

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

TITLE: DETECTING NONLINEARITY AND CHAOS IN EPIDEMIC DATA

AUTHOR(S): STEPHEN ELLNER, A. RONALD GALLANT, and JAMES THEILER

SUBMITTED TO The Proceedings of the NATO Advanced Research Workshop on
"Epidemic Models and Their Relation to Data," held in Cambridge, the
United Kingdom, January 4-9, 1993

AUG 05 1993

6071

By acceptance of this article, the publisher recognized that the U S Government retains a nonexclusive, royalty-free license to publish or reproduce
the published form of this contribution or to allow others to do so for U S Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U S Department of Energy.

Los Alamos

**Los Alamos National Laboratory
Los Alamos, New Mexico 87545**

FORM NO. 836 R4
ST. NO. 2629 5/81

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

62

Detecting nonlinearity and chaos in epidemic data

Stephen Ellner^{1,2}, A. Ronald Gallant² and James Theiler^{3,4}

¹*Biomathematics Program and* ²*Department of Statistics,
North Carolina State University, Raleigh NC 27695-8203, USA;*

³*Santa Fe Institute, 1660 Old Pecos Trail, Santa Fe NM 87501 USA*

⁴*Center for Nonlinear Studies & Theoretical Division,
Los Alamos National Laboratory, Los Alamos, NM 87545 USA.*

Introduction

Historical data on recurrent epidemics have been central to the debate about the prevalence of chaos in biological population dynamics. Credit for this interest in epidemics goes to Schaffer and Kot (1985, 1986), who first recognized that the abundance and accuracy of disease incidence data opened the door to applying a range of methods for detecting chaos that had been devised in the early 1980's. Using attractor reconstruction, estimates of dynamical invariants, and comparisons between data and simulation of SEIR models, the "case for chaos in childhood epidemics" was made through a series of influential papers beginning in the mid 1980's (reviewed by Schaffer et al. 1990). The proposition that the precise timing and magnitude of epidemic outbreaks are deterministic but chaotic is appealing, since it raises the hope of finding determinism and simplicity beneath the apparently stochastic and complicated surface of the data.

However the initial enthusiasm for methods of detecting chaos in data has been followed by critical re-evaluations of their limitations. Early hopes of a "one size fits all" algorithm to diagnose chaos vs. noise in any data set have given way to a recognition that a variety of methods must be used, and interpretation of results must take into account the limitations of each method and the imperfections of the data (e.g., Theiler 1990).

Our goals here are (a) to outline some newer methods for detecting nonlinearity and chaos that have a solid statistical basis and are suited to epidemic data, and (b) to begin a re-evaluation of the claims for nonlinear dynamics and chaos in epidemics using these newer methods. We also identify features of epidemic data that create problems for the older, better known methods of detecting chaos. When we ask "are epidemics nonlinear?", we are not questioning the existence of *global* nonlinearities in epidemic dynamics, such as nonlinear transmission rates. Our question is whether the data's deviations from an

annual cyclic trend (which would reflect the global nonlinearities) are adequately described by a linear, noise-driven stochastic process.

Some influential figures are now arguing, based on the problems with the older methods, that the programme of “detecting chaos” is doomed to failure by the need for massive amounts of very accurate data. We disagree, so long as the standards of “success” are those of field biology, where imperfect and limited data are the norm, rather than those of laboratory physics. A limited data set may not allow us to reject a null hypothesis that could be rejected with additional data, but with methods grounded in the framework of experimental statistics we can still say that a given data set does or does not provide evidence for a given hypothesis, and attach statistical measures of confidence to our conclusions. A chance of error is unavoidable, so overall conclusions often must emerge from a series of studies with different limitations, rather than from a single decisive experiment (Hastings et al. 1993).

We take the view, following Eckmann & Ruelle (1985), that the defining feature of chaos is bounded fluctuations with sensitive dependence on initial conditions. This definition of chaos applies to both deterministic and stochastic systems. Formally, suppose that the data are generated by a stationary ergodic process of the form

$$(1) \quad X_{t+1} = F(X_t, E_t)$$

where $X_t \in \mathbb{R}^d$ and E_t is a sequence of *iid* random variables. The system’s sensitivity to small changes in initial conditions is quantified by the dominant Lyapunov exponent λ , given by

$$(2) \quad \lambda = \lim_{m \rightarrow \infty} \frac{1}{m} \log \|DF(X_m, E_m)DF(X_{m-1}, E_{m-1}) \cdots DF(X_1, E_1)\|,$$

where $DF(\bullet, E)$ is the Jacobian matrix of $F(\bullet, E)$. λ is well-defined and constant with probability 1 under some mild regularity conditions (Kifer 1986). A key point is that λ is a definite number, rather than a random variable, even for stochastic systems.

Our conclusion is that evidence for chaos is generally lacking. However, at least for measles the data are not consistent with the “annual cycle + linear noise” hypothesis, so interactions between stochastic perturbations and the globally nonlinear dynamics are nonetheless important. In particular, our results suggest that short-term noise amplification and “transient chaos” are likely to be common.

Noise and seasonality

The task of detecting nonlinearity or chaos in epidemics is complicated by two unavoidable features of the data: dynamic noise and seasonality. The literature on detecting chaos mostly ignores these features, so many “consumers” of the literature are unaware or their immense effects on methods for detecting chaos.

The prevalent attitude in the chaos literature is that any stochasticity is an undesirable corruption of the data. This attitude is reasonable for random measurement errors – accurate data is indeed better than inaccurate data – and physicists have devoted considerable effort to methods for reducing measurement errors. However epidemic dynamics also are affected by “dynamic noise” – external, unpredictable perturbations (e.g., fluctuations in weather, teacher strikes, etc.) that affect disease transmission and consequently are an intrinsic part of the dynamics. Dynamic noise can move systems into or out of chaos (Crutchfield et al. 1982), and Rand and Wilson (1991) have found that seasonally forced SEIR models are very sensitive to small random fluctuations in the contact rate. Removing dynamic noise by “noise reduction” techniques is not desirable: we want to characterize the real dynamics, which are noisy.

Even methods that are robust against (or explicitly designed to handle) measurement errors have problems with dynamic noise. Methods in this category include:

1. *Fractal dimension.* Estimates are seriously degraded by dynamic noise much smaller than system’s range of fluctuations, even though much higher levels of measurement error can be dealt with (R. Smith 1992ab). This reflects a fundamental difference between the effects of measurement error and dynamic noise. With measurement noise, we are viewing a low-dimensional attractor through fogged-up glasses; with dynamic noise the attractor is infinite dimensional.

