistency in the range of velocities for depths

between 90 and 180 ft. This similarity suggests that the measured profiles of

shear wave velocity at PGDP are representative of the soils present.
verage S olumn

67. An average column was created to conduct sensitivity studies
described in Part VI and shown in Figure 30. An average column is intended to
represent the overall site. An average column can be useful to evaluate the
sensitivity of the analysis to various inputs. The variations of shear wave
velocity and shear modulus for the average column are shown in Figure 31 along

with the idealized profiles for the individual sites.
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PART IV: SITE RESPONSE CALCULATIONS

68. Site response calculations and analysis of the results comprise the
third step of a site-specific earthquake response analysis. Site response
calculations are presented below; the presentation of results and analysis is
made in later parts of this report. Different mathematical formulations can
be used to calculate site response including the solution of the wave equation
and use of a shear beam analogy (both continuous solutions) and lumped mass
(discrete). Initial formulations for site specific calculations were reported
in the U.S. by Roesset and Whitman (1969) and Roesset (1970) and have been '
enhanced since. A number of computer programs are presently available to
calculate site response analyses including two- and three-dimensional

formulations.

Method of Response Calculations

69. The computer program SHAKE was used to calculate site-specific
response caused by the synthetic earthquakes. SHAKE was developed at the
University of California at Berkeley (Schnabel, Lysmer, and Seed 1972) and
written in FORTRAN IV to run on a CDC 6400 computer. WES has developed pre-
and post-processing routines and made enhancements to the program on two
platforms—the personal IBM-compatible computer (Sykora, Wahl, and
Wallace 1992) and the U.S. Army CRAY Y-MP at WES by Sykora. The latter
platform was used for purposes of this study to take advantage of
computational speed and massive file storage capabilities. The time necessary
to iterate to the proper solution was about 1 sec.

Background

70. SHAKE was developed to calculate the horizontal response caused by
an earthquake at any depth of a soil profile. The methodology and algorithms
incorporated in the program are fairly simple and straight-forward and quite
adequate for the purpose intended as clearly evident through the prolific
publication of results and favorable comparisons with measured response (e.g.,
Seed et al. 1987 and Seed, Dickenson, and Idriss 1991). The simplicity
associated with SHAKE is attributed to some basic assumptions regarding the
cyclic behavior of materials and geometry of the problem. The basic

assumptions of importancé to this study are:
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a. Soil layers are horizontal and extend to "infinity";

b. Ground surface is level;

<. Each soil layer is completely defined by the shear modulus and
damping ratio as a function of strain, thickness, and unit weight;

d. The cyclic behavior of each soil (and base rock) is represented by
the equivalent-linear constitutive model; and

e. The incident earthquake motions are uniform, horizontally-

polarized shear waves propagating vertically.

In general, assumptions (a), (b), and (c) are consistent with site conditions
at PGDP. The equivalent-linear constitutive model, assumption (d), described
later in this section, is widely accepted by the geotechnical earthquake
engineering profession as a simple but effective model for the dynamic
response of soils. The last assumption, (e) above, narrows the focus to a
simple class of problems, but, is a common assumption for this type of
problem.

71. The computer program SHAKE has been in common use for almost 20
years. 1In that time, more knowledge has become available with regard to
specification of inputs to the program and significant advances have been made
in computer technology. As these findings have been made available, WES has
updated and refined the program and method of data input. One of the most
striking differences in the versions available at WES is the option to specify
shear wave velocity for each soil layer as opposed to using the modulus
coefficient, K, , or undrained shear strength, S, . WES has also continually
updated a library of soil modulus and damping relationships. Important input
parameters to SHAKE for this study are described below.

Solution algorithm

72. The one-dimensional wave equation model (Kanai 1951) was used to
develop SHAKE. This model has proven to be effective despite the simplicity
and number of assumptions involved. The solution algorithm involves the
complex response technique and the Fast Fourier Transform (Cooley and Tukey
1965). The general formulation of the wave equation is not unique to
horizontally-polarized shear wave motion; the equation can also be solved for
the vertical propagation of compression waves.

Constitutive model
73. In general, soil is a non-linear material that exhibits hysteretic

behavior under cyclic loading. An example of the stress-strain behavior is
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shown in Figure 32a. Soil is difficult to model accurately for cyclic
response; exact representations are unavailable. The constitutive model
incorporated into SHAKE is linear with simulated nonlinear effects to account
for dependency of moduli on shear strain. This model, called the equivalent-
linear method, was proposed by Seed and idriss (1970) and is widely used in
geotechnical earthquake engineering studies

74. The basic components of the equivalent-linear method are the
maximum shear modulus, G_,, , moist unit weight, and ratio of critical
damping, B . G_,x , which corresponds to the linear-elastic, continuum
material property (Lamé 1852), can be calculated from low-strain seismic shear

wave velocity using:

Gpax = P V3 (L
where

p = mass density (moist unit weight / gravitational constant)
V, = shear wave velocity

or from the maximum (low-strain) shear modulus coefficient, (K,),., , which is

defined by Seed and Idriss (1970):

Guax = 1000 (K;)puy (0R)0:3 (2)

where

o,' = mean effective stress, in psf
Gpax 1s in psf

Shear wave velocities (using equation 1) were used exclusively for this study.
75. At a certain threshold of shear strain, generally accepted to be
about 10™* percent or less, the stiffness decreases to some value less that
Guax - The equivalent-linear model uses secant shear moduli that are adjusted
during each iteration to account for this. Damping is input by using complex

moduli, G* , and hysteretic damping (which is independent of frequency):

G* = G (1-2p2+2iByV1-B%) (3
where
i=y1
Damping increases as shear strain increases. The character of these functions
of strain was first addressed in studies by Hardin and Drnevich (1972), Seed

and Idriss (1970), and Schnabel (1973). Later studies include: Zen and
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Higuchi (1984), Seed et al. (1986), Sun, Golesorkhi, and Seed (1988), and
Vucetic and Dobry (1991). A presentation of the relationships used for this
study was made in Part III.
lteratjon scheme

76. An example of the iterative procedure for the equivalent-linear
model is shown in Figure 32b and described below. Assuming shear wave
propagation, the model is initiated with an assumed value of shear modulus,

G, , typically chosen to be slightly less than, or equal to, G For the

max °
first cycle of loading, the stress-strain relation is linear between % T,
with a slope of G, . The ordered pair (G, , t; ) comes from the appropriate
modulus degradation curve as discussed in Part III of this report and shown
schematically in Figure 32b. Iiaximum shear strains are obtained from the
solution of the wave equation. Effective shear strain, PRMUL, is some
fraction of the maximum shear strain and is used to obtain a new value of
shear modulus, G, , from the appropriate modulus curve. A new value of §

is also obtained. This process is repetitive until the moduli and damping for
two successive iterations are within a prescribed tolerance, ERR. A summary

of system input parameters is presented in Table 8.

Table 8
scel eous Parameters SHAKE Used for This Stud

Parameter Description Value
MAMAX Maximum number of points in the Fast Fourier Transform 4096
SKo* Lateral coefficient of earth at rest 0.45
ITMAX Maximum number of iterations 100
ERR Maximum acceptable difference for modulus and damping 1l s
PRMUL Effective shear strain factor 0.65

* Did not affect the calculations for this study since G was calculated using
V., , not K, .

L]

Application of Free-Field Results

77. 1t may not be appropriate to directly apply the free-field response

to the base of the structure for a number of reasons, including:
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a. The depths of the footings most likely are not at the ground
surface and motions will vary with depth.

b. The weight of the structure acting on the footings will affect the
motions beneath the footings.

c. The friction acting on the sides of the footing will affect the
motions acting on the footing.

d. The impedance contrast between the soil and foundation is normally
quite large.

The application of ground motions to the base of structures, i.e., the
consideration of points such as those listed, is commonly referred to as
dynamic soil-structure interaction (DSSI).

78. Basic design approaches for dynamic soil-structure interaction have
recently been documented by Johnson (1980) and Veletsos, Prasad, and Tang
(1988). Evaluation of simple foundation systems in the latter study suggests
the following rule of thumb: at lower periods, DSSI will have no effect on the
response; at higher periods, DSSI will reduce the maximum response; for

intermediate periods, DSSI might increase or decrease the maximum response.
esentation of Output

79. Although a number of output options are available using SHAkE, the
primary focus of this study was to calculate the pseudo velocity response
spectra and present the results using the tripartite representation. It was
specified in the scope of work for this study that damping ratios of 2, 5, 7,
10, 12, and 15 percent be used. Other forms of data were also used to
evaluate and present the results including the ratio of acceleration response
spectra between free field and rock outcrop motions and the variation of
ground acceleration with time as a function of depth.

