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Abstract

A formal framework for navigating a robot in a geometric terrain populated by an
unknown set of obstacles is considered. Here the terrain model is not a priori known,
but the robot is equipped with a sensor system (vision or touch) employed for the
purpose of navigation. Our focus is restricted to the non-heuristic algorithms which
can be theoretically shown to be correct within a given framework of models for the
robot, terrain and sensor system. These formulations, although abstract and sim-
plified compared to real-life scenarios, provide foundations for practical systems by
highlighting the underlying critical issues. First, we consider the algorithms that are
shown to navigate correctly without much consideration given to the performance
parameters such as distance traversed, etc. Second, we consider non-heuristic algo-
rithms that guarantee bounds on the distance traversed or the ratio of the distance
traversed to the shortest path length (computed if the terrain model is known). Then
we consider the navigation of robots with very limited computational capabilities such
as finite automata, etc.
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1 Introduction

As the robot and computer technologies progress into the next century, more and
more tasks are likely to be performed by autonomous machines. In particular, mo-
bile robots could be employed to perform a variety of operations including (a) tasks
in environments that are not suitable for human operation, e.g., nuclear plants and
waste sites, chemical and toxic industries, (b) monotonous and tedious tasks such as
parts delivery and movements in manufacturing plants, and (c) operations such as
extra-terrestrial and underwater explorations, etc. One of the basic components in
the operation of such robots is the capability to autonomously navigate in terrains;
particularly in exploratory applications, the robots must deal with terrains whose
models at best are only partially-known. Advances in various areas such as engineer-
ing, compnter science, applied mathematics, etc., are required to fully achieve such
autonomous navigation capabilities. In this survey we consider computer science as-
pects of navigational methods in unknown terrains from an algorithmic perspective.

The area of robot path planning and navigation has been studied by various re-
searchers over the last decades, resulting in a large number of works. Several aspects
of this fascinating area can be found in the recent book by Latombe [42] and the
survey paper by Hwang and Ahuja [33]. There are two basic formulations of the path
planning and navigation problem based on the availability of the terrain model. In a
known terrain, the terrain model is given as input, and the motion planning problem
becomes one of geometric programming; there are a large number of techniques pro-
posed to solve this problem (see Latombe [42], Sharir {76]). In an unknown terrain,
the terrain model is not known ! but the robot obtains local terrain information by
employing a sensor (vision or touch) system; several works of this formulation are de-
scribed in Hwang and Ahuja [33]. One of the fundamental differences between these
formulations is that a path can be preplanned in the former, whereas in the latter a
path must be incrementally computed as the newer parts of the terrain are explored.
To illuminate the differences between these two formulations consider an example of a
human being required to move from one location to a destination location (e.g. main
office or a vending room or an exit) in an unfamiliar building. If the floor plan of
the building is given, one can plan a path and move along the path. On the other
hand, if no floor plan is available, one must systematically search the building for the
destination, say, by using visual information. Further, this problem becomes harder
if the interior of the building is dark and the human being does not have any light
sources; then, one has to rely on touch sensing alone.

In an unknown terrain, we have two critical aspects: (a) the computation is based
on local (or partial) information, and (b) sensing is an integral part of the navigation.
Because of the first aspect, the algorithms for unknown terrains are often called on-
line algorithms (Kleinberg [41] and Bar-Eli et al [4]). In the light of second aspect,
an algorithm for an unknown terrain is required to schedule the sensor operations,
and this aspect is absent in known terrains. Moreover, in unknown terrains differ-

In some known terrain cases, where the terrain model is large but the robot navigates within
a restricted locality, it might be advantageous to consider only certain parts of the terrain; in such
cases algorithms for unknown terrains could be suitably employed.
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ent classes of algorithms are, in general, required to navigate robots equipped with
different types of sensors. .

In this survey, we consider a very specialized class of methods for the unknown ter-
rains navigation problem, namely the non-heuristic algorithms; here the correctness
of the algorithm is guaranteed within the stated framework of inodels for the robot,
terrain and sensor system. Such algorithms are very important in the mission-critical
operations, e.g., shutting down a malfunctioning reactor. We will concentrate on the
algorithniic issues under the assumptions of iaeal sensors. For the majority of the
works, we consider a point-sized robot navigating in two-dimensional terrains. For
the unknown terrains navigation, there are several methods that are demonstrated to
work well in practical situations, but are not designed to be non-heuristic (see [33]).
There are two types of such works. The first kind deals with navigating robots in
real-world environments, such as those discussed in Elfes [24], and Turchen and Wong
[80] (just to name a few). The second kind deals with a framework of terrains and
sensors in a precise formulation but the algorithms are not guaranteed to converge
to a destination such as methods discussed in Iyengar et al [34] and Chan and Tam
[13] (again just to name a few). These works are fairly extensive and are outside the
scope of this survey.

Over the past few years, the topic of non-heuristic navigation algorithms in un-
known terrains has received increasing attention by the researchers in the areas of
robotics, computer .zience and engineering; of particular importance are the meth-
ods that ensure some properties such as performance guarantees, etc. The focus here
is to obtain provably correct algorithms for navigating automata or robots in terrains
whose maps are not known ahead of time. At the outset, the formulations of these
problems appear to be of only theoretical interest; however, these methods constitute
an important guide to a number of practical solutions as evidenced from the works
of Lumelsky [45]. Such line of thought seems to have been followed by a number of
researchers since as far back as 1873, in the form of maze searching problems studied
by Weiner (Ore [57]). Before the advent of computers and electronic circuits, the
majority of these works have been basically theoretical. Subsequently, several contri-
butions to this field have been made by a number of researchers working in diverse
areas. Many of these results are scattered in various publications, and an overall
introductory treatment of these (particularly early and recent) works is not available
in a single location. In view of the recent upsurge of interest in these problems, such
a treatment will be helpful to non-specialists and newcomers to this area.

We mainly consider the navigation problem that deals with moving a robot to a
destination while avoiding a certain set of obstacles on the way. The obstacles are
detected using a sensor system (since they are not a priori known). Consequently,
solutions to this problem vary greatly with the sensory system of the robot. The
other factors affecting the algorithm are the assumptions on the obstacle terrain and
the computational power of the robot. We also consider the terrain model acquisition
problem that deals with building a terrain map by exploring the terrain using sensors.
Most of our discussion deals with a point-sized robot amidst two-dimensional obstacles
in the plane. Obstacles can be simple closed curves (of finite perimeter) [44], or
polygonal [61] or have boundaries consisting of sequences of line segments and circular



arcs [62]. We basically consider touch and vision sensors, which are assumed to operate
without errors. The algorithms based on touch sensors assume that the robot has
some type of capability to move along the boundaries of the obstacles.

The algorithms surveyed in this paper can be classified into three broad categories
based on the overall objectives. The first category deals with algorithms that are
shown to navigate correctly without giving much consideration to the performance
parameters such as distance traversed, etc. In the second category, the main objective
is to guarantee bounds on the distance traversed or ratio of the distance traversed to
the shortest path length computed if the terrain model is known. The third category
deals with robots with limited computational capabilities such as finite automata, etc.
Also, we can classify the navigation algorithms for unknown terrains based on the
sensor systems used by the robot. Typically these algorithms employ either touch or
vision sensors. A taxonomy based on these characterizations is provided in the next
section. '

The treatment in this paper is informal and elementary, and is intended to high-
light the basic ideas of various methods; the technical details of the works can be
obtained from the appropriate references.

The organization of the paper is as follows. We provide a classification of various
navigational methods of unknown terrains in Section 2. Algorithms for simple maze
searching are discussed in Section 3. These works constitute some of the earliest ef-
forts to solve the navigational problems within formal frameworks. Although many
of these works are fairly limited in their applicability, they provide some of the basic
ideas that have been subsequently used. In Section 4, we consider algorithms based
on touch sensors; these algorithms are pioneered by Lumelsky [45] and could be con-
sidered an inspiration to a number of subsequent works. Algorithms based on vision
sensors are presented in Section 5. We consider two types of vision sensors: discrete
sensors perform 360 degrees scan from the present location, and continuous sensors
“see” all visible parts of the terrain as the robot navigates. In terms of information,
a continuous sensor can simulate a discrete sensor but not vice versa if the latter is
restricted to perform only a finite number of scan operations. Section 6 deals with the
works that have been done in past few years as a part of renewed interest in this area;
major inspiration seems to be the challenge of achieving some type of optimality in
navigating in unknown terrains. Section 7 deals with computational issues involved
in solving the navigation problem by considering a robot with very limited computa-
tional capabilities; several works show the limitations of robots in searching mazes.
The brief description in Section 8 is intended to provide some related information on
algorithms for searching unknown graphs; several graph methods have been employed
to solve a number of navigation problems, and an insight into the.former will help
understand some important issues of the latter. In terms of algorithmic content, the
problem of navigating in a geometric terrain is easier than that in graphs, mainly due
to the presence of spatial information in the former (see Blum and Kozen [7]).



2 A Taxonomy of Navigation Algorithms

Algorithms for various formulations of the navigation probiem in unknown terrains
have been studied by a diverse set of researchers, e.g., mathematicians, electrical engi-
neers, computer scientists, etc. Although the focus and treatment of these algorithms
can differ considerably, often they can be visualized to be having some common un-
derlying themes. Instead of a strict classification (which is very difficult to provide),
we provide some broad keywords and phrases that characterize some classes of these
algorithms. We consider the criteria of (I) overall objectives, and (II) sensor systems.

(I) Overall Objectives: We can classify the existing methods into three classes
based on the overall objectives of the navigation.

(A) In the Class A methods, the main goal is to guarantee that the navigation
objective is achieved, e.g., reaching a destination point, acquiring a model
of the terrain, etc. In general, these algorithms are not designed to optimize
parameters such as distance traversed, etc. Early works on this class of
algorithms can be traced back to Sutherland [79] who presents an outline
of a proof for the algorithm of Shannon’s mouse proposed in late 1940. In
eighties, interest in these algorithms has been rejuvenated by the works
of Lumelsky [45]. Several of the early maze searching algorithms can be
included in this class; discussion on several maze searching algorithms and
their relation to robot navigation algorithms can be found in Lumelsky
[42] and Sankaranarayanan and Masuda [70].

(B) The Class B methods are intended to optimize parameters such as dis-
tance traversed, figure of merit, etc. This area has attracted the attention
of several researchers over the past few years. Although several perfor-
mance measures, such as number of scan operations, number of elementary
motion commands, etc., can be considered, recent works deal with either
minimizing the distance traversed by the robot (Baeza-Yates et al [3]) or
the ratio of the distance traversed to the shortest possible distance when
the terrain model is known (Papadimitriou and Yanakakis [58], Blum et al
[5], etc.). This line of algorithms is expected to receive increasing attention
in future.