2. *Lyapunov exponents by the Wolf et al. (1985) method.* This method quantifies the sensitive dependence on initial conditions by finding segments of the time series that come close together in phase space, and monitoring their subsequent divergence. Divergence due to dynamic noise is confounded with divergence due to sensitive dependence on initial conditions, generating “false positives” in the hunt for chaos (Sayers 1990, Theiler et al. 1992).

3. *Nonlinear prediction (Sugihara & May 1990).* This method distinguishes between measurement error and deterministic chaos by comparing the accuracy of short-term and long-term forecasts (using part of the data to build a forecasting model, and the remaining data to determine forecast accuracy). In a chaotic system, long-term forecasts are less

accurate due to sensitive dependence on initial conditions. However dynamic noise also decreases long-term forecast accuracy, so distinguishing between chaos and dynamic noise by this method is generally not possible (Ellner 1991, Stone 1992).

Seasonality shouldn't be a problem because any periodically forced system can be re-expressed as an equivalent autonomous system by adding a state variable to serve as a clock. This frees us, in theory, to behave just as if our data come from an autonomous system. In practice, however, data analyses can be confounded by strong seasonal forcing:

4. *Attractor reconstruction.* Ellner (1991) showed that many of the fieldmarks of low-dimensional chaotic attractors observed in measles epidemics, based on graphical reconstruction of attractors, Poincare sections, and Poincare maps, were also observed in a seasonally forced nonchaotic stochastic model which is really infinite-dimensional.

5. *Lyapunov exponents.* In the Wolf et al. (1985) method, and the modified Wolf method proposed by Rand and Taylor (this volume), data segments nearby in phase space can correspond to different times of year. Subsequent trajectories will diverge simply because they are following different "clocks", creating a positive bias in estimates of λ . The spurious neighbors also affect our method based on time series modeling (Nychka et al. 1992, McCaffrey et al. 1992); this invalidates Ellner's (1991) conclusion that measles exhibits weak chaos. A fix-up for the method and updated conclusions are described below.

Surrogate data

We now turn to more promising methods for epidemic data. Surrogate data procedures are a bootstrap-like way of testing whether data are consistent with a (possibly transformed) linear autoregressive model with Gaussian dynamic noise (Theiler et al. 1992). The basic procedure is to Fourier transform the data, randomize the phases in the complex Fourier coefficients while preserving the amplitudes, and inverse Fourier transform to obtain a surrogate data set. The surrogate data have the same discrete power spectrum and therefore the same (circular) linear autocorrelations as the real data, but any couplings between modes due to nonlinear structure in the data have been obliterated. Repeat as often as desired, using an apt summary statistic to compare the real and surrogate data, and you have a statistical hypothesis test of

H_0 : the data are a static transform of a Gaussian linear autoregressive process.

Of course it's not quite that simple. If the real data aren't Gaussian they should be made Gaussian by a transformation; care is needed when computing the power spectrum;

and it is not clear how to generate good surrogates for data with strong spectral peaks. See Theiler et al. (1992, 1993) for the details. To avoid false negatives, the summary statistic must key into some difference between linear and nonlinear dynamics: a statistic that can be computed from the linear autocorrelations is useless because it will have exactly the same value on the real and surrogate data.

For epidemic data the null hypothesis given above is clearly false due to seasonality. We therefore examined the more interesting null hypothesis

(3) H_0 : data = seasonal trend + transform of a Gaussian linear AR process.

To test (3) we subtracted off the seasonal trend (estimated by averaging over years in the data), normalized the deviations from the trend to have seasonally constant variance, and generated surrogates for the normalized deviations. We tried several test statistics:

1. The Ramsay & Rothman “time-reversal” statistic

$$\rho_{i,j}(m) = \text{Sample average of } (x_t^i x_{t+m}^j - x_t^i x_{t-m}^j),$$

for $i \neq j$ (Rothman 1990, Ramsay and Rothman 1991). The distribution of a linear process with independent Gaussian innovations is unchanged by time reversal, so excessively large values of $|\rho_{i,j}|$ signal a departure from H_0 . We calculated $|\rho_{1,2}(m)|$ for $m = 1$ through 16 quarters and used the maximum and median of the 16 values as our test statistics.

2. Statistics related to the correlation integral $C(r)$, which is the fraction of reconstructed data vectors whose distance apart is $\leq r$. The statistics we used were two percentiles of the distance distribution, $r_{.01}$ and $r_{.001}$, defined by $C(r_p) = p$, and a crude estimate of the correlation dimension D_2 ,

$$\hat{D}_2 = \frac{\log C(r_1) - \log C(r_2)}{\log(r_1) - \log(r_2)}$$

using $r_{.01}$ and $r_{.001}$ as r_1 and r_2 . We used an embedding dimension of 8, corresponding to a time period of 2 years, so that these statistics would be looking for “long-range” structures not captured by the linear autocorrelations.

3. “Prediction” accuracy backwards in time (suggested by Robert May following our talk). For nonlinear maps with stretching and folding, the folds make it hard to tell where you came from even if you can predict where you’re going. For example in the logistic map, given x_t you can predict x_{t+1} exactly but there are two possibilities for x_{t-1} and no way to tell which is correct. Our test statistics were the “prediction” accuracy 1 year into the past for kernel time series models using 2, 3, and 4 past values, with bandwidth chosen by ordinary cross validation. For these statistics only the seasonal trend was not removed

from the data, because trend removal could obscure a simple nonlinear relationship.

The results (Table 1) give consistent, and occasionally very strong, evidence for nonlinearity in measles. Of the 12 measles series analyzed, 10 were significantly nonlinear at the .05 level for at least one of the test statistics. This conclusion is modest relative to other claims which have been made about measles, but it rests on solid statistical foundations and should be difficult to dispute. The pattern is reversed in the other diseases: only 3 of the 10 data sets had a significant nonlinearity at the .05 level.

We chose two of the cases where nonlinearity was detected with $P < 0.01$, and plotted the value of the summary statistic for both the original and the surrogate data sets. As Fig. 1 shows, the differences are not only statistically significant, but are numerically substantial as well. The value of $r_{0.01}$ for detrended Copenhagen measles is roughly 20% smaller than the average value for the surrogate time series; and the crudely estimated dimension D_2 for detrended New York City measles is less than half of the average value for the surrogates.