80. SHAKE may be used to calculate spectral ordinates at periods up to
10 sec. The experience of investigators who have compared calculated free-
field response using SHAKE with measured response from major earthquakes
suggest that SHAKE works well at periods less than 2 sec. At periods greater
than 4 sec, motions are likely to be significantly affected by two-dimensional
effects and surface wave energy and are not well represented with SHAKE
(reference in Part I). Between 2 and 3 sec, the two responses typically begin
to diverge. For purposes of this study, data was presented only for periods
less than 2 sec. In many cases, the response did not drop significantly

enough within this range of periods to conclude unequivocally that the peak
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response had been predicted. The use of other computer models may be
necessary to define peak response values.

81. Six different figures and various tables are used to present
different aspects of the results for each case considered. The use of
different forms of results is described in the sections below and examples are
presented. Each of these types of data presentation are included in
appendices for each case analyzed. Care was taken to keep scales of plots
consistent with respect to the earthquake event to facilitate comparisons
between figures. Additional aspects of the computer code, including options
not presented, are described in the program documentation. For this reason,
further discussion is not included herein.

cceleration-time records

82. The variation of particle acceleration with time was considered for
this study primarily to provide insight as to the effects of various layers on
wave propagation and to detect any potential anomalies. An example of the
presentation of this data is shown in Figure 33. An acceleration record is
plotted for each layer in the soil column, corresponding to the top of the
labeled layer. The peak accelerations are also identified and labeled and
are generally summarized in tables.

Shear strains

83. Shear strains corresponding to the mid-height of layers are used to
update shear modulus and damping ratio from normalized relationships. The
actual value used for this purpose is called the effective shear strain,

Yeft » Which is calculated from the maximum value of shear strain, y , as:

Yorr = PRMUL»yY (4)

where

PRMUL = 0.65 for this study
The variation of effective shear strain with time at different layer contacts
are shown using a format similar to that for accelerations as shown in
Figure 34. The top and bottom of the column are excluded since the shear
strains are always zero.
Pseudo-velocity response spectrum

84. Pseudo-velocity spectrum is the response, in terms of velocity, of
an equivalent damped single-degree-of-freedom (SDOF) system to the free-field

motion. This spectrum is used for design and analysis by structural
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engineers. An example of the presentation of this pseudo-velocity response
spectrum at the free-field (ground surface) in tripartite form for the six
levels of system damping is shown in Figure 35.
bsolute on res e ect

85. An absolute pseudo-acceleration response spectrum is the response,
in terms of acceleration, of an equivalent damped single-degree-of-freedom
(SDOF) system to the free-field motion. Absolute rather than relative
accelerations were used for this study as recommended by Wiegel (1970). An
example of the presentation of the absolute acceleration response spectrum for
rock outcrop and free field motions is shown in Figure 36. The spectrum for
rock outcrop is reproduced in a separate subplot using the same format for
easy comparison. The peak accelerations denoted in acceleration-time records
for this study generally correspond to response spectral accelerations at very
low periods.
Ratios of acceleration spectra

86. The ratio of free-field ground surface acceleration spectrum to
rock outcrop acceleration spectrum at each period was calculated to evaluate
the periods at which motions are amplified the most and to determine the site
period. The variation of this ratio with period at six levels of system.
damping will be used for design and seismic stability evaluations. An example
of the presentation of this ratio is shown in Figure 37.
Dynamic amplification

87. Some studies of site response (e.g., Seed et al. 1974) and design
manuals (e.g., Department of the Army 1986 and Uniform Building Code) use a
"normalized spectra" that is calculated by dividing the acceleration response
spectra by the peak horizontal acceleration. This is sometimes referred to as
the dynamic amplification factor. An example figure is shown in Figure 38.
Recall that the absolute response acceleration (not relative acceleration) was

used in comparisons for this study.
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PART V: RESULTS FROM COLLECTION OF INDIVIDUAL SITES

88. The results of site response calculations for individual sites are
presented below respective of the three design events. Results at 5 percent
system damping are presented in the formats described in Part IV. The plot
scales were kept consistent, except for shear strain, to aid in comparing
values among the three events. Upper and lower bounds were also interpreted
to aid in these comparisons. The sensitivity of calculated response to soil

column inputs using the average column is presentéd in Part VI.

500-Year Event

89. The 500-year event is intended to represent a large earthquake at a
moderate distance. The calculated response for this event at the four sites
indicates that moderate peak accelerations and moderate shear straining can be
expected for this type of event. Slight de-amplification of motion at periods
less than 0.08 sec and large amplification at greater periods are likely. The
range of spectra for free field response is fairly narrow. Discussion of the
data is presented below.

Acceleration versus time

90. The calculated motions for the top of each layer for the four sites
and two horizontal input motions are presented in Appendix B. A comparison of
peak accelerations is made in Table 9. The propagation of shear waves through
the four soil columns with two different horizontal earthquake components
produced small de-amplification of peak acceleration except in the case of the
Horizontal 2 component at Site 4. The peak horizontal accelerations at free
field (ground surface) range from 0.14 g to 0.20 g compared to the peak
accelerations of 0.19 and 0.18 g for rock outcrop and 0.16 g and 0.17 g for
base rock motions.

91. Observations of acceleration records in Appendix B indicate that,
in general, the amplitude of accelerations decrease and the higher frequencies
are filtered as the waves propagate upward through each layer. The spectral
content seems to change the most at depths corresponding to contacts with
continental deposits or the Porter'’s Creek Formation. car the ground
surface, additional reflections caused by the free surface cause the peak

accelerations to increase. Most amplification of acceleration occurs in the
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upper 25 ft of the column. There are no significant differences between the

calculated responses for the two horizontal components.

Table 9

Peak Accelerations for 500-Year Event

Peak Acceleration (g)
Component Rock Outcrop Base Rock Free Field
Site 1 Horizontal 1 0.19 0.17 0.14
Horizontal 2 0.18 0.16 0.17
Site 2 Horizontal 1 0.19 0.17 0.17
Horizontal 2 0.18 0.16 0.18
Site 3 Horizontal 1 0.19 0.16 0.17
Horizontal 2 0.18 0.16 0.14
Site 4 Horizontal 1 0.19 0.17 0.18
Horizontal 2 0.18 0.16 0.20

Shear strains versus time

92. The calculated effective shear strains at each contact between soil
layers for the four sites and two horizontal components are presented in
Appendix C. The peak (effective) shear strains for each column are listed in
Table 10. (Note that shear strains in Table 10 represent values calculated at
mid-height of layers, whereas shear strains in Appendix C were calculated at
layer interfaces.) The results listed in Table 10 are fairly consistent among
sites and earthquake components, ranging from 0.015 to 0.019 percent with one
value at 0.026 percent (Site 3, Horizontal 1). The peak shear strains occur
in layers directly above layer contacts with large impedance contrasts. For
the 500-year event, these depths range from 72 to 305 ft. Within other layers
(especially near the ground surface), the peak effective shear strains are as
low as 0.004 percent.

93. 1In general, the peak effective shear strains listed in Table 10
correspond to a moderate amount of straining. The range in shear modulus for

soils corresponding to these strains is 85 to 60 percent of the small-strain
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(maximum) moduli. The range in damping ratio is between 4 and 8 percent for
soil layers. There are no significant differences between the calculated

responses for the two horizontal components except at Site 3.

Table 10
Peak Shear Strains for 500-Year Event

Peak Effective
Shear Strain
Component Depth (ft) (percent)

Site 1 Horizontal 1 95.5 0.018
Horizontal 2 95.5 0.018
Site 2 Horizontal 1 304.5 0.016
Horizontal 2 94.0 0.015
Site 3 Horizontal 1 72.0 0.026
Horizontal 2 305.0 0.019
Site Horizontal 1 116.0 0.018
Horizontal 2 116.0 0.019

Pseudo-velocity spectra

94, The pseudo-velocity response spectra for the four individual sites
are presented in Appendix D. The combined spectra at five percent damping for
all sites and both horizontal components are shown in Figure 39. The eight
spectra produce a relatively-narrow range at site periods less than 0.01 sec
and a narrow to moderate range at greater periods. The peak spectral velocity
is 18 in./sec at a period of 1.1 sec. The general pattern of the combined
data have been characterized by tri-linear relationships representing an upper
bound and a lower bound as shown in Figure 39. These three relationships are
essentially parallel with transitions at 0.12 to 0.20 sec and 0.90 to 1.1 sec.
Absolute acceleration spectra

95. Absolute acceleration response spectra for the four individual
sites are presented in Appendix E. The combined spectra at five percent
damping for all sites and both horizontal components are shown in Figure 40.
Some spectra with pronounced peaks are identified. The spectra for rock are

included for comparison (refer to Figure 7). The combined spectra indicate
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that the largest spectral acceleration is 0.75 g at a period of 0.2 sec and
was calculated for the Horizontal 1 component applied to Site 4. The peak
spectral accelerations tend to occur at periods significantly greater than the
predominant periods of the rock outcrop motion (0.07 sec).

