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1 Introduction

Axial symmetry is a very desirable property of the mirror devices both for fusion and neutron
source applications. The main obstacle to be circumvented in the development of such
systems, is the flute instability of axisymmetric mirrors. In recent years there appeared a
number of proposals, devoted to the stabilization of the flute perturbations in the framework
of axisymmetric magnetic configurations, which are based on the combining of the MHD
unstable central cell with various types of end-cell stabilizers [1]-[3]. In the present paper
we concentrate ourselves just on this scheme, including long solenoid with & uniform field,
conjugated with the end stabilizing anchor, intended to provide MHD stability of the system
as a whole. The attractive feature of such a configuration is that it allows to exploit finite
larmor radius (FLR) effects [4] for the stabilization of the flute perturbations. As is well
known [4], FLR effects, being strong, stabilize all flute modes, except the one with azimuthal
number m = 1, corresponding to the “rigid” displacement of the plasma column (the “global”
mode). Consequently, in the conditions when FLR effects dominate, the anchor has to
stabilize the “global” mode oaly. Bearing in mind a favorable influence of FLR effects we,
however, don’t restrict our paper by discussion of only “global” mode stability and consider
a general case of an arbitrary azimuthal mode.

The conventional approach to the stability analysis (used, for instance, in [1,2]) contains
an assumption that the curvature-induced particle drift is slow as compared with the scale-
time of the flute perturbation growth,

Qg <T, (1)



where I' denotes a characteristic growth-rate of the flute perturbation (or a characteristic
frequency in the stable case), and Q4 is a characteristic drift frequency in the stabilizing
anchor. Inequality (1) means that plasma particles in the anchor undergo displacement
remaining within the flute flux tube that they were initially occupying. Therefore their
perturbed position can be defined by 2-D hydrodynamic displacement vector §, being the
same for all particles, occupying in the initial state some flux tube, irrespective to their
velocity and pitch angle. So, one can analyze the stability of the system in the framework
of the familiar Kruskal-Oberman energy principle [5]. Just this approach was used in {1,2].

On the other hand, the presence of a long central cell, possessing large inertia, can result
in the violation of (1). Indeed, flute growth-rate in the central cell itself (without the anchor)

scales as [6)
'~ vTi/ V Lthrv (2)

where L., L,, are lengths of solenoidal and transition regions respectively, and vr; is the
ion thermal velocity in the central cell. It looks hardly probable to achieve a stabilizing
contribution of the anchor more than 1.5 — 2 times exceeding the unstable contribution of
the central cell. Hence, if one switches on the anchor, the characteristic frequency of the flute
oscillations keeps its former value (2), just the sign of I'? changes. Drift frequency around
the magnetic axis in the anchor region is estimated as fcllows:

cT,
Qg ~ eB,LZ’ (3)
B, being the magnetic field in the stabilizer middle plane, 7, being plasma temperature in
the stabilizer (to avoid unnecessary notation overloading in estimates, we suppose electron
and ion temperatures in the anchor to be equal to each other). As it follows from (2),(3),
growth-rate I' becomes really small as compared with the drift frequency when L. is large
enough.
The latter conclusion gives rise to the interest for the investigation of the situation when
the drift frequency in the stabilizing anchor exceeds essentially the frequency of MHD per-
turbations, i.e. when inequality inverse to (1) is satisfied:

Q> T. (4)

To analyze the stability of such a system one cannot use Kruskal-Oberman energy principle
and has to rely on its modified version that takes into account the condition (4).

The generalized energy principle accounting for the contribution of nonhydrodynamic
(in the sense of (4)) plasma species has been first formulated in {7}, where single-particle
adiabatic invariant technique has been used to calculate the perturbation of the particle
energy. The energy variation, derived in [7], consists of the contributions of both perturbed
plasma and magnetic energies. However, if one inserts into the expression for W, presented
in [7], the displacement vector £ of the flute perturbation

=122, (5)
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with 7 constant along the field line, then one comes to a somewhat paradoxical result.
Namely, it turns out that W, as given in 7], becomes identically zero (see Appendix A).
The reason is that authors of paper [7] retained in W only terms proportional to £? while,
as it has been shown in [8], the contribution of non-MHD particles to the energy of the
perturbations has a different structure, being proportional to éz. Henceforth in this paper
we consider just the case of purely flute perturbations (5).

