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Ted W. Larson
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ABSTRACT

Automated analysis using pattern recognition and neural
network software can help interpret data, call attention to
potential anomalies, and improve safeguards effectiveness.
Automated software analysis, based on pattern recognition and
neural networks, was applied to data collected from a radiation
core discharge monitor system located adjacent to an on-load
reactor core. Unattended radiation sensors continuously col-
lect data to monitor on-line refueling operations in the reactor.
The huge volume of data collected from a number of radiation
channels makes it difficult for a safeguards inspector to review
it all, check for consistency among the measurement channels,
and find anomalies. Pattern recognition and neural network
software can analyze large volumes of data from continuous,
unattended measurements, thereby improving and automating
the detection of anomalies. We developed a prototype pattern
recognition program that determines the reactor power level
and identifies the times when fuel bundles are pushed through
the core during on-line refueling. Neural network models were
also developed to predict fuel bundle burnup to calculate the
region on the on-load reactor face from which fuel bundles
were discharged based on the radiation signals. In the prelimi-
nary data set, which was limited and consisted of four distinct
bumup regions, the neural network model correctly predicted
the burnup region with an accuracy of 92%.

INTRODUCTION

Nuclear power stations in the United States contain reac-
tor cores, which can be accessed from only one end, usually
the top; fuel can be accessed only when the reactor is shut
down. One safeguards advantage to this type of reactor is that
it is relatively easy for a nuclear safeguarding agency to moni-
tor the fueling process: an inspector can be sent to the site to
oversee the fueling procedure. On-load nuclear reactors differ

* This work supported by the U. S. Department of Energy,
Office of Safeguards and Security and Office of Arms Control
and Nonproliferation.

from those in the United States, in that operators may remotely
obtain access to the core from both ends, and the reactors can
be continuously fueled without shutting them down. Such an
operation offer a fuel management advantage, but a safeguards
challenge, because it provides a greater opportunity for the
diversion of nuclear material.

On-load reactors are well-suited for producing pluto-
nium from their standard fuel bundles. Safeguarding an on-
load reactor requires keeping track of fuel as it is pushed
through the core. When a fresh fuel bundle is pushed in one
side, a spent fuel bundle is simultaneously discharged into a
collection mechanism on the other side. Using this fueling
scheme, a typical on-load reactor will discharge 55 to 65 fuel
bundles per week. Figure 1 shows a conceptual diagram of this
fueling cycle. Because this is an ongoing process, it is labor
intensive for a safeguarding agency to have an inspector on-
site to continuously monitor re-fueling.

Fig. 1. Conceptual diagram of fueling cycle.
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To provide data that are useful to inspectors, a core
discharge monitor (CDM) system! has been installed on the
on-load reactor. The CDM collects data continuously and
automatically from radiation sensors that monitor the reactor
core and the fueling process of the on-load reactor. Currently,
the CDM data are manually examined by a safeguards inspec-
tor using graphical review software to determine when on-line
fueling activity occurred. Because this system has the potential
to generate massive quantities of data, efficient automatic
algorithms would help make interpretations. These algorithms
could extract information from the data, reduce analysis times,
and relieve inspectors from time-consuming manual data
reviews. Automated quantitative analysis programs could help
safeguarding agencies gain a better perspective on the com-
plete picture of the fueling activity of an on-load nuclear reac-
tor. These programs could provide a cost-effective solution for
automated monitoring of on-load reactors, significantly reduc-
ing personnel time and effort. In this paper we discuss proto-
type pattern recognition and neural network software devel-
oped to test automated data analysis and provide a tool for
inspectors. The pattern recognition program was developed to
test the feasibility of analyzing CDM data to identify when
fuel bundle pushes occurred during on-line refueling and to
monitor the power level of the reactor. The neural network
model was developed 1o test the feasibility of determining the
region on the reactor face from which each fuel bundle set was
discharged and to try to predict the burnup of fuel bundles.
These programs were tested using preliminary start-up data
collected from a CDM system installed on an on-load reactor.

