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Introduction

Historical data on recurrent epidemics have been central to the debate about the

prevalence of chaos in biological population dynamics. Credit for this interest in epidemics

goes to Schaffer and Kot (1985, 1986), who first recognized that the abundance and

accuracy of disease incidence data opened the door to applying a range of methods for

detecting chaos that had been devised in the early 1980's. Using attractor reconstruction,

estimates of dynamical invariants, and comparisons between data and simulation of SEIR

models, the "case for chaos in childhood epidemics" was made through a series of influential

papers beginning in the mid 1980's (reviewed by Schaffer et al. 1990). The proposition

that the precise timing and magnitude of epidemic outbreaks are deterministic but chaotic

is appealing, since it raises the hope of finding determinism and simplicity beneath the

apparently stochastic and complicated surface of the data.

However the initial enthusiasm for methods of detecting chaos in data has been

followed by critical re-evaluations of their limitations. Early hopes of a "one size fits all"

algorithm to diagnose chaos vs. noise in any data set have given way to a recognition that

a variety of methods must be used, and interpretation of results must take into account

the limitations of each method and the imperfections of the data (e.g., Theiler 1990).

Our goals here are (a) to outline some newer methods for detecting nonlinearity and

chaos that have a solid statistical basis and are suited to epidemic data, and (b) to begin

a re-evaluation of the claims for nonlinear dynamics and chaos in epidemics using these

newer methods. We also identify features of epidemic data that oreate problems for the

older, better known methods of detecting chaos. When we ask "are epidemics nonlinear?",

we are not questioning the existence of global nonlinearities in epidemic dynamics, such

as nonlinear transmission rates. Our question is whether the data's deviations from an



, annual cyclic trend (which would reflect the global nonlinearities) are adequately described

by a linear, noise-driven stochastic process.

Some influential figures are now arguing, based on the problems with the older meth-

ods, that the programme of "detecting chaos" is doomed to failure by the need for massive

amounts of very accurate data. We disagree, so long as the standards of "success" are

those of field biology, where imperfect and limited data are the norm, rather than those of

laboratory physics. A limited data set may not allow us reject a null hypothesis that could

be rejected with additional data, but with methods grounded in the framework of experi-

mental statistics we can still say that a given data set does or does not provide evidence

for a given hypothesis, and attach statistical measures of confidence our conclusions. A

chance of error is unavoidable, so overall conclusions often must emerge from a series of

studies with different limitations, rather than from a single decisive experiment (Hastings

et al. 1993).

We take the view, following Eckmann & Ruelle (1985), that the defining feature

of chaos is bounded fluctuations with sensitive dependence on initial conditions. This

definition of chaos applies to both deterministic and stochastic systems. Formally, suppose

that the data are generated by a stationary ergodic process of the form

(1) X,+, -- F(X,. E,)

where Xt e Rd and Et is a sequence of lid random variables. The system's sensitivity to

small changes in initial conditions is quantified by the dominant Lyapunov exponent ,_,

given by

(2) ,_= limm...oo _ log [[DF(Xm,Em)DF(Xm__,Em_,)...DF(X1, E1)[[ ,

where DF(e,E) is the Jacobian matrix of F(e,E). ,_ is well-defined and constant with

probability 1 under some mild regularity conditions (Kifer 1986). A key point is that ,_ is

a definite number, rather than a random variable, even for stochastic systems.

Our conclusion is that evidence for chaos is generally lacking. However, at least

for measles the data are not consistent with the "annual cycle + linear noise" hypothesis,

so interactions between stochastic perturbations and the globally nonlinear dynamics are

nonetheless important. In particular, our results suggest that short-term noise amplifica-

tion and "transient chaos" are likely to be common.

Noise and seasonality



• The task of detecting nonlinearity or chaos in epidemics is complicated by two un-

avoidable features of the data: dynamic noise and seasonality. The literature on detecting

chaos mostly ignores these features, so many "consumers" of the literature are unaware

or their immense effects on methods for detecting chaos.

The prevalent attitude in the chaos literature is that any stochasticity is an unde-

sirable corruption of the data. This attitude is reasonable for random measurement errors

- accurate data is indeed better than inaccurate data - and physicists have devoted con-

siderable effort to methods for reducing measurement errors. However epidemic dynamics

also are affected by "dynamic noise" - external, unpredictable perturbations (e.g., fluctu-

ations in weather, teacher strikes, etc.) that affect disease transmission and consequently

are an intrinsic part of the dynamics. Dynamic noise can move systems into or out of

chaos (Crutchfield et al. 1982), and Rand and Wilson (1991) have found that seasonally

forced SEIR models are very sensitive to small random fluctuations in the contact rate.