96. Simple multi-linear relationships were used to represent the upper
bound and lower bound of the spectral accelerations as shown in Figure 40.

The trend of the peak spectral accelerations is to increase rapidly at periods
between 0.09 and 0.2 sec and then decrease rapidly at periods greater than

0.2 sec compared to the spectral velocities which increase up to periods of
1.1 sec.

Ratio of acceleration spectra

97. The ratios of free field to outcrop accelera:ion response spectra
for the four individual sites are presented in Appendix F. Combined spectra
at all sites for both horizontal motions are shown in Figure 41. (The ratio
for rock outcrop is 1.) Spectra with sharp peaks are identified. The eight
curves shown in Figure 41 produce a wide range.

98. The predominant period of amplification is between 0.9 and 1.1 sec
for all four sites. Secondary peaks occur at 0.2 and 0.4 sec. At Site 4, the
amplification response at 0.2 sec approaches that at 1.0 sec for the
Horizontal 1 component. The spectral ratio is generally between 1.0 and 3 at
periods between 0.1 and 0.8 sec and then rises to peak values greater than 4
at periods between 0.8 sec and 1.1 sec. The amplification ratios are
generally less than one for periods less than 0.08 sec.

Amplification ratio

99. The ratios of free field spectral acceleration to peak horizontai
acceleration f,r the four individual sites are shown in Appendix ¢. Combined
relationships at all sites for both horizontal motions are shown in Figure 42.
The ratios for rock outcron are also provided for comparison. The range of
relationships is moderately-wide with peak values of 3 to 4 between 0.1 and
0.2 sec ard then ratios of 1 or less at periods of about 1.5 sec and greater.

100. Simple relatiorships were used to bracket the collection of
amplification ratio spectra as shown in Figure 42. At periods less than
0.27 sec, this ratio changes significantly, peaking at 0.2 sec. At greater
periods, the upper-bound relationship shows a moderate decrease in
amplification ratio as period increases; the lower bound has very little

slope.
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Figure 42. Amplification ratio for 500-year event
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000-Year Event

101. The 1000-year event is intended to represent a large earthquake at
a moderate distance, closer than the 500-year event. The calculated response
for this event at the four sites indicates that moderate peak accelerations
and moderate shear straining can be expected for this type of event. Moderate
de-amplification of motion at periods less than 0.1 sec and moderate to large
amplification of motion at greater periods is likely. The range of spectra is
narrow to moderate. Discussion of the data is presented below.
Acceleration versus time

102. The calculated motions for the top of each layer for the four
sites and two horizontal input motions are presented in Appendix H. A
comparison of peak accelerations is made in Table 11. The propagation of
shear waves through the four soil columns with two different horizontal
earthquake components produced moderate de-amplification of peak acceleration
except in the case of the Horizontal 2 component at Site 4. The peak
horizontal accelerations at free field (ground surface) range from 0.18 g to
0.27 g compared to the peak accelerations of 0.26 and 0.27 g for rock outcrop
and 0.22 g and 0.25 g for base rock motions.

Table 11
Peak Accelerations for 1000-Year Event

Peak Acceleration (g)
Component Rock Outcrop Base Rock Free Field
Site 1 Horizontal 1 0.26 0.23 0.18
Horizontal 2 0.27 0.24 0.21
Site 2 Horizontal 1 0.26 0.24 0.20
Horizontal 2 0.27 0.24 0.24
Site 3 Horizontal 1 0.26 0.22 0.22
Horizontal 2 0.27 0.24 0.18
Site 4 Horizontal 1 0.26 0.24 0.22
Horizontal 2 0.27 0.25 0.27
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Shear strains versus time

103. The calculated effective shear strains at each contact between
soil layers for four sites and two horizontal components are presented in
Appendix I. The peak (effective) shear strains at mid-heights of the layers
are listed in Table 12. The peak strains are fairly consistent among sites
and earthquake components, ranging from 0.025 to 0.043 percent with one value
of 0.061 percent (Site 3, Horizontal 2). The peak effective strain occurs in
the layer directly above the rock except for the Horizontal 2 component at
Site 1 and at Site 3. Within other layers, the peak effective shear strain is

as low as 0.006 percent.

Table 12
Peak Shear Strains for 1000-Year Event

Peak Effective
Shear Strain
Component Depth (ft) (percent)

Site 1 Horizontal 1 301.5 0.033
Horizontal 2 95.5 0.027
Site 2 Horizontal 1 304.5 0.031
Horizontal 2 304.5 0.025
Site 3 Horizontal 1 72.0 0.043
Horizontal 2 305.0 0.061
Site 4 Horizontal 1 297.0 0.030
Horizontal 2 297.0 0.027

104. In general, the magnitude of calculated shear strains correspond
to a moderate amount of straining. The range in shear modulus for soils
corresponding to these strains is 80 to 48 percent of the small-strain moduli.
The range in damping ratio is between 4 and 9 percent for soils.
Pseudo-velocity spectra

105. The pseudo-velocity response spectra for the four individual sites
are presented in Appendix J. The combined spectra at five percent damping for
all sites and both horizontal components are shown in Figure 43. The eight

spectra produce a narrow range at site periods less than 0.015 sc
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narrow to moderate range at greater periods. The peak spectral velocity is
26 in./sec at a period of 1.1 sec.

106. The general pattern of the combined data can be characterized by
quadra-linear relationships representing an upper bound and a lower bound as
shown in Figure 43. The shape and locations of these relationships differ
significantly from those developed for the 500-year event (refer to
Figure 39). The results for the 1000-year event have a significant increase
in spectral velocity at periods between 0.05 and 0.2 sec unlike the results
for the 500-year event. The results for 1000-year event also show
significantly more increase in spectral velocity with increasing period over
the range of 0.2 and 1.1 sec.

Absolute acceleration spectra

107. Absolute acceleration response spectra for the four individual

sites are presented in Appendix K. The combined spectra at five percent

damping for all sites and both horizontal components are shown in Figure 44.

The significant spectra are identified. The combined free-field spectra
indicate that the largest spectral acceleration is 1.1 g at a period of
0.2 sec which corresponds to Site 4.

108. A range defined by an upper bound and a lower bound of the data
are also shown in Figure 44. A comparison with similar interpretations made
for the 500-year event (refer to Figure 40) shows that the most significant
change has occurred in the range of periods of 0.1 to 0.3 sec. A more
pronounced peak is beginning to form at these periods. For the other period
ranges, the spectral accelerations are greater for the 1000-year event, but
the changes in spectral accelerations with period are similar.

Ratio of acceleration spectra

109. The ratios of free field to outcrop acceleration response spectra
for the four individual sites are presented in Appendix L. Combined spectra
at all sites for both horizontal motions are shown in Figure 45 with some of
the spectra identified. The eight curves shown in Figure 45 are again
considerably different. The predominant amplification occurs at a period of
0.9 to 1.1 sec and the secondary peaks cceur at 0.2 and 0.4 sec, consistent
with the results for the 500-year event. The ratios are nearly always less
than one for periods less than 0.1 sec and are as low as 0.6. The
amplification is generally between 1.0 and 3 at periods between 0.1 and

0.8 sec and then rise to peak values between 3 and 4 at periods between

86



PGDP 1000—-yr Event

Sites 1 — 4 Horizontal 1 & 2
2-0 T 1 ] 1 LR ’[ B R T L LR B l[ T T 7 T LB
ROCK OUTCROP |
sl 5 % Damping
N
' ot ]
O
2 Horizontal 2
ol Horizontal 1
.© 0.5 F .
-
O
—
o
O
8 0.0 | | ] ] 1] l| 1| | | 1 1 | Il | | B IR I |
<
3
C 2'0 T T 1 T BRI l[ i T 1 1 T P10 l[ 1 T 1 T LI
O
a
2 FREE FIELD
r s | 5 7% Damping
9
-g Site 4, Hor 2
%) Site 4, Hor 1
Q Site 2, Hor 2
< 1.0 } Site 4, Hor 2 -
ite 1, Hor 1
0.5 F _
g.0 ! o gaal o a1l 1 ) 1414_!
-2 -1 (4] 1
10 10 10 10