CORE DISCHARGE MONITOR (CDM) SYSTEM

The CDM system used in this study consists of four
gamma-ray and neutron detectors (GRAND:s) located near the
nuclear core: two on each reactor face. The faces of the reactor

core are on the east and west sides of the building. Fueling takes
place from east to west or west to east and each GRAND detector
array is designated by its location in relationship to the core, either
the southeast (SE), northeast (NE), southwest (SW), or northwest
(NW) comer as shown in Fig. 2. The GRAND operates continu-
ously, collecting data at discrete time intervals from the detector
arrays. These arrays monitor radiation signals from the reactor that
show the discharge of spent fuel from the reactor core. The data are
transmitted to an MS-DOS computer for permanent recording,
archiving, and analysis by inspectors.

Each GRAND collects nuclear radiation data from the detec-
tor enclosure, filters it, time stamps it, and temporarily stores it. The
data are then fed 10 the collection computer upon request for more
permanent storage. At a later time, data can be off-loaded from the
collection computer for off-line review. The detector data fed from
the GRAND consist of five channels of information. The channels
are labeled as follows: fission chamber A, fission chamber B, fission
chamber C, ion chamber 1, and ion chamber 2. Fission chamber A
corresponds to the first neutron detector in the detector enclosure.
Fission chamber B is another view of the first neutron detector,
which can be used for tamper detection. The second neutron detec-
tor in each detector enclosure is labeled as fission chamber C. This
neutron detector is not wired to its corresponding GRAND, but
rather to the GRAND on the opposing face. For example, the NE
fission chamber C is wired into the NW GRAND, and the NW fis-
sion chamber C is wired into the NE GRAND. This provides the
overall system with a backup, in case the GRAND for one of the
detectors fails. This cross wiring is shown in Fig. 2 as the splice box
between the two GRANDs on each side of the reactor core.

Finally, the two gamma-ray detectors correspond to the ion
chamber 1 and 2 channels, respectively. Figure 3 shows the layout
of a detector enclosure. An in-depth discussion of the detector
assemblies and the GRAND electronics package can be found in
Ref. 2.
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Fig. 2. Sample layout of a typical on-load reactor.
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Fig. 3. Atypical detector enclosure.

The GRAND records data every 10 to 11 seconds requir-
ing around 100 megabytes to store all the data points collected
from one reactor for 90 days; normally statistically insignifi-
cant data are fillered so the actual data amount stored is closer
to 10 to 20 megabytes per 90 days. It is impractical for inspec-
tors 10 quantitatively analyze this much data. Shown in Fig. 4
are graphs of data from two detectors during one particular
day. Each large spike on the graph corresponds to a pair of fuel
bundles being discharged from the reactor. Smaller spikes or
decay curves or both on the graph may correspond to other
activities such as the rotation of the fueling machine or the
radioactive decay of the spent fuel being held in the fueling
machine during a refueling operation. Reactor power level can
also be determined from the datc because the background level
the detectors are sensing corresponds to the current power
level of the reactor. The background in this context is consid-
ered to be the amount of radiation the reactor emits when no
fuel is present outside of *he rore. A safeguards inspector
counts the number of spikes on the graph to determine the total
number of fuel pushes the reactor riade in a particular day.
The counted number of fuel pushes is then compared to facil-
ity declarations for safeguards verification. An automated pro-
cess can considerably reduce the analysis time and help a
safeguards inspector review the large volume of CDM data.

AUTOMATED SOFTWARE ANALYSIS

We developed prototype analysis software to investigate
the feasibility of the following objectives:

1. Identifying sections in the CDM data for an
inspector to examine in greater detail,

2. Locating and counting fuel bundle pushes and
determining when they occurred,

3. Determining reactor power level as a percentage
of full power,
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Fig. 4. Sample CDM data from an on-load reactor.

4. Correlating evenis between detector channels to
assure the channels are operating correctly and to
check for possible tampering,

5. Identifying the fueling channel from which the
spent fuel was discharged, and

6.  Predicting the burnup of discharged spent fuel
bundles.

A prototype pattern-recognition software tool, CDM
Analysis, was developed to test objectives 1 through 4. A neu-
ral network model was developed to test the feasibility of pre-
dicting fuel bumup and location of fuel discharged from the
reactor. To fully test CDM Analysis and the neural network
models, a considerable amount of data is needed. For this
study, only about 30 days of data were available. Although the
totai amount of data used was sparse, the analysis software
still performed well suggesting this approach could be devel-
oped into a useful tool for inspections.