(C) The Class C algorithms attempt to extract the basic computational issues
involved in these problems along the lines of theory of computation. For
example, assuming that the robut has the computational capability of a
finite state automata, one might be interested in the type of navigational
problems that can be solved. Most of these works are restricted to the
terrains of mazes. Some of the early work in this area is pioneered by

Budach [11].

(II) Sensor System: There are two different varieties of sensors, namely touch and
vision, that have been studied in literature.



Class

Subclassification Representative References

Class A | maze searching Shannon’s mouse (79}, Tarry and

Tremaux [57], Fraenkel [27],
Pledge algorithm [1]

touch sensor Lumelsky [45],Cox and Yap {18],
Sankaranarayanan and Vidyasagar (73]
continuous vision Sutherland [79], Lumelsky et al [50],
Lumelsky and Skewis [51]
discrete vision Rao [61], Choo et al [15], Foux et al. [26]
Class B | searching in plane Baeza-Yates [3], Kao et al [38]
figure of merit Papadimitriou and Yannakakis [58],

Blum et al [5], Bar-Eli et al [4],
Deng et al [20], Klein [40], Kleinberg [41]
Kalyanasundaram and Pruhs {37, 35, 36]

Class C | restricted computation | Budach [10, 11], Coy [19], Dopp [22],

Shah [75], Blum and Kozen [7]

(A)

(B)

Table 1: A taxonomy of non-heuristic navigation algorithms.

Touch Sensors: Typically a touch sensor detects when the .obot touches an
obstacle. Several algorithms based on such sensors have been extensively
studied by Lumelsky [45] and by many other researchers. Early use of
touch sensors goes back to the Pledge algorithm [1]. Some of the more
recent works based on these sensors are due to Cox and Yap [18] and
Sankaranarayanan and Vidyasagar [72, 71, 73].

Vision Sensors: A vision sensor typically provides the information visi-
ble to the robot; there are two basic characterizations of a vision sensor:
continuous and discrete sensors. As the robot navigates along a path, a
continuous sensor can detect all parts of the terrain that are visible. Some
of the early navigation algorithms based on continuous vision sensors are
due to Sutherland [79]. More recently, the algorithms of Lumelsky and
Skewis [51] solve the navigation problem using the continuous vision sen-
sors; the terrain model acquisition problem is solved by Lumelsky et al
[50], and Deng et al [20]. The discrete vision sensor provides a 360 degrees
scan from a single position of the robot, i.e. the sensor obtains the bound-
ary of all obstacles that are visible from a single point. Such operation is
called a scan and the robot is required to perform only a finite number of
such operations. Rao [61] studied algorithms based on the discrete vision
sensors for solving the navigation and terrain model acquisition problem
(the latter has also been studied by Choo et al [15}). If the number of scan
operations is bounded, then there are navigational problems that cannot
be solved by using discrete scan sensors, e.g. in terrains where obstacle
boundaries are sequences of line segments and circular arcs [62]. Based
on the range that a vision system is capable of, there are infinite distance
sensors and finite distance sensors. Many of the vision based algorithms

5



Figure 1: Graphical representation of a maze

assume that the range of vision is unlimited; Lumelsky and Skewis [51]
describe algorithms when the radius of vision is limited. In many cases,
especially in maze searching by Fraenkel [27], a vision or a touch sensor
system that is capable of identifying the “corridors” or “paths” is implicitly
assumed.

A taxonomy of the works described in this paper is provided in Table 1 with some
representative references. :

3 Simple Maze Searching

Maze searching algorithms have been studied since as early as 1873 by Weiner (Ore
[57]), and interest in such problems can be traced back to the Euler’s work on
Konigsberg bridge problem (see Chapter 1 of Harary [30] for details of this prob-
lem). Typically, in these problems we have an automaton with the ability to touch
and/or see. There are two objectives of maze-searching algorithms: first to search for
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Figure 2: Path followed by Shannon’s mouse

a “treasure” hidden in an unknown location inside the maze, and second to escape
out of a maze from an unknown location.

Early efforts to solve maze problems are based on modeling the maze as a graph
(see Fig. 1.) and invoking a suitable graph search algorithm. Here in Fig. 1 each
corridor is represented by a graph edge, and a vertex represents a location where two
corridors meet or a corridor dead-ends. A systematic exploration of the graph edges
can result in finding a way out of the maze. In Fig. 1, entire interior of the maze can
be seen if each edge has been traversed (equivalently each corridor has been traversed)
using a continuous vision sensor; at the termination of such algorithm the robot is
guaranteed to find the treasure or exit. Such ideas have subsequently resulted in a
number of useful navigation algorithms both in known and unknown terrains; see
Lumelsky [49] for discussion on the relation between maze-searching algorithms and
navigation algorithms in unknown terrains.

In this section we first discuss an interesting maze searching algorithm due to
Shannon (Sutherland [79]). Early maze-searching algorithms based on graph search-
ing methods discussed in Ore [57] and Fraenkel [27] will be described Sections 3.2 and
3.3 respectively. The Pledge algorithm, based on a touch sensor and a compass-like
device, is described in Section 3.4.

3.1 Shannon’s Mouse

In late 1940’s Claude Shannon built a maze-solving mouse that is capable of finding
“cheese” stored in one of the squares of a 25-square checkerboard maze (described in



Sutherland [79]). Two adjacent squares are separated by removable aluminum walls.

He proposed a maze-searching algorithm which is the first of its kind. Each square
is assigned two bits which indicate an arrow showing which way the mouse went in
the last last visit (if any) to the square. When exploring the maze, the mouse always
attempts to leave each square it entered in a direction 90 degrees to the left of the
recorded direction, updating its recording. If the mouse is struck by a wall in that
direction, it returns to the center of the square and tries again another 90 degrees to
the left. With this algorithm the mouse will eventually find the cheese; this algorithm,
however, appears inefficient because the mouse will sometimes leave a square by the
very opening it used in entering. See Fig. 2 for an execution of this algorithm. An
informal correctness proof of this algorithm is given by Sutherland [79]. Notice that
the mouse here has at most four directions to move from any cell, and it finds out
that an adjacent cell is not reachable by “bumping” into the separating wall.

-
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Figure 3: Execution of Tarry’s algorithm

3.2 Tarry and Trémaux Algorithms

The connection between graph searching and maze searching has been discovered in
several early works. A graph model of a maze (such as the one in Fig. 1) is employed
by the algorithms of this and the next section.

The Tarry’s algorithm [57] constructs a cyclic directed path passing through each
edge once and only once in each direction. The algorithm starts at an arbitrary vertex
ap and follows a path P marking each edge with the direction in which it has been
traversed. When one arrives at some vertex g for the first time, the entering edge is
marked specially. When one reaches a vertex g, one always follows next an edge (g,r)
which either has not been previously traversed, or if it has been, it has been traversed
only in the opposite direction. However the entering edge should be followed only as a
last resort, i.e., when there are no other edges available. The execution of the Tarry’s
algorithm will terminate at the initial vertex ao, with each edge traversed twice, once
in each direction. An execution of Tarry’s algorithm is shown in Fig. 3. In spirit,
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Figure 4: Execution of Fraenkel’s algorithm

this algorithm ? is similar to the popular depth-first search algorithm used in graphs
[2].

The same result is obtained in a different method proposed by Tremaux [57]. The
procedure adopted is that of progressive covering of the graph. The technique ensures
that all the vertices within a certain distance have been visited. It is easy to touch
upon the vertices of distances 1: one passes through the various edges at ao to their
end points, each time returning to ao. Each edge E = (ao, @) is marked once as one
leaves ap and at a, it is marked as tke entering edge. To reach a vertex at a distance
2 from ao, one selects some open edge E = (ao, a;) and marks it again; at a; a similar
nrocedure is applied and reachable vertices from a; are marked. At a, if one traverses
and reaches a vertex which has already been visited then it is marked closed. If all
the vertices from: a; are closed then the edge (ao,a;) is marked closed. The operation
is continued until all edges at a are marked twice. This algorithm is similar to the
breadth-first search algorithm used for searching graphs [2].

3.3 Fraenkel’s Algorithm

An improvement to the Trémaux and Tarry’s algorithm has been proposed by Fraenkel
[27, 28]). In this algorithm every edge is traversed once and at most once in each
direction. We assume that upon the arrival at a vertex v, its entrance edge and the
edges incident to v which have been traversed previously along with the direction are
known. Let p(v) be the valence of v, i.e., the number of edges incident to v and let
vo be the initial vertex. Without loss of generality we assume p(vo) = 1 of the initial
terminal of this alley is 1.
The algorithm proceeds as follows:

2By visualizing two contra-directed edges for each corridor, we can see that this algorithm defines
a subclass of directed Euler graphs (a directed graph is called a directed Euler graph if each node has
the same number of incoming and outgoing arcs {17]). The path taken by the robot runs through
each directed edge precisely once and such path is called the directed Euler tour. For this subclass
of directed graphs, the depth-first search algorithm yields the directed Euler tour.
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(1) Start out from vg with the counter initialized to zero. The counter is increased
by unity upon arrival at a vertex that has not been traversed before.

(2) If we arrive at a vertex v such that before entering it there was at least one edge
incident to it which was not yet traversed, and upon arrival at v there remains
at most one such edge, decrease the counter by 1.

(3) As long as the counter is positive, the tour is conducted according to Tarry’s
algorithm, but, whenever possible, an edge not traversed before, is used in
preference over an edge traversed before.

(4) Suppose the counter becomes zero at vertex vi. If there is an untraversed edge
incident to v follow it. Otherwise, leave all vertices via their entrance edges.

An execution of Fraenkel’s algorithm is shown in Fig. 4. It is to be noted that
the above solution is not unique and several other valid solutions exist.

Notice that the algorithms of Tarry, Tremaux and Fraenkel assume that the sensors
are adequate to navigate the automaton along the required corridors. Further they
assume that the robot can identify a corner when it revisits; this capability can be
implemented by using real arithmetic and suitably storing the points visited by the
automaton.

3.4 Pledge Algorithm

The Pledge algorithm deals with navigating a point automaton with touch sensing,
and a compass that can measure the “amount of turn”. The automaton is trapped
inside a maze, and it is required to escape out of the maze. The following algorithm
for this problem has been reportedly invented by a 12 year old boy in Exeter, England
(reported in Abelson and diSessa [1]). Fig. 5 illustrates a point automaton escaping
a maze using Pledge Algorithm by the following steps.

(1) Choose an arbitrary fixed direction call it Fi,;; and face this way.
(2) Walk following Fi,: until you detect an obstacle by front sensor.

(3) Turn left and follow the obstacle boundary keeping the obstacle on the right
side.

(4) Follow the obstacle around, until the total turning angle is zero. Go back to
step 2.

