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ABSTRACT from those in the United States, in that operators may remotely
obtain access to the core from both ends, and the reactors can

Automated analysis using pattern recognition and neural
be continuously fueled without shutting them down. Such annetwork software can help interpret data, call attention to

potential anomalies, and improve safeguards effectiveness, operation offer a fuel management advantage, but a safeguards
challenge, because it provides a greater opportunity for the

Automated software analysis, based on pattern recognition and diversion of nuclear material.
neural networks, was applied to data collated from a radiation

core discharge monitor system located adjacent to an on-load On-load reactors are well-suited for producing pluto-
reactor core. Unattended radiation sensors continuously col- niurn from their standard fuel bundles. Safeguarding an on-
lect data to monitor on-line refueling operations in the reactor, load reactor requires keeping track of fuel as it is pushed
The huge volume of data collected from a number of radiation through the core. When a fresh fuel bundle is pushed in one

eharmels makes it difficult for a safeguards inspector to review side, a spent fuel bundle is simultaneously discharged into a
it all, check for consistency among the measurement channels, collection mechanism on the other side. Using this fueling
and find anomalies. Pattern recognition and neural network scheme, a typical on-load reactor will discharge 55 to 65 fuel
software can analyze large volumes of data from continuous, bundles per week. Figure 1 shows a conceptual diagram of this
unattended measurements, thereby improving and automating fueling cycle. Because this is an ongoing process, it is labor
the detection of anomalies. We developed a prototype pattern intensive for a safeguarding agency to have an inspector on-
recognition program that determines the reactor power level site to continuously monitor re-fueling.
and identifies the times when fuel bundles are pushed through
the core during on-line refueling. Neural network models were

also developed to predict fuel bundle burnup to calculate the _/_'__i_ ,4
region on the on-load reactor face from which fuel bundles

were discharged based on the radiation signals. In the prelimi- Am_t

nary data set, which was limited and consisted of four distinct __ ___._cN.

burnup regions, the neural network model correctly predicted
the burnup region with an accuracy of 92%.

INTRODUCTION

Nuclear power stations in the United States contain re.ac- t'utt.

tor cores, which can be accessed from only one end, usually
the top; fuel can be accessed only when the reactor is shut
down. One safeguards advantage to this type of reactor is that

it is relatively easy for a nuclear safeguarding agency to moni-
tor the fueling process: an inspector can be sent to the site to
oversee the fueling procedure. On-load nuclear reactors differ

* This work supported by the U. S. Department of Energy,

Office of Safeguards and Secm'ity and Office of Arms Control Fig. 1. Conceptual diagram of fueling cycle.
and Nonproliferation.
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To provide data that are useful to inspectors, a core core are on the east and west sides of the building. Fueling takes
discharge monitor (CDM) systemI has been installed on the piace from east to west or west to east and each GRAND detector
on-load reactor..The CDM collects data continuously and array is designated by its location in relationship to the core, either
automatically from radiation sensors that monitor the reactor the southeast (SE), northeast (NI/), southwest (SW), or northwest
core and the fueling process of the on-load reactor.Currently, (NW) comer as shown in Fig. 2. The GRAND operates continu-
the CDM data are manually examined by a safeguards inspec- ously, collecting data at discrete time intervals from the detector
tor using graphical review software to determine when on-line arrays.These arrays monitor radiation signals from the reactor that
fueling activity occurred. Because this system has the potential show the discharge of spent fuel from the reactor core. The data are
to generate massive quantifies of data, efficient automatic transmitted to an MS-DOS computer for permanent recording,
algorithms would help make interpretations.These algorithms archiving, and analysis by inst_.ctors.