Period, T (sec)

Figure 44. Absolute response acceleration spectra for 1000-year event

87



uojjeiafador a3njosqe doxojno }oox o3 Pl 991F JO OTIRY

JuaAd Ieak-QQQT I10F ®i13oads asuodsax

(99) | ‘povisg

‘¢h 2an31g

p—

L

¢ I0H ‘¢ °31S
T I0H ‘€ 93Ts

2 % 1 [ejuozrioyg
yuaAy I£-0007
¥ — ] s9)IS

dddd |

I

] 1 1 1 ]

T IoH ‘Z @3T1sS
T IoH 'v °31S
¢ I0H ‘v °3TS

dOdd1LN0 0} ATAId HIdA

| T T N NS U 1 1

L

PR

" n

o

00

0l

0'¢

0'€

oy

0'G

09

SUOI}DJ3IE00Y 9Suodsay 3)Nj0Sqy JO OIDY

88



0.8 sec and 1.1 sec. This ratio is generally less than that calculated for
the 500-year event.
Ampli€ication ratio

110. The ratios of free field spectral acceleration to peak horizontal
acceleration for the four individual sites are shown in Appendix M. Combined
relationships at all sites for both horizontal motions are shown in Figure 46.
The range produced by the eight relationships is substantial and slightly
wider than that calculated forxr the 500-year event.

111. Quadra-linear relationships describing the upper bound and lower
bound of the data are also shown in Figure 46. These relationships are very
similar to those drawn for the 500-year event except that the ratio of
accelerations is slightly greater for the 1000-year event at periods greater

than 0.2 sec.

5000-Year Event

112. The 5000-year event is intended to represent a large earthquake at
a short distance. The calculated response for this event at the four sites
indicates that moderate to large peak accelerations and very large shear
straining can be expected for this type of event. Large de-amplification of
motion at periods less than 0.2 sec and small to moderate amplification of
motion at greater periods is likely. The range of spectra is typically
narrow. Discussion of the data is presented below.
Acceleration versus time

113. The calculated motions for the top of each layer for the four
sites and two horizontal input motions are presented in Appendix N. A
comparison of peak accelerations is made in Table 13. The propagation of
shear waves through the four soil columns with two different horizontal
earthquake components produced large de-amplification of peak acceleration.
The peak horizontal accelerations at free field (ground surface) range from
0.24 g to 0.36 g compared to the peak accelerations of 0.54 and 0.63 g for
rock outcrop and 0.46 g to 0.59 g for base rock motions.
Shear strains versus time

114. The calculated effective shear strains at each contact between
soil layers for four sites and two horizontal components are presented in

Appendix 0. The peak (effective) shear strains for each column are listed in
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Table 14 and are fairly consistent among sites and earthquake components,
ranging from 0.18 to 0.23 percent with one value at 0.33 percent. The peaks
occur in the lowest layer except at Site 3 where they occur in the layer above
the rubble zone. The peak shear strains in other layers are as low as

0.010 percent.

Table 13

Peak Accelerations for 5000-Year Event

Peak Acceleration (g)
Component Rock Outcrop Base Rock Free Field
Site 1 Horizontal 1 0.54 0.50 0.30
Horizontal 2 0.63 0.58 0.31
Site 2 Horizontal 1 0.54 0.50 0.30
Horizontal 2 0.63 0.59 0.30
Site 3 Horizontal 1 0.54 0.46 0.26
Horizontal 2 0.63 0.56 0.24
Site 4 Horizontal 1 0.54 0.50 0.30
Horizontal 2 0.63 0.59 0.36

115. 1In general, the magnitudes of calculated shear strains correspond
to a very large amount of s%raining. The range of shear modulus for soils
corresponding to these strains is 73 to 13 percent of the small-strain
modulus. The range in damping ratio is between 11 and 14.7 percent (NRC cap
not enacted) for soils.

Pseudo-velocity spectra

116. The pseudo-velocity response spectra for the four individual sites
are presented in Appendix P. The combined spectra at five percent damping for
all sites and both horizontal components are shown in Figure 47. The eight
spectra produce a fairly narrow range at site periods less than 0.13 sec and a
narrow to moderate range at greater periods. The peak spectral velocity is

70 in./sec at a period of 1.2 sec.
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117. Tri-linear relationships representing an upper bound and a lower
bound are shown in Figure 47. The shape and locations of these relationships
differ significantly from those developed for the 500-year and 1000-year
events at periods greater than 0.2 sec. The spectra between periods of 0.07
and 0.2 sec are very similar for the 1000-year and 5000-year events. At
greater periods, however, the spectra rapidly increase in velocity. The upper

bound is at a constant spectral acceleration (0.9 g).

Table 14
Peak Shear Strains for 5000-Year Event

Peak Effective
Shear Strain
Component Depth (ft) (percent)

Site 1 | Horizontal 1 301.5 ' 0.22
Horizontal 2 301.5 0.22
Site 2 Horizontal 1 304.5 0.22
Horizontal 2 304.5 0.21
Site 3 Horizontal 1 305.0 0.22
Horizontal 2 305.0 0.33
Site 4 Horizontal 1 297.0 0.19
Horizontal 2 297.0 0.18

Absolute acceleration spectra

118. Absolute acceleration response spectra for the four individual
sites are presented in Appendix Q. The combined spectra at five percent
damping for all sites and both horizontal components are shown in Figure 48
with some spectra identified. The combined free-field spectra indicate that
the largest spectral accelerations is 1.0 g at a period close to 0.2 sec
corresponding to Site 4. These accelerations are actually slightly less than
those calculated for the 1000-year event. Large spectral accelerations also
occur at periods of 1.0 to 1.1 sec. The range of relationship representing
the upper bound and lower bound of data are is shown in Figure 48. The large
spectral accelerations at high periods cause the upper bound to change very

little with period.
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c ation spectra

119. The ratios of free field to outcrop acceleration response spectra
for the four individual sites are presented in Appendix R. Combined spectra
at all sites for both horizontal motions are shown in Figure 49 with some
notable spectra identified. The eight spectra show much more similarity than
the same presentation for the 500-year and 1000-year events. The response for
Site 3 is notably different at periods greater than 0.8 sec, however. This
difference is attributed to the effect of the rubble layer. For all sites,
large de-amplification is expected at periods less than 0.2 sec. In general,
small amplification is expected at periods between 0.2 and 0.8 sec, and
moderate amplification is expected at greater periods.

Amplification ratio

120. The ratios of free field spectral acceleration to peak horizontal
acceleration for the four individual sites are shown in Appendix S. Combined
relationships at all sites for both horizontal motions are shown in Figure 50.
The ratios for rock outcrop are also provided for comparison. The range of
relationships is moderately-wide.

121. The amplification ratios for the 5000-year event are very
different from those corresponding to the 500-year and 1000-year events as
seen by the shape of the range shown in Figure 50 (refer to Figures 42 and
46). In general, the ratio for the 5000-year event shows a significant
decrease at periods less than 1 sec and a significant increase at greater

periods. The peak value is reduced from about 4 to 3.

Conclusions

122. The four sites respond similarly for a given event for a system
damping of 5 percent even though the subsurface geology is different at
Site 1. The response at Site 1 was notable in only a few instances. The
general shape of the variation of acceleration and shear strain with time as
the shear waves propagate upwards through the column is also similar among
sites and events. However, the peak accelerations at Site 4 with the
Horizontal 2 component and the shear strains at Site 3 tend to be
significantly larger. There appears to be only minor differences between the

responses calculated with the two components of motion for any given event.
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123. The calculated peak horizontal accelerations are relatively
consistent (less Site 4 and the Horizontal 2 component). The free-field peak
accelerations were de-amplified for all three events. The ranges overlap
somewhat: 0.14 to 0.20 g for the 500-year event, 0.18 to 0.27 g for the 1000-
year event, and 0.24 to 0.36 g for the 5000-year event. The peak free field
accelerations for the 5000-year event are about 45 percent greater than those
calculated for the 1000-year event and 75 percent greater than those
calculated for the 500-year event. The natural site period ranges from 0.9 to
1.1 sec.

124. A significant amount of modulus degradation and damping are
expected because of the large shear strains. The calculated ranges of
effective shear moduli for the three events are: 86 to 59 percent of maximum
for the 500-year event, 80 to 48 percent for the 1000-year event, and 73 to
13 percent for the 5000-year event. Similarly, the damping ratios for the
layers ranged from 4 to 8 percent, 4 to 9 percent, and 5 to 14.7 percent for
the 500-year, 1000-year, and 5000-year events, respectively.