Notice that the automaton only needs a primitive computational ability of adding
and subtracting the amount of turn, which is a real number. The sensor system must
enable the automaton to (a) navigate along the obstacle boundaries, and (b) measure
amount of turn. Pledge algorithm is the first non-heuristic algorithm based on touch
sensing. A detailed proof of correctness of the algorithm is given by Abelson DiSessa
[1]. This algorithm inspired some robot navigation algorithms such as algorithm
Curvel of Sankaranarayanan and Masuda [70].

10
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Figure 5: Execution of Pledge algorithm

3.5 Closure of Section

There are several features of these maze searching algorithms that are subsequently
used in robot navigation algorithms. First notice that the Shannon’s mouse discovers
obstacles by bumping into them and each obstacle is known to be a wall separating
two cells; also, the direction of movement of the mouse is restricted to four known
directions. The algorithms of Tarry, Tremaux and Fraenkel are high level strategies
based on the assumption that corridors can somehow be detected and followed. The
Pledge algorithm is based on detecting obstacles by touching them.

In terms of the memory used, the Pledge algorithm is unique in that it requires
just one variable denoting the amount of turn, whereas the other algorithms explicitly
store information about the locations that have been visited earlier.

4 Navigation Using Touch Sensing

The interest in non-heuristic algorithms for navigation in unknown terrains has been
rekindled in mid eighties due to the pioneering works of Lumelsky and Stepanov [53].
As a result a number of algorithms based on touch sensing have been subsequently
studied; these algorithms will be the focus of this section.

We first discuss two basic algorithms Bugl and Bug2 of Lumelsky and Stepanov
[53]. The ideas behind these algorithms have been subsequently extended to several
contexts. Then we discuss the algorithms of Sankaranarayanan and Vidyasagar (73]
and Sankaranarayanan and Masuda [70]. Then we consider a navigation algorithm
for a ladder based on a touch sensor due to Cox and Yap [18]. We then deviate from
the main line of discussion of this paper to discuss the applications of the algorithms
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Figure 6: Execution of Bugl algorithm

of Lumelsky et al. [46, 47] to manipulators.

4.1 Lumelsky’s Algorithms

A point robot capable of touch sensing is considered here; the robot can detect a
contact with an obstacle and also follow its boundary. Obstacle boundaries are simple
closed curves of finite length. Two basic algorithms, Bug! and Bug 2, are proposed in
[53]. Here the problem is to reach a specified destination T from the present location
S. Some simple strategies will not correctly navigate the robot to the destination; we
discuss these aspects briefly in Section 5.4.

In the algorithm Bugl the automaton meets the ith obstacle at a hit point H;,
1=1,2,... and leaves it at a leave point L;, 1 = 1,2,...; Ly = S. The behavior of the
automaton is illustrated in Fig. 6. The algorithm proceeds as follows:

(1) From the point L;_» move towards the target along a straight line until one of
the following occi .. (a) if the target is reached, then terminate the algorithm;
(b) if an obstacle is encountered, define hit point, H; and go to Step 2.

(2) Turn left and using this local direction, follow the obstacle boundary. Stop if
target is reached. Else, after hoving traversed the whole boundary and hav-
ing returned to 4;, define a new leave point L;, which is a point on obstacle
boundary closest to the destination.

(3) Take shortest distance path along the obstacle boundary to the point L; after
returning to H;. Apply the target reachability test. If the target is reachable
then the algorithm terminates. Otherwise increment : and go to Step 1.

A proof of correctness of Bugl is described in [53]. By the execution of this

algorithm the length of the path P produced will never exceed the limit D+1.5-5; p;

where D is the straight line distance between the target and the start points, and p;
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Figure 7: Execution of Bug2 algorithm

refers to the perimeter of the obstacles intersecting the disc of radius D centered at
the target.

For the algorithm Bug2, the automaton starts from Lo. Let d(P) denote the
distance between a point P and the target point. The algorithm consists of the
following steps.

(1) From point L;_;, move along the straight line ST until one of the following
occurs: (a) if the target is reached, the algorithm terminates; (b) if an obstacle
is encountered, a hit point, H;, is defined.

(2) Using the accepted local direction, follow the obstacle boundary until one of
the following occurs. (a) The target is reached, and the algorithm terminates.
(b) The line ST is met at a point Q such that the distance d(Q) < d(H;), and
the line QT does not cross the current obstacle at the point Q. Define the leave
point L; = Q. Increment j and go to Step 1. (c) The automaton returns to H;
and thus completes a closed curve without having defined the next hit point,
Hi1. In (c) the target is trapped and cannot be reached, and the algorithm
stops.

In this algorithm a path segment navigated around an obstacle is often (but not
always) shorter than the perimeter of the obstacle (Fig. 7). The proof of correctness
of this algorithm is described in [53]. The length of the path generated never exceeds
D+ 3, ME where p; refers to the perimeter of the obstacles intersecting the straight
line segment ST and n; is the times the ith obstacle is visited.

A comprehensive treatment - including a general lower bound and correctness
proofs - of the algorithms of Lumelsky and his associates is given in [45].

4.2 Sankaranarayanan’s Algorithms

Several extensions to the early versions of Lumelsky’s algorithms have been proposed
by Sankaranarayanan and Vidyasagar (72, 71, 73] and Sankaranarayanan and Masuda
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Figure 8: Execution of algorithm Algl

[70); these algorithms lead to generalized solutions. We discuss Algl and Alg2 of
[71, 72] and Curvel of [70] in this section.

As a nice intermediary between the algorithms Bugl and Bug2, a new algorithm
Algl has been proposed by Sankaranarayanan and Vidyasagar [71] in which the au-
tomaton travels less along the obstacle boundaries and more along the straight line
segments towards the target point T. Algorithm Algl can be briefly described as
follows.

(1) The robot moves along the line M-line joining the start (S) and destination (T')
locations until an obstacle is met.

(2) The robot follows the boundary in a specified local direction (say left). The
robot leaves the obstacle boundary at a point L if and only if the following
two conditions are satisfied: (a) robot can moves along the line joining L to
destination; (b) L is the closest point to destination on the M-line ever visited
by the robot.

(3) After meeting an obstacle at hit point H; and moving along that obstacle bound-
ary, the robot can meet a previously defined hit point or leave point Qi (k < j).
If that happens, the robot retraces its path back to H; and moves along the
section of the obstacle boundary on the other side of Hj.

Note that Bugl traverses along the entire boundary of every obstacle it encounters
and Bug2 avoids such traversals in simple cases by attempting to navigate only along
a part of the boundary; however in complex terrains, Bug2 may repeatedly visit the
same obstacle. Algl avoids this problem. The path length generated by this algorithm
is upperbound by 23" p; + D. See Fig. 8 for an execution of this algorithm.
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Figure 9: Execution of algorithm Alg2

The algorithm Alg2 proposed by Sankaranarayanan and Vidyasagar [72] can be
described briefly as follows.

(1) The automaton travels along a straight line towards the destination T' until an
obstacle is met.

(2) The automaton leaves the obstacle boundary at a point L if and only if the
following two conditions are satisfied: (a) at L, the automaton can move along
a line segment LT that does not enter the obstacle, and (b) L is closest to T
among all z ever visited by the automaton prior to visiting L.

(3) If a previously defined hit or a leave point is met then the following rule is
applied: if returning to a hit point H, the automaton moves along the unvisited
section of the obstacle boundary, which starts at H.

In this algorithm the length of the path generated never exceeds the limit 23, p;+
D. An execution of Alg2 is shown in Fig.9.

Sankaranarayanan and Vidyasagar [73] classify the touch based navigation algo-
rithms into classes I and II. Algorithms of Class I traverse the entire boundary of
every obstacle they encounter (such as Bugl) at least once before leaving it; algo-
rithms of Class II leave at least one obstacle before traversing its entire boundary. For
the former class they show a lower bound of 1.5} p; + D for the distance traversed by
the robot and for the latter class of algorithms they show a lower bound of 23 p; + D
[73].

The algorithms Bugl, Bug2, Algl and Alg2 are called metric algorithms since
they use information such as position, distance, etc. Sankaranarayanan and Masuda
[70] present the algorithm Curvel that uses non-metric information to follow a track
in a terrain populated by unknown obstacles. A guide track is a non self-intersecting
curve ST, connecting the source S and the target T. The algorithm is based on
the topological property observed in the Jordan-Curve theorem that the curve ST
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Figure 10: Execution of Curvel Algorithm

intersects an obstacle boundary at even number of points. The automaton has a
counter C associated with it. The algorithm is described as below.

(1) Start from the point S. Set the counter C to zero.

(2) Move along the curve ST until one of the following occurs: (a) the target T is
reached, stop; (b) an cbstacle is met, then follow the obstacle boundary in the
local direction left.

(3) Follow the obstacle boundary until one of the following occurs:

(a) The target T is reached, then stop;
(b) The curve ST is met at a point P. One of the following steps is executed.

i. The counter C reads zero and, at P, the automaton can move along
curve ST towards T'. Follow the curve ST away from the obstacle.

ii. The counter C reads non-zero and, at P, the automaton can move
along curve ST towards T. Decrement the counter C' by unity and
move along the obstacle boundary. Goto Step 3.

iii. At P, the automaton cannot move along curve ST towards T. Incre-
ment the counter C by unity and continue moving along the obstacle
boundary. Goto Step 3.

Fig. 10 illustrates the execution of the algorithm Curvel. This algorithm is
inspired by the Pledge algorithm discussed in Section 3.4; notice that the robot in
this case is able to follow the track with just a compass-like device.
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4.3 Cox and Yap’s Algorithm

Navigation of a rod or ladder using a touch sensor has been studied by Cox and
Yap [18] in two-dimensional terrains populated by polygonal obstacles. The ladder
can be thought of as an autonomous vehicle which can carry out “guarded move”
instructions consisting of motion along a smooth curve or a compliant motion which
maintains specified obstacle contacts until an event occurs, such as contact with a
new obstacle or a coordinate taking on a specified value.

Let F'P be the set of all positions of the ladder that do not cause a collision with
obstacles. The idea of this algorithm is to have the ladder search the environment
while keeping in cortact with the obstacles, dynamically constructing a road-map of
the environment. The road-map consists of a superset of the edges of the topological
boundary of FP. The notion of road-map has been extensively used in known terrains
(see Canny [12] for details on road-map), and in vision based algorithms in unknown
terrains (Rao [61]).

All guarded move instructions specify two constraints that define a curve in FP;
the instruction will specify which of two directions to move in that curve. Each
constraint is of the following form: (a) maintain contact of the ladder with a particular
corner, (b) maintain contact of a ladder endpoint with a particular wall, (c) maintain
a certain orientation of the ladder, (d) restrict an endpoint of the ladder to move
along a particular line in physical space.