On the other hand, we remark that no one statistic consistently identifies nonlinearity in all of the measles time series. So we cannot say that measles epidemics in general exhibit low dimension, or “backward predictability.” The time series provide convincing evidence that nonlinearities in the underlying process are manifested in the observed dynamics. However, the tests in this section do little to characterize the nature of that nonlinearity.

Lyapunov exponents via time series modeling

One rough characterization of nonlinear dynamics, is whether the dynamics are chaotic or stable. Our approach is to estimate the Lyapunov exponent λ by first estimating the nonlinear map generating the data. This allows us to explicitly account for dynamic noise and estimate its magnitude, and estimate λ in a way that is not positively biased by dynamic noise.

The first step is reconstruction in time delay coordinates (Sauer et al. 1991, Casdagli 1992), so the procedure amounts to fitting a nonlinear autoregressive model

$$(4) \quad x_t = f(x_{t-1}, x_{t-2}, \dots, x_{t-d}) + e_t .$$

and using derivatives of the estimated map in (2). McCaffrey et al. (1992) give supporting statistical theory, Nychka et al. (1992) discuss practical implementation on short, noisy data series, and Ellner et al. (1991) discuss convergence rates. Again it’s not quite that simple. Precautions must be taken both against overfitting and against underfitting, es-

pecially if the data are strongly autocorrelated (Nychka et al. 1992, Ellner and Turchin 1993); here we used quarterly rather than monthly total case reports to reduce autocorrelation problems. Some families of prediction models work much better than others. With short, noisy data sets we have achieved the best overall performance from the “feedforward neural net” (FNN) model. The FNN model decomposes an arbitrary function into a sum of sigmoids,

$$f(x_1, x_2, \dots, x_d) = \beta_0 + \sum_{i=1}^k \beta_i G(\mu_i + \sum_{j=1}^d \gamma_{ij} x_j),$$

where G is a univariate sigmoid function such as the logistic $e^u/(1+e^u)$. FORTRAN source code and a user’s manual for our implementation are available by anonymous ftp at lyapunov.ucsd.edu in /pub/ncsu. Thin-plate splines and similar extensions of polynomial models are also effective for low-dimensional fitting and are much faster to compute, but the number of parameters increases too rapidly for use in higher dimensions (Ellner and Turchin 1993).

Seasonality also requires special treatment. When model (4) is fitted to data with a strong seasonal trend, one of the lagged variables usually winds up serving as a surrogate “clock”. The estimate of λ then includes derivatives with respect to time, but it shouldn’t: resetting the clock is not a perturbation of the system’s state. To remove the need for a surrogate clock, we explicitly added a real clock to the model:

$$x_t = f(x_{t-1}, x_{t-2}, \dots, x_{t-d}, \sin(t/K), \cos(t/K)) + \epsilon_t$$

where K is the number of data points per year. The effect of including the clock is as expected (Table 2): the estimated λ drops, and fewer past values are needed to make predictions.

The results on epidemic data (Table 3) are again quite consistent: the dynamics are identified as stable rather than chaotic. In fact there appears to be a mode at or just below the transition to chaos ($\lambda = 0$) in the distribution of Lyapunov exponents (Figure 2). The location of the mode is probably influenced by the weak bias towards underfitting in the procedures used here (Nychka et al. 1992). In simulation trials on low-dimensional models (Ellner and Turchin 1993), the bias towards underfitting was too small to alter the qualitative conclusion from Table 3, that epidemics tend to be neither strongly stable nor strongly chaotic.

Efficient Generalized Method of Moments (GMM)

If enough is known about the system of interest, we may prefer to fit a mechanistic

model rather than a purely descriptive time series model. A mechanistic model may be overly (or incorrectly) constrained and unable to really match the dynamics, but have the advantage that time series data can be supplemented with information from other sources. For example, the duration of the infectious period can be hard-wired into an SIR model.

Fitting mechanistic models is frequently complicated by the unavailability of the likelihood in closed form. A popular alternative is to use a “method of moments”: choose parameters so that model output matches some features of the data. The features may be genuine moments (mean, variance, autocorrelations, etc.), or any other functions of a simulated trajectory (period of a limit cycle, fractal dimension, etc.). This leads to fitting criteria such as

$$\text{Minimize} \quad \sum_i C_i \{ M_i(\rho) - M_i(\text{data}) \}^2$$

where M_i are the features, ρ is the parameter vector of the mechanistic model, and C_i are positive weights. However it is not clear which “moments” M_i to use, and how they should be weighted, to get the most accurate estimates of ρ .

Gallant and Tauchen (1992) have proved that with appropriate M_i and weighting, and some smoothness & identifiability conditions, GMM is asymptotically equivalent to maximum likelihood estimation of ρ . The M_i are obtained by choosing a statistical model $f(x_{t+1} | x_t, \theta)$ for the transition probabilities governing the time series whose parameters θ are easy to estimate by maximum likelihood, such as a nonparametric regression model with appropriate error structure. The generalized moments to be matched as well as possible are then

$$(5) \quad M_i(\rho) = E_\rho \left\{ \frac{\partial}{\partial \theta_i} \ln f(x_{t+1} | x_t, \tilde{\theta}) \right\},$$

where $\tilde{\theta}$ is the maximum likelihood estimate of θ from the empirical data, and $E_\rho \{ \}$ is expectation with respect to the distribution of (x_{t+1}, x_t) in the mechanistic model with parameter vector ρ .

$E_\rho \{ \}$ in (5) is computed by simulating the model. If E_ρ is replaced by the empirical distribution of (x_{t+1}, x_t) , then the expression in (5) is exactly 0 by the first order condition for maximizing the likelihood. Thus a good mechanistic model should give small values of $M_i(\rho)$. The right weighting is a quadratic form $M^T \tilde{I}^{-1} M$ where \tilde{I} is an estimated information matrix; see Gallant and Tauchen (1992) for precise statement of the results, extension to more general settings, and proofs.

The advantage of GMM is that the statistical model f doesn't have to be "right", i.e. it doesn't need to duplicate exactly the transition probability of the process generating the data. It just needs to be sufficiently general, or well enough adapted to the application, so that it discriminates parameters of the mechanistic model i.e. $M_i(\rho) = 0$ for all i , if and only if $\rho = \rho_0$, the true value of ρ .

