i 128 22

:.. 32 “mzz

HSb

w
ol T m||20
“

1= "

i
= L e







gency thereof, nor any of their

an agency of the United States
lied, or assumes any legal liability or responsi-

ge privately owned rights. Refer-

formation, apparatus, product, or
or service by trade name, trademark,

DISCLAIMER
rk sponsored by
nment nor any 3a;
leteness, or usefulness of any in
hat its use would not infrin
fic commercial product, process,

nty, express or ir:p

port was prepared as an account of wo

rocess disclosed, or represents t

Government. Neither the United States Gover

employees, makes any warra
bility for the accuracy, comp

ence herein to any speci

This re

p!

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4022

or imply its endorsement, recom-
r any agency thereof. The views
ly state or reflect those of the

o's
R
Z E
BEc
-
2gsk
s eSS
%ﬁga
sigh
§:.’,.§ g The Simplex Algorithm with a New
:5 25 Primal and Dual Pivot Rule
T
SE<E by
; § ; § Hsin-Der Chen*, Panos M. Pardalos** and Michael A. Saunders?
E528
Egzs TECHNICAL REPORT SOL 93-5
FEE]
=8 °% June 1993
EESS

*Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL
32611. Partially supported by National Science Foundation Grant DDM-8814075.

**Department of Industrial and Systems Engineering, University of Florida, Gainesville,

FL 32611. Partially supported by DIMACS under National Science Foundation Contract
STC-91-19999.

1'Syst,ems Optimization Laboratory, Department of Operations Research, Stanford Univer-
sity, Stanford, CA 94305-4022. Partially supported by Department of Energy Grant DE-

FG03-92ER25117, National Science Foundation Grant DDM-9204208, and Office of Naval
Research Grant N00014-90-J-1242.

Any opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the above sponsors.

Also listed as Operations Research Department Technical Report 93-10. Reproduction in

whole or in part is permitted for any purposes of the United States Government. This
document has been approved for public release and sale; its distribution is unlimited.

TR AR D C’JQ/
?ﬁ ) st ISTRBUTION OF THIS DBCUMEXT IS UkpIMITED



The Simplex Algorithm with a New
Primal and Dual Pivot Rule

Hsin-Der CHEN* Panos M. PARDALOS* and Michael A. SAUNDERS

Technical Report SOL 93-5
June 1993

Abstract

We present a simplex-type algorithm for linear programming that works
with primal-feasible and dual-feasible points associated with bases that differ
by only one column.

1. Introduction
Cousider the following linear programming problem:
(P) max{cTz | Az = b, = > 0},

where A € R™*™ (m < n) and the vectors b, ¢, £ have appropriate dimension. Let
B be a basis in A, so that AQ = ( B N ) for some permutation @, and let Bxy = b,
BTry = ¢ and r = ¢ — ATr. An iteration of the primal simplex method [Dan63]
can be briefly described as:

Given B such that zz > 0, if 7 < 0, then stop; otherwise, update B.
The dual simplex method is:
Given B such that r < 0, if zz > 0, then stop; otherwise, update B.

The solution in both cases is given by z5 and zy = 0.

1.1. The Aim

We propose an algorithm that maintains two basic solutions for (P). One is pri-
mal feasible and the othe. dual feasible, and the bases differ by only one column.
Some preliminary computational results have been obtained (see Section 8), showing
promise for the algorithm relative to the primal simplex method.
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2 A primal and dual pivot rule

1.2. Related Work

Many pivot rules are known for simplex-type algorithms. For example, a large num-
ber are described in [TZ92]. Under certain circumstances the proposed algorithm is
equivalent to Lemke’s method [Lem65), as discussed in Section 6, but otherwise the
algorithm appears to be new.

2. The Main Feature

For problem (P), let Br and Bp be bases in the primal and dual simplex methods
respectively. Consider the special case in which Bp and B, differ in exactly one
column. Let d in By be the column of A that distinguishes Bp and By. Also let zp
and z, be the associated primal-feasible and dual-feasible vertices of (P).