A guarded move is terminated automatically when one of the following event
occurs: (a) ladder makes a new obstacle contzct; (b) one or several of the coordinates
reaches some specific value(s); (c) an endpoint of the ladder reaches some specified
point in physical space.

Cox and Yap [18] dynamically construct a road-map of the relevant portions of the
environment with a motion that has a path complexity bounded by O(k) = O(n?),
where n is the number of obstacle walls, and & is the total number of pairs of obstacle
corners and walls within a distance less than or equal to the length of the ladder. This
algorithm is a synthesis of retraction techniques (used extensively in known terrains

[76] and to a limited extent in unknown terrains [67]) and the technique of Lumelsky
[45].

4.4 Navigation of Manipulators

So far we discussed mobile robots navigating in unknown terrains. We now illustrate
that the basic underlying algorithms can also be applied to robot manipulators (see
Paul [59] for general discussions on manipulator programming and control). These
algorithms are due to Lumelsky and his group [46, 47]. Lumelsky and Sun [52] present
a comprehensive treatment of motion planning methods for manipulators within the
framework of touch sensors. Our objective here is only to provide some feel for the
applicability of previous algorithms to the case of manipulators; this section is not
intended to be an exhaustive survey on non-heuristic algorithms for manipulators.
A planar manipulator arm can be visualized as a set of line segments (called links)
joined at end points. Base link can be translated or rotated with respect to a fixed
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Figure 11: Five Effective Combinations

base. And any other link can be translated or rotated with respect to the links it is
joined to; in the former case we have a sliding joint and in the latter we have a revolute
joint. Computational aspects of manipulators have been studied extensively in known
terrains (for example see Hopcroft et al [31]). The entire manipulator operates in the
plane where the source and target point lie. We consider only manipulator arms with
two degrees of freedom; each position of the manipulator is given by a pair of variables,
which are either angles or linear translations. The arm is able to do following actions:
(a) move the endpoint along parts of a known simple curve, connecting S and T (call
this curve M-line), compute the coordinates of consecutive points along the M-line
and transform them into the corresponding joint values if necessary; (b) when the
arm’s body contacts an obstacle, identify the points of contact.

By suitably joining links with sliding and revolute joints, we can potentially have
32 arbitrary combinations for the planar arm connections. Because some joints are not
admissible, some are equivalent, and some are not meaningful, only 5 combinations
are required in practice (see Fig.11). Here we choose a manipulator with two revolute
joints (Fig.11(a)) as an example to present the navigation algorithm. Since each
position of this arm is specified by a pair of angles, we can imagine the manipulator
to be a point moving on a surface of a torus. The regions of the torus that correspond
to positions that are not attainable by the manipulator due to the obstacles constitute
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Figure 12: Image Space of Planar Arm Manipulator Algorithm

virtual obstacles. Thus the navigation problem of this manipulator is reduced to that
for a point robot amidst virtual obstacles on the torus. We have two different types
of virtual obstacles: type I obstacles form a single closed curve on the surface of
the torus, and type II obstacles form a band-like structure (on the torus) limited by
two simple closed curves. During the motion, some points of the arm body meet
obstacles. We have hit points H; corresponding to points of intersection between the
M-line image (projected onto torus) and boundaries of the virtual obstacles. While
following the virtual boundary, the arm may meet the M-line more than once. The
point at which the arm leaves the obstacle is called the leave point L;. Because of
the structure of the surface of torus, we can have four types of M-lines denoted by
M,;, M3, M5 and M, as shown in Fig.12; let these lines be ordered by their lengths,
with M, being shortest one. Now the following is a brief outline of the procedure
using Lumelsky’s method for a manipulator with two revolute joints (refer to Fig.
12). The manipulator uses two counters C1 and C2 which will record the angles as
the robot moves; it also uses a Boolean variable called the flag.

(1) Let M-line be M;-line, flag be set down and j = 1.

(2) Let C1 and C2 be initialized to zero. The arm moves following the M-line from
L;_, until the target is reached, otherwise it must hit obstacle and define the
hit point H;.

(3) Set up the counters C1 and C2. The arm follows the virtual boundary until
the target is reached; otherwise either (a) M-line is met at a distance d from T
such that d < d(H;,T) and point L; is defined, then the increase j go back to
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step 2, or (b) if the arm returns to H; without contacting the M-line ever, then
go to next step.

(4) At this step there are two different cases: after checking the obstacle range (that
is in the counter C1 and C2) if the status belongs to following Case (a) then
stop the procedure. If not go to Case (b) then go to step 5.

(a) The range of C1 and C2 is (0,0) (this is a Type I obstacle), or the range
is not (0,0) (this is Type II obstacle) and the flag is up. The result is that
target is unreachable.

(b) The range is not (0,0) and the flag is down: designate shorter of M3 and M,
as the M-line, if the range is (0,n2);|n2| > 1 as an integer; or designate
shorter of M; or M, as the M-line, when the range is (nl1,0),|nl| > 1;
or designate shorter of M;, M3 and M, as the M-line, when the range is
(n1,n2);|nl|, |n2] > 1.

(5) Reset the arm to start point, set the flag up. Let j=1, go back to step 2.

Now consider a three-dimensional arm that requires at least three degrees of free-
dom (three links and three joints). Thus maneuvering a body around another body
in three-dimensional space presents an infinite number of alternatives and precludes
direct application of the strategy of following simple closed curves in the image space.
The natural constraints imposed by the arm kinematics may still allow one to reduce
the problem to simpler cases. See Lumelsky [43, 48], Lumelsky and Sun [52] and Sun
and Lumelsky [78] for discussions on navigation algorithms for 3D manipulators.

5 Navigation Using Vision

Vision is the most commonly used sense for navigation by human beings. It is both
interesting and challenging as to how to use visual information to navigate robots.
In this section, we address the problem of navigating robots using continuous and
discrete vision sensors. Robot equipped with a discrete vision sensor performs a scan
operation from a location to return the visibility polygon which is the polygonal region
of all points visible to the robot from its location (a point is visible if the line segment
joining the present location to the point is not intersected by any obstacle). See Fig.
13(a) for an example of the visibility polygon obtained by a discrete vision sensor.
Certain computation cost and time is associated with each scan operation, and it is
critical that only a finite number of scan operations are performed during navigation.
Using a continuous vision sensor, the robot can obtain all the visible points as it
moves along a path; more precisely, the robot navigating along a path S will detect
the union of all visibility polygons from all locations on S (see Fig. 13(b)). In general,
this operation of a continuous vision sensor can be simulated by performing an infinite
number of discrete scan operations, but, such simulation is not possible if only a finite
number of scan operations are allowed.

The type of vision sensor employed by the robot, impacts the navigational algo-
rithm. A navigational algorithm designed for a discrete scan sensor can be executed
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Figure 13: Vision scan operations.

by using a continuous vision sensor but not vice versa. Also, as will be discussed later,
there are navigation problems that can be solved using continuous vision sensors but
not by using a finite number of scan operations performed by a discrete vision sensor.
Also, touch sensing, at least in theory, can be implemented using continuous vision
sensors.

In this section, we first discuss Sutherland’s algorithm which is the first formal
navigation algorithm based on a continuous vision sensor [79]. We then consider the
navigational framework of Rao [61] which establishes that a graph algorithm can be
utilized on a geometric structure of the terrain to solve the navigation and terrain
model acquisition problems; this work is mainly concerned with a polygonal terrain
in which a discrete sensor is adequate for navigational purposes. Then we consider
the navigation problem and the terrain model acquisition problem using continuous
vision sensors due to Lumelsky and Skewis [51], and Lumelsky, Mukhopadhyay and
Sun [50] respectively. We also briefly mention some other works based on continuous
vision sensors.

5.1 Sutherland’s Algorithm

The robot uses a continuous vision sensor to detect “hide regions” behind the obsta-
cles; these regions are called “spurs”. In Fig. 14, consider the robot initially located
at S; the region on the other side of the point P1 defines spur 1, and as the robot
moves to the next location the points of spur 1 are all completely seen but a new spur
(spur 2) is detected. Here each of P1 and P2 is called the “point defining the spur”.
The main idea of Sutherland’s algorithm is to move the automaton until all the hide
regions are seen. The Sutherland’s algorithm can be described in the following steps:

(1) Automaton scans the horizon completely. If there is no spur, then automaton
can reach target directly.
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Figure 14: Execution of Sutherland Algorithm

(2) When there is spur in the vision (if there is more than one spur then one is
chosen arbitrarily), the automaton judges which side of the open doorway the
spur is located and allows for the width of the robot. For example, if the spur
is to the left hand side of an open doorway, the automaton moves towards
but slightly to the right so that when the automaton gets in doorway, there is
enough distance between automaton and obstacle to avoid hitting the obstacle.
Then the automaton moves to explore the chosen spur by getting around the
doorway of the spur.

(3) As the automaton keeps navigating in the terrain, some spurs disappear and
possible new ones will appear. Automaton continues to scan. If there are more
spurs the automaton goes back to step 2; otherwise it implies that the whole
maze has been explored, the target must be in the view, and should be reached.

The Fig. 14 shows the automaton executing the Sutherland’s algorithm to reach
a goal.

The approach used in the Sutherland’s algorithm can be traced in several other
subsequent works. Similar algorithm has been recently described in Deng, Kameda
and Papadimitriou [20]. If the terrain is polygonal then the above algorithm can be
conceptualized as a finite graph search as shown in the next section; also in this case,
a f iite number of scan operations using a discrete vision sensor will be sufficient for
navigational purposes.

5.2 Framework for Discrete Vision Sensors

An algorithmic paradigm that yields correct algorithms to solve the navigation prob-
lem and the terrain model acquisition problem has been proposed by Rao [61]. A
finite graph called the navigation course €, is used as an underlying structure for the
navigational purposes. Initially navigation course is not known, but it is incremen-
tally constructed from the sensor operations. The robot executes a graph algorithm

22



@) ®)

Figure 15: Restricted Visibility Graph

using the navigation course. In solving the navigation problem, the robot starts at a
vertex of the navigation course, and carries out navigation until it reaches a vertex
from which the destination point is found to be reachable. In solving the terrain
model acquisition problem, the robot systematically visits all vertices of the naviga-
tion course.

In order that a graph exploration algorithm terminates, the navigation course must
contain a finite number of edges and vertices, i.e., must satisfy finiteness property.
It must satisfy the terrain-visibility property which requires that every point in the
free-space is visible from some vertex of the navigation course. It must also satisfy
the connectivity property which requires that every pair of vertices be connected by a
graph path on the navigation course. We require that adjacency list of a {-vertex can
be constructed from the information of a single scan; this property is called the local-
constructibility. For a navigation course ¢ that satisfies the properties of finiteness,
connectivity, terrain-visibility and local-constructibility, any graph search algorithm
(e.g. depth-first search) can be employed to solve the navigation and the terrain
model acquisition problems.

