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A New Method for Predicting the Solar Heat Gain
of Complex Fenestration Systems

II. Detailed Description of the Matrix Layer Calculation
J. H. Klems, Ph.D.

Abstract

A new method of predicting the solar heat gain through complex fenestration systems involving
nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by
ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bi-directional
radiative transmittance and reflectance of each layer of a fenestration system. The properties of
systems containing these layers are then built up computationally from the measured layer
properties using a transmission/multiple-reflection calculation. The calculation produces the total
directional-hemispherical transmittance of the fenestration system and the layer-by-layer
absorptances. These properties are in turn combined with layer-specific measurements of the
inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain
coefficient.

A preceding paper outlined the method and provided the physical derivation of the calculation. In
this second of a series of related papers the detailed development of the matrix layer calculation is
presented.

Introduction

This paper continues the summary of the findings of a research project, jointly sponsored by
ASHRAE and DOE, to develop a method of determining the solar heat gain through complex
fenestration systems, by which is meant systems including one or more non specular layers (i.e.,
layers that scatter radiation in many directions). A window with a drape, shade, or venetian blind
is a familiar example of such a fenestration system. In a preceding paper (Klems 1993A), (which
will be denoted Paper I) this project was outlined and a matrix calculation method for computing
the properties of multilayer systems from those of individual layers was developed. A number of
relations were asserted without proof. In this paper the matrix calculation method is discussed in
detail and those assertions are substantiated.

In Paper I the concept of solar heat gain coefficient is extended for multilayer non-specular systems
into a direction-dependentquantity

M

F(O,_)) = T_(O,_)+ ENiA/i(O,_), (1.1)
iffil

where TfH denotes the front directional-hemispherical transmittance of the system, and Ni, Aft
• denote the inward-flowing fraction and front absorptance, respectively, of the ith layer. The layer

inward-flowing-fraction, N i, represents the fraction of the energy absorbed in the ith layer that
• ultimately flows into the building space. In order to calculate TfH and Aft, that paper began by

defining the wavelength-averaged solar-optical properties of the ith layer in a fenestration in terms
of its bi-directional transmittance and reflectance distribution functions (Nicodemus 1965) as
follows:



l(0a,Oi) = "cf(Oi,_p,;O__,,_p,_,)g(oi_,,_p__,), (1.2a)

where (0_,_) represents the outgoing direction of the radiation, (0i_), _;_)) the incoming direction,

and E(0i__,0;-_) is the irradiance (energy per unit area) incident on the front surface of the layer by

radiation going in the incident direction in the +z hemisphere. The quantity lrf is the front bi-

directional transmittance distribution function of the layer, and 1(0 i, Jp_)is the radiance (energy per
unit area per unit solid angle) of the radiation emerging out of the back side of the layer in the
outgoing direction, which is in the +z hemisphere. In the coordinate system shown in Figure 1,
the z axis is the outward normal to the back side of the layer. Diagrams will be drawn with the
front sides of layers on the left, so that radiation into the +z hemisphere may sometimes be
referred to as right-moving. Layers are numbered from front to rear. Reflectance from the front
side of the layer produces an outgoing radiance, denoted by J,

J(0;,_;) = p./,(O:,_p;;Oi_,,_p,_,)E(O,_,,Jpi_,) (1.2b)

consisting of radiation in the reflected direction (0_,_:'), which is in the-z ("left-moving" or

"backward") hemisphere, where p,.: is the front reflectance distribution function for layer i. Since
the layer cannot be assumed to be front-back symmetric, there are analogous relations for radiation
incident on the back side:

, , " ' , 0/" ', b , , , )E'( i+, 0i+,) (1.2c)J(o:e:,)=_,(o,¢,,o,.;¢,+, , ,

I(0i_,)= pf(O,,_p,,O,+,,O,'+," r , ,, • ' )E (Oi+,_,.,) (l.2d)

where E' denotestheback-sideirradiancefromleft-movingradiationinthedirection(01"+,,¢i'+_)

(thesubscriptdenotingthatthisradiationcomesfromthei+IStlayer),and _'_,p_ aretheback

transmittanceandreflectancedistributionfunctions,respectively,oftheithlayer."lYeincident
irradiancemay becalculatedfromtheradianceemergingfromtheadjacentlayersasfollows:

dE(O,_,, @,_,) = l(Oi_,, @,_,)cos(O;_,)d_2,_,, (1.3a)

dE" (0_+,,gp:+,) = J (O:.+,:0_.+,)cos(0_+,)d_+,, (1.3b)

where d_2___=sin(O___)dOi__dg__tand similarly for d_+_. The equation for calculating the
irradiance emerging from a pair of layers (without considering interreflectances between layers)
was shown in Paper I to be

(o_,¢_}=_a_,cos(O,}r_:(o_,_;o,,_,}_,:(o,,_,;Oo,_o)E(Oo,_o). (I I.4)

Let us now proceed to develop this into a multilayer calculation method for determining the system
transmission and absorption in equation 1.1.



