Association for Information a

nd Image Management

301/587-8202

9 10 11 12 13 14 15 mm

Centimeter

8

3

2

1

25

22

I
L
il
I

28

I
i

{ F)
L)
"Sﬁ
m

10

————
—

I
I

Inches

20
18

Olili ol
= = =

5o 0
=
=

| 5%
1w
[H9

———
——
———
———

P
—_—
—_—
—

Il

14

Il

125

I

MANUFACTURED TO RIIM STRANDARDS

BY APPLIED IMAGE, INC.

/

80/\//7/?6/&5/90)

XPVM: A Graphical Console and Monitor for PVM*

James Arthur Kohl
Oak Ridge National Laboratory
Engineering Physics and Mathematics Division
Mathematical Sciences Section
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

“The submitted manuecript has been
authored by & contector of the U.S.
G under No. DE-
AC06-840R21400. Accordingly, the U.S.
Government retsins a nonexchusive,
roysity-free license 10 publish or reproduce
the published form of this contribution, or
allow others to do so, for U.S. Government
purposes.”

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

*Research supported by the Applied Mathematical Sciences Research Program of the Office of Energy
Research, U.S. Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy

i \ASTER

S DOCUMENT IS UN

\.6)')’

N

LIMITED
DISTRIBUTION OF THI

1. Introduction

As technology continues to spawn new supercomputing platforms and more powerful
workstation environments, it becomes increasingly important to integrate and apply these
diverse collections of computers together to extract the best performance possible. PVM (Paral-
lel Virtual Machine) is gaining wide popularity as a means for realizing the computing power of
these heterogeneous systems. PVM is a software package that permits a heterogeneous collec-
tion of serial, parallel and vector computers, hooked together by & network, to appear as one
large distributed memory computer.

One of the primary difficulties in designing applications for distributed computer systems is
identifying precisely what is happening inside a program, as multiple threads of control interact
to solve a problem. Often it is useful to provide the user with feedback as to the state of the sys-
tem, including the individual tasks executing on it. XPVM is a graphical interface to PVM that
provides such information, to monitor executions and assist in debugging and tuning the perfor-
mance of PVM programs. XPVM can be used in real time, to observe program activity as it
happens, or it can play back saved traces of PVM program executions, for detailed post-mortem
analysis.

2. XPVM Features

XPVM is written in C with the X Window System, using the TCL / TK application tool
construction toolkit. XPVM provides a graphical user interface to all the functions provided in
the standard PVM console shell. Hosts can be added to or deleted from the Virtual Machine by
selecting their name from a pull-down menu, and tasks can be spawned, killed, or signaled using
various menus and dialog prompt boxes. The Virtual Machine can also be reset or halted with
the click of a button.

XPVM supports a variety of views to assist in analyzing PVM programs (see Figure 1).
Where appropriate, current program visualization techniques have been applied to present infor-
mation visually, using graphics. Pure text is also used to precisely describe details in other
views. There are views to show the state of hosts in the Virtual Machine and the state and
interactions among the tasks executing.

2.1. Network View

The Network View displays high-level activity on the hosts in the Virtual Machine. Each
host is represented by an icon image which includes the architecture and name of the host.
These icons are illuminated in different colors to indicate the status of the tasks running on each
host. The "active” color implies that at least one task on that host is busy executing useful work.
The "system" color means that no tasks are busy executing user computation, but that at least
one task is busy executing PVM system routines. When there are no tasks on a given hosts, its
icon is left uncolored, or white. The specific colors used in each case default to green for active
and yellow for system, but are user customizable.

This view will be extended to visualize network activity among the hosts as well. The
actual network traffic will be visualized, as will the network bandwidth — in terms of the

Figure 1: XPVM Interface
number of messages and the number of bytes per second transferred. The arrangement of host
icons will be appropriately modified to represent several different network topologies. The
current view assumes a bus / ethernet topology, and arranges the hosts as if hanging off of a hor-
izontal bus.

2.2. Space-Time View

The Space-Time View shows the status of individual tasks, as they execute across all hosts.
Each task is represented by a horizontal bar along a common time axis, where the color of the
bar at each time indicates the state of the task. This view is reminiscent of charts by Gantt
[Ganl19], and this type of view has been used in a variety of performance evaluation tools
[HeES1, HeL91, LeB90). The "computing" color shows those times when the task is busy exe-
cuting useful user computations. The "overhead" color marks the places where the task executes
PVM system routines for communication, task control, etc. The "waiting" color indicates those

time periods spent waiting for messages from other tasks, i.e. the idle time due to synchroniza-
tion. The default colors for these states are green for computing, yellow for overhead, and white
for waiting. Communication activity among tasks is also shown in the Space-Time view, using
red lines drawn between the task bars at the corresponding message send and receive times.