We now discuss three examples of the navigation course. We first discuss the
restricted visibility graph, RV G = (V, E) which is defined as follows [65]: (a) V is the
set of all convex obstacle vertices, (b) an edge (v1,v2), for vi,v; € V represents the
fact that the line joining v; and v; either corresponds to an obstacle edge or does not
intersect any obstacle polygon. See Fig. 15 for an example of RV G.

The second structure VD is based on the Voronoi diagram, and can be described
as follows [67). Consider terrain O of Fig. 16. The convex hull CH of O is the
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Figure 16: Voronoi Diagram of Terrain

minimal polygonal region that encloses all obstacle polygons. The extended hull EH
is the convex polygonal region obtained by pushing out the edges of C H by a distance
z. The Voronoi diagram of the terrain is the locus of points that are closest to at
least two points on the obstacle boundary. The Voronoi diagram consists of straight
line segments and second order curve segments. The VD is obtained by taking the
union of the Voronoi diagram contained in EH, and the boundary of EH as in Fig.
16(b).

(n) Termain

(b) Dual Graph of Terrain

Figure 17: Dual Graph of Terrain

There many other ways of generating navigational courses, based on dual graphs
corresponding to decompositions such as trapezoidal decomposition, triangulation,
etc., of free space [64). Consider the terrain of Fig. 17. We decompose the free-space
into trapezoids by sweeping a horizontal line. When this line reaches a vertex, we
extend (at most two and at least one) line segments from this vertex into free-space
until obstacle boundary is reached or to infinity. The free-space is then decomposed
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into trapezoids by these line segments. Then a dual graph is obtained by denoting each
trapezoid by a node and joining two nodes by an edge if and only if the corresponding
trapezoids share a boundary edge.

The terrain model acquisition problem is first formulated and solved for two and
three dimensional terrains by Rao et al [66] using the visibility graph as the navigation
course. Later the restricted visibility graph obtained by removing concave corners
from the visibility graph, is shown to suffice for two-dimensional terrains [65].

Discrete vision sensors are sufficient to navigate in polygonal terrains. But, they
are inadequate to navigate in more general terrains, if we are constrained to perform
only a finite number of scan operations. For example, if each obstacle boundary
consists of a sequence of line segments and circular arcs, then Rao [62] showed that the
navigational problems cannot be solved by using discrete sensors; these problem can
be solved using Voronoi diagram methods using continuous vision sensors. However,
if we stipulate a precision such that the portions where obstacle boundaries are closer
than a specified value, are taken as obstacles, then both the navigation problem and
terrain model acquisition problem can be solved using the methods of visibility graphs
and Voronoi diagrams [62].

S

Figure 18: Execution of VisBug2l

When the robot is circular in shape, Rao and Iyengar [65] propose a navigation
course based on a visibility graph. Here the robot must be capable of performing
straight line motion, rotating around the center and around a point on the periphery
of the circle. The visibility polygons returned by the sensor is from a fixed point p
on the robot, and the robot locates p at certain points in the terrain to perform scan
operations.

For a robot of polygonal shape with an ability to translate in any direction, Foux
et al. [1993] propose a navigation algorithm. They convert this problem to that of a
point robot by using the well-known obstacle growing technique of Lozano-Perez and
Wesley [1979]). Their algorithm is based on employing the Dijkstra’s shortest path
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algorithm on a structure similar to the visibility graph corresponding to the parts of
the terrain that have been seen so far. An interesting feature of this work is that
they employ a heuristic that the boundaries known to the robot constitute the entire
set of obstacles at any stage of navigation; they constuct some portions of visibility
graph in the regions that have not been seen so far, based on this heuristic.
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Figure 19: Execution of VisBug22

5.3 Continuous Vision Sensors

Lumelsky and Skewis [51] discuss navigation algorithms using continuous vision sen-
sors where the sensor has a fixed radius within which it can detect the visible obstacle
boundaries. Here the obstacles are simple closed curves (not necessarily polygons);
thus the algorithms of last section are not adequate. Two algorithms VisBug-21 and
VisBug-22 are proposed to solve the navigation problem. These algorithms are based
on the Bug?2 algorithm (discussed in section 4.1) that uses a touch sensor.

Informally the algorithm VisBug-21 “mentally” reconstructs within the range of
vision the segment of the path that would have been produced by Bug2; then the
farthest point on this segment is made an intermediate target, and the robot makes
a step towards the target. If the radius of vision is zero, then this algorithm will be
identical to Bug2. If the radius of vision is small then the robot moves around the
obstacles and gets into the vision of the M-line so that it is seen. On the other hand
if the radius of vision is large then the robot does not move close to the M-line. See
Fig. 18 for an execution of this algorithm.
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Figure 20: Sightseer Strategy

The second algorithm, VisBug22, does not follow the path of Bug2 completely,
but tries to compute intermediate goals on M-line and chooses the goal closest to the
target T’; the robot then moves to this intermediate goal and repeats the process. An
execution of this algorithm is given in Fig. 19(a); here radius of vision is much larger
than the diameter of the obstacles. Compare this path to that produced by Bug2 in
Fig. 19(b). See Lumelsky and Skewis [51] for more details on these algorithms.

The terrain model acquisition problem using continuous vision sensors with a
radius of vision d is considered by Lumelsky et al [50]. Two distinct models of the
environment are studied here. In Model (a), the terrain is either finite or infinite and
at least one obstacle is visible from the starting position and all the obstacles are
mutually visible from each other. In Model (b), the terrain must be finite and the
obstacles need not be visible from each other. Two algorithms called the Sightseer
strategy and Seed Spreader strategy are proposed in [50].

The Sightseer algorithm applies to Model (a). Standing at its starting position, the
robot scans for a visible obstacle. If no obstacle is visible its job is done. Otherwise,
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Figure 21: The Seed Spreader strategy

the robot linear navigates towards the nearest obstacle and then circumnavigates it
completely and marks it as visited. The robot now chooses the nearest unvisited
obstacle from the obstacle it has just visited. Since the next obstacle it has to visit is
visible from the current obstacle, the robot does not encounter any other obstacles.
When no other obstacle is visible from the current obstacle, the robot backtracks.
The process ends when no unvisited obstacles remain. See Fig. 20 for an execution
of this algorithm.

The Seed Spreader strategy is applied when the terrain has many obstacles in it
and the obstacles are “nicely distributed” and are of “nice geometry”. The strategy
is to encircle a group of obstacles say by a rectangular path and circumnavigate each
of them. We divide the terrain into a number of equidimentional strips and we hope
that the obstacles within are wholely acquirable without actually visiting them in the
course of navigation around the strip. However when it becomes apparent that an
obstacle cannot be whoiely acquirable by staying on the perimeter of the strip then
the robot moves off the strip to the obstacle and circumnavigates. The path the robot
takes on the strip is called the M-line. Various special cases that arise due multiple
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Figure 22: Test case for simple navigation methods

hit of the same object and due to an obstacle on the M-line are resolved as shown in
the Fig. 21.

5.4 A Test Case

Many of the navigation algorithms discussed so far are fairly intuitive, but, many of
the intuitive methods that appear to be non-heuristic will not be so after a closer
inspection. Consider a point robot with a touch sensor. One simple navigation
method for this robot could be: move towards the goal until an obstacle is encountered
or the goal is reached; if an obstacle is encountered then turn left and navigate around
the obstacle until the robot can move towards the destination again and then repeat
the same step (until the destination is reached). In this case the robot will get stuck
in an infinite loop around an obstacle configuration in the case shown in Fig. 22(a).

The same test case can be used in the context of a robot with vision sensors.
Consider a case where a robot concludes that the terrain model is completely acquired
when there are no partially seen obstacles, i.e., all obstacle that have been detected
so far are completely seen. Such conclusion would be useful in deciding if the terrain
model is completely acquired or the destination is not reachable. This algorithm
fails to detect some obstacles in the terrain. In the case of continuous scan shown in
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Fig. 22(b), the robot has completely seen the boundaries of all obstacles that it has
detected, but failed to detect the obstacle contained in the interior; the seed spreader
algorithm of Lumelsky et al [50] fails to acquire the terrain in this case. Similar failure
occurs for the discrete vision scan based algorithm of Choo et al [15] as shown in Fig.
22(c).

The configuration in Fig. 22 can be often useful in testing new algorithms for the
navigation and/or terrain model acquisition in unknown terrains.

6 Algorithms with Performance Guarantees

In the last few years, there had been an increasing interest in the algorithms that guar-
antee performance in some way. The algorithms of last two sections only guarantee
that they solve the required navigational problems, but are not aimed at guaranteeing
any performance parameters.

In this section we consider algorithms that minimize the distance traversed or the
figure of merit, which is the ratio of distance traversed to the shortest path length. We
first consider the case of minimizing (among a class of algorithms) the total distance
traversed by a robot operating in plane. These problems are pioneered by Baeza-
Yates et al [3]. Then we consider the algorithms of Papadimitriou and Yannakakis
[58], Blum et al [3] and Bar_Eli et al [4] that optimize the above-mentioned ratio.

Some of the algorithms of the last sections provide bounds for certain performance
parameters; in fact some of them are optimal within restricted classes of algorithms.
But, their main focus is not the optimization of the parameters. Lumelsky [45]
proves a lower bound on the distance traversed by the robot in terms of the sums of
the boundary lengths of the obstacles encountered by the robot. Bounds in terms of
the lengths of the depth-first trees of the navigation course are shown for the discrete
vision algorithms by Rao [63]. Also, in the context of discrete vision algorithms, Rao
[63) showed that the solutions that implement A* algorithm are shown to achieve
optimal number of scan operations among the class of all solutions that employ ad-
missible graph search algorithms (see Pearl [60] for an extensive discussion on A*
algorithms and admissible graph search algorithms). Among the class I and class II
of [73] algorithms based on touch sensing the Bugl of Lumelsky and Stepanov [53]
and Alg2 of Sankaranarayanan and Vidyasagar [72] achieve the optimal worst-case
path lengths.

Here we first consider algorithms for searching in a plane due to Baeza-Yates et
al [3]; this work is often considered a starting point in the renewed interest in algo-
rithms with performance guarantees. We then discuss algorithms to solve navigation
problems that optimize figures of merit. Then we consider an algorithm to solve the
terrain model acquisition problem due to Deng, Kameda Papadimitriou [20]. Finally
we consider the problem of crossing a street, which is a special case of a navigation
problem [40].
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6.1 Searching in Plane

Baeza-Yates et al [3] solve several problems dealing with an automaton capable of
computation with real numbers in plane. The robot is searching for an object in plane
such that for each new probe a cost proportional to the distance of the probe position
relative to the current probe position, is incurred. The objective is to minimize the
total cost incurred by the robot.