For a first epidemiological application of this method, we estimated contact function parameters for an SEIR model, using the monthly measles case reports series from New York City 1928-1963. To mitigate excessive fadeouts we added a small exchange of individuals (at rate δ) with an "outside world" having fixed levels of the disease:

$$\frac{dS}{dt} = m(1 - S) - \beta(t)SI + \delta(S_0 - S)$$

$$\frac{dE}{dt} = b(t)SI - (m+a)E + \delta(E_0 - E)$$

$$\frac{dI}{dt} = aE - (m+g)I + \delta(I_0 - I)$$

We estimated the parameters b_0 and b_1 in the equation for seasonal variations in the contact rate, $\beta(t) = b_0(1 + \sigma e_t) + b_1\phi(t)$, assuming that all other parameters of the model were known (Table 2). Here ϕ is the seasonal forcing function proposed by Kot et al. (1988),

$$\phi(t) = 1.5 \left\{ \frac{0.68 + \cos(2\pi t)}{1.5 + \cos(2\pi t)} \right\} - .4$$

(we added the "-.4" to make the mean of ϕ over the year equal 0), and σe_t are autocorrelated random fluctuations with mean 0, variance σ^2 , and autocorrelation 0.95 between values 1 month apart. Simulated measurement errors were added to the output from the SEIR model; the errors were lognormal with coefficient of variation based on the estimate that 1/8 of all cases are reported (B. Grenfell, *pers. comm*), and assuming cases are reported or not in independent clusters of size 2. We took $\sigma = .05$ to represent small year-to-year fluctuations in contact intensity; results for $\sigma = .01$ (not presented) were essentially the same. The statistical model was a neural net with 5 lags and 3 units, as in the best-fit neural net model for monthly NYC measles data (Table 2).

The results are encouraging for the method, but somewhat discouraging for fitting SEIR models from time series data. The encouraging result is that our fully automatic procedure produced a value of the relative forcing intensity b_1/b_0 in line with generally accepted estimates, which were obtained by more laborious *ad hoc* methods. A contour plot of the GMM fitting criterion (Figure 3a) has a steep "valley" of better fits (smaller values of the criterion) roughly along the line $b_1 = 0.2b_0$, and a univariate plot of optimal

GMM vs. b_1/b_0 has a well-defined minimum (Figure 3b). The discouraging results are first that, as can be seen in Fig. 3a the terrain along the valley floor is rather flat, so the absolute values of b_0 and b_1 are less well identified. Second, the entire terrain is rough (Figure 4). It is not clear how much of the roughness is due to Monte Carlo error (finite sample size in computing $E_\rho\{\cdot\}$), vs. intrinsic roughness of the exact surface. If the latter is dominant, then standard asymptotic methods based Taylor-series approximations will not be available for setting confidence regions or for hypothesis testing based on GMM.

Conclusions

We would like to close by speculating on the implications of our findings. “Surrogate data” results indicate that nonlinearity (in the departures from a simple annual cycle) is a consistent feature of the measles data series, but less common in the other diseases examined. The statistics $r_{.01}$ and $r_{.001}$, based on the correlation integral were especially powerful at picking out nonlinearity. The property detected by these statistics (as used here, with state vectors corresponding to 2 years of data), is that 2-year-long stretches of data are more similar to each other than would be expected strictly from the linear autocorrelations. Thus nonlinear modeling, and nonlinear forecasting, should be an improvement over linear prediction methods.

According to our Lyapunov exponent estimates, genuine chaos appears to be very rare or absent. However, measles is often identified as being rather near the transition to chaos, with a mode in the distribution of exponents near 0. The same qualitative result was obtained in a survey of natural and laboratory animal populations (Ellner and Turchin 1993). In such cases the dynamics can easily vary between periods of stable behavior, and periods of chaos-like behavior (i.e., finite-time sensitive dependence on initial conditions). One way to quantify this type of behavior is by computing local (finite-time) Lyapunov exponents λ_m , defined by equation (2) with a finite value of m (Abarbanel et al. 1991, 1992). Figure 5 shows a plot of λ_m over time for the Copenhagen measles series, for $m=1$ or 2 years; because λ is near 0 there are frequent transitions between short-term sensitive and insensitive dependence on initial conditions. For this type of dynamics, a precise estimate of λ may be less useful than a rough characterization of the pattern of fluctuations in local exponents (e.g., their variance, autocorrelation, frequency of sign changes).

Methods are still evolving rapidly, so our results and conclusions are hardly the last word on nonlinearity and chaos in epidemics. One promising direction, encouraged by the feasibility of GMM model fitting, is to hybridize between mechanistic and statistical

modeling. We expect that models that are mechanistic insofar as possible, but rely on state-space reconstruction and nonparametrics where ignorance forces that upon us, have the potential to provide more reliable characterizations of the dynamics, and more reliable prediction methods.

LITERATURE CITED

Abarbanel, H. D. I., R. Brown, and M. B. Kennel. 1991. Variation of Lyapunov exponents on a strange attractor. *Journal of Nonlinear Science* 1: 175-199.

Abarbanel, H. D. I., R. Brown, and M. B. Kennel. 1992. Local Lyapunov exponents computed from observed data. *Journal of Nonlinear Science* 2: 343-365.

Casdagli, M. 1992. A dynamical systems approach to modeling input-output systems. pp. 265-281 in: M. Casdagli and S. Eubank (eds.) *Nonlinear Modeling and Forecasting*. SFI Studies in the Sciences of Complexity Proc. Vol. XII. Addison-Wesley, NY.

Crutchfield, J.P., J.D. Farmer, and B.A. Huberman. 1982. Fluctuations and simple chaotic dynamics. *Physics Reports* 92, 45-82.

Eckmann, J.-P. and D. Ruelle. 1985. Ergodic theory of chaos and strange attractors. *Reviews of Modern Physics* 57: 617-656.

Ellner S. 1991. Detecting low-dimensional chaos in population dynamics data: a critical review. pp. 63-90 in: J.A. Logan and F.P. Hain (eds.) *Chaos and Insect Ecology*. VPI&SU, Blacksburg VA.

Ellner, S., A.R. Gallant, D. McCaffrey, and D. Nychka. 1991. Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data. *Physics Letters* 153, 357-363.

Ellner, S., D. W. Nychka, and A. R. Gallant. 1992. LENNS, a program to estimate the dominant Lyapunov exponent of noisy nonlinear systems from time series data. Institute of Statistics Mimeo Series #2235, Statistics Department, North Carolina State University, Raleigh NC 27695-8203.