Removing dynamic noise by "noise reduction" techniques is not desirable: we want to

characterize the real dynamics, which are noisy.

Even methods that are robust against (or explicitly designed to handle) measurement

errors have problems with dynamic noise. Methods in this category include:

1. Fractal dimension. Estimates are seriously degraded by dynamic noise much

smaller than system's range of fluctuations, even though much higher levels of measure-

ment error can be dealt with (R. Smith 1992ab). This reflects a fundamental difference

between the effects of measurement error and dynamic noise. With measurement noise,

we are viewing a low-dimensional attractor through fogged-up glasses; with dynamic noise

the attractor is infinite dimensional.

2. Lyapunov exponents by the Wolf et al. (I985) method. This method quantifies the

sensitive dependence on initial conditions by finding segments of the time series that come

close together in phase space, and monitoring their subsequent divergence. Divergence

due to dynamic noise is confounded with divergence due to sensitive dependence on initial

conditions, generating "false positives" in the hunt for ch_Los(Sayers 1990, Theiler et al.

1992).

3. Nonlinear prediction (Sugihara 64 May 1990). This method distinguishes between

measurement error and deterministic chaos by comparing the accuracy of short-term and

long-term forecasts (using part of the data to build a forecasting model, and the remaining

data to determine forecast accuracy). In a chaotic system, long-term forecasts are less
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• accurate due to sensitive dependence on initial conditions. However dynamic noise also

decreases long-term forecast accuracy, so distinguishing between chaos and dynamic noise

by this method is generally not possible (Ellner 1991, Stone 1992).

Seasonality shouldn't be a problem because any periodically forced system can be

re-expressed as an equivalent autonomous system by adding a state variable to serve as

a clock. This frees us, in theory, to behave just as if our data ,_.,tne from an autonomous

system. In practice, however, data analyses can be confounded by strong seasonal forcing:

4. Attractor reconstruction. Ellner (1991) showed that many of the fieldmarks

of low-dimensional chaotic attractors observed in measles epidemics, based on graphical

reconstruction of attractors, Poincare sections, and Poincare maps, were also observed in

a seasonally forced nonchaotic stochastic model which is really infinite-dimensional.

5. Lyapunov ezponents. In the Wolf et al. (1985) method, and the modified Wolf

method proposed by Rand and Taylor (this volume), data segments nearby in phase space

can correspond to different times of year. Subsequent trajectories will diverge simply

because they are following different "clocks", creating a positive bias in estimates of ,_.

The spurious neighbors also affect our method based on time series modeling (Nychka et

al. 1992, McCaffrey et al. 1992); this invalidates Ellner's (1991) conclusion that measles

exhibits weak chaos. A fix-up for the method and updated conclusions are described
below.

Surrogate data

We now turn to more promising methods for epidemic data. Surrogate data pro-

cedures are a bootstrap-like way of testing whether data are consistent with a (possibly

transformed) linear autogressive model with Gaussian dynamic noise (Theiler et al. 1992).

The basic procedure.is to Fourier transform the data, randomize the pleases in the complex

Fourier coefficients while preserving the amplitudes, and inverse Fourier transform to ob-

tain a surrogate data set. The surrogate data have the same discrete power spectrum and

therefore the same (circular) linear autocorrelations as the real data, but any couplings

between modes due to nonlinear structure in the data have been obliterated. Repeat as

often as desired, using an apt summary statistic to compare the real and surrogate data,
and you have a statistical hypothesis test of

H0: the data are a static transform of a Gaussian linear at_togressive process.

Of course it's not quite that simple. If the real data aren't Gaussian they should be

made Gaussian by a transformation; care is needed when computing the power spectrum;



• and it is not clear how to generate good surrogates for data with strong spectral peaks. See

Theiler et al. (1992, 1993) for the details. To avoid false negatives, the summary statistic

must key into some difference between linear and nonlinear dynamics: a statistic that can

be computed from the linear autocorrelations is useless because it will have exactly the

same value on the real and surrogate data.

For epidemic data the null hypothesis given above is clearly false due to seasonality.

We therefore examined the more interesting null hypothesis

(3) H0: data = seasonal trend + transform of a Gaussian linear AR process.