Two basic search problems in the plane are considered in [3]. First consider a
robot that is searching for a point at an unknown distance n on a line. The robot
can sense the point only when it is directly located above the required point. Any
algorithm to solve this problem can be described as function f(i), where f(7) is the
number of steps it makes to the left (or right) before the ith turn and where the
odd terms are the number of steps to the left and the even terms are to the right
as measured from the starting location of the robot. They propose the Linear Spiral
Search where f(i) = 2, ¢ > 1. The total distance walked by the robot is 9n steps
which is shown to be optimal up to lower order terms.

The second problem consists of starting from the origin and searching for a lattice
point located at an unknown point at a distance n (n is also unknown); the robot can
move left, right, up or down in one step. Any algorithm for this problem is shown
to traverse a distance of 2n? 4+ 4n + 1 steps. They propose Balanced Algorithm and
Flipped Balanced Algorithm that locate the point in 2n? 4+ 5n + 2 steps. The execution
of the balanced and the flipped balanced algorithm is shown in Fig. 23. The balanced
algorithm can be described as follows. Let a diamond (shown in dotted lines in Fig.
23) of distance a correspond to all lattice points at distance of a units from origin.
The algorithm operates in steps. In ith step, the robot visits half of the points of
diamond of distance :. The second algorithm is a flipped version of the first. A close
observation of the Fig. 23 reveals that the Flipped Balanced Algorithm is superior to
Balanced Algorithm.

In particular the following formulations are discussed when the robot is searching
for an unknown line in plane. Consider that the automaton is at the origin in the
plane and we are searching for a line that is at a distance of n steps from the origin.
The following is a list of results from [3], depending on the information available
about the line,

Given number of steps needed
normal to the line n

line’s distance 3n

line’s distance and that it is horizontal or vertical | 3v/2n

line’s distance (143 +17T7/6)n

lines slope 9n

line is horizontal or vertical 13.02n

nothing 13.81n

Given s set of m rays diverging from a common point, the problem of searching
for a point located on one of the rays is studied by Baeza-Yates et al [3]; they propose
a deterministic algorithm. A randomized algorithm for this problem is proposed by
Kao et al [38].
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Figure 23: Balanced algorithms for better worst case behavior

6.2 Algorithms with Figure of Merit

Let R(S) denote the distance traversed by a robot in going from s to ¢ in a scene S,
and let d(S) denote the length of the shortest path between s and t. Further S(n)
denote the scenes in which the Euclidean distance between s and t is n. Following

[58], the figure of merit for the robot is defined as p(R,n) = Srg&x) %g}. This figure of

merit is first independently studied by Papadimitriou and Yannakakis [58] and Eades
et al [23], and later by Blum et al [3] and Bar_Eli et al [4]. When this ratio is constant
the algorithm is said to be competitive following similar approaches in the area of data
structures [77).

6.2.1 Navigation Problem

If s and ¢ are two points in plane and all obstacles are squares, then p(R,n) is shown
to be at least 1.5, and an algorithm attaining p(R,n) < 1.5+0(1) for all n, is proposed
by Papadimitriou and Yannakakis [58].

Consider a two-dimensional terrain with rectangular obstacles with their edges
parallel to the axes (if the obstacles are allowed to intersect or be of skewed orientation
no bounded figure of merit is possible). The robot is equipped with continuous vision
sensor. In this case it is shown that no strategy that achieves a bounded ratio is
possible [58]. Then terrains populated by square obstacles are considered. In this
case they show that there can be no strategy that achieves the figure of merit better
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Figure 24: Case of 45 degrees

than %, which holds for the case of unit square obstacles. They propose an algorithm

that achieves a ratio of 13?——6 by combining two intuitive strategies. First consider the
nearest corner heuristic: proceed horizontally and when faced by an obstacle go to
its nearest corner. This strategy leads to a factor arbitrarily close to 2. As a second
heuristic, consider that the line joining s to t makes 45 degrees then the heuristic
that chooses the vertex closer to the line will ensure a ratio of v/2 as shown in Fig.
24. Then the navigation algorithm uses the nearest point heuristic until the position
forms an angle 45 degrees with ¢, then uses the second heuristic. This mixed heuristic
is shown to achieve a ratio of 3@.

Then the special case of unit square obstacle is considered. Define € = ln. When
faced with an obstacle the robot has bias 3 towards the corner which is closer to the
z-axis. We prefer the corner closer to z-axis if it is less than 2—}_-5 away; otherwise,
we choose the other corner. Initially 8 = €. Every time we choose the corner farther
away from z-axis, we increase § by €, and in the other case we decrease § by ¢ if
B = € already. It is shown that this heuristic, called the bias heuristic achieves a ratio
arbitrarily close to 2 as n grows.

Blum, Raghavan and Schieber [5] formulate the room problem where the goal is
to traverse from a corner to the center of a square room provided that the obstacles
have the form of rectangles aligned with the walls of the room. They propose an
algorithm with the figure of merit of O(2m). An algorithm with improved figure of
merit of O(Inn) is proposed by Bar-Eli, Berman, Fiat and Yan [4].

The navigation problem inside a simple rectilinear polygon is studied by Kleinberg
[41] who shows that the notion of essential cut introduced in Chin and Ntafos [14]
is a critical feature in determining the figure of merit. An algorithm for a simple
rectilinear polygon with m essential cuts that achieves a figure of merit of O(m) is
proposed in [41].
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The problem of searching for an object that can be recognized when it is in the field
of vision but with unknown location is studied by Kalyanasundaram and Pruhs [37]
for terrains populated by convex obstacles. This problem together with the terrain
model acquisition problem is studied by them; we provide a brief discussion of their
work in the next section.

6.2.2 Terrain Model Acquisition Problem

The problem of terrain model acquisition using continuous vision sensors is studied
by Deng, Kameda and Papadimitriou [20]. They show a result that there is no
competitive strategy for a polygonal room with arbitrary polygonal obstacles even if
all polygons are parallelograms. If the polygonal room contains a bounded number
of polygons then they propose a competitive algorithm to explore the interior of
general polygonal room populated by a bounded number of polygonal obstacles. This
algorithm has a figure of merit of the order of thousands.

If the room is rectilinear and populated by k rectilinear obstacles, then they
propose a more efficient algorithm which achieves figure of merit of O(k). Since the
general algorithm is quite involved, we will present only an outline of the algorithm
for the rectilinear case. This algorithm consists of two parts: first part explores the
interior of a polygon which is the boundary of the room and the second part explores
each of the exteriors of the obstacles. We now briefly describe the first part. Let P be
the boundary polygon. We extend each side s until it hits the side of the polygon, and
thus we form a set of extended line segments. If it is necessary to cross the segment of
s in order to see s, then this segment is called necessary. If there is no way to cross e;
without also crossing ez, then we remove e; from the set of necessary segments. Then
we obtain another polygon P/ from P by removing the farther side of e as shown in
Fig. 25.

The algorithm visits all essential segments of P in a clockwise manner as fol-
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(iii)
Figure 26: Cases for the algorithm of Deng, Kameda and Papadimitriou.
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lows. The strategy is to maintain a current map M of the polygon containing all
features that have been seen so far. This map consists of several disconnected pieces
of boundary of P. Let C denote the part that contains xo and f its end in the clock-
wise direction as in Fig. 26. Let f lie on the line segment I(f). As C expands f will
move in the clockwise direction: it “jumps” when other fragments of the boundary
are merged into C. As the algorithm proceeds, M, C and f are updated according to
the three following cases. Let z = zo and M, C and f correspond to portions visible
from zg.

(i) If f can be seen from z, and is at 270 degrees corner, move perpendicularly to
[(f) towards I( f) until we arrive at I(f) or its extension. If another part of the
boundary is encountered, we move parallel to I(f) towards f as necessary.

(ii) If f can be seen from z, and is at an interior point of the line segment I( f),
then we follow step (i).

(iii) If f cannot be seen from z, then cumpute the shortest path from z to f on
which f becomes visible as early as possible and follow it until f is visible.

The cases (i) through (iii) are illustrated in Fig. 26.

A lower bound of v/2 for the figure of merit is established for this problem in [20]
and it is open question to bridge the gap between the bounds. This deterministic
algorithm achieves a h, ire of merit of 2, and Kleinberg [41] reduced it to 5/4 using
a randomized algorithn'. See [20, 41] for a discussion on various interesting open
problems on this topic.

For the terrain composed of convex polygonal obstacles, the terrain model acqui-
sition problem is studied by Kalyanasundaram and Pruhs [37]. The aspect ratio of a
convex polygonal object O; is defined to be R/r where R is the radius of the smallest
circle that circumscribes O; and r is the largest circle that inscribes O;. Consider a
terrain of k convex polygonal obstacles. Let a and & denote the maximum and average
of the aspect ratios of the obstacles. Then let M(k,&) be defined as min(k, Vka).
We now briefly consider the works of Kalyanasundaram and Pruhs [35, 37]. They
show a lower bound of Q(M(k,&)) for the figure of merit of any algori‘bm. Then
they study three algorithms Nearest Neighbor, Bifold Nearest Neighbor and Tourist.
In the Nearest Neighbor strategy, the robot from the start position, picks the nearest
obstacles, and moves to it and then circumnavigates it. Then in each step, it picks
the obstacle nearest to the present obstacle (that has just been circumnavigated),
and moves to it and circumnavigates it. The figure of merit of this simple strategy is
shown to be Q(aM(k,a) and O(alog kM(k,&)). The Bifold Nearest Neighbor algo-
rithm operates in phases; in each phase it explores the terrain contained in a square
R; region centered at the start location. In the next phase, the R;,; is obtained by
doubling the length of the side of R;. In each phase, the Nearest Neighbor algorithm
is used with modifications such that the next obstacle to be explored must interset
R;. This method is shown to perform better than Nearest Neighbor with the figure of
merit bounded by ©(log kM(k,&)). The other algorithm Tourist operates on a graph
based on a grid superimposed on the terrain in phases that operate on exponentially
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Figure 27: Illustration of unbounded value for figure of merit.

growing neighborhoods. This algorithm is shown to be optimal with figure of merit
of O(M(k,a)).

Kalyanasundaram and Pruhs [36] solve the visual traveling salesperson problem
which requires that the perimeter of every obstacle be traversed. They present an
on-line algorithm which achieves path lengths no more than 17 times the shortest
possible path if the terrain model is available. Using this algorithm, the robot can
obtain the entire terrain model, but such tour is not always necessary to map the
entire terrain model. For example, it is sufficient to visit convex obstacle vertices to
obtain the terrain model (by the terrain-visibility property of the restricted visibility
graph described in Section 5.2). This algorithm is justified when a close proximity to
obstacle is needed in order to accurately map the terrain boundaries (see [36] for an
interesting discussion on these aspects).