CDM Analysis makes two passes over the CDM data
during its search for areas of interest. In the first pass, it slides
an average along the signal looking for significant changes.
When the slope of the signal jumps above or below the sliding
average by more than 10%, the data points are flagged for later
examination. In the first pass, a large quantity of data may be
flagged as interesting. To reduce the clutter, a second pass is
made over just the areas that were flagged. Areas near each
other in the time series are clustered together with the maxi-
mum data point being marked as the middle of the event. From
the resulting list, a report can be generated to alert the safe-
guards investigator to specific areas of the data. Radiation
spikes caused by refueling are found by setting the search
threshold very high (50%). This technique provides all the
fueling spikes for a given data set.

MONITORING REACTOR POWER LEVEL AND
POWER LEVEL CHANGES

Once the areas of interest are identified, power level
monitoring is straightforward. When no events are occurring,
the background radiation sensed corresponds to the reactor
power level. The average of the background can be used to
compute the power level by establishing a baseline reading of
what is considered to be full power. This baseline is computed
by examining data from a reactor that is operating at a fixed
power without fuel outside the core. The average value
recorded by each detector is used as the baseline. This baseline
is marked on the graph in Fig. 5 by a horizontal line. If the
average value of the background moves from this baseline,
then the power level is changing. The data have shown that
most power change: - .curred in a step-wise fashion. CDM
Analysis evaluates the power changes in the following man-
ner. If the reactor power is raised or lowered, the slope of the
average background starts to become very steep. This is
marked as the beginning of a power change. When this slope
flattens out again, the end of the power change is marked. The
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Fig. 5. Sample output from the CDM analysis program.

new value at which the average background comes to rest is
considered the new power level of the reactor. The average
background as a percentage of the pre-defined baseline is the
percentage of full power at which the reactor is running.

Currently, CDM Analysis does not examine more than
one channel on one detector when making its power level
computations. In a production-quality analysis package, this
percentage should be an average of all the percentages com-
puted from all channels on all detectors. By taking power level
measurements from all sides of the reactor core and averaging
them, we could obtain a more accurate power level reading.
Even though examining just one channel gives a fairly accu-
rate reading, within 5%, examining all channels is a much
better strategy because it provides a redundancy check. Figure
6 is an example of the power level of a reactor being raised
from startup to full power. Notice that the power changes
occur in multiple steps. CDM Analysis is also capable of print-
ing a report that details each step of the power level change
and the power level to which the reactor moved.
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Fig. 6. The multiple steps of a power level change.

STATISTICALL PHENOMENA OF CDM DATA

We statistically analyzed the available CDM data to test
the correlation of the height of the radiation spikes from
fuel discharge events with the fuel burnup. We also cross-
correlated radiation signals from detectors in different posi-
tions to try to determine the location of the fuel channel during
arefueling event.

Determining bumnup is a difficult, multivariate problem.
The CDM data showed that detectors on one face of the
reactor are insignificantly affected iy refueling events occur-
ring on the opposite face. A significant correlation does exist
between detector arrays located osi the same face of the
reactor. The variance in the ion chamber data was found to be
pronounced. This effect was traced o data sampling with
insufficient integration time to provide accurate ion channel
currents. The neutron channels were not affected and provided
stable readings that were used for the analysis.?
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NEURAL NETWORKS FOR SOLVING THE
FUEL GEOMETRY PROBLEM

Neural networks are based on a mathematical model
that is derived from cell biology.* These networks are orga-
nized into layers consisting of several neurons (nodes) con-
nected with adjustable weights. Each layer performs a particu-
lar function. The input layer processes the dala being pre-
sented to the network, one or more hidden layers encode “fea-
tures” in the data, and the output layer holds the response of
the network to a given input.

Two phases of operation are required: the learning phase
and the testing and recall phase. Learning consists of present-
ing a stimulus (an input vector) to the input layer together with
a desired response. The network then calculates a result using
the current weights and given input values, This “answer” is
next compared with the desired response. If a difference of
sufficient magnitude exists, the weight values are adjusted.
Over time, as this learning process is repeated with more
vectors, the weights will converge, and the network is said to
be trained. During the testingfrecall phase, similar examples
are presented to the network to test whether the training was
adequate. The difference between the desired and actual out-
put is a measure of success, with differences of smaller magni-
tude representing greater success than those of larger
magnitude.