125. Some consistent trends were found in response spectral values at
5 percent system damping. Peak spectral velocities increase tremendously as
the severity of motions incresases. Between 0.9 and 1.1 sec, the peak
velocities are 18, 26, and 70 in./sec for the 500-year, 1000-year, and 5000-
year events, respectively. Conversely, peak spectral accelerations increase
until shear strains become too severe. The peak spectral accelerations are
0.75, 1.15, and 1.0 g for these three events, respectively, and occur at a
period of 0.2 sec. The ratio of spectral accelerations at free field over
rock is as large as 4.6 at the natural period and decrease with increasing
severity of motion. The amplification ratio (spectral acceleration normalized
to peak time-demain acceleration) is as large as 4 at a period of 0.2 sec.
The ranges in amplification ratios for the 500-year and 1000-year events are
very similar, with the values for the 1000-year event being slightly greater.
However, the range for the 5000-year event suggests a wide range of strong

response.
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PART VI: SENSITIVITY ANALYSIS USING AVERAGE COLUMN

126. An important aspect of any site response analysis is an evaluation
of how various system and site parameters affect the calculated results
because the site has been idealized—all the information for the site has been
summarized in a finite number of soil columns. Soil and rock parameters were
evaluated because of the variability and/or uncertainty associated with each
as noted throughout this report. The sensitivity to system parameters (e.g.,
those listed in Table 8) were performed for this study and found to have
negligible effect and, therefore, are not discussed further.

127. The sensitivity analysis of site parameters for this study was
conducted using the average column described in Part III. Details of the
average column are presented in Table 15. Stress-adjusted shear modulus and
damping ratio relationships were assigned to each layer. Results for all
three earthquake events using all six presentation formats are reported in
Appendices T, U, and V. The best-fit, upper bound, and lower bound of moduli
were considered. (Note that results are not reported for the 5000-year event
using the lower bound of moduli because shear strains exceeded 1 percent.)

The results for the 1000-year event using the tripartite format are presented
below. Six different variations were considered: shear wave velocity
inversion, depth to bedrock, impedance ratio, shear modulus relationship,
damping ratio relationship, and maximum shear modulus.

128. Each of these inputs was evaluated because of uncertainties noted
throughout this report. A shear wave velocity inversion was measured at
Site 3 but not at Site 4. The depth to bedrock was considered because
boreholes were extended to bedrock only at Sites 3 and 4. The assignment of
shear modulus and damping ratio relationships was considered because "average"
relationships actually represent a range of relations and site-specific
measurements were not available. Furthermore, it was not possible to consider
many variations in damping ratio in the analysis of individual columns.
Maximum shear modulus was considered because of the idealization of shear wave
velocity profiles and the lack of measured data at some depths for some sites,
especially at greater depths.

129. The response of the average column to two components of the 1000-
year event is shown in Figure 51 and compared with the range of individual

responses (refer to Figure 43). The spectra for the average column fall
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within the range at nearly all periods. Therefore, the average column spectra
are considered to be representative. The two average column spectra are used
as a baseline (shown as dashed lines throughout) for comparison with

sensitivity studies described below.

Velocity Inversion

130. As noted in Part III, an inversion in the shear wave velocity
profile was measured at Site 3 at depths between 265 and 334 ft (refer to
Figure 17). An inversion of lesser magnitude was proposed in the average
column idealization as shown in Figure 31 and Table 15. The effect of
including this inversion was evaluated by comparing the results with a profile
with a constant shear wave velocity at depths below 140 ft. The alternate
profiles of shear wave velocity and shear modulus are compared in Figure 52.
The comparison of velocity spectra for both horizontal components
corresponding to the average column with and without the velocity inversion is
made in Figure 53. The differences between the spectra are small and
inconsistent. The profile with the inversion tends to produce slightly
greater spectral velocities at low periods and slightly lesser velocities at
high periods. Given this insignificant difference, the average column with

velocity inversion is included for the remaining comparisons.

Depth to Bedrock

131. The depth to bedrock was varied + 10 percent of the total column
height (+ 33 ft). The variation in the depth to bedrock should generally be
within this range given the geologic setting. The variation was applied to
the bottom-most layer. The response was calculated for both components of
horizontal motion and the results are shown in Figure 54. The depth to
bedrock has a small to negligible effect on the response at low periods and a
small effect on the response at periods greater than 0.13 sec. Based on these
results, the sensitivity of calculations to reasonable ranges in depths to

bedrock is categorized as being low.
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lmpedance Ratijo

132. The shear wave velocity of bedrock was varied by + 20 percent
(+ 1,700 fps) to evaluate the effect of impedance ratio on calculated
response. This range roughly corresponds to data from investigations of
similar materials at other large project sites. The pseudo-velocity response
spectra for each velocity and both horizontal components are shown in
Figure 55. The impedance ratio can be seen to have a negligible effect on

calculated response for the stated bounds.

Modulus Relationships

133. The effect of shear modulus relationships was evaluated by
reassigning each material with an adjacent curve from the tfamily of curves
shown in Figure 25a. Both cases of adjusting all curves up ocne and down one
were used to develop the sensitivity bounds. This variation represents a
reasonable bounds for this parameter and is roughly equivalent to quartile
relationships for standardized relationships (refer to Figure 23a). The
results of the calculations are shown in Figure 56. The impedance ratio.can
be seen to have only a small effect on calculated response for the stated

bounds.

Damping Ratio Relatjonships

134. The effect of damping ratio relationships was evaluated by using
the upper and lower bounds of published relationships (e.g., those shown in
Figure 23 for cohesionless soils). These bounds are significantly greater
than those used for the modulus relationships bat was used because only three
best-fit damping relationships were used in the individual site response
calculations. The results are shown in Figure 57. The range of response is
greatly expanded at low periods by changing the damping relationships as
stated. However, at periods greater than about 0.5 sec, the effects diminish
significantly. Most of the differences appear to be in amplitude of spectral
velocity; there are no apparent period shifts of the predominant peaks. The
lesser-damped resp:nse (upper sensitivity bounds) has spectral velocities on

the order of 50 percent greater than the average column response between
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0.02 and 9.1 sec. Notice that the upper sensitivity bounds shown in Figure 57
correspond well with the upper bound of the range defined by the collection of
individual site response at periods greater than 0.2 sec (refer to Figure 51).

135. The NRC Standard Review Plan (Nuclear Regulatory Commissicn 1989)
specifies upper and lower bounds of maximum shear modulus for use in seismic

safety assessments. The bounds are defined by:

Lo bound: 1 . Soax
wer un (Gux) >0 (5)
Upper bound:
(Gpax) 2 = 2.0 * Gy, (6)

These bounds were used to define very conservative limits to the range of
shear modulus for the average column. The rock velocity was also adjusted to
negate any combined effects of varying impedance ratio. A comparison of the
shear wave velocity and shear modulus profiles for the average column and the
corresponding lower and upper bounds is shown in Figure 58 (similar to

Figure 31). The profiles for the individual columns are also shown for
comparison. All measured values fall within the NRC upper and lower bounds.
The shear wave velocities for the upper and lower bounds are also listed in
Table 15.

136. The results for the sensitivity to shear modulus are shown in
Figure 59. The maximum shear modulus has a very important effect on
calculated response. The results for the lower bound moduli represent the
lower sensitivity bounds at low periods and the upper sensitivity bounds at
periods greater than 1.0 sec and vice versa for the upper bound moduli. Much
of this differenc: is due to a general shifting in period of the spectra—the
lower bound moduli produce an increase in natural period and vice versa. The
wide range of measured velocities at the site, then, serve to create a wide
range of calculated site response. The upper sensitivity bound is within the
range of the collection of individual site response at periods greater than
0.12 sec.
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PART VII: SUMMARY AND CONCLUSIONS

137. The site-specific, free-field, earthquake response was calculated
for four, idealized, one-dimensional soil columns at the Paducah Gaseous
Diffusion Plant. Two components of three design earthquakes, a 500-year
event, a 1000-year event (DBE), and a 5000-year event, were used for the
analysis. The computer program SHAKE was used on a U.S. Army CRAY Y-MP
supercomputer to perform the calculations and determine site response. SHAKE
has been validated for horizontal response calculations at periods less than
2 sec on numerous occasions and consequently is widely accepted in the
geotechnical earthquake engineering profession as a useful tool for site
response analysis.

138. The results for the collection of individual columns are believed
to represent reasonable expected response to vertically-propagating,
horizontally-polarized shear waves. Assumptions and interpretations required
to conduct the study were usually made within the bounds of reasonable values
with a slight bias toward values that would produce a slightly conservative
response. Potential variations across the site that could exist beyond values
adopted for soil columns were evaluated through sensitivity analyses.