Ellner, S. and P. Turchin. 1993. Chaos in a 'noisy' world: new methods and evidence from time series analysis. Preprint.

Gallant, A.R. and G. Tauchen. Which moments to match? Working Paper, Department of Economics, Duke University, Durham NC.

Hastings, A., C. L. Hom, S. Ellner, P. Turchin, H. J. C. Godfray. 1993. Chaos in ecology: is mother nature a strange attractor? *Annual Review of Ecology and Systematics* (in press).

Kifer, Y. 1986. *Ergodic Theory of Random Transformations*. Birkhäuser, Boston, Massachusetts.

Kot, M., W. M. Schaffer, G.L. Truty, D.J. Graser, and L.F. Olsen. Changing criteria for

imposing order. *Ecological Modelling* 43: 75-110.

McCaffrey, D., S. Ellner, D.W. Nychka, and A.R. Gallant. 1992. Estimating the Lyapunov exponent of a chaotic system with nonlinear regression. *Journal of the American Statistical Association* 87: 682-695.

Nychka, D.W., S. Ellner, D. McCaffrey, and A.R. Gallant. 1992. Finding chaos in noisy systems. *Journal of the Royal Statistical Society Series B* 54: 399-426.

Ramsay, J.B. and P. Rothman. 1992. Time irreversibility and stationary time series: estimators and test statistics. Preprint.

Rand, D.A. and H.B. Wilson. 1991. Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics. *Proceeding of the Royal Society of London B* 246: 179-184.

Rothman, P. 1990. Characterization of the Time Irreversibility of Economic Time Series. Ph.D. Dissertation, Department of Economics, New York University.

Sauer, T., J. A. Yorke, and M. Casdagli. 1991. Embedology. *Journal of Statistical Physics* 65: 579-616.

Sayers, C. 1990. Chaos and the business cycle. pp. 115-125 in: S. Krasner (ed.), *The Ubiquity of Chaos*. AAAS, Washington DC.

Schaffer W. M. and M. Kot. 1985. Nearly one dimensional dynamics in an epidemic. *Journal of Theoretical Biology* 112, 403-427.

Schaffer W. M., and M. Kot. 1986. Chaos in ecological systems: the coals that Newcastle forgot. *Trends in Ecology and Evolution* 1: 58-63.

Schaffer WM, Olsen LF, Truty GL, Fulmer SL. 1990. The case for chaos in childhood epidemics. pp. 138-166 in: S. Krasner (ed.) *The Ubiquity of Chaos*. AAAS, Washington DC.

Smith, R. L. 1992a. Estimating dimension in noisy chaotic time series. *Journal of the Royal Statistical Society Series B* 54: 329-351.

Smith, R. L. 1992b. Relation between statistics and chaos. *Statistical Science* 7:109-113.

Stone, L. 1992. Coloured noise or low-dimensional chaos? *Proceeding of the Royal Society of London Series B* 250, 77-81.

Sugihara, G. and R.M. May. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. *Nature* 344, 734-741.

Theiler, J. 1990. Estimating fractal dimension. *Journal of the Optical Society of America A* 7: 1055-1073.

Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer. 1992. Testing for nonlinearity in time series data: the method of surrogate data. *Physica D* 58: 77-94.

Theiler, J., P. S. Lindsay and D. M. Rubin. 1993. Detecting nonlinearity in data with long coherence times. in: AS Weigend and NA Gershenfeld eds. *Predicting the future and understanding the Past. SFI Studies in the Sciences of Complexity* vol XVII. Addison-

Wesley (to appear).

Wolf, A., J.B. Swift, H.L. Swinney, and J.A. Vastano. 1985. Determining Lyapunov exponents from a time series. *Physica* 16D, 285-315.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Table 1. Surrogate data tests for nonlinearity based on quarterly case reports, using test statistics based on time reversal, the correlation integral $C(r)$, and “prediction” accuracy 1 year backwards in time. The test statistics are described in the text. Reported significance levels are based on $n=500$ surrogates for each data set for time-reversal and $C(r)$ statistics, $n=250$ for back-prediction. Symbols indicate significance levels $P > .1(-)$, $P < .1(+)$, $P < .05(*)$ and $P < .01(**)$.

Table 2. Estimated Lyapunov exponents by neural net time series models for measles monthly data ($L = 3$, $d = 1 - 8$, $C_{gcv} = 2$). Nonseasonal models only use lagged values of the time series; seasonal models include $\sin(2\pi j/12)$ and $\cos(2\pi j/12)$ as covariates ($j = \text{time}$ in months).

<u>SEASONAL</u>				<u>NON-SEASONAL</u>			
	#lags	#units	λ		#lags	#units	λ
Baltimore	5	4	-0.11		8	7	+ 0.09
NYC	5	3	-0.08		6	6	+ 0.02
Detroit	6	5	-0.05		6	6	+ 0.025
Copenhagen	5	6	-0.01		8	6	+ 0.06

Table 3. Estimated Lyapunov exponent λ for quarterly case reports using seasonal neural net model ($L = 1$, $C_{gcv} = 2$).

	#lags	#units	λ	r^2	df
MEASLES					
NYC	3	2	-0.67	0.93	123
Baltimore	4	2	-0.07	0.83	109
Detroit	6	2	-0.08	0.85	145
Milwaukee	2	2	-7.78	0.77	103
Copenhagen	2	3	-0.06	0.87	135
London	2	1	-0.23	0.67	51
Bristol	3	1	-0.13	0.77	50
Liverpool	2	1	-1.56	0.72	51
Manchester	2	2	-0.24	0.90	45
Newcastle	2	1	-3.61	0.71	51
Birmingham	2	2	-0.16	0.92	45
Sheffield	5	1	-1.93	0.84	48
MUMPS					
NYC	5	2	+0.01	0.94	119
Milwaukee	2	2	-0.39	0.74	153
Copenhagen	2	3	-0.24	0.86	135
RUBELLA					
St. Louis	2	2	-0.27	0.76	61
Copenhagen	2	1	-0.87	0.71	99
CHICKENPOX					
NYC	6	2	-0.14	0.95	117
Detroit	2	1	-0.33	0.78	61
St. Louis	1	1	-1.46	0.86	68
Copenhagen	1	1	-0.61	0.81	107
Milwaukee	2	2	-0.37	0.86	129