To test (3) we subtracted off the seasonal trend (estimated by averaging over years in the

data), normalized the deviations from the trend to have seasonally constant variance, and

generated surrogates for the normalized deviations. We tried several test statistics:

1. The Ramsay & Rothman "time-reversal" statistic

p,._(m) = Sample average of (z_ z_+_.- z__-m) ,

for i# j (Rothman 1990, Ramsay and Rothman 1991). The distribution of a linear process

with independent Gaussian innovations is unchanged by time reversal, so excessively large

values of Ipi,_l signal a departure from g0. We calculated Ipl,2(m)l for m= 1 through 16

quarters and used the maximum and median of the 16 values as our test statistics.

2. Statistics related to the correlation integral C(r), which is the fraction of re-

constructed data vectors whose distance apart is <_r. The statistics we used were two

percentiles of the distance distribution, r01 and r00t, defined by C(rp) = p, and a crude

estimate of the correlation dimension D2 ,

iogC(r _)- Io¢C(r_ )
D2 .-_ Iog(rl)-iog(ra)

rising r01 and r.001as rl and r2. We used an embedding dimension of 8, corresponding to a

time period of 2 yeats, so that these statistics would be looking for "long-range" structures

not captured by the linear autocorrelations.

3. "Prediction" accuracy backwards in time (suggested by Robert May following our

talk). For nonlinear maps with stretching and folding, the folds make it hard to tell where

you came from even if you can predict where you're going. For example in the logistic

map, given zt you can predict z,+l exactly but there are two possibilities for zt-1 and no

way to tell which is correct. Our test statistics were the "prediction" accuracy 1 year into

the past for kernel time series models using 2, 3, and 4 past values, with bandwidth chosen

by ordinary cross validation. For these statistics only the seasonal trend was not removed



. from the data, because trend removal cc,uld obscure a simple nonlinear relationship.

The results (Table 1) give consistent, and occasionally very strong, evidence for

nonlinearity in measles. Of the 12 measles series analyzed, 10 were significantly nonlinear

at the .05 level for at least one of the test statistics. This conclusion is modest relative

to other claims which have been made about measles, but it rests on solid statistical

foundations and should be difficult to dispute. The pattern is reversed in the other diseases:

only 3 of the 10 data sets had a significant nonlinearity at the .05 level.

We chose two of the cxses where nonlinearity was detected with P< 0.01, and plotted

the value of the summary statistic for both the original and the surrogate data sets. As

Fig. 1 shows, the differences are not only statistically significant, but are numerically

substantial as well. The value of r0.01for detrended Copenhagen measles is roughly 20%

smaller than the average value for the surrogate time series; and the crudely estimated

dimension D2 for detrended New York City measles is less than half of the average value

for the surrogates.

On the other hand, we remark that no one statistic consistently identifies nonlinear-

ity in all of the measles time series. So we cannot say that measles epidemics in general

exhibit low dimension, or "backward predictability." The time series provide convinc-

ing evidence that nonlinearities in the underlying process are manifested in the observed

dynamics. However, the tests in this section do little to characterize the nature of that

nonlinearity.

Lyapunov exponents via time series modeling

One rough characterization of nonlinear dynamics, is whether the dynamics are

chaotic or stable. Our approach is to estimate the Lyapunov exponent ,_by first estimating

the nonlinear map generating the data. This allows us to explicitly account for dynamic

noise and estimate its magnitude, and estimate ,_ in a way that is not positively biassed

by dynamic noise.

The first step is reconstruction in time delay coordinates (Sauer et al. 1991, Casdagli

1992), so the procedure amounts to fitting a nonlinear autoregressive model

(4) x, = )'(z,__, z,__, ... Xr-d) + e, .

and using derivatives of the estimated map in (2). McCaffrey et al. (1992) give supporting

statistical theory, Nychka et al. (1999.) discuss practical implementation on short, noisy

data series, and Ellner et al. (1991) discuss convergence rates. Again it's not quite that

simple. Precautions must be taken both against overfitting and against underfitting, es-



• pecially if the data are strongly autocorrelated (Nychka et al. 1992, Ellner and Turchin

1993); here we used quarterly rather than monthly total case reports to reduce autocorre-

lation problems. Some families of prediction models work much better than others. With

short, noisy data sets we have achieved the best overall performance from the "feedforward

neural net" (FNN) model. The FNN model decomposes an arbitrary function into a sum

of sigmoids,

k a

f(,1, x2,... *d)=Z0+ E Z,a(,,+
i=l j=l

where G is a univariate sigmoid Nnction such as the logistic eU/(1+e_). FORTRAN source

code and a user's manual for our implementation are available by anonymous rtp at lya-

punov.ucsd.edu in /pub/ncsu. Thin-plate splines and similar extensions of polynomial

models are also effective for low-dimensional fitting and are much faster to compute, but

the number of parameters increases too rapidly for use in higher dimensions (Ellner and

Turchin 1993).