139. 1In general, the eight spectra calculated for each earthquake
(using the four sites and two components of input motion) produced a fairly
narrow range of response. This narrow range exists despite the separation
distances between sites, noted differences in companion components of the
earthquake motions, and the different geology at Site 1 (inclusion of Porter'’s
Creek Formation); it suggests that the response is dominated by the thickness
of the soil and the average shear wave velocity of the profiles.

140. Standard relationships between the normalized shear modulus and
damping ratio versus shear strain were used since site-specific data were not
available. Relationships were initially assigned based on soil classification
and/or PI. The assignments for shear modulus were then adjusted to account
for the potential effects of effective confining (overburden) stress. This
procedure was considered to be appropriate because of the large confining
stresses caused by thick soil deposits (322 to 364 ft). Similar adjustments
were not made for damping relationships because of limitations in SHAKE.

141. In nearly all cases, the peak accelerations at free field were

found to be de-amplified from rock outcrop values. The percentage of de-
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amplification increased as the severity of motions increased. The peak
accelerations were calculated to be 0.20, 0.27, and 0.36 g for the 500-year,
1000-year, and 5000-year events, respectively. The de-amplification is
attributed to considerable amounts of shear straining. Peak (effective) shear
strains of 0.026, 0.061, and 0.33 percent were calculated for the 500-year,
1000-year, and 5000-year events, respectively. These peak values typically
occur in layers above contacts with large impedance ratios. As the shear
strains increase for larger motions, the layers with the greatest straining
exist at the base of the soil column (except at Site 3 where the layer with
the most straining is above the rubble zone).

142. The natural site period ranges from 0.9 to 1.2 sec. Peak spectral
velocities of 18, 26, and 70 in./sec for the 500-year, 1000-year, and 5000-
year events, respectively, occur in this range of periods at a system damping
of 5 percent. Peak spectral accelerations of 0.75, 1.1, and 1.0 g for these
three events, respectively, occur at a period of 0.2 sec. The ratio of
spectral accelerations at free field over rock are as large as 4.6 at the
natural period and decrease with increasing severity of motion. The
amplification ratio (spectral acceleration normalized to peak time-domain
acceleration) are as large as 4 at a period of 0.2 sec.

143, A sensitivity analysis was conducted using an average column to
represent the site and the DBE (1000-year event). The response calculated
using the average column was compared with the range of response calculated
using the collection of individual site responses and found to be comparable.
Therefore, the average column is considered to be a suitable representation
for sensitivity analysis.

1l44. Six different geotechnical parameters were evaluated to determine
their effect on the calculated response. Four of these parameters—velocity
inversion, depth to bedrock, impedance ratio, and assignment of modulus
degradation relationships—were varied within reasonable bounds defined by the
range of measured values. The results of these evaluations suggest that none
of these parameters have an important effect. The depth to bedrock and
assignment of modulus relationships are the most important of the four, but
the calculated response has a low sensitivity to both of these parameters.

The two other parameters—assignment of damping ratio relationships and maximum
shear modulus-were varied considerably more. The results of these evaluations

suggest that consideration of a maximum possible range of input values will
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produce a wide range of response. The use of upper bound and lower bound
damping ratio relationships significantly affected the amplitude of spectral
velocities. The use of the NRC criteria for maximum shear modulus also
significantly affects the amplitude as well as the periods of peak spectral
velocities.

145. The calculated response for PGDP is also expected to be strongly
dependent on the spectral content of the earthquake motions. The predominant
periods for the earthquakes are in the range of 0.03 to 0.07 sec. The natural
period of the site is in the range of 0.9 to 1.2 sec. If the period of the
earthquake is closer to the natural site period, stronger ground motions are

expected.
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APPENDIX A: LOCATIONS OF BORINGS USED FOR SOIL COLUMN
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APPENDIX B: ACCELERATION-TIME RECORDS FOR 500-YEAR EVENT
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APPENDIX C: SHEAR STRAINS FOR 500-YEAR EVENT
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APPENDIX D: TRIPARTITE RESPONSE SPECTRA FOR 500-YEAR EVENT

D1



1 @3FS 103 PIalJ 2913 3e wioj 23F3redial uy ®wazdads LI[O0T3A PATIBR[II-0paNsSd

(08s) | ‘pouad

OL Ol Ol Ot
N | N
14 I AN
2 “Buidwoq x01 _ RN
Foduey et AN S
Suidwogq x2Z Z -
> 2-ZI4OH 1£-008 }k\ Ol
D IS daosd X
\\\. 4 %
% 24V N
d AN . \
~ AN v
\\ \\ \\1
Z . Z Ou.
O 4 “ "o < 0
A INAT N LA
pa / ya / g w\ /] /
N LN B N
AN T KT ANIEN AN
= NP Y RN AN
MWJ\N/ LV : 7
> 7} NN a o,x o
’ [ : ,M // / ]
4 4 aTdid 4344
’ P \ AN //
% AN 1] BN
\\ w\
> e NO—,
[ S A N N | 1 14 taapil 1 L4 2 p )
Ol O Ol Ol

(ZH) 4 ‘Aouanbauy

(98s/°uly " S ‘AYID0JBA 8SUOASaY BAINDIBY OPNasSy

(098) | ‘pousd

‘1@ @an814

Ol Ol , Ol .0t
N 4 7
e
N, N /
4 e xS 4N
.w..,_mm.mg.xo‘” R //
T < X
budwog %2 y.a >
1-ZI4OH 1£-006 Z 1.
“X EY N | ¢~
> 19US  daod NS
// pa
] N
AN <
BN AN
\\ \\
7 N 7
o\\ . / \.
.\
AL /]
P\ LNV
N T NTAN
AN J ;
— N 1
b
> 7Y

i

ol

S WSS S SR Y N 05 W W USSR (RS B S R O W 'S S S SIS S I U W T |

Ot Ot

) )
(4 ) ‘Aduonbaiy

Ol

4

©

Ol

Y

Ol

Ol

/300187, 35UOCSS4 SA1DITH CPRasSy

—
~

D2



Ol

¢ @31S 103J pa13J 9o13F Ie wioF 8373aediial uf vizoads AITO0TaA 9AJIB[9I-Opansg

(93s) | ‘poued

Ol ol

o i-

z-

7 7

/| N

buidwog %71

o
£
Q.
E
o
)
R
~
N

R

o O
(18
»aral
EIE
09
0,0
3¢ R

2
4

$

2-ZI40H 1£-00¢G
29US  daod

\\

N a

T

INSAe 2 X IR AR

ACI/Y N7

~IAL 3 - A'A . Z

Ks)

N

i

I NENT| 1 Lt et

1

Lt it}

ol ol

(zH) 3§ ‘Aouanbauy

Ll

Ol

Ol

Ol

=

Ot

Ol

(98s/°un) "S ‘A300jaA asuodsay aAlDIY Opnasy

(93S) | ‘pouad

2@ @andi4

ol ol o) . Ot
N 7 4 N 77— O
AN V%
% Somng Bt AP
burdwog 3¢ B —
buidwog xZ
S 1-ZI4OH 1£-005 Z 1.9
“ c9NS ddsd \R
N \\ ]
% N N ]
AN %4
AN Z A Y
\\ \\ 3 m g
7 K ZERmi!iE O
@ 2 N
2 (NS
N A
AN N
JAEN 2074 N
M SV 1%
VA S
N
v 41 0Td1d 3344
-
A2 AN .
~\\ Z
Joll
L 1 L1ty L1yl TR
o} Ol ol Joll

(ZH) } ‘Asusnbauy

(98s/°u) g 'AJD0j8/ SSUCOSEY BAIDIRY OPNAsSY

D3




€ 93]S 103 PI913 °°1J e wWIoJ 2373xedyIy uy eijdeds L3TooTaa dAjIe[ai-opensd “€q d3INITJ