FIGURE LEGENDS

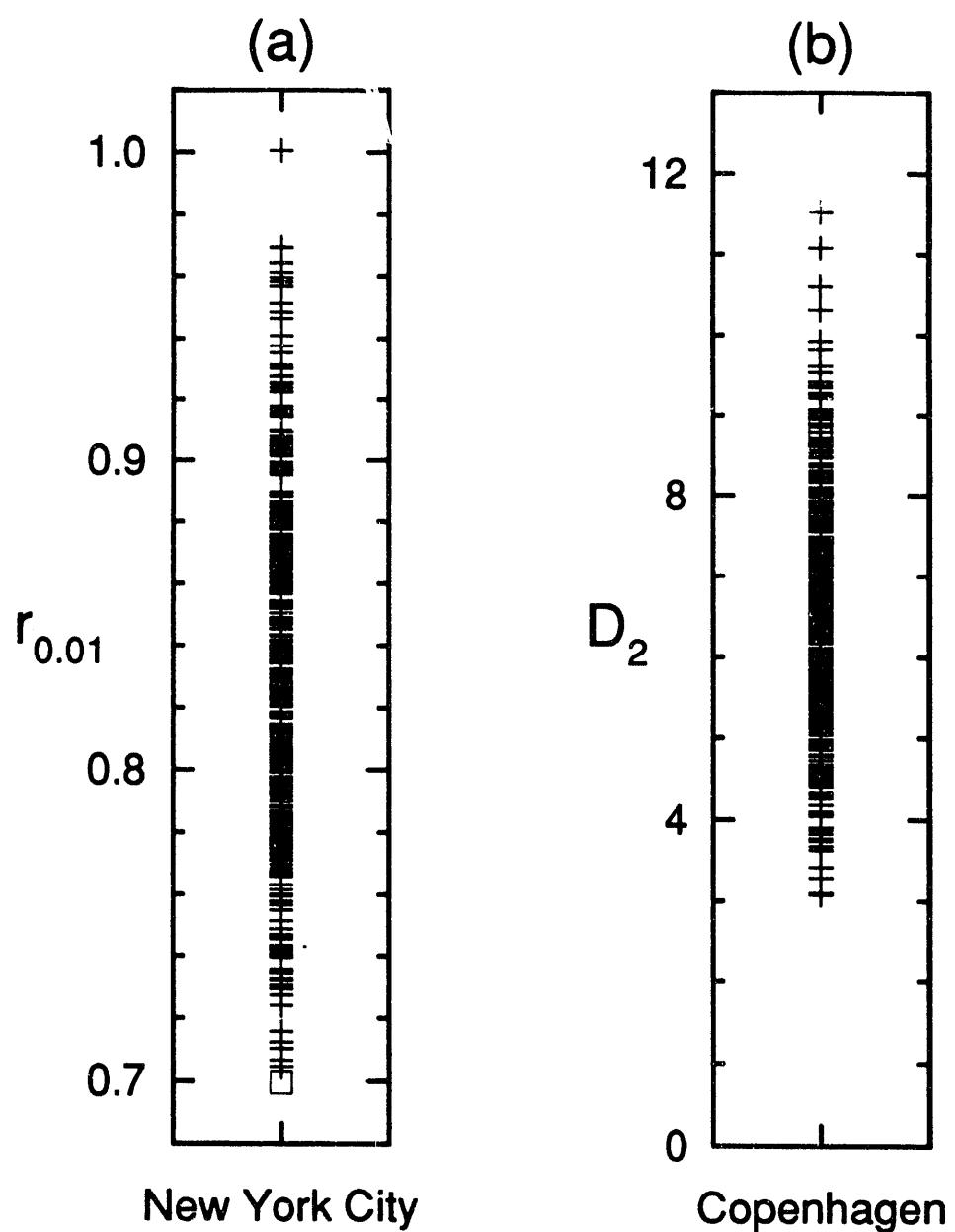
Figure 1. (a) The statistic r_{01} is shown for the Copenhagen measles data (□), and for 500 surrogate time series (+). The value is significantly smaller for the actual data than for the surrogates. (b) The estimated correlation dimension D_2 is shown for New York City measles data (□), and for 500 surrogate time series (+). Again, the actual data exhibits a much smaller dimension than is seen in the surrogate time series.

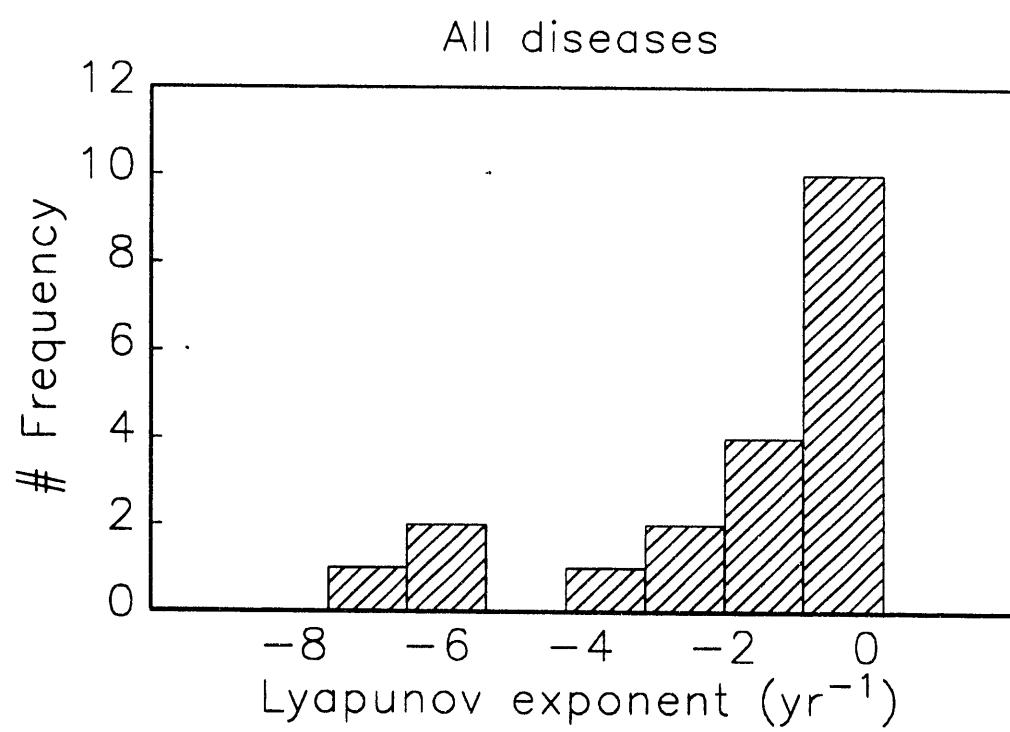
Figure 2. Histogram of estimated Lyapunov exponents for quarterly disease case reports. Values in Table 3 were multiplied by 4 to express exponents in units year^{-1} .