Theorem 2.1. If z, and z, are not both optimal vertices, then either d can enter
B, in the next primal pivot, or d can leave By in the nezt dual pivot.

Proof. Consider a modified problem (P’) in which all variables that are in neither
the primal basis nor the dual basis are fixed at zero. It is easy to see that zp and zp
are also primal-feasible and dual-feasible vertic s of (P’). In this case, the variable
corresponding to d is the only nonbasic variable (for Bp).

By definition of optimality, if 5 is not an optimal vertex for (P’), d can enter Bp
in order to improve the primal objective value. Otherwise, if z, is not an optimal
vertex for (P’), d can leave Bp in order to improve the dual objective value.

Since all the data A, b, ¢, B, and Bp are the same in (P’) and (P), the result
also applies to (P). B§

Initialization is discussed later. To show that the algorithm continues, we must
show that the new bases differ by one column in the next iteration.

Let d in Bp be the column that is not in B,. According to the theorem, d may
enter Bp in a primal pivot. If the leaving column is d, then By and B, are identical
and the optimal vertex is reached; otherwise, B, still differs from Bj in one column
(d in Bp and the leaving column in Bp).

On the other hand, d may leave By in a dual pivot. In this case, if the entering
column is d, then we are done; otherwise, Bp and B, still have m — 1 columns in
common.

The algorithm therefore proceeds in this way: the leaving column in a primal
pivot is a candidate leaving column in the next dual pivot, and the entering column
in a dual pivot is a candidate entering column in the next primal pivot.

Remarks

e There is no pricing step in the simplex algorithm with this pivot rule. The
algorithm may be interpreted as a primal simplex method that uses a related
dual simplex procedure to do pricing.
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e Since B! is closely related to B;!, we don’t have to keep both of them. (We
can maintain a factorization of just Bp.) Moreover, since there is no pricing
step, we don’t have to compute shadow prices (7) in the primal method.
Similarly, we don’t have to compute B;'b in the dual method. Therefore, the
computational effort is the same as in the ordinary simplex method.

¢ Suppose that (zp, zp) is moved to (z}, z},) after an iteration (and both B, and
B, are updated). If the primal step is degenerate, then z, = zp; otherwise

Tzt > cTzp. If the dual step is degererate, then cTzl = cTzp; otherwise

cTx! < cTz,. Therefore, the duality gap will strictly decrease; that is, ¢Tz/, —

cTzl, < cTzp — ¢Txp, except in the very special case where both primal and

dual degeneracies exist simultaneously.

o If B! or B;! A is sparse, as for example in network problems, the algorithm
needs to compute only part of B;1b. Also, since there is no pricing step, only
some of the shadow prices have to be computed (to determine the entering
column in the dual simplex step).

In contrast, with minimum-cost network flow problems (for example), although
only the flow values in the augmented path need to be updated at each iter-
ation, conventional methods have to compute all the shadow prices (except
with partial pricing).

3. An Example

Figure 1 provides a two-dimensional example. The superscript indicates the order in
which vertices are visited in the algorithm: z} — 22 — 23 — 2} — 23 — 28 — z*.

Note that the algorithm updates both primal-feasible and dual-feasible solutions
at each iteration. Therefore, it takes three iterations to solve the example. In fact,
any primal simplex method starting from z} will solve this example in exactly three

iterations.

4. A Variation

A vertex is adjacent to another vertex if the associated bases differ by one column.
Here we suggest a possible variation of the algorithm:

Given a primal-feasible vertex, move to the adjacent dual-feasible vertex
with the minimal dual objective value. Then move to tke best adjacent
primal-feasible vertex, and so on.

The path of this variation algorithm in the example will be z} — z’ — z*.