6.2.3 Walking an Unknown Street

Along the same spirit of the algorithms last subsections, Klein [40] studied the problem
of navigating from a source vertex s to a goal vertex g inside a simple polygon P (with
no holes). Here the robot uses a continuous vision sensor such that newly encountered
convex vertices can be detected as the robot is in motion. This problem is akin to
that encountered by a human being finding a place in an unknown city. The main
objective is to minimize Dg(P) the ratio of length of the path traversed by the robot
using strategy S to that of a shortest path. It can be easily shown that if the polygon
is general, then this ratio can be unbounded; for example in Fig. 27 the robot may
have to explore every branch before it sees g. Let L and R denote the oriented
boundary chains leading from s to g. Then P is called a street if and only if L and
R are mutually weakly visible, i.e., if each point of L can be seen from at least one
point of R and vice versa. See Fig. 28 for an example of a street. For this special
case, Klein [40] proposed an algorithm with Dj,a(P)< 1 + .

Each point of L can be connected to some point of R by a line segment contained
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Figure 28: Execution of Klein’s algorithm for walking a street.

in the polygon, and vice versa. The basic idea of this algorithm is to cross all these
line segments on the way from s to g. This algorithm consists of a high-level and a
low-level strategy. The former finds the path subject to the following invariants: at
each position p on the path either the robot can see the goal, or which of the visible
corners ahead is visited by the shortest path from s to g or robot can identify two
corners ahead one of which is visited by the shortest path. In the last case, the robot
uses the low-level strategy to choose a point ¢ on the line joining these two vertices.
In the first case the robot moves to g, and in the second the robot moves to the
identified vertex visited by the shortest path. See Fig. 28 for an example.

Recently, Kleinberg [41] proposed a method that improves the figure of merit of
Klein’s algorithm by more than a factor of 3. If P is unknown and minimization of
Dg(P) is not a primary criterion, then this problem can be easily solved using the
restricted visibility graph or Voronoi diagram methods of Rao [61]). If the terrain
model is known, the shortest path can be computed with a complexity of O(log n + k)
time with a preprocessing step of complexity O(n) by Guibas and Hershberger [29)],
where 7 is the number of edges of P and k is the number of line segments of a shortest
path.

7 Restricted Computational Models

Algorithms discussed in the last three sections assume that the robot can store and
manipulate real numbers. Even in the case of Pledge algorithm, the robot is required
to store and manipulate real numbers. In particular if the robot is capable of perform-
ing real arithmetic, then the problem of exploring a maze can be easily accomplished
using algorithms of Rao [61] and Lumelsky [45]. Some of the fundamental questions
of this section deal with capabilities of robots that are computationally less powerful
than those assumed in earlier works such as [61, 45)].

Informally a maze is a finite, two-dimensional, obstructed checkerboard as shown
in Fig. 29. A finite automaton is a device that can only be in a finite number of
states and operates by reading from a finite set of input symbols (see [32] for a formal
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Figure 29: Example of a maze.

definition of finite automata). A finite automaton consists of finite control with start
and halt states and a transition function. The automaton can be in any state chosen
from a finite set of states. At any step, the automaton looks at input and its current
state and decides the next state specified by a transition function. In the context of
maze searching, the automaton determines which of its neighbor cells are reachable
in one step and then, depending on its state, moves north, east, south or west one
cell. In 1974 Lothar Budach gave a proof that no single finite automaton can search
all mazes (this rather long proof runs for 175 manuscript pages) [10]. Here “seaich”
means visiting all cells of a maze; note that using such search the automaton could
find “cheese” stored in an unknown cell. Thus the power of a finite automaton is
inadequate to search the mazes.

We first describe the algorithms of Coy that use more powerful computational
models than a finite state automata. Then we consider the case of finite automata,
but the robot is equipped with pebbles that it can drop in a cell, recognize and pick
up; these pebbles are used as markers on certain cells (when the coordinates of cells
cannot be computed). Shah [75] illustrated an algorithm for a finite automaton that
uses five pebbles. Then Blum and Kozen [7] showed that a finite automaton with two
pebbles can achieve the same result. The algorithms for finite automata with pebbles
are described briefly in the last part of this section.
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7.1 Algorithms of Coy

Dopp posed the following question [22]: does there exist a finite automaton that
finds a way out of every finite open maze from any initial position and finally moves
arbitrarily far away ? Muller [54] and Budach [10] gave negative answers to this
question; the latter used the original formulation of Dopp, and Muller used a graph-
theoretic variation of the formulation. Coy [19] considers the cases of finite automaton,
pushdown automaton, linear bounded automaton and a Turing machine; in terms
of computational capabilities this sequence represents strictly increasing power (see
Hopcroft and Ullman [32] for a formal discussion on these models). Informally, a finite
automaton equipped with a stack is called a push down automaton; the computations
performed by the former can be performed by latter and not vice versa, i.e., there are
computations that are performed by push down automata that cannot be performed
by finite automata. The Turing machines represent the most powerful of these four
models, and a linear bounded automaton is a Turing machine constrained to use
a storage whose size is proportional to the size of the input. Then the answer to
Dopp’s question is negative for the case of finite state automata and push down
automata. This problem can be solved by a linear bounded automata (hence by a
Turing machine). See Coy [19] for details.

We now briefly and informally describe the algorithm of Coy [19] for a Turing
machine. First a Turing machine can be (informally) visualized as a finite state
automaton equipped with an infinitely long tape of cells. The read/write head of the
Turing machine scans one cell at a time; in a move a Turing machine can read the
symbol in the cell and write a symbol on the cell and move to the left or right. Each
move is realized by a control that resembles the finite state machine. An algorithm
corresponds to the finite state control, and each execution of such algorithm uses
working space in terms of cells written/read on the tape. The input to the Turing
machine is given as a symbols written on a sequence of cells on the tape which the
Turing machine reads. A Turing machine is called a linear bounded automata if the
working space (number of tape cells) used is restricted to the length of the input (in
terms of number of cells).

We can think of an algorithm which allows the construction of a robot equipped
with Turing machine that is able to reach from any initial position in a maze any
position in the maze as follows. An arbitrary maze can be described as an infinite
tree with an initial node P, (initial placement of the robot). This infinite tree has a
finite subtree such that every node of the maze is represented by at least one node
of the finite subtree. If the robot is able to start in P, walk to a node P, and return
to P, and if the robot may enumerate the paths from Py to all nodes P; in the finite
subtree then it will visit all the cells of the maze. This task is done by the robot by
enumerating (in base 4 ), in increasing order, every path from Fo to some F; of the
finite subtree may be described by a natural number w, ..., w;. Here each direction
w; specifies the next cell to be visited by the robot, and the robot takes the direction
w, first , w, next and so on to reach wi. To reach P, again, it will simply read
Wk, ..., w — 1 backwards. As there are only finitely many paths in the subtree which
covers all cells of the maze, there exists an upper bound w, > w on the numbers to be
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generated. The result that a Turing machine can solve the problem posed by Dopp
is provided by Dopp himself. This algorithm of Coy actually shows that a linear
bounded automaton is sufficient to solve this problem.

7.2 Automata with Pebbles

Automaton with pebbles have been first investigated by Blum and Hewitt [6] and
then subsequently by Mylopoulos [55] and Savitch [74); these automata have been
studied in image processing applications in Shah [75] and Rosenfeld [69]. Although
the early focus of these automata is not directed towards robotic applications, the
underlying principles shed some light on some navigation algorithms.

As in the last section finite automaton consists of finite control with start and halt
states and a transition function. We may equip the automaton with a finite number
of pebbles each with a unique name. At the start, the automaton is carrying all the
pebbles. There after, it is always carrying some subset of its pebbles and the rest are
lying on non-obstructed cells of the maze. In each step the automaton determines the
names of the pebbles it is carrying and the names of the pebbles lying on the cell it
is visiting. It may use this information to help determine its next transition. In each
step the automaton may pick up pebbles from the cell it is visiting or deposit some.

An automaton can also be equipped with a counter. A counter holds a non-
negative integer and can be initialized to zero. In each step, the automaton can
increment or decrement the counter by one and test for zero.

An outline of Shah’s algorithm for searching a maze is as follows. Let m;, 1 =
1,2,...,5 denote the ith pebble. The robot finds the leftmost point of the topmost
row using three pebbles. Then the robot traverses a complete row at a time. A
horizontal sequence of non-obstructed cells is called a segment if the neighboring cells
of the leftmost and right most cells are obstructed. The pebble ms is placed on the
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Figure 31: Traversal of simply connected region.

right end of a segment; the my is dropped at the leftmost segment to the right of ms.
Then it is shown that m4 and mg will be on the same border. Now the robot scans
the new segment left to right and repeats the process of finding the leftmost segment
to the right of the current segment and in the row as the current segment. Therefore
the robot scans every segment of a row until it finds that there is no segment to the
right of the current segment. This means that the current row is scanned completely,
so the robot moves to the next lower row, if any. If there is no row below the present
row then the robot has scanned all the rows, therefore it halts.

Blum and Kozen [7] show a theorem that there exits a finite automaton with one
counter which can search any maze and halt. As a corollary to this theorem they
show that there is a finite automaton with two pebbles which can search any maze and
halt, and also that there are two finite automata which together can search any maze
and halt. Their algorithm is based on Unique Point Lemma which can be informally
presented as follows. The unique point of a boundary, BDRY is the unique point
(z0,y0) € BDRY such that for all (z,y) € BDRY, either y, < y, or y = yo and
zo < z. A unique cell of a boundary is the unique white cell whose NE or SW vertex
is the boundary’s unique point. See Fig. 30 for examples. Then the lemma states
that there exists both 2 pebble and 1 counter automata that one may place on any
white cell C, of a maze together with 2 pebbles or an empty counter in state gng (or

42



Figure 32: Execution of algorithm of Blum and Kozen.

gsw). The automaton, after some moving about in the maze will return to C with
its 2 pebbles or empty counter and stop in state ¢v2° (¢5°) if the NE (SW) vertex
of C is a unique point of a boundary and in ¢Ng (¢5}7) if not.

A barrier is any maximal connected set of obstructed cells, and the unique infinite
barrier is called the border. The boundary of a barrier is the set of edges that separate
black cells from the white cells called boundary cells. Let us assign to every vertex
(corner point of a cell) of a maze a color. Unique points are colored green and all
other vertices are to be colored white. Then they define a green-eyed automaton as
a finite automaton so that in any cell and in any state there, the automaton can
determine which, if any, of the cell’s 4 vertices are green.

If all unobstructed cells form a simply connected region, i.e., if their only barrier
is the border, then a finite automaton can visit all boundary cells by moving from one
cell to the next, keeping the boundary always on the left. To search an entire simply
connected maze, modify the above procedure so that each time the automaton steps
from one boundary cell to the next, it first goes into a subroutine that causes the
automaton to move north until it reaches a barrier and then to return south whence it
came before going on to the next step. This way, each white cell interior to a simply
connected maze gets visited immediately after the white cell beneath it gets visited.
See Fig. 31 for illustrations of these algorithms.