Figure 3. (a) Contour plot of the GMM objective function; smaller values correspond to better fits between model and data. Contour based on values computed at a regular 31×31 grid over the range of values shown for b_0 and b_1 , based on a simulation of 5000 months duration for each parameter combination. (b) Plot of minimum GMM objective function as a function of the relative intensity of seasonal forcing b_1/b_0 .

Figure 4. Plot of GMM objective function (as in Figure 3) over a region near the best-fit parameter values.

Figure 5. Finite-time “local” Lyapunov exponents for Copenhagen measles, data based on the best-fit seasonal neural net model for quarterly data.





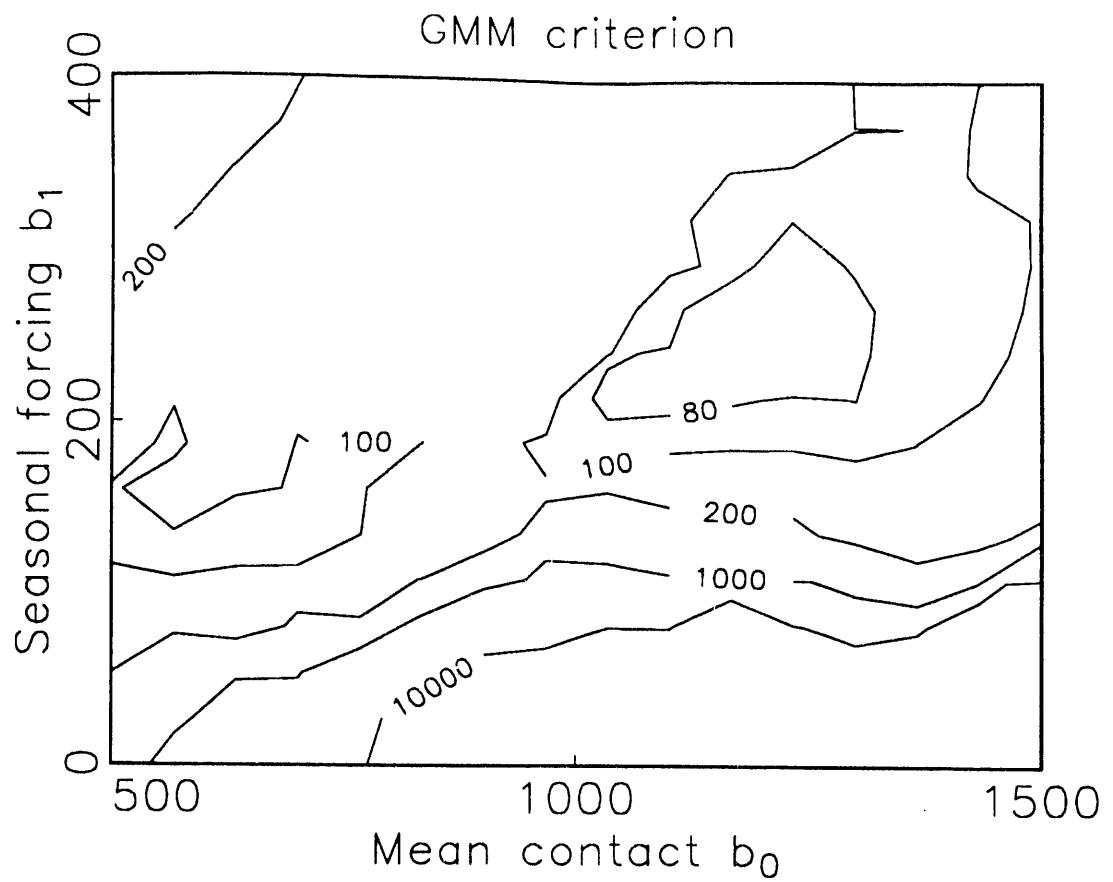


Fig. 5(a)

Fig 3(c)