(99s) | ‘pousd (99s) | ‘pousd
o Ol Ol Ol Ol Ot Ol

0 i-

ol i
4 N \ e f 4 z
% % N % \ S
“buidwog Zo1 \/ “bwdwog zoi PN
Suidmog oo 4 o % Buiduiog x21- %
dw L AN w \ Budwoq xo) < //
< AN b 4 m._nm.nuno %S AN
| Buidiiog %2 A — A w. Budwog xz ~ —
S | 2-ZIMOH 14-00g N Z 192 ) 1-ZIYOH 1£-00¢ iy Z 1 ©
Vy € 1S  dasd // \z a ‘D £9US ddasd N *
4 . «.Av bV N 4 A Y.
N % N N 0 « N ML N
¢ - 4
~ // H xﬁ // m // // ~
e - - o - - -
7 /f 7 A \K\ ! ® ¢ y 4 b 4 . ~ o
| N4 el P N N N
// \.V\!\N\\ 1] A / m // Vi //R\u\r A /
N A 1~ M A = % N % N
28N 04 WaN.SE N < 7 4 AN
\ R 8 R AN 'NEAN BN %
> = ) = . ..\\ Z u Wr//y\ a%uSma \“ ~ i
AN 7 1 %o ~ PR T 7 ~— o
Q' 3 ” b (8)
/| N4 A 5 % N N
; ®
AN - A Ny q1d1d 3344 - g AN N a1a1d 3384
AN N\ d AN
AN ~ AN ~ AY
\\\ \\ - Z
= Ol - poll
ool 1 Lt a1l 1 Ll L 1 4t 1 ggpl 1 L ut L 1ot a1
Ol ol o] Ol Ol Ol joll

(ZH) 3 ‘Aousnbayy (ZH) ) ‘Aouanbaiy

(o8s/7uy "G 'AND019A 2suU0dSay BAINDEY OpPNasy
D4



Ol

% 893S 103 PISIJ @°1J 3v wioJ a3F3xedyil uj eizoads L3]o0[9A IATIRI3I-Opansd

(998) | ‘pouiad
0]} Ol

) -

\\ N L\\

AN

Tbuidwog kg

N
uiduiog %2

! 0 X058

L
N V1

&

2-Z140H 1£-00¢
¥ 21S  dand

V4

&

-
q
L
w
3
=~

/
rf(/ ZNN

N
H
“TH

&

N
AN
=
1]
N \\
2

\
4NN

a1did

’ AN

AN AN %
7
A

1ty 311 gl

1 £t op gl

Ol Ol

o ¥

(ZH) 3 ‘Aousnbayy

Ol

Ol

Ol

Ol

Ol

(99s/°un) "S5 ‘AjDORA Bsuodsay aAnDjEy OPNasy

(23s) | ‘pousy

‘yq 2and1y

ol Joll Ot ]
T TN 1
N, N
———— 2
by L
\ urdwi b,
T AN
buidwog xZ 7 \\.
I-ZI¥OH 1£-006 \%ﬁ Ol
N v oNS  dand N |4
A 4 /) \
N N
BN - N P Y
< ~
\\u =
\\ \\ \ N\”
3 S ~ \\ Ol
.c \ /X A
V/
// / \?“ /1 / -
N N NZUI11%
WS NITIIAST K :
LA AN TN N
AP A=A X
7 7
7V iaN e < O
d i o
y /s N
SN a1d1d 3384 |
% N
A1 4 = N
> = =
< ND_
[ S R A NN 1 ool 1 o1 ganl
0] ol Ol 0l

0 L

(ZH) 4 ‘Aduanbaiy

<

i

0158 OPNasSd

‘A112013/, 9SUOTSEXN SA

S

D>



APPENDIX E: ACCELERATION SPECTRA FOR 500-YEAR EVENT
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APPENDIX F: RATIO OF ACCELERATION SPECTRA FOR 500-YEAR EVENT
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APPENDIX H: ACCELERATION-TIME RECORDS FOR 1000-YEAR EVENT
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APPENDIX J:

TRIPARTITE RESPONSE SPECTRA FOR 1000-YEAR EVENT
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APPENDIX K: ACCELERATION SPECTRA FOR 1000-YEAR EVENT

K1l

s 4



1 @31S 103 PIoIJ 221F ' ®Bijoads asuodsai uojjeaa[adoe ainfosqy T} 2and1J

(o3s) | ‘pousd (98s) | ‘pousg
ol Ol ol Ol
™ rrers T 0.0 LIRSS I B B ) + 0.0
i { so - 4 so
- 4 Ol > 5 4 01
o
7]
o
=4
- 4 st @ - LK
&
dTidld d3494d o ATl 3944
A L L oz Mnuv\. PSS W SO S S laaao g0 0z
0]
Triv 1. 1 1 00 W LIR NI NN S B § [e}0]
O
o
(0]
g
ﬁ 150 & i ] o
W
8 o)1 rmu»/ o't
5 Gl - Sl
d0O¥ILNO MNDO0U JOUDLNO D0
drdemdndds i IS S A i Lddoddd L A i - N S S | 1 n bk i L i A dddeid ol L A .
Buideop 751 oc¢ Burduog 751 _ ' o¢
‘?:aso.aqmeI m::.”c.o:w.m_ )
g 2-ZRIOH 14£-0001 oy AL I-ZI40H 14-0001
“Bordeng 75 I9US  daad “Bodeog 75 T9)1S  ddnvd
burdwog 72 Burduog vz
N3O [N EDEN

S ‘u0NDJBIEDY BsuUOdsay 81N0sSqyY

o]

5)

’
N

K2



Ol

Z 231S 103 PIoTJ 9213 3e ei3dads asuodsai uoFIBRISTIIVE IINTOSQV *Zq 2an31g

(29s) ) ‘poued (99S) | ‘pouad
Ol ol .0l
TTTT T T T 00 T 00
h 1 S0 - 4 60
- 4 01 > - 4 01
o
w
o
<
s 451 [¢] <
&
aT4dld 33494 o dTdId 944
Ak It A ) S ST T S S W It | ST T S T I 0¢Z m Adolod i) 2 b | TR TS TS VI T S 1 i Liga o o " N 0z
(0]
L B S B 00 W T T Y DRV}
O
o
(0]
S
- G0 o’ G0
2
(%2]
o
- -1 01 5@ o't
1 Sl G
dOdILNO0 MI0Y JO¥ILNO MD0Y
b embederacks e A Lddddedhede I | A W S B | i A ON _.-hl.- d A Liddod il A A | TRV T S | I A ON
Budusg 761 Budwog 751 .
mc.ison 72t burdwog 7z .
T o 2~ZIOH 1£-0001 B 01~ [~ZIAOH 1£-0001
Bindaog 7 ¢ 1S dadd “Bodeog 75 2 1S AddNd
Burdwog 72 burduog 7z

G ERER GNIDIT

‘UONDIBIZDOY SUOdSaYH 21N0SQY
K3

S

ey



¢ 9315 103 PI3T3 9913 Je ei3oads asuodsal uorIeiaeo0® 93Infosqy - ¢Y oIndig

(99S) | ‘pouag

o} Ol
LELER B BN S 1 T 0.0
s 4 S0
- 4 01l
L 4 Gt

a1d1d a944
SO S S I 4 T A A 1 Lid 1 g 1 1 O.N
LIE I I B S | 1] OD
. 460
- o't
L 4Gl
d0¥ILNO D0y
MMum”mm 221
s AL S—ZIOH 1£-0001
Bundung 75 £9MS  daod
mCi.ED V14
aN3937

(®) °$ ‘uonousizooy ssuodsay 2INj0SqQYy

(99S) | ‘pouiad

O Ol
TEET L{ O.O
5 460
L 4 01
- 161
a1d1d 3344
DRI L UL BRI T LI LI T T O.D
- G0
L 0l
4G
d0UDLNO MO0y
6urdwog 721
Sy I-ZI40H 1£-0001
B 15 €2US  dand
(Ul wo(j NN

aNI937

)y ° g ‘uonous|endy dSUOdsay )OSy

s)

’
\

K4



¥ 911§ 103 PI3T3

(99s) 1 ‘pousd

9913J 3e BIjdads

o O
. LB T 1 0.0
o G0
s 401 >
o
)
o
=3
i - o
EY
a1d1d 344 3
le)
el i | PSS R L lladd L& L 0¢ %
o)
P oo &
1)
Q.
0
)
=3
L <o =
=
w
vv o
o'l ,mMH
Sl
d0UDLN0 MD0Y
CECE T NS S G | i | T U S A | . | I S B N { A O.N

- dwo( 7G|
Burdwog 721

2-ZI4OH 14-0001

v 2US

ddnd

asuodsai uoI3BII[IO0B INTOSqVY

*y @an314

(99s) | ‘pousyq |

OL Ot
L L] o.o
L 450
s ] o1
ﬁ 1 6t

dTdid 394
ddodod a1 A TR T Y A A I L i O.N
LA T O'O
| ; S0
| 4 o1
G
d0UILNO MDOU
hedd bl i Lol 4 4 4 4 " | S A S St L -
Burdeoq 7gi e
Burduog 721
S E I I-ZIMOH 1£-0001
“Bnduog 7g y 9IS ddNd
bundwog 72
AN3OI