Now it’s appropriate to mark one more aspect. The stabilization due to strong FLR
effects, mentioned above, takes place in the conditions (4]

T,
<« —— 6
< eB.a?’ (6)
where B, T., a. are magnetic field, temperature and plasma radius in the central cell. Com-
bining (1), (3), (6) and taking into account the conservation of the magnetic flux through
the plasma cross-section,

Bca,: ~ B,Lf, )

(here we suppose that radial dimension of plasma in the stabilizer is of the same order of its
axial dimension L,) one can find that the assumption of the dominating FLR effects in the
limit (1) is valid only if

T, «T..

Since the latter condition is rather restrictive, it stresses all the more the actuality of the
stability analysis, involving particles with fast drift frequency (4).

The contents of the present paper is as follows. In the next Section we reproduce the
derivation of the generalized energy principle (8] for the axisymmetric case. In Section 3 we
invoke the cited energy principle to illustrate the possibility of the stabilization of the flute
instability due to the “negative inertia” effect. The investigation of the conditions, required
for the “negative inertia” stabilization in the magnetic mirror, is the subject of Section
4. Section 5 is devoted to the application of the generalized energy principle to stability
analysis of the neutron source device, proposed in [9]. Section 6 contains conclusions. Several
computational subjects are carried out in Appendices. In particular, in Appendix C we show
that the energy principle [8] admits the generalization to the intermediate frequency interval,
I'/m <« Qg < T, for modes with high azimuthal numbers m.

9 Generalized energy principle for axisymmetric plasma
configurations

Suppose that in the anchor region there exists a population of hot particles with drift fre-
quencies satisfying inequality (4), while other plasma both in the anchor and in the central
cell is cold enough to admt conventional MHD treatment. We examine the stability of such
a system with respect to the purely electrostatic perturbations that are characterized by the
electrostatic potential ¢, constant along the field line. The latter assumption, identical to
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the one made in [7], implies the presence of a cold plasma component which justifies the
constancy of the potential along the field line and acts to provide quasineutrality condition.

In this paper we adopt the following coordinate system: we mark every field line with
the polar coordinates r,1 of its intersection with some plane, perpendicular to the uniform
magnetic field in the central solenoid. Instead of r one can use the magnetic flux & inside
the cylindrical surface of the radius r» : & = nr2B,.. A drift surface can then be described
by the equation & = ®(¢). In the introduced coordinates potential ¢ of the perturbations,
corresponding to the mode with azimuthal number m, is given by

¢ = @(P) cosmap. (8)

Note that
#(0) =0, (9)
since there is no azimuthal component of the electric field or. the magnetic axis.
At a given configuration of magnetic and electrostatic fields, the drift surface for a par-

ticle with a total energy € and magnetic moment p is determined by the constancy of the
longitudinal action

(e @,9) = @M [ (e~ pB ~ ep)' ', (10)

with the integration carried out between the turning points. If the condition (4) is satisfied,
then, with the electrostatic potential varying, the drift surface adjusts itself to keep constant
the magnetic flux inside the surface [10]. This occurs via variation of the particle energy.

To find the change W of the kinetic energy of the particles (just this quantity enters
the energy principle for the perturbations with a scale-length much in excess of the Debye
radius), we use the following approach. We consider some group of particles (of a total
number AN) that in the initial state have certain values of £ and g, and that are filling a
drift surface characterized with a certain value of J. When we slowly turn on the electrostatic
potential of the perturbation, the drift surface deforms and the kinetic energy of the particles
changes. If we find the change of the kinetic energy AW’ for this group, then, by summation
over all the groups, we find the required quantity W'.

The group AN is drifting along the contour ®(1) determined by the instantaneous con-
figuration of the electrostatic field and the instantaneous value of € . The number of particles
from this group dAN, occupying the section of the contour of the arc length di , can be
presented in the form dAN = vdy , where v is the number of particles per unit arc length.
The stationarity condition vy = const yields:

ANQ
v= T (11)
2my

where 1) is the angular velocity of the bounce-averaged drift motion ‘11
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t = Je is the transit time between the turning points, and (g is the drift frequency,

Qg = 2n['[oh%%]_l. (13)

We use notations J, = 8J /08¢, Jg = 0J /0%, etc., for the partial derivatives. The change of
the kinetic energy of these particles is, obviously,