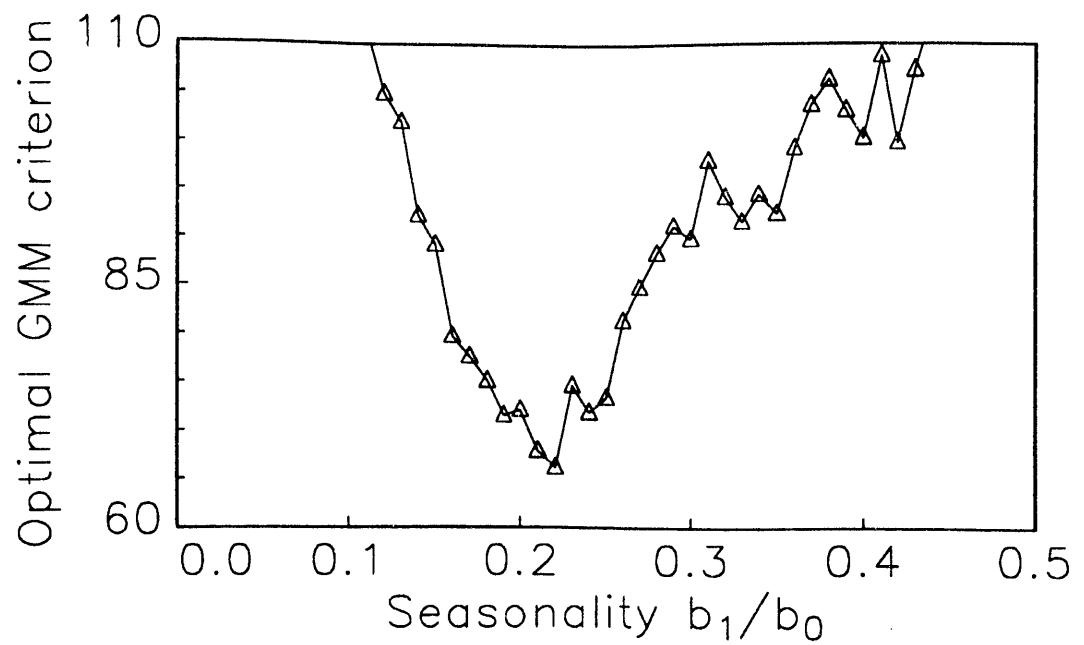


Fig 4

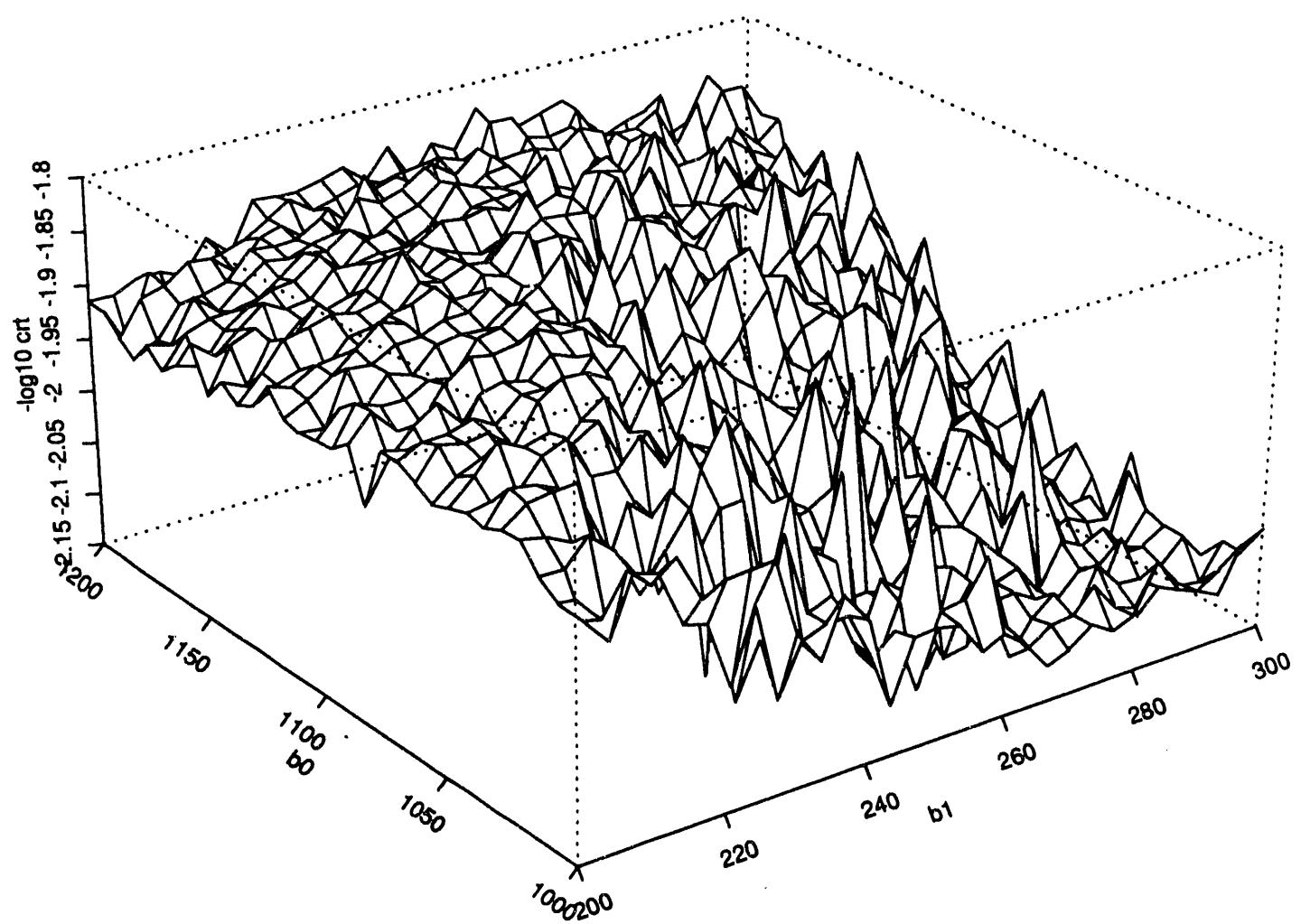
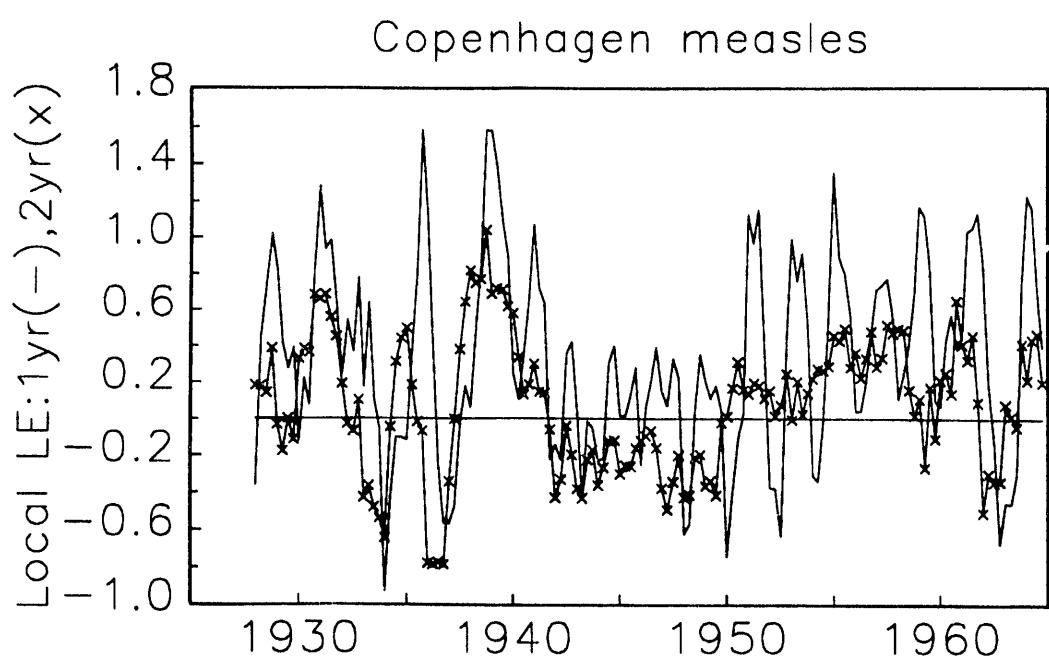


Fig 5



END

DATE
FILMED

11/02/93