Seasonality also requires special treatment. When model (4) is fitted to data with a

strong seasonal trend, one of the lagged variables usually winds up serving as a surrogate

"clock". The estimate of ,_then includes derivatives with respect to time, but it shouldn't:

resetting the clock is not a perturbation of the system's state. To remove the nead for a

surrogate clock, we explicitly added a real clock to the model:

x, = f(x,-1, x,_2, ... X,_d, sin(t/K), cos(t/K) )+ e,

where K is the number of data points per year. The effect of including the clock is as

expected (Table 2): the estimated ,_ drops, and fewer past values are needed to make

predictions.

The results on epidemic data (Table 3) are again quite consistent: the dynamics are

identified as stable .rather than chaotic. In fact there appears to be a mode at or just

below the transition to chaos (,_ = 0) in the distribution of Lyapunov exponents (Figure

2). The location of the mode is probably influenced by the weak bias towards underfitting

in the procedures used here (Nychka et al. 1992). In simulation trials on low-dimensional

models (Ellner and Turchin 1993), the bias towards underfitting was too small to alter the

qualitative conclusion from Table 3, that epidemics tend to be neither strongly stable nor

strongly chaotic.

Efficient Generalized Method of Moments (GMM)

If enough is known about the system of interest, we may prefer to fit a mechanistic



. model rather than a purely descriptive time series model. A mechanistic model may be

overly (or incorrectly) constrained and unable to really match the dynamics, but have the

advantage that time series data can be supplemented with information from other sources.

For example, the duration of the infectious period can be hard-wired into an SIR model.

Fitting mechanistic models is frequently complicated by the unavailability of the

likelihood in closed form. A popular alternative is to use a "method of moments": choose

parameters so that model output matches some features of the data. The features may

be genuine moments (mean, variance, autocorrelations, etc.), or any other functions of a

simulated trajectory (period of a limit cycle, fractal dimension, etc.). This leads to fitting

criteria such as

Mimimize EG{ Mi(p)-Mi(data) }2
i

where Mi are the features, p is the parameter vector of the mechamstic model, and C_are

positive weights. However it is not clear which "moments" M_ to use, and how they should

be weighted, to get the most accurate estimates of p.

Gallant and Tauchen (1992) have proved that with appropriate Mi and weighting,

and some smoothness & identifiability conditions, GMM is asymptotically equivalent to

maximum likelihood estimation of p. The Mi are obtained by choosing a statistical model

f(xt+_ Ixt, 0) for the transition probabilities governing the,, time series whose parameters e

are easy to estimate by maximum likelihood, such as a nonparametric regression model

with appropriate error structure. The generalized moments to be matched as well as

possible are then

Mi(p)=E, _ _ In f(x,+,lx, ,0') _ .(5)
k J

where 0 is the maximum likelihood esti:natc' of 6 from the empirical data, and Ep{ } is

expectation with respect to the distribution of (xr+l, x_) in the mechanistic model with

parameter vector o.

Ep{ } in (5) is computed by simulating the model. If Ep is replaced by the empirical

distribution of (xr+l, xr), then the expression in (5) is exactly 0 by the first order condition

for maximizing the likelihood. Thus a good mechanistic model should give small values

of Mi(p). The right weighting is a quadratic form MT I M where I is an estimated

information matrix; see Gallant and Tauchen (1992) for precise statement of the results,

extension to more general settings, and proofs.



The advantage of GMM is that the statistical model f doesn't have to be "right", i.e.

it doesn't need to duplicate exactly the transition probability of the process generating the

data. It just needs to be sufficiently general, or well enough adapted to the application,

so that it discriminates parameters of the mechanistic model i.e. Mi(p) - 0 for ali i, if and

only if p = p0, the true value of p.