could extract information from the data, reduce analysis times, Each GRAND collects nuclear radiation data from the detec-

and relieve inspectors from time-consuming manual data torenclosure, filters it, time stamps it, and temporarilystores it. The
reviews. Automated quantitative analysis programscould help data are then fed to the collection computer upon re.questfor moresafeguarding agencies gain a better perspective on the com- permanent storage. At a later time, data can be off-loaded from the
plete picture of the fueling activity of an on-load nuclear reac- collection computer foroff-line review.The detector data fed from
tor.These programs could provide a cost.effective solution for the GRAND consist of five channels of information. The channels
automated monitoring of on-load reactors, significantly reduc- are labeled as follows: fission chamberA, fission chamber B, fission
ing personnel time and effort. In this paper we discuss proto- chamber C, ion chamber 1, and ion chamber 2. Fission chamberA
type pattern recognition and neural network software devel- corresponds to the firstneutron detector in the detector enclosure.
aped to test automated data analysis and provide a tool for Fission chamber B is another view of the first neutron detector,
inspectors. The pauern recognition program was developed to which can be used for tamper detection. The second neutron detec-
test the feasibility of analyzing CDM data to identify when tor in each detector enclosure is labeled as fission chamber C. This
fuel bundle pushes occurred during on-line refueling and to

neutron detector is not wired to its corresponding GRAND, butmonitor the power level of the reactor. The neural network
rather to the GRAND on the opposing face. For example, the NEmodel was developed to test the feasibility of determining the fissionchamber C is wired into the NW GRAND, and the NW fis-

region on the reactor face from which each fuel bundle set was
sion chamber C is wired into the NE GRAND. This provides the

discharged and to try to predict the burnup of fuel bundles. overall system with a backup, in case the GRAND for one of the
These programs were tested using preliminary start-up data detectors fails. This cross wiring is shown in Fig. 2 as the splice box
collected from a CDM system installed on an on-load reactor. between the two GRANDs on each side of the reactor core.

CORE DISCHARGE MONITOR (CDM) SYSTEM Finally, the two gamma-ray detectors correspond to the ion
chamber 1 and 2 channels, respectively. Figure 3 shows the layout

The CDM system used in this study consists of four of a detector enclosure. An in-depth discussion of the detector
gamma-ray and neutron detectors (GRANDs) located near the assemblies and the GRAND electronics package can be found in
nuclear core: two on each reactor face. The faces of the reactor Ref. 2.
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Fig. 2. Sample layout of a typical on-load reactor:
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Fig. 3. A typical detector enclosure.

The GRAND records data every 10 to 11 seconds requir- 1._t4 [
ing around 100 megabytes to store ali rbe data points collected [ ,_ Fan=ioncn=rubricA

from one reactor for 90 days; normally statistically insignifi-l _ _

cant data are filtered so the actual data amount stored is closer

to 10 to 20 megabytes per 90 days. lt is impractical for inspec-
tors to quantitatively analyze this much data. Shown in Fig. 4
are graphs of data from two detectors during one particular o
day. Each large spike on the graph corresponds to a pair of fuel m
bundles being discharged from the reactor. Smaller spikes or [ t_ Ion Crummier1
decay curves or both on the graph may correspond to other
activities such as the rotation of the fueling machine or the iradioactive decay of the spent fuel being held in the fueling /

machine during a refueling operatSc,n. Reactor power level can _ , [ Ualso be determined from the dat_ because the background level 0 _ .....
the detectors are sensing corresponds to the current power _.oo =:s0
level of the reactor. The background m this context is consid- =_.Ac'roR=

ered to be the amount of radiation the reactor emits wher, no Fig. 4. Sample CDM data from an on-load reactor.
fuel is present outside of 'he core. A safeguards inspector
counts the number of spikes on the graph to de:ermine the total
number of fuel pushes the reactor made in a particular day. 4. Correlating events between detector channels to
The counted number of fuel pushes is then compared to facil- assure the channels are operating correctly and to
ity declarations for safeguards verification. An automated pro- check for possible tampering,

tess can considerably reduce the analysis time and help a 5. Identifying the fueling channel from which the
safeguards inspector review the large volume of CDM data. spent fuel was discharged, and

6. Predicthag the burnup of discharged spent fuel
AUTOMATED SOFTWARE ANALYSIS bundles.

We developed prototype analysis software to investigate A prototype pattern-recognition software tool, CDM
the feasibility of the following objectives: Analysis, was developed to test objectives 1 through 4. A neu-

ral network model was developed to test the feasibility of pre-
1. Identifying sections in the CDM data for an

inspector to examine in greater detail, dieting fuel burnup arid location of fuel discharged from the
reactor. To fully test CDM Analysis and the neural network