To implement the variation, we must be able to find the appropriate adjacent
vertices. Suppose that B is a basis for (P). Let A, zg, ™ and r be defined by BA = A,
Bzp = b, BTr = ¢cg and r = ¢ — ATr. Let S = {j | j is nonbasic and r; > 0} and
S_ = {j | 7 is nonbasic and r; < 0}. If there exists some nonbasic variable j with



4 A primal and dual pivot rule

Figure 1: A two-dimensional example.

r; < 0, then for some basic variable i, we riay obtain a dual-feasible vertex by
deleting variable ¢ from B if the following case holds:

Case 1: /iij >0Vje S, and
max{—~ | j € §4} < min{— | j € 5_, A;j < 0}.
i Agj I A
Let Ry = {i| ¢ is basic and (z5); > 0} and R- = {i | ¢ is basic and (zp); < 0}.
Similarly, if there exists some basic variable i with (2z); < 0, then for some nonbasic

variable j, we may obtain a primal-feasible vertex by adding variable j to B if the
following case holds:

Case 2: /iij <0Vie R4, and
max{ 2 i B} < min{2) i e By, Ay > 0).
1 Aij 1 Aij
5. Initialization

Now it is time to say something about initialization. Suppose that a nonsingular
basis B of (P) is given. If the initial vertex is not primal feasible (zz # 0), then
we may add an artificial variable (column), say j, such that Case 2 is satisfied. For
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example, A;; = —1 for all : € R_, and A;; = 0 otherwise; and c; is assigned a
large negative value. Then a primal-feasible vertex can be obtained by choosing this
artificial variable to enter the basis.

A dual-feasible vertex can be obtained in a similar way by adding a redundant
constraint that satisfies Case 1 (now we have Bp) and deleting the corresponding
slack variable. The new basis is Bp.

6. Relationship to Lemke’s Method

There is a similarity between the new algorithm and Lemke’s [Lem65]. If the ini-
tial nonsingular basis B corresponds to a primal-feasible vertex of (P), then both
algorithms are exactly the same (they follow the same path from that vertex to the
solution). The two algorithms differ in the following aspects:

e Lemke’s method works on a larger dimension matrix (involving A and AT).
g

¢ When B does not correspond to a primal feasible vertex of (P) the new algo-
rithm uses two artificial variables instead of one as in Lemke’s.

¢ In Lemke’s method, the primal and dual variable pairs are “almost comple-
mentary”; i.e, they are complementary except for one pair of variables, both
of which are nonbasic. In the new algorithm, there are two pairs of variables
that are not complementary. (In one pair, both variables are basic; in the
other pair, both are nonbasic.)

e There is only one path to the optimal solution in Lemke’s method, but the

new algorithm is flexible (for example the variation mentioned above).

7. Summary of the Algorithm

We now summarize the algorithm. We assume that a nonsingular basis B; is given.
1. Solve Bpzrg = b.
2. If By is not primal feasible (zz # 0), find another initial Bg.

(a) Add ap = —Be to A as an artificial column, where e is a columns of 1s.
Set the corresponding entry in ¢ to be — M, for some large number M.
(b) Remove the column corresponding to the most negative z5 from Bp.

(c) Add the artificial column to By. Solve Bpzp = b.
3. Solve BIr = cp and compute reduced costs 7 = ¢ — ATr. Define B, = Bp.

4. If Bp is dual feasible (r < 0), then either z5 and zy = 0 form an optimal solu-
tion (if no artificial column was added in Step 2), or the problem is infeasible;
stop. Otherwise, find another initial Bp.

(a) Add an artificial row to A with zeros in basic columns and ones in non-
basic columns. Set the corresponding entry in b to be oo.
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(b) Add a new artificial column a, = (0,...,0,1)Tto A. Set the correspond-
ing entry in ¢ to be 0.

(c) Expand Bp by adding this new column and the appropriate part of the
artificial row.

(d) Solve Bfr = c; and compute reduced costs 7 = ¢ — ATr.
(e) Let d be the column with the most positive element of r.