For a first epidemiological application of this method, we estimated contact function

parameters for an SEIR model, using the montly measles case reports series from New York

City 1928-1963. To mitigate excessive fadeouts we added a small exchange of individuals

(at rate 6) with an "outside world" having fixed levels of the disease:

ds_ m(,- s) - Z(z)sz+ 6(so- s)dt --

aE_ b(t)SI - (m+a)E + 6(Eo- E)dt --

at _ aE - (m+g)I + 6(Io- I)di --

We estimated the parameters b0and bl in the equation for seasonal variations in the contact

rate, /_(t) = b0(1 + _e,) + hie(t) , assuming that all other parameters of the model were

known (Table 2). Here ¢ is the seasonal forcing function proposed by Kot et al. (1988),

0 68-l-C00 2rr I• ( ) -.4
¢(t) = 1.5 _ _.5+_o,(2,,,)Jt

(we added the "-.4" to make the mean of ¢ over the year equal 0), and ae, are autocorrelat-

ed random fluctuations with mean 0, variance a2, and autocorrelation 0.95 between values

1 month apart. Simulated measurement errors were added to the output from the SEIR

model; the errors were lognormal with coefficient of variation based on the estimate that

1/8 of all cases are reported (B. Grenfell, pets. comm), and assuming cases are reported

or not in independent clusters of size 2. We took a = .05 to represent small year-to-year

fluctuations in contact intensity; results for a = 21 (not presented) were essentially the

same. The statistical model was a neural net with 5 lags and 3 units, as in the best-fit

neural net model for monthly NYC measles data (Table 2).

The results are encouraging for the method, but somewhat discouraging for fitting

SEIR models from time series data. The encouraging result is that our fully automatic

procedure produced a value of the relative forcing intensity bl/bo in line with generally

accepted estimates, which were obtained by more laborious ad hoc methods. A contour

plot of the GMM fitting criterion (Figure 3a) has a steep "valley" of better fits (smaller

values of the criterion) roughly along the line bl = 0.2b0, and a univariate plot of optimal



GMM vs. bilbo has a well-defined minimum (Figure 3b). The discouraging results are

first that, as can be seen in Fig. 3a the terrain along the valley floor is rather flat, so

the absolute values of b0 and bl are less well identified. Second, the entire terrain is rough

(Figure 4). It is not clear how much of the roughness is due to Monte Carlo error (finite

sample size in computing Ep{}), vs. intrinsic roughness of the exact surface. If the latter

is dominant, then standard asymptotic methods based Tayor-series approximations will

not be available for setting confidence regions or for hypothesis testing based on GMM.

Conclusions

We would like to close by speculating on the implications of our findings. "Surrogate

data" results indicate that nonlinearity (in the departures from a simple annual cycle) is a

consistent feature of the measles data series, but less common in the other diseases exam-

ined. The statistics r.01 and r.001,based on the correlation integral were especially powerful

at picking out nonlinearity. The property detected by these statistics (as used here, with

state vectors corresponding to 2 years of data), is that 2-year-long stretches of data are

more similar to each other than would be expected strictly from the linear autocorrela-

tions. Thus nonlinear modeling, and nonlinear forecasting, should be an improvement

over linear prediction methods.

According to our Lyapunov exponent estimates, genuine chaos appears to be very

rare or absent. However, measles is often identified as being rather near the transition to

chaos, with a mode in the distribution of exponents near 0. The same qualitative result

was ob'_ained in a survey of natural and laboratory animal populations (Ellner and Turchin

1993). In such cases the dynamics can easily vary between periods of stable behavior, and

periods of chaos-like behavior (i.e., finite-time sensitive dependence on initial conditions).

One way to quantify this type of behavior is by computing local (finite-time) Lyapunov

exponents ,X,_,defined by equation (2) with a finite value of m (Abarbanel et al. 1991,

1992). Figure 5 shows a plot of ,X_ over time for the Copenhagen measles series, for m= 1

or 2 years; because ,x is near 0 there are frequent transitions between short-term sensitive

and i-_ensitive dependence on initial conditions. For this type of dynamics, a precise

estimate of ,Xmay be less useful than a rough characterization of the pattern of fluctations

in local exponents (e.g., their variance, autocorrelation, frequence of sign changes).

Methods are still evolving rapidly, so our results and conclusions are hardly the last

word on nonlinearity and chaos in epidemics. One promising direction, encouraged by

the feasibility of GMM model fiting, is to hybridize between mechanistic and statistical



modeling. We expect that models that are mechanistic insofar as possible, but rely on

state-space reconstruction and nonparametrics where ignorance forces that upon us, have

the potential to provide more reliable characterizations of the dynamics, and more reliable

prediction methods.
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Table 1. Surrogate data tests for nonlinearity based on quarterly case reports, using test
statistics based on time reversal, the correlation integral C(r), and "prediction" accuracy 1
year backwards in time. The test statistics are descriped in the text. Reported significance
levels are based on n= 500 surrogates for each data set for time-reversal and C(r) statistics,
n= 250 for back-prediction. Symbols indicate significance levels P> .1(-), P< .1(+), P<
.05(.) and P< .01(**).