When using neural networks, one must obtain an
adequate set of training data. It is difficult to quantify the
amount of training data required for good results because the
quantity depends on the complexity of the records and the
number of “features” embedded in the data. The 30 days of
available reactor data yielded only 170 examples of fuel
discharge events, which we consider minimal for adequate
training and testing. In addition, these events came from only
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90 of the 460 available fuel channels in the reactor core and
represented a start-up activity rather than normal refueling.
Even with these limitations, we were still able to train a neural
network to classify the data into different regions on the face
of the reactor.

The first neural network model divided the channel map
into eight regions. This channel map and the eight regions are
shown in Fig. 7. Almost all the regions were chosen because of
the distribution of the points in the available data. Because
detectors on one face do not reliably see events on the oppos-
ing face, only 10 channels from the same face out of the 20
total channels were used in the neural network model. The ion
chambers act as noise during the training process to help
separate the input vectors into appropriate categories. Back-
propagation was chosen as the modeling paradigm because of
its ability to use real-valued inputs. The neural networks used
in this proof-of-principle were created using NeuralWorks
Professional II/Plus,® a commercial neural network develop-
ment tool manufactured by NeuralWare, Inc.

NEURAL NETWORKS FOR FUEL BURNUP
PREDICTION

Because it may be important to determine if a facility is
discharging low-burnup fuel from the reactor, we built a neural
network model similar to the one described above to predict
fuel burnup. It is difficult o compute an actual value for the
bumup of each individual fuel bundle because the spike
recorded by the CDM is an additive value of two bundles
being discharged simultaneously. In this data set, burnup fell
into one of four distinct regions. Therefore, we built a neural
network to classify burnup into one of the four categories
based upon the CDM data, as shown in Fig. 8.
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Fig. 7. Eight-region map of reacor face.



Burnup Can Be Classified Into Four Categories
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Fig. 8. Four categories of recorded burnups in sample data.

RESULTS OF NEURAL NETWORKS FOR SOLYV-
ING GEOMETRY AND BURNUP

The neural networks used for solving the geometry
problem were trained and tested on data from the east face of
the reactor, although iie west face could have been used just
as well. The training set consisted of 63 patterns and the test
set of 72 patterns. After 50,000 training iterations, the network
correctly classified the region of the fuel discharge in 82% of
the patterns in the test set. For the fuel burnup problem, the
network performed better, with an accuracy of 92% in predict-
ing fuel bundle burnup. In spite of the very small data set, the
networks performed remarkably well. The result was a neural
network model of reactor geometry that correlates power
level, burnup, and the number of fuel bundles pushed through
the reactor.

CONCLUSIONS

The CDM Analysis tool has shown the potential for
automated analysis of CDM data to determine refueling activ-
ity and to monitor the reactor power level. Neural network
implementations for determining the location of fuel discharge
and the burnup of fuel bundles appear successful enough to
warrant further research. It appears that neural network models
could be developed to provide close to 100% accuracy in pre-
dicting position and burnup if a complete set of representative
data from an operating on-load reactor were available. The
data needed to achieve this capability should include fuel
pushes from all 460 channels of the reactor face and a com-
plete cycle of fuel through all 13 positions in every channel.

Future work should include devising a more accurate
technique for determining areas of interest in the CDM data,
rather than a sliding average. Power level monitoring using an
average over all 20 channels will also yield a more accurate
power level calculation. Deficiencies in the collection of quan-
titative data should be corrected. We need more samples of
data per unit time and a gamma-channel reading more repre-

sentative of the measurement period. In addition, different
types of neural network models should be tried once a repre-
sentative amount of data has been obtained. The portability of
neural network models to other reactors of the same type
should also be investigated. Neural network modeis hold great
promise for future work in the area of core discharge monitor-
ing and automated examination of large volumes of continu-
ously collected data to improve nuclear safeguards. We
firmly believe that a commercial-grade tool for monitoring
power and counting fuel bundles from CDM data should be
developed.
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