(f) Let Bp = Bp except that ap is replaced by d.
5. Repeat until d = ap.

(a) Solve Bpzy = b and Bpy = d.

(b) Determine the index p = argmin{(zs):i/yi | ¥ > 0}.

(c) Let the pth column of By be a;.

(d) 1f a; = ap, the problem is unbounded; stop.

(e) Let B, = Bp except that ap is replaced by d.

(f) Solve Bfr = cp and Blv = e,.

(g) Compute r = ¢ — ATr and w = ATv (the pth row of B;1A).
(h) Determine the index s = argmin{r;/w; | w; < 0}.

(i) Replace column a; by d in Bs.

(j) Let d = a,.

6. If ap is in Bp, the problem is infeasible; stop.
7. Otherwise, find the optimal solution.

(a) Remove ap and the corresponding row from Bp.

(b) Solve Bpzp = b and set zy = 0.

In practice, we could use y in 5(a) to update zg, and w in 5(g) to update r. The
main work per iteration is therefore solving Bpy = d and BIv = e, and forming
w = ATv. (Only nonbasic entries are needed.) This is analogous to one iteration of
the primal simplex method with full pricing.

Two forms of partial pricing are also possible. First, columns with the most
negative 7; could be temporarily ignored (keeping z; = 0). The bases By will
remain primal feasible. When the columns are reconsidered, we have to check that
the current basis Bp is dual feasible. If so, the algorithm continues; otherwise, a
new dual-feasible vertex must be constructed as in 4(a)-4(f).

Alternatively, rows with the most positive (zp); could be temporarily ignored.
"When they are reconsidered, we have to check that By is primal feasible. If not, a
new vertex must be constructed as in 2(a)-2(c).
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8. Experimental Results

The algorithms (original and variational) have been coded in MATLAB [MLB87] and
compared with the simplex method with least-reduced-cost pivot rule (also coded in
MATLAB). Full pricing was used in all methods. Some random test problems were
generated with the following properties. All constraints (except for non-negativity)
are tangent to a unit ball. None of the constraints is redundant. The center of the
unit ball is either at the origin or at a point within two units of the origin.

The initial vertex was taken to be the origin. The position of the center therefore
determines whether the initial vertex is (primal) feasible or not.

Table 1 lists results for 20 test problems with varying dimensions and center. The
ite- ation numbers for the three algorithms are shown for each problem. Note that
for : “e least-reduced-cost simplex method (LP) and our original algorithm (PDO),
the iteration number is the number of primal vertices visited. For our variational
algorithm (PDV), it is the number of primal and dual vertices visited. Hence, the
iteration numbers reflect the relative computation times for the three algorithms.

m n density { LP PDO PDV | LP PDO PDV
Origin feasible Origin infeasible
50 25 0.3 38 37 63 | 36 26 49
100 25 0.3 41 42 66 | 32 26 41
150 25 0.3 29 24 30| 53 54 95
200 25 0.3 51 41 85 | 38 38 72
100 50 0.1 51 40 62 | 60 45 56
150 50 0.1 | 102 81 124|114 92 111
200 50 0.1 |103 96 80 | 118 87 105
150 100 0.1 |260 179 341|292 207 407
200 100 0.1 {261 166 311|397 311 494
200 150 0.1 |454 308 516|430 264 536

LP: Simplex method with least-reduced-cost rule
PDO: Primal and dual algorithm (original)
PDV: Primal and dual algorithm (variational)

Table 1: Iteration numbers for three pivot rules.

9. Conclusions

The preliminary computational tests suggest that our original primal and dual al-
gorithm (PDO) performs increasingly well as the problem size increases, compared
to the traditional simplex method (LP). They also suggest that PDO is generally
better than the variational algorithm (PDV), though other test problems may reveal
different performances. '

We believe that further computational tests are justified for both new algorithms.
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