2r final
aw = [ ve—ep)dw]| (14)
0 initiel
where the subscripts indicate the difference between the final and initial state. The total
energy € of particles is constant over the drift surface in the time-scale of Qa™", while their
kinetic energy € — ey varies from one field line to another according to variation of ¢ . In
this respect, AW, if divided by AN, represents the average (over the drift surface) change
of the kinetic energy.
The condition of flux conservation inside the drift surface can be written in the form:

2n final
[T ewaw| =0, (15)
0 mts
where ®(1)) is a solution of the equation
J(e, pr @, %) |t = 0. (16)

In principle, equations (11)-(16) allow one to find the particle kinetic energy at arbitrarily
large ¢ . However, we will consider only the case of small ¢ . The quantities of the first
order in ¢ will be denoted with subscript “17, the second order corrections by subscript “2”,
etc.

In the linear approximation, equation (16) yields:

(€, — ep)d. + ®1Je =0, (17)

wherefrom, taking into account relationships (8) and (15), we find that

J
e, =0, &, = ep—. 18
1 1 ‘PJQ ( )
The next order expansion of (16) gives:
1 1
J.(e2 — ed,ps) + Je P2 + -2-Jn(e<p)2 — JeaPrep + §J§¢‘I’12 =0. (19)
The requirement (15), when applied to @, , yields:
2 27 d‘lp 1 1
‘/{; d¢'(€2 - 8‘1’15"@) = —./o 7:(‘2'J==902 — JeaPrep + §J¢¢‘I’12)’ (20)
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while from (14) we find that

AW = —:?;- Azw[%ecp + (€2 — eP1pg)]dy. (21)

From equation (12) one obtains that

v Je Jo (Joe _2Ja | Jecdo
¥ _Je , 22
¢ JQ eSOQ + JQ ( JQ Jz ch ) e¢ ( )
Now, using relationships (8), (18), (21) and (22), we can express AW in terms of ¢ :
J 3 - JQ -]: J, J@‘l’
_«-ZAN 2 (gled e e 3
AW = —ge [J 3% T¢ ( Jo . 72 (23)

To perform the summation over the plasma particles, we introduce the distribution func-
tion F(e,u, ), normalized according to the relationship AN = F(e,u, )AcApAd. Then,
the energy W of the perturbation acquires its final form:

W= —%ez [ deddF (e, p, @)

J a(P Je@ Jce J:J‘PQ
9led _ e _ : 24
"[J,,, 5 TP ( Jo TR (24)

Sometimes it’s more convenient to use the expression for W’ in the form

_1, -2
W= e fded,udqnp x

0 J sz: Ju JCJQQ
Ja (%) -rCR ) e

which can be obtained from (24) through the integration by parts of the first term in the
square brackets (24). There is no contribution of limits from the integration by parts in (25),
since on the upper limit there are no particles, and so the distribution function equals to
zero, while on the lower limit the potential ¢ vanishes according to (9).

In Appendix B we derive also the expression for the energy variation, relevant to the
conditions when the longitudinal energy of the particles is small as compared with their
transverse energy. In such a case plasma is located near the point of the minimum field
strength on the given field line (the so-called “disk”-like plasma), and the contribution of
the particles with fast drift can be expressed as

e? F d ( @?
=— [dudd — —7 1= 2
4,/ He= dd)\BW)’ (26)
or after the integration by parts
e? #® OF
=-= f dud® L oo (27)

where By is the minimum value of the field strength on the magnetic surface, corresponding
to the flux ®, and Byg = 0Bo/0%.



3 Stability of the ‘“global” mode

Formulae (24), (25) define the contribution of only fast drifting particles (4) in the total
energy variation, while there exist {wo more terms, originated from plasma particles with
small drifv frequencies (1), whose contribution can be obtained in the framework of MHD
approach. The first one scales as

W® =~ Mn.a?L.£2. (28)

Henceforward in this section we consider the case of the “global” mode perturbations with
€ as a displacement of the plasma column as the whole in the central cell. Expression (28)
describes the kinetic energy of the perturbations. It is caused by inertia of ions in the long
central cell.

The second term,

WP =~ _ﬁc_g.a'_zfz, (29)
er
describes the potential energy of the perturbations caused by the field line curvature. The
sign of W(P) is negative due to the unfavorable field line curvature in the transition region.
As it follows from (28), (29), in the central cell itself (with the anchor being switched off)
the instability grows up with the characteristic increment given by (2).