Any maze can be converted to a simply connected one by relabeling all vertical
edges that lie between each green vertex and the barrier immediately beneath it as
boundary edges. Once this boundary is identified, we use the same algorithm for the
simply connected region. See Fig. 32 for the execution of the algorithm. In order
to halt, the finite green-eyed automaton has to check that it twice visited the (only)
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border cell having a green vertex. The rest of the algorithm is identical to the case
of simply connected region.

Blum and Kozen [7] also prove that (a) there are two automata which together can
search all mazes; (b) there is a logspace algorithm to search mazes, a vast improvement
over the naive linear space algorithm which constructs a map of the maze.

8 Exploring Unknown Graphs

This section is intended to provide some results in graph exploration algorithms that
can illustrate that some search problems that are easily accomplished in searching
a geometric terrain become computationally very hard when required on graphs. A
complete survey of graph algorithms for searching unknown graphs is not intended
here; we only discuss some graph problems that appear to be very similar to the robot
navigation algorithms in unknown terrains.

In terms of searching by an automata of the type of last section, Blum and Sakoda
[8] posed the question of weather it is easier to search mazes than planar graphs
(planar graphs are the graphs that can be embedded in plane such that no two edges
intersect [30]). Mazes and regular planar graphs (planar graphs where each node has
the same number of neighbors) appear similar on surface, but they differ substantially.
The main difference is that an automaton in maze has a compass that can distinguish
N, E, S, W directions. A compass can provide valuable information. Blum and Kozen
[7] show that no single finite automaton can search all finite planar graphs; they show
that no automaton can search the subclass of planar called the cubic graphs. They
further show that no three automata can search all planar cubic graphs. Thus they
show that in terms of the finite automata the mazes are easier to search than graphs.
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Figure 33: Searching layered graph of width two

Papadimitriou and Yannakakis [58] first posed the problem of searching a layered
graph that is dynamically specified. A layered graph is a graph in which the nodes are
partitioned into layers Ly, Lo, ..., L, and all edges are between adjacent layers. The
edges between L; and L; + 1 and their lengths become known only when a node in
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L, is reached; the number of layers is also unknown. Edges can be traversed forward
or backwards, and the lengths are non negative integers when we switch from a node
u to node v, we we incur a cost proportional to the distance of the path from u to
v. Fig. 33(a) shows a layered graph, where a shortest path from node s to node ¢ is
desired. If the graph is completely known in advance, then a path can be computed
using dynamic programming methods or using the more general Dijkstra’s algorithm
[2)]. The graph is dynamically given in that it is given one stage at a time. In the
beginning only part shown in Fig. 33(b) is known. In the next stage the known part
of the graph is shown in Fig. 33(c). Then a natural choice in this case would be to
make the lower choice in the first step; then the lower edge of length 5 is revealed.
A reasonable strategy could be to persist on the present path until there is a path
on the other side of length less than half of the present one. In the second step, the
algorithm persists on lower choice in Fig. 33(c), but switches to upper choice in the
next step as in Fig. 33(d). This strategy is shown to be optimal for two-layered
graphs and achieves a worst-case ratio of distance traveled to shortest path equal to
9, the best possible.

Figure 34: Canadian traveler’s problem

Further work on the layered graph traversal is done by Fiat et al [25]. The width
of layered graph is max{|L;|}. They give a deterministic on-line algorithm which
achieves the ratio of O(9") for graphs with width w. Several other related results are
provided in [25]

Papadimitriou and Yannakakis [58] also discuss Canadian Traveler’s Problem.
Consider Fig. 34. The road map (a graph) is known to us, but some roads (edges)
could be unsuitable to travel due to snowfall; but, the status of a road is revealed only
when an adjacent node is visited. They address the problem of devising a strategy
which guarantees a given ratio to the shortest path. This problem is shown to be
PSPACE-complete, which indicates that this problem is computationally very hard
(see [2] for details on PSPACE-complete problems).

Deng and Papadimitriou [21] consider the following problem of exploring a directed
and strongly connected graph. At each point we have a map of all nodes and edges
that have been visited, and these nodes and edges can be recognized if they are visited
again. We know how many unexplored edges emanate form each node we have visited,
but cannot tell where each edges leads until we follow it. The objective is to minimize
the ratio of the total number of edges traversed divided by the optimum number of
edge traversals, had we known the graph. A graph is Eulerian if there exists a path
that visits each edge precisely once. For Eulerian graphs the ratio cannot be better
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than two and can be achieved by a simple algorithm [21]: (a) take unexplored edges
whenever possible; (b) if stuck, consider the closed walk of unexplored edges just
completed, and retrace it, stopping at nodes that have unexplored edges, and apply
this algorithm recursively from each such node. The deficiency of a graph is the
number of edges to be added to make it Eulerian. An algorithm that achieves a
bounded worst-case ratio when the deficiency is bounded is given in [21]). They also
show that if partial information about the graph is given, minimizing the worst-case
ratio is PSPACE-complete. An illuminating example of learning by a child and its
connection to the exploration of an unknown graph is given in [21].

Given a weighted planar graph G such that the nodes adjacent to a vertex v
are revealed when v is visited, the problem of visiting all vertices of G is studied
by Kalyanasundaram and Pruhs [36]. They propose an algorithm with a cost no
more than 16 times the length of the traveling salesperson tour, which is the shortest
path that runs through all nodes of a graph and comes back to the start node. This
algorithm runs in O(n?logn) time on a graph of n nodes. Intuitively, this algorithm
performs depth-first search on small regions of the graph and occasionally jumps
between such regions.

9 Conclusions and Open Problems

Algorithmic approaches for navigating robots in geometric terrains populated by un-
known set of obstacles are considered. Here the terrain model is not a priori known,
but the robot is equipped with a sensor system that is employed for the purpose of
navigation. We are interested in non-heuristic algorithms that can be theoretically
shown to be correct within a given framework of models for the robot, terrain and
sensor system. These methods are abstracted and simplified compared to real-life
scenarios. But, they yield useful results in (a) providing foundations for practical
systems by highlighting the underlying critical issues, and (b) concentrating on some
central aspects. We broadly classified these algorithms into three categories. First,
we considered the algorithms that are shown to navigate correctly without much con-
sideration for the performance parameters such as distance traversed, etc. Second, we
considered non-heuristic algorithms that guarantee bounds on the distance traversed
or the ratio of the distance traversed to the shortest path length (computed if the
terrain model is known). Then we considered robots with very limited computational
capabilities such as finite automata, etc.

In spite of the long history of the non-heuristic algorithms, this area is generally
considered to be in its infancy; compared to its counterpart in known terrains, many
issues of this area are open for further investigation. Some of the topics for future
study can be described as follows.

(a) Sensory systems: Most of the existing non-heuristic algorithms are based on
ideal sensors. It would be interesting to study algorithms that can perform in
the presence of sensory errors. Also, there are several sensors such as ultrasonic
and laser range finders that can measure the distance to an obstacle in a given
direction. There are no non-heuristic navigation that can guarantee that the
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(c)

(e)

robot can navigate to a destination using sensors that return the distance to the
obstacle along a discrete direction (if only a finite number of distance probes
are allowed). The problem of inferring a shape of a polygon by probing in a
number of directions has been solved by Cole and Yap [16]); works along the
same spirit that enable a mobile robot to infer its environment by using results
of probe operations will be of interest. It has been observed in practice that
many non-trivial navigational tasks require a systems of sensors, since a single
sensor is of limited utility (see special issue edited by Brady [9]). The problem of
navigating using a system of similar or disparate sensors could be investigated,;
in general it may be more efficient to use an array of laser range finders or
ultrasonic sensors in solving the navigation problems.

Robot Systems: Majority of the algorithms in this survey are restricted to
point robots (exceptions include circular robot of Rao and Iyengar [65] and
polygonal robot of Foux et al [26]). In known terrains, the problem of navigating
a non-point robot can be reduced to that of a point robot in configuration
space amidst “suitably grown” obstacles. It is unclear if such method is directly
applicable to the present case since we need to ensure that the required portions
of the configurations must be incrementally constructed based on the sensor
readings. Also when non-point robots are considered, the motion primitives of
the robot must be given. explicit consideration; for example, a car can move
along certain paths but cannot move along arbitrary curves. Such problems
have been investigated in the known terrains formulations under the title of
non-holonomic path planning. Such works are needed for unknown terrains
formulations in order to yield practical implementations for real-life robots.

Terrain Models: Most of the terrains discussed here are two-dimensional (with
some exceptions such as Rao et al [66]); it would be interesting to see if some
of the techniques of 2-dimensional terrains can be extended to 3-dimensional
terrains. Also, for algorithms that store the terrain models, most works deal
with polygonal terrains or mazes; such methods for non-polygonal terrains will
be of interest. Terrains with moving obstacles could be another topic for future
investigation.

Performance Parameters: In many real-life robot systems, the sensor op-
erations could be memory intensive and computationally time-consuming. For
example, simulating a 360 degree scan using a vision system would be very
expensive. In such applications, algorithms that perform less number of scan
operations would be preferred. Some preliminary work that shows that among
the class of admissible graph search algorithms, the A* algorithm uses least
number of scan operations has been presented in Rao [63]. However, more gen-
eral results are needed in order to be of practical value. The algorithms that
guarantee bounds on the distance traversed or figure of merit are being actively
pursued.

Systems of Robots: In general, it would be interesting to see if some navi-
gational objectives can be better achieved by employing more than one robot.
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Apart from the method of Blum and Kozen [7] that enables two automata to col-
lectively search a maze, we are unaware of non-heuristic navigation algorithms
that employ a system of robots.

(f) Robot Learning: If a robot is required to visit a sequence of destination
points (in stead of just one), then the robot can potentially store the terrain
model in the places that it has been and use this information in improving the
performance of the subsequent navigation. In general, the robot can use the
terrain information to avoid performing sensor operations in known regions and
also avoid getting into local detours. This type of learning is referred to as
incidental learning by Rao [61] (see also Oommen et al [56]). Also in the case
entire terrain model is completely built, the robot can switch off sensors and
navigate in optimal paths (when possible). A formal treatment of incidental
learning can be very useful in practical systems. At present this area has been
investigated only to a limited extent.

(g) Potential Field Methods: In known terrains, the potential field methods
pioneered by Khatib [39], have been found to be very useful; exact navigation
algorithms based on these methods are described in Rimon and Koditschek
[68]. In these methods, a field is used to guide the robot to the destination; this
field consists of an attracting field located at the destination and a repulsive
field due to obstacles. It would be interesting to see if any of these methods
(in particular local miniina free fields) can be computed incrementally so as to
yield non-heuristic algorithms for unknown terrains.
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