More detailed information regarding specific task states or messages can be extracted from
the Space-Time view by clicking on the view area. If a task bar is clicked on, a small "pop-up"
window appears containing the precise times that the task state began and ended, plus the
specific PVM system routine called for overhead states, and the expected message sender and
message code for waiting states. Individual messages can be clicked on as well to determine the
time when the send was initiated, and the time when the message receipt was completed, plus
the number of bytes sent and the message code.

2.3. Utilization View

The Utilization View summarizes the Space-Time View at each time instant, showing the
number of tasks computing, in overhead, or waiting for a message at any given time. This infor-
mation is represented by three colored rectangles, stacked vertically at each time instant, with
computing on the bottom, overhead next, and waiting on top. The default colors are green for
computing, yellow for overhead, and red for waiting. The overall utilization for tasks is seen by
comparing the relative height of the rectangles over time, such that in cases of good utilization
the computing areas are prominent, and for poor utilization the overhead and waiting areas dom-
inate.

The Utilization and Space-Time Views share the same horizontal time scale, and entering
either view area with the mouse pointer creates a blue time correlation line in both views. This
lines identifies the same time instant in each view’s display, to help correlate the two representa-
tions.

2.4. Call Trace View

The Call Trace View provides a textual record of the instantaneous activity in each task.
For each task, a line of text is displayed that represents the last PVM system call made by the
task, including any call parameters or results. As the tasks execute, the lines changed to reflect
the most recent activity. This view is especially useful in identifying points where a PVM
program’s execution "hangs" in one or more tasks, say, due to an incorrect message code on a
pvm_recv() call.

2.5. Task Output

This view provides access to the output generated by tasks, and displays each line of output
in a scrolling text window. This output is automatically captured by PVM whenever a task
writes to the standard output device.

3. XPVM Tracing

No annotation or instrumentation of PVM programs is necessary to use XPVM. Once pro-
grams have been compiled with an annotated version of the PVM system library, they can have
their execution traced. XPVM is actually a PVM task itself, and events are collected by sending
messages to the XPVM task using the existing PVM message-passing mechanisms. Tasks
spawned from within XPVM will automatically have tracing turned on, with trace events being
sent to XPVM for processing. Tasks spawned from a standard PVM console can also be
spawned with tracing on, if the "trace” command is executed first, to indicate the task ID of the
XPVM task for sending trace events.

While XPVM is receiving trace events and displaying information in views in real time, it
also is saving the events in a trace file for playback later. These traces include not only PVM
system events, but task output and the addition and deletion of hosts from the Virtual Machine.
Trace files are written using SDDF (Self-Defining Data Format) as developed by Reed, et al
[ReO91]. Therefore, XPVM traces are compatible with a variety of other tools as well.

In XPVM, traces can be played back continuously, or one event at a time. Traces can also
be stopped in real-time play as well, can be single-stepped, and then can resume to continuous
play, though potentially somewhat behind the actual program execution depending on the delay
time, etc.

References

[Ganl19] H. L. Gantt, "Organizing for Work," Industrial Management, Volume 58, August
1919, pp. 89-93.

[HeES1] M. T. Heath, J. A. Etheridge, "Visualizing the Performance of Parallel Programs,"
IEEE Software, Volume 8, Number 5, September 1991, pp. 29-40.

[HeL91] Virginia Herrarte and Ewing Lusk, "Studying Parallel Program Behavior with
Upshot," Technical Paper, Argonne National Laboratory, Mathematics and Com-
puter Science Division, July 1991.

[LeB90] Ted Lehr, David Black, Zary Segall, Dalibor Vrsalovic, "Visualizing Context-
Switches Using PIE and the Mach Kernel Monitor," Proceedings of the 1990 Inter-
national Conference on Parallel Processing, Volume II, St. Charles, Illinois, August
1990, pp. 298-299.

[ReO91] D. Reed, R. Olson, R. Aydt, T. Madhyastha, T. Birkett, D. Jensen, B. Nazief, B.
Totty, "Scalable Performance Environments for Parallel Systems," Proceedings of
the Sixth Distributed Memory Computing Conference, IEEE Computer Society
Press, April 1991.

DATE
FILMED
0]13]9¢