Taking into consideration the contribution (24) of the fast particles, notice that the
expression for W scales as p?. Si~ce the displacement ¢ of the flux tube, filled with a cold
plasma, is determined by formuls (5) with n = —(1/¢) f dt, we see that, if (25) is expressed
in terms of £, it scales as

n,L? e2a®B? ;

~ c ¢2

Here we have supposed the radial dimension of plasma in the stabilizer to be of the order of
L,, and also condition (7) has been taken into account. Thus W scales as a kinetic energy of
the perturbations (~ é’), giving contribution to W), not to W), Therefore the presence
of the fast drifting particles manifests itself in changing of the “inertia” of the perturbations,
not of their “rigidity”.

Fast drifting particles may affect the stability in two different ways, depending on the sign
of the energy W. Positive value of W gives rise to the increasing of the effective kinetic energy
of the perturbations (or of their effective “inertia”) that , in turn, leads to the decreasing of
the increment I', but the instability still remains.

It seems to be more attractive another situation, when W is negative and, moreover, the
following requirement is satisfied:

Wk + W <o. (31)

The negative sign of the effective kinetic energy corresponds to the oscillations of the
perturbations with ‘the ‘negative inertia” in a hump-like potential (29). Since the frequency

of such oscillations is, obviously, real, condition (31) allows one to conclude that the system
becomes stable.



Estimates (28), (30), together with (31), impose one more constraint on the plasma
parameters:

n L, p}, B:
n. L.~ L2 BY’
where py, is the ion larmor radius of the hot particle in the stabilizer region.

To cite one more example of the magnetic configuration in which the fast drifting particles
may considerably affect the stability of the plasma we consider a single non-paraxial mirror
of length L (with a plasma occupying a volume of the order of L?). Let plasma consist
of a thermal population with temperature T' and density n, and a hot population with
temperature T, and density n. < n; let also the pressure of the hot component exceed that
of the cold one: n,7, > nT. For the mode of a “global” displacement one can evaluate the
plasma kinetic energy (per unit volume) as

((%2% + nM) é, (32)
where { is a (small) plasma displacement. The first term here represents a contribution of
the fast particles. The potential energy is just

nT(ﬁ/L)zv (33)
as fast particles do not contribute to it. If the drift frequency of the fast particles Q4 is not

too high,
Q 1 (n,T.\/?
d < Z(nM ) ’
the inertia of the fast particles dominates, The estimate for the growth-rate I is then

/ nT \/?
r~or)

As n,T, > nT the growth-rate is automatically less than the drift frequency, ensuring the

applicability of our analysis. So, we see that, indeed, the “inertia”of the fast drifting particles

can be dominant, despite their small density.

Notice that though in the present section we have concerned ourselves with the stability
analysis of the “global” mode (estimates (28), (29), (32),(33) hold just for the “global”
mode perturbations), the stabilization due to the “negative inertia” effect, discussed above,
makes it possible to suppress, in principle, the instability of an arbitrary azimuthal mode.

However, as the “inertia” of the oscillations is negative (see (31)), the dissipative instabilities
are possible.

4 “Negative inertia” stabilization in the magnetic mir-
ror

As it was established in Section 3, the necessary condition for the stabilization of the flute
instability due to the “negative inertia” effect is the negative definition of the energy variation
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W of the fast particles:
W < 0. (34)

In the given magnetic field the latter inequality imposes certain restrictions on the possible
profiles of the distribution function F of the fast particles. In the present Section we inves-
tigate the requirements, which the distribution function F should fit to satisfy (34) in the
magnetic mirror configuration.

We start with the stability analysis of the paraxial magnetic mirror. In the framework
of the paraxial approach, the plasma radial dimension should be small compared to the
mirror-to-mirror distance. If we use the coordinate frame with the axis coinciding with the
magnetic axis, the longitudinal invariant J, up to the terms linear in ¢, can be written as
12]

J = JOe, ) + 8IV(e, ).
The neglect of the higher order terms in ® is justified in the paraxial region. Since the

variation of F in & has a small scale-length, the first term in (25) is dominant, and so
expression for W reduces to a simplified form:

1, JO _, oF
W—ie/dedpdtb %5 ¢ 35 (35)

Since the derivative 8F /8% defines the sign of the diamagnetic frequency, one can conclude
from (12), (35), taking into account J© > 0, that the energy variation would be negative for
those particles whose directions of the curvature-induced and diamagnetic drifts coincide,
and would be positive in the opposite case.