Time reversal C (r) Back-prediction

Max Median D2 r.001 r.01 d= 2 d= 3 d= 4
MEASLES

NYC * - ** * - + - -
Baltimore - * * * ....
Detroit ..... + + +
Milwaukee - + ......

Copenhagen - - - * ** ** ** **
London ** ** - + * - - -
Bristol ....... +
Liverpool ..... ** ** **
Manchester ** + - - * + • •
Newcastle - - - + ** - - -

Birmingham ** ** ......
Sheffield - - + * + - - -

MUMPS

NYC ........
Milwaukee ........

Copenhagen - - - ** ** - - -
RUBELLA

St.Louis ........

Copenhagen ........
CHICKENPOX
NYC ........
Detroit - - * ** * - - -
St.Louis .... + - - -
Milwaukee - • - + + - - -

Copenhagen ........



Table 2. Estimated Lyapunov exponents by neural net time series models for measles
monthly data (L= 3, d= 1- 8, Cg_ = 2). Nonseasonal models only use lagged values of the
time series; seasonal models include sin(2_j/12) and cos(27rj/12) as covariates (j= time in
months).

SEASONAL NON-SEASONAL

#lags #units A #lags #units A

Baltimore 5 4 -0.II 8 7 + 0.09

NYC 5 S -0.08 6 6 + 0.02

Detroit 6 5 -0.05 6 6 + 0.025

Copenhagen 5 6 -0.01 8 6 + 0.06

Table 3. Estimated Lyapunov exponent A for quarterly case reports using seasonal neural
net model (L= 1, Cg_, = 2).

#lags #units A r s df
MEASLES
NYC 3 2 -0.67 O.93 123
Baltimore 4 2 -0.07 O.83 109
Detroit 6 2 -0.08 O.85 145
Milwaukee 2 2 -7.78 O.77 103

Copenhagen 2 3 -0.06 O.87 135
London 2 1 -0.23 O.67 51
Bristol 3 1 -0.13 O.77 50

Liverpool 2 1 -1.56 O.72 51
Manchester 2 2 -0.24 O.90 45
Newcastle 2 1 -3.61 O.71 51

Birmingham 2 2 -0.16 O.92 45
Sheffield 5 1 -1.93 0.84 48

MUMPS
NYC 5 2 +0.01 O.94 119
Milwaukee 2 2 -0.39 O.74 153

Copenhagen 2 S -0.24 O.86 135
RUBELLA

St.Louis 2 " 2 -0.27 O.76 61

Copenhagen 2 1 -0.87 O.71 99
CHICKENPOX
NYC 6 2 -0.14 O.95 117
Detroit 2 1 -0.33 O.78 61
St .Louis 1 1 -1.46 0.86 68

Copenhagen 1 1 -0.61 O.81 107
Milwaukee 2 2 -0.37 O.86 129



FIGURE LEGENDS

Figure 1. (a) The statistic r01 is shown for the Copenhagen measles data di]), and for 500

surrogate time series (+). The value is significantly smaller for the actual data than for

the surrogates. (b) The estimated correlation dimension D2 is shown for New York City

measles data ([[]), and for 500 surrogate time series (+). Again, the actual data exhibits a

much smaller dimension than is seen in the surrogate time series.

Figure 2. Histogram of estimated Lyapunov exponents for quarterly disease case reports.

Values in Table 3 were multiplied by 4 to express exponents in units year -1

Figure 3. (a) Contour plot of the GMM objective function; smaller values correspond to

better fits between model and data. Contour based on values computed at a regular 31 x 31

grid over the range of values shown for b0 and bl, based on a simulation of 5000 months

duration for each parameter combination. (b) Plot of minimum GMM objective function

as a function of the relative intensity of seasonal forcing bilbo.

Figure 4. Plot of GMM objective function (as in Figure 3) over a region near the best-fit

parameter values.

Figure 5. Finite-time "local" Lyapunov exponents for Copenhagen measles, data based

on the best-fit seasonal neural net model for quarterly data.
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