2. Locating and counting fuel bundle Fushes and models, a considerable amount of data is needed. For this

determining when they occurred, study, only about 30 days of data were available. Although the
3. Determining reactor power level as a percentage total amount of data used was sparse, the analysis software

¢f full power, still performed well suggesting this approach could be devel-
oped into a useful tool for inspections.
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CDM Analysis makes two passes over the CDM data new value at which the average background comes to rest is
during its search for areas of interest. In the first pass, it slides considered the new power level of the reactor. The average
an average along the signal looking for significant changes, background as a percentage of the pre-defined baseline is the
When the slope of the signal jumps above or below the sliding percentage of full power at which the reactor is running.

average by more than 10%, the data points are flagged for later Currently, CDM Analysis does not examine more than
examination. In the first pass, a large quantity of data may be one channel on one detector when making its power level
flagged as interesting. To reduce the clutter, a second pass is computations, In a production-quality analysis package, this
made over just the areas that were flagged. Areas near each

other in the time series are clustered together with the maxi- percentage should be an average of ali the percentages com-puted from ali channels on ali detectors. By taking power level
mum data point being marked as the middle of the event. From measurements from ali sides of the reactor core and averaging
the resulting list, a report can be generated to alert the safe-

them, we could obtain a more accurate power level reading.
guards investigator to specific areas of the data. Radiation

Even though examining just one channel gives a fairly accu-
spikes caused by refueling are found by setting the search

rate reading, within 5%, examining ali channels is a much
threshold very high (50%). This technique provides ali the

better strategy because it provides a redundancy check. Figure
fueling spikes for a given data set. 6 is an example of the power level of a reactor being raised

from startup to full power. Notice that the power changes
MONITORING REACTOR POWER LEVEL AND occur in multiple steps. CDM Analysis is also capable of print-
POWER LEVEL CHANGES ing a report that details each step of the power level change

and the power level to which the reactor moved.
Once the areas of interest are identified, power level

monitoring is straightforward. When no events are occurring,
the background radiation sensed corresponds to the reactor a000
power level. The average of the background can be used to SE FlgmlonChaml_r A
compute the power level by establishing a baseline reading of
what is considered to be full power. This baseline is computed

by examining data from a reactor that is operating at a fixed
power without fuel outside the core. The average value
recorded by each. detector is used as the baseline. This baseline
is marked on the graph in Fig. 5 by a horizontal line. If the o
average value of the background moves from this baseline,
then the power level i._ changing. The data have shown that
most power change: . =curred in a step-wise fashion. CDM
Analysis evaluates the power changes in the following man- f"
ner. If the reactor power is raised or lowered, the slope of the o "0o:00 _:s9
average background starts to become very steep. This is REAeT_._R2

marked as the beginning of a power chauge. When this slope
flattens out again, the end of the power change is marked. The Fig. 6. The multiple steps of a power level change.

:: !i :: STATISTICAL PHENOMENA OF CDM DATA
,,:,,: :,,

_A _, !__. the correlation ,_f the height of the radiation spikes from
i _ ., fuel discharge events with the fuel burnup. We also cross-............ correlated radiation signals from detectors in different posi-

................ i-. ::." !: :'_,":'" ........ -. tions to try to del_ermine the location! of the fuel channel during. ,.,,: ,,
,, :: :: a refueling event.

st - !!i:
glmaa A :::: Determining burnup is a difficult, multivariate problem.
', ',', !i ii The CDM data showed that de_:_J3rs on one face of the

:::: ............ reactor are insignificantly affected i-_yrefueling events occur-_"_":'"'""_., : ..... , ..... ring on the opposite face. A signific_t correlation does exist
, ,,, .,,.... ::,_r ; between detectc)r arrays located oci the same face of the

_ reactor. The variance in the ion chamber data was found to be
i:_ ehan_

pronounced. This effect was traced _o data sampling with

Fig. 5. Sample output from the CDM analysis program, insufficient intel,ration time to provide accurate ion channel
currents. The neutron channels were not affected and provided
stable readings that were used for the analysis. 3