As an example of the stability analysis of the concrete plasma configuration, we examine
the stability of the hot “disk”-like plasma located in the middle plane of the magnetic mirror.
The energy variation of such a plasma is given by formulae (26), (27). The paraxial expansion
of the magnetic field in the middle plane can be presented in the form [12]:

BII
By =B — —————tb
o =B i B (36)
where B is the field strength ¢ 1 the axis and prime denotes the derivative along the axis.

Note that B” > 0, since the magnetic field has a minimum in the middle plane. Inserting
(36) into (27), one obtains:

w2

¥
-weﬁ/dd‘ﬁ—‘—l—

As it follows from the latter expression, condition (34), necessary for the stabilization, is
satisfied for a descending plasma profile,

oF
53(0



Now we investigate in more detail the stability of the “global” mode for the discussed
above plasma configuration. The potential ¢, corresponding the “global” mode perturba-
tions, is given by

p= w/@ cos 1. (37)
After the substitution of (36), (37) into (26), one can find
B F

W= —wez—B—,; /dp.d@ o (38)

Inequality (34) is satisfied in this case, and so the “negative inertia” stabilization is realizable.

Up till now in the present Section the discussion has been restricted by the framework

of the paraxial plasma configurztions. To illustrate the influence of non-paraxiality on the

stability of the plasma with fast particles, we turn to the stability analysis of the hot “disk”-

like plasma, localized in the middie plane of the magnetic mirror composed of two equal

co-zxis magnetic dipoles (fig.1). The magnetic field in the middle plane of such a mirror can
be written in the form 9

BO = Bo"—(_'_?ls/—za

2(z +1)
where z = 4r2/L?, r is a radius in the middle plane, L is a distance between dipoles and B,

is the field strength in the middle point between them. The magnetic flux can be expressed
in terms of z as follows:

(39)

33/2 z
2 1+ 2)3/2’

where ®, denotes the flux, corresponding to the separatrix that bounds the region of the
adiabatic confinement (see fig.1).

Now we examine the sign definition of the energy variation W for the “global” mode
perturbation (37). Consider the plasma envelope, involving particles located on the distance
Ry from the axis in the equilibrium state. Inserting (37), (39), (40) into (26), after elementary
analysis one can obtain, that the energy variation W occurs to be negative for the plasma
envelopes with radii

R,

'ﬁ— < 0.72, (41)

where K, is the separatrix radius, while for radii Ro, being outside the interval (41), the en-
ergy W has a positive sign. Hence, ron-paraxial effects lead to the violation of the condition
(34), and so ke region of distant radii pays unfavorable contribution to W in the sense of
the possibility of the “negative inertia” stabilization.

®=29,

(40)

5 Application to the beam-plasma neutron source

Our results can be of some interest for the development of the beam-plasma neutron source
(BPNS) [9]. In this system a relatively short mirror machine is filled with a cold tritium
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plasma which serves as a target for high energy (~60keV) deuterons which are produced by
NB injection and confined in the same mirror machine. In order to reduce the heat losses
through the cold plasma electrons, there is envisaged the use of the long solenoidz! sections
with gradually decreasing magnetic field between the mirror cell and the end-walls: as the
target plasma is a collisional one and the heat flux is determined by the thermal conductivity,
this arrangement indeed reduces the heat flux. Another implication of the using of these
long sections is a considerable increase of the inertia of the flute perturbations. As one can
easily show [13], for the global mode the kinetic energy can be evaluated as

Mndl
Bz’
where ¢ is a plasma displacement in the equatorial plane of the device, By and ag are magnetic

field strength and plasma radius in this plane, respectively. Denoting the half-length of the
mirror cell as L, one can obtain the following expression for the potential energy:

§*raiBy

£2(n.T./L2)1ra§L,

where the subscript “x” refers to the high energy particles.
The growth-rate I' of the flute perturbations is equal to

1/2
1 (T. )"" n.L
L\M ndl |
% B
while the drift frequency of the fast ions is

3 5)"’
fla L’(M '

Here p. denotes the Larmor radius of the hot particle. After the substitution of the numerical
values of all variables (see [9]), it turns out that

r

— ~ 0.1,

Qq '

that is, the contribution of the fast ions to the potential energy of the flute perturbations in
fact is zero. This should allow the change of the magnetic configuration from Yin-Yang to
axisymmetric one, with the corresponding simplification of design of the neutron source.