(0) ° < ‘UONDIBRDIDY BSUCdSay SIN0SAY

K5

A

"
v

Wk g~



APPENDIX L: RATIO OF ACCELERATION SPECTRA FOR 1000-YEAR EVENT
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APPENDIX M:
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APPENDIX N: ACCELERATION-TIME RECORDS FOR 5000-YEAR EVENT
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APPENDIX O: SHEAR STRAINS FOR 5000-YEAR EVENT
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APPENDIX P: TRIPARTITE RESPONSE SPECTRA FOR 5000-YEAR EVENT

Pl



1 93]S 103 PIo1J 9913 3® wioy o373aedyil uy eazdeds £3Jo0Taa 9aj3e[ai-opensd 14 9andyg

(99s) | ‘pousd ‘ (09s) 1 ‘pousd
o]} Ol Ol o ol Ol , Ol Ol
L o]}
N N ¢ N 7 | N \ L
\ N V /V /| N \ _M
......A..__nmwuw.mmw H / - A 4 \/
Buidwoq %01 _ 7 % L b <
Bt — < C S
Soiduiog k2 e A o3 Z
2-ZI40H 14-000S [ {TIT Z 173 =T 1-2180H 1£-0006 N 74
19)S  dadd N% g £ 1S daod ANZ
)4 ) 5 ) 4 P AN
\\ BN \\ \/ _mcd \\ AN 4 \\ N
. AN 7 n AN // \\
»: . v
y4 \\ - \\ w ~ Z ~ Z
7 \,\ O g ) e 7 / 71 &
/| /| 5 N4 N4
~ % ST 8, A A
4 =TTV < // < 4 //
y. AN % AN
ya ¥ :\\ Z AS A LA —7
Oa = ~- ~ O—. ~ > = =
4 2 Z1 %5 S > 1 N Z 1 °
iy /CV o \ \).\ /
N\ WEY ..\\ 3 N ade%d
AT atdid 3944 a N i aTd1d 3344
2 < 7 < §2 wyfw \\ < <
A.T/ B N . ./u.w AN
—Z 7 ~—
“ Ol = z ol
11l Loyl T N W R R L b el Pt aatl b po 1t
O Ol Ot ol ol o)l ol

\

(zH) ) *Aduanbayy (zZH) 3 ‘Aousnbauy

4

(0as/°u) S ‘AYDOIBA 9su0dsay BAIDIBY OPNaSH
P2



Z 931§ 103 PI°}3 @°13F 3e wioj 93F3aedjil uj eijzoads L3oofaa aAj3IeIai-opensg ‘gd and1dg

(98s) | ‘pouad (99s) | ‘poued
Ot DOl ,0l .0l Ol Ol el Ol o
7 7 Ol 7 7 N 7] -
/| s W% /@\
“buidwog g1 \\/ /] I...M.‘.N“:..vo..ﬂm_. d
| 0% B bz Buigmad B0t o
// % AN //
A S Burduwog £z > s
S_ | 2-ZI40H 1£-000¢ Z 1.0 2 S § 1-ZI40H 1£-0005 I{TTT & O
e 22us  dasd AN \R o) > Z2us  dasd N
N 4 \\ N\ & A // y d d N
] ’ < & e < (AN AN
N A 5 N N A
Z - : \\ nnuu i Z e 0
4 N a . ~ Ol @ e N \\ Ol
2 /1 N o <« \ ~
; NN | N LA
AN\ Ve / w' / A // \\ //
- AN NFY N = % N 711
1 // \Wx d AN =< AN AN
AN < AN D% AN
\\ “N“KL \\ AS \\ LA \\1\\ \\\ Z
Qs o RS A 2| o
<) | . - (O 3 [ o
NI 52508 /\ S N4 \&% A \
/ P U / o / ‘m.\\)&w /
. - dT141d 3344 o vi adTdid 3444
/ AR ~ S AL A
Y [RAWW/A - P I
F 4.,,%7 4 // - : fﬁm // [
- Z - Z
v NO— . NO—
| L 11 1 aygg) t 1t 11l 1 141l ’ L i ooy gl 1 vl 1 Lo gl
Ol Ol foll Joll , Ol o Ol foll

(ZH) J ‘Aouanbauy ZH) } ‘Aouanbaiy

(285/°Ui) "S ‘A}ID0I9A 85UCdSBY SAI10I3Y OpPNaSY



¢ 93]S 10J PIoIJ 9913 3® mioj o3j3a1edjIl UT eIiloads A3T00TaA eAj3eTLI-Opensd gd AnIJ

(09S) | ‘pouad (29s) | ‘pousd
Ol Ol .0l ol Ol Ol Ol 5
4 Ot // / // Ot
RY: S N,
“budwog e - AN\ o \\ Burdwsg xsi. AN
Sudwog %21 N |/ wdwog 22t '
Snamag) 8 ‘ o (immm
Buiduing %5 y, 5 TBuidwog us y
burdwoq %2 y.a 7 15) buidwoq %2 Z —~
2—Z140H 1£-000¢ 3 Z 1% % S - z1w0H 1£-0008 \% O
£9)s  daod N \ g ..e gaNs  dadd (4
, T 7N 3 paN 10aNE
% 4 N
N1 (AR & \ P 174 <
~ AN B4 < 38 AN J% AN AN
D. A
= : A o2 2 2 = o
Z 2 0 Z Z Z
A AT < e > i N \% o
\ N % AN 4 A
% AN AN g N i N \\ /
R ..“ P N - HM# P AN AR 4 N
AN s§ / AN P2 wN/v N
S A z e A 5
235 8 o \ \% o 5 3 | i S .
4327, o 2 AR YN N
.| e 7Y i N
W \\ aTdid 3344 e % \\/ \\ \ aT1did 3344
/AN 4 AN 4 ~ \ < AN
4 AN ~ AN
2 N\ — \\
va v NOP v o NO—
P11 1] 1 Lot ot r iyl 1 L1y i | 1 L otop il 1 o1t 1 v el
Ol Ol Ol Ol Ol Ol Ol

(zH) } ‘*Aousnbaiy (zH) } ‘Aousnbaiy

(03s/°un) “S ‘AID0BA 9SUOdsSSy SANDIRY OPNasd
P4



Ol

% 931§ 103 Pa1J 2313 3e

(99s) | ‘pousd

O

Ol

wioj 93f73aedril uj wiajoads £3]o0T9A dATje[31-0Opansd

/

“buidwoq %6t

Burdwog %z1

Buidwoq %01

buidwoQg K¢
Buidwoq %5

2-ZI40H 1£-0006S
dasd

¥ 1S

N |

AN

N

&

4

ZAN

NV

K

Z

RS

A

A

L taearl

Il

1

1 r et

LL1g1t)

Ol

0

Ol

)

(ZH) 3 ‘Aouanbauy

Ol

4

Ot

Ol

Ol

Ol

(23s/°u1) " ‘AYID0jBA 9SUOdSEY BAIDIBY OPNaSH

(99s) | ‘pousd

*$d 2an314

ol Ol .0l ol
7 paminara
/& N
\— Tburdwog %1 \/
% — ME...,E._E P24
\ 1 bodiog s "
— Buidwiog 45 y
buidwoQ %2
S| 1-ZI40H 1£-0005 7am
o ¥ S daod \x
| AN AN
\ AN d /7
BN 4
P, y4
\\ Z 4
Z Z O~
0
25 N \\«w
N N A
N J N_F
: 7S
= =z =
va 1 Z Z Ol
L 7 /\\ { )
@ H K4/ - )
o\ \..ﬂ.\\ \A
./, A\ A /
N dTdId 3444
N/
N
4 Z
=  A— — NO—
L 1 o traal 1 ol 1 Lo et
Lol Ol ol Ol

(ZH) j ‘Aousnbaiy

(39s/°U1) * S ‘AJID0jBA BSUOdSaY BAIDIBY OPNASH

P5



APPENDIX Q: ACCELEPATION SPECTRA FOR 5000-YEAR EVENT
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APPENDIX R: RATIO OF ACCELERATION SPECTRA FOR 5000-YEAR EVENT
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APPENDIX T: SENSITIVITY OF RESULTS TO MAXIMUM SHEAR
MODULUS FOR 500-YEAR EVENT
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APPENDIX U: SENSITIVITY OF RESULTS TO MAXIMUM SHEAR
MODULUS FOR 1000-YEAR EVENT
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APPENDIX V: SENSITIVITY OF REL:'LTS TO MAXIMUM SHEAR
MODULUS FOR 5000-YEAR EVENT
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