!
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I NEURAL NETWORKS FOR SOLVING THE 90 of the 460 available fuel channels in the reactor core and

FUEL GEOMETRY PROBLEM represented a start-up activity rather than normal refueling.
Even with these limitations, we were still able to train a neural

Neural networks are based on a mathematical model network to classify the data into different regions on the face
that is derived from cell biology. 4 These networks are orga- of the reactor.
nized into layers consisting of several neurons (nodes) con-

nected with adjustable weights. Each layer performs aparticu- The first neural network model divided the channel map
lar function. The input layer processes the data being pre- into eight regions. This channel map and the eight regions are
sented to the network, one or more hidden layers encode "fea- shown in Fig. 7. Almost all the regions were chosen because of
tures" in the data, and the output layer holds the response of the distribution of the points in the available data. Because
the network to a given input, detectors on one face do not reliably see events on the oppos-

ing face, only 10 channels from the same face out of the 20
Two phases of operation are required: the learning phase total channels were used in the neural network model. The ion

and the testing and recall phase. Learning consists of present- chambers act as noise during the training process to help
ing a stimulus (an input vector) to the input layer together with separate the input vectors into appropriate categories. Back-
a desired response. The network then calculates a result using propagation was chosen as the modeling paradigm because of
the current weights and given input values. This "answer" is its ability to use real-valued inputs. 5The neural networks used

next compared with the desired response. If a difference of in this proof-of-principle were created using NeuralWorks
sufficient magnitude exists, the weight values are adjusted. Professional II/Plus, 6 a commercial neural network develop-
Over time, as this learning process is repeated with more ment tool manufactured by NeuralWare, Inc.
vectors, the weights will converge, mad the network is said to

be trained. During the testing/recall phase, similar examples
are presented to the network to test whether the training was NEURAL NETWORKS FOR FUEL BURNUP
adequate. The difference between the aesired and actual out- PREDICTION

put is a measure of success, with differences of smaller magni- Because it may be important to determine if a facility is
tude representing greater success than those of larger discharging low-burnup fuel from the reactor, we built a neural
magnitude, network model similar to the one described above to predict

When using neural networks, one must obtain an fuel burnup. It is difficult to compute an actual value for the
adequate set of training data. It is difficult to quantify the burnup of each individual fuel bundle because the _pike
amount of training data required for good results because the recorded by the CDM is an additive value of two bundles
quantity depends on the complexity of the records and the being discharged simultaneously. In this data set, burnup fell

number of "features" embedded in the data. The 30 days of into one of four distinct regions. Therefore, we built a neural
available reactor data yielded only 170 examples of fuel network to classify burnup into one of the four categories

discharge events, which we consider minimal for adequate based upon the CDM data, as shown in Fig. 8.
training and testing. In addition, these events came from only
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Burnup Can Be Ciassff'_l Into Four Categories
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Fig. 8. Four categories of recorded burnups in sample data.

RESULTS OF NEURAL NETWORKS FOR SOLV- sentative of the measurement period. In addition, different
ING GEOMETRY AND BURNUP types of neural network models should be tried once a repre-

sentative amount of data has been obtained. The portability of

The neural networks used for solving the geometry neural network models to other reactors of the same type
problem were trained and tested on data from the east face of should also be investigated. Neural network models hold great
the reactor, although iJ_e west face could have been used just promise for future work in the area of core discharge monitor-
as weil. The training set consisted of 63 patterns and the test ing and automated examination of large volumes of continu-
set of 72 patterns. After 50,000 training iterations, the network ously collected data to improve nuclear safeguards. We

correctly classified the region of the fuel discharge in 82% of firmly believe that a commercial-grade tool for monitoring
the patterns in the test set. For the fuel burnup problem, the power and counting fuel bundles from CDM data should be
network performed better, with an accuracy of 92% in predict- developed.
ing fuel bundle burnup. In spite of the very small data set, the
networks performed remarkably weil. The result was a neural
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