6 Conclusions

In the present paper we have analyzed the stability of the axisymmetric mirror device with
respect to purely electrostatic flute perturbations. \We have investigated the scheme con-
sisting of the long central cell conjugated with the end stabilizer that contains hot plasma.

11



One of the main results of our work is the establishing of the fact, that a population of hot
particles with fast azimuthal drift (see (4)) may pay a favorable contribution to the stability
of the system as the whole. The reason is that fast drifting particles affect not potential
energy of MHD perturbations but rather their kinetic energy, and in the case, when the
effective kinetic energy is found to be negative, the stabilization takes place.

Another system, to which our results can be applied, is a two-component plasma consist-
ing of a cold dense background and a minority of hot particles that determines the plasma
pressure (like in some versions of mirror-based neutron sources [9,17]). At high enough
density of a cold component, condition (4) can easily be met.

We have also showed that the energy principle, formulated in [8], can be generalized
to the intermediate frequency interval I'/m < Qg < T for the azimuthal modes with high
numbers m (see Appendix C). Therefore all conclusions, concerning the stabilization due to
the “negative inertia” effect, can be transformed to these conditions as well.
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Appendices

A Van Dam-Rosenbluth-Lee energy principle in the
case of the flute perturbations

We start with the introducing the Clebsh coordinates (a,8) [15] with property
B =Vax V6.

The o coordinate is chosen so that the contour surfaces of constant a form a nested series of
topological cylinders, and it is normalized to enclose the magnetic flux 2ra by any a surface.
The 6 coordinate is angle-like and of period 2 on each o surface. In the limit of zero 3 the

magnetic field satisfies equation W x B =0, and hence it can be expressed as a gradient of
some potential x:

B = Vx. (42)
Vectors
(Va ,VE8 , Vx) (43)

compose a covariant basis that we are going to deal with. We also define a contrvariant basis
(a,v,T), dual to (43), in such a way that

_ V6 xVx
=—F

u
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Vax Vx
-
VaxVi b

B B’
According to the energy principle [7], derived within the assumption of the fast particle
drift (see condition (4)), the energy variation W consists of two terms:

VvV =

T =

i

W = Wf + W. (44)

The first one, W, represents the local part of W and can be written in the Taylor-Hastie
form [14] :

1 . /
Wy =3 [#2[0Q% +(Qf +oib- (€ x Q)+ V'py
—(1/B)(2Qy +&- VB)(&- V'p.)]. (45)
Here £ is the displacement vector, Q is the Eulerian magnetic field perturbation,

Q =V x(£xB),

the subscripts ||, L refer to the parallel and perpendicular components with respect to the
direction of the unperturbed magnetic field, and the coefficients o and (,

o=1-B"8p/8B), (=1~ (8./6B%,

are measures of stability against firehose and mirror anisotropy modes, respectively. Also,
the following notations are introduced:

V' =V - (VB)Jd/dB.

g=bb: V¢ (46)

The kinetic contribution to the energy variation. 11’,. criginated from the fast drifting
particles, is given by

1 o) 7 (5 (57)
Wi = —Z/daddedJ [( 35>J(<H" ((;E)(aJ)C\H,: ] ) (47)
where
H = -m'uﬁq— uB(V - & - q). (48)

and F = F (J(a,0,¢,u),€,p) is the equilibrium distribution function. depending only on the
integrals of motion (see e.g. [16]). Single angle brackets in (47) describe the bounce average:

(.= (%‘g)_lfdzr*(...,.
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while double angle brackets denote the average both over bounce and drift motions:

(G ) = (%?)J $ de(g-;)J(» (49)

where & = § dGa(G) is the flux adiabatic invariant (a = a(6) defines the particle drift-surface,
and integration is performing with J and & being constant), (0%/8¢), is the precessional
drift period, and (8¢/8a)s = (dB/dt) is the bounce-averaged rate of precession [10].

Now we turn to the calculation of the energy (44) for the flute-like perturbations, char-
acterized by the following displacement vector § :

E=bf+&,, (50)

B x Vg
£_L = 32 ] (51)

with function 7 constant along the field line,

n = n(a,6).
Since

8 8
Vn = 6”v a+ aZW

the perpendicular displacement (51) can be expressed as

£ =- %gu-i-ggv (52)

In the curved coordinate system (a,8,!) ( with [ as a coordinate along the field line, deter-
mined by d! = dx/B ) one obtains:

_ () g[8 (180 _ 8 (160
V-& = By ( ) B [69 (Bzaa) dax (3260
' E” OB 517 OB 617
B@l ( 80 8a Ba BB)” (33)
As it follows from (46), (50), the expression for g yields:
6
g, bV,
Accounting for V x B = 0, and using the relationships

(b-V)b=-bx(V xb),
be:——ll—g-(VBxb),

14




we come to

_f_a_eﬂ__ 9B on _ 0B dn]
= Al 36 6o 0 86

After simple manipulations one can find from (48) (53), (54) that

(H) = (%%)_lf;] b5 (M;ﬁ +pB) +

8J\""'  dl \ 8B on OB oy
+(5) [ 5 (ni+8) [5@5;“32'3‘9 - (55)
The contribution from the first integral vanishes, since the particle energy conserves along

the field line.

As it was shown in [15],

(54)

6 0B

_-/Bv” M'u”+pB) 30 (56)

6 aB

f B (Mo} +B) S (57)

Combining (56),(57) with (55), one can rewrite the expression for (H) as

8J\'eJ oy [(8J\"'oJ oy
o =~(5) wnt(3) e (58)

Now it is easy to perform the average of (H) over the drift motion. Inserting (58) into
(49) and taking into account that

(5),--%G) " &),--&E)
(H)) = (%%):f(degz +dag ) (%%);lfdn = 0.
(5).=~(%)(%),(5).

one obtains after the substitution of (58) into (47):

.1 8J\ (OF an\’
Wi = —; [ dadddude (6—0-) (53) ((é‘e) _

we have:

Finally, using

(L T e i



8J -1 -2 2 2'
N YA CAYEAWNEANEAYEART 59
86 ) \ Oa Oa ) \ 06 Oa a6 Oa
Here we have changed the set of the integration variables, and perform the integration over
de instead of dJ.
Now we turn to the calculation of the energy variation W;. Since W; does not depend on

the parallel component £ (see [14]), and besides that the displacement (50) does not perturb
the magnetic field, Q = 0, the expression (45) reduces to

B 6B 0
Ty = _%/dam (*11';'(5_1. -VB)(E&,-V'pi)+ %(51. - V'py) [%9 gz Oox BZD (60)

The parallel and perpendicular pressure components, presented in (60), are given by

dedp
m=[Z - EB MulF,

p_L=/d€ LB uBF.

Y|
The substitution of (52) into (60) leads to

/d"z [ap 8B BP] (@)’ 8B [6P 6B aP 81

=3 8Boa  Oa|\56) * 56 |6B 36 (5‘) -

8B [ap 8B ap] oy 6y OB [ap B ap] 8n 8y }
86 da

~%a |5B96 90| 366a 56 |3B%a _ da (61)

where P = p; + p_,

P = / dsduB

0 2+ uB)F(p,¢,J).

The calculation of the derivatives of P, entering into (61), gives:

oP 9 (. (Mv}+puB)
a5 = ] ek 55(3_‘5?“)*

ap _ 8B (Mv“ + uB) deduB OF
2 Jar gy () [ i (),

8P 0B (Mv,,+uB) deduB oF
% = 5 ] e g5 (B + [ EEE ot up) ()

Now reminding that d®z = dadfdl/B, and accounting for (56), (57), (62), one can transform

(61) to
B 8J (OF\ (67’
¥ = /dedpdade{aa(aa)c(ga) +
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8J (8F\ (6q\> (0J (8F 8J (8F\ \ 6n 07
+56(’55),(55) (5 (z2).* & (@) ) a—e'a‘a}- (©%

The latter expression, together with equations

oF\ _ 0J(0F oF\ _oJ (oF
56) ~86\87),; \da), 6a\dJ),

oF\ _ s (67 (oF
o8 ¢_69 Oa Oa "

allows one to show easily that W; equals to the expression (59) with the inverse sign, and
hence the energy variation (44) is found to be identically zero.

B Energy principle for the “disk”-like plasma

Consider the limit of zero longitudinal hot plasma pressure, p; = 0, when transverse energy
of hot particles greatly exceeds their longitudinal energy. In the equilibrium state these
particles perform small bounce oscillations round minimum field point, so that

€ — pBo K pBo, (64)

B, marks minimum value of the field strength on the given field line. Using expansion of B
along the field line in the vicinity of By,

B ~ B, + BL?,

one can carry out the integration in (10) explicitly:

A
J=nvaM ——, (65)
VuB
with Ae = € — pBo. Now it would not be difficult to calculate with sufficient accuracy e-
and ®- derivatives of J:

J J
Jc = Z‘E, Jq; = —uBoq.E.
By J
Jee =0, Jeg = ——=— —. 66
¢ B Acs (66)

= —uBogs ~— —~ 1 Bog — —.
Jag = —pBose - ~ #Boe 5 7
Here we have taken into account, that Ae/pBo is a small parameter according to (64).

Substitution of (66) into (24) leads to the following expression for the energy variation:

e? F d 22
W=—/d@-—-Lﬁ.
4 # po do ( Boe (67)
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Note that there is no integration over de in (67). The reason is that in the case under
consideration, the distribution function F depends on € approximately in a 6-functional
way, F' ~ §(e — uBy), and so the integration over de can be done explicitly.

C Generalization of the energy principle for the case:
I/m<«Q<T

The crucial point of the derivation of the expression for the energy variation in Section 2 (as
well as in [7]) is the exploitation of the fact that the flux adiabatic invariant conserves. As is
well known (see, e.g. [10]), when the frequency of the drift motion {4 around the axis is high
as compared with the inverse characteristic time of variation of the electric and magnetic
fields, then the magnetic flux $ encompassed by the drift surface is an adiabatic invariant
(notation ® shouldn’t be confused with a flux coordinate ® , an independent variable).
In the case considered in the present paper, the magnetic field is constant; the varying is
electrostatic potential ¢ of the perturbations. The slowness of variation of ¢ in the above
mentioned sense (see (4)) guarantees the conservation of ®.

When considering the case of perturbations with high azimuthal mode number m > 1,
one may encounter the situation when the drift frequency €y is lower then I' but higher than
I'/m:

F/m<« Q4 <T. (68)

The inequality 33 < I' means that one cannot thoughtlessly use the traditional! adiabatic
invariant . However, we shall show that, under the condition I'/m <« 14, there exists
another adiabatic invariant, similar to ®.

We consider the potential perturbation (not necessarily small) which is of the form (8)
and changes in time with the characteristic frequency I'. Then the inequality I'/m <« 4
means that the guiding centre traverses one spatial period of the system in a time that is
short as compared to the time of potential variation. Just this fact is a basis for existence
of the generalized adiabatic invariant.

The guiding centre motion, averaged over the fast bouncing along the field line, is gov-
erned by the following equations [11]:

_ 2mc
) _?{"— " 69)
¢ = 3753‘]11’1 (
ety
where t; = J, is the transit time between the turning points. In the context of the prob-

lem under consideration, J is a constant of motion (as well as 1). Resolving the equation
J = const with respect to € , we can find the function (3, ®) for a given particle. By

differentiating the function J(e(vy, ®), ®,4) over ¢ and & , we find:
O Jy Oe Js

& I Fr A
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and the equations of motion (69) acquire the Hamiltonian form:

b= 2me O
e w (70)

§— _2mc O

-

with 1 and ® being canonically conjugate variables and € playing a role of Hamiltonian. As
the explicit dependence of € on t is slow in the sense that the guiding centre traverses one
spatial period of the system (in coordinate 3 ) in a time short as compared to the time of
potential variation, equations (70) possess an adiabatic invariant

I = d dy, (71)

Ty

where integration is carried out over one spatial period T, equal to 27/m. Of course, for
slow enough potential variations, I' < 4 , the integration in (71) can be extended to a full
rotation of a particle around the axis, and (71) reduces to the standard flux invariant.

Now it becomes clear that the expression for the energy variation, that takes into account
conditions (68), coincides with formula (24). Indeed, all calculations in this case would ex-
actly repeat calculations, performed in Section 2, with the only exclusion: & conservation
requirement should be replaced by the requirement of the conservation of ®*. But this chang-
ing doesn’t, obviously, affect formula (24), since the averaging of the expressions, composed
of function (8), either over 27 /m-interval (as in (71)) or over 27-interval (as in the expression
for ) would finally lead to the same re<ult.
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