Derivation of the Matrix Method of Calculating Fenestration System Optical
Properties

We begin with the transmission through a two-layer system, neglecting interreflections between
' layers, as given by equation 1.4. If we compare this equation with 1.2a, we see that in effect the

equation defines the effective front transmission of a two-layer system in terms of the properties of
the individual layers:

T2Y_L2}(02, _2; 0o,_0) = _ d_, cos(0,) r2f (02, _2; 0,, _,)z((0,, _,; 0o,_o), (2.1)

where the symbol T_{L2_(O2,d?2;Oo,t)o)denotes a (sub-) system front transmittance• The first
number in the subscript indicates that it is a two-layer transmittance, with the numbers inside the
curly brackets indicating that it begins with layer 1 and ends with layer 2. These numbers may be
omitted it there is no ambiguity possible, i.e., if one is including all the layers in a given system.

We stress that equation 2.1 is only a provisional expression for T2({_.2_, since it does not include
layer interreflections.

We next rewrite equation 2.1 as a sum of a finite number of terms by breaking the solid angle

integration into a sum over finite elements A_. Corresponding to each element of solid angle,
1 1

there is a direction (01,_) within the solid angle such that the value of the bi-directional
transmittance distribution function at that set of angles is equal to its mean value over the solid
angle.* (This follows from the Mean Value Theorem of calculus.) If we define similar solid angle

k k m
elements and corresponding directions (0o, _o ) and (0 2, _2 ) for the incident and outgoing angles,
respectively, then equation 2.1 becomes

f m _m. iQk d_k f m _m. IQ! tl_l 0o,¢0 ) (2.2)' '_ff2 ' _l ' _'l ' '
1

where the _:_ are now the front biconical transmittances of the layers. As pointed out by
Winkelmann (Papamichael and Winkelmann 1986), this equation is very suggestive of a matrix
multiplication, which can be seen if we suppress the explicit angle dependence and relabel the
transmittance with a pair of subscripts corresponding to the incident and outgoing directions:

 o <01L. <2.3>
I

We therefore make the following definitions. We choose a specific ordering, shown in Figure 2,
for the solid angle elements (l = 1,...N) and arrange the corresponding incoming irradiances for
layer i in an N-element column vector,

* Since the mean value of the transmittanceover the finite solid angle element is the biconical transmittance
(providedthatonemakesa similarfinitesolidanglefor the incidentradiation),the bidirectionaltransmittanceat the
chosenpair of anglesis equal to the biconicaltransmittance,and similarlyfor reflectance. Hence, the modifiers
bidirectionalandbiconicalwillbe usedessentiallyinterchangeablyin the text.



IIE(O__,,_/_,I)

Ei_, = _E(0i2-1'¢i2-' , (2.4)
• .. ¢

(since by our labeling convention the incoming radiation for layer i carries the label i-l), and the
outgoing radiances in a similar column vector,

I i =t1(0/2'9/2)}.... (2.5)
L(oT, 7)J

We then define a matrix of bi-directional (front) transmittances for layer i by

_f(o_,¢;0/_,,¢_,)_f(o_,_;o_,_,,_,_,)...rf (e/,ed;oL,¢/_,)]

r/= rf(°_"_';°_-"¢_-') rf(°7;¢'_;e?-"_?-')...... I" (2.6)
... ... ...

•f(o," ,,', , ,_,,,.,_,) ... rf(oT, N. N... ¢,, o,_i,¢£,)J

It can easily be seen that with this notation the analog of the equation 1.4a relating radiance,
irradiance and (bi-directional) transmittance distribution functions is a matrix equation,

I i = If" Ei_ I. (2.7)

Only the presence of the factor A_ztcos(0[) prevents equation 2.3 from having the form of a
matrix multiplication. The function of this factor in the equation is to convert the outgoing radiance

of layer 1 for the 1th solid angle element, z tI(0_, ¢_), into the incoming irradiance on the front surface

of layer 2 for the same solid angle element, E(0 I, ¢_). Physically, one can say that this factor
propagates the radiation along its direction from layer 1 to layer 2 as it converts from radiance to
irradiance. We therefore define a diagonal propagation matrix (layer i to layer i+l),

_I cos(O_) 0 ... 0
0 A_ cos(O,_) o

A i = (2.8)

......... _:,to,") "o o ...,,,,,,,,...
Then

Ei_I = Ai_ I •Ii_ I (2.9)



and equation 2.3 becomes in the new notation

T2I(,.2}= 1;2I.A, ._(. (2.10)

This process is indicated diagramatically in Figure 3(A), together with an abbreviated diagram in
3(B) that will be used to represent it. Note that in this notation matrices appear from right to left in

' the order in which the ray encounters the corresponding surface and that the matrices arc not
commutative.

We next address the problem of extending this calculation to include multiple reflections between
layers, as illustrated in Figure 4. In this figure the directly transmitted ray is drawn as a heavy
arrow. This would enter a calculation such as equation 2.10. If we denote the direction of this ray

as it is incident on layer i by 0__°_,__°I, one can see from the figure that a front reflection by layer i
followed by a reflection from the back of layer i-1 can produce additional radiation incident in the
same direction, and subsequent reflections of this ray will produce additional incident radiation.
All of this additional incident radiation will produce additional transmitted radiation which must be
included in the transmission calculation.

Using equation 1.4b, the reflected radiance from the direct ray at the front surface of layer i will be

J(°:, )=P{(°;, , ,,.,-'h'° , (2.1l)

which produces an incident irradiance on the back side of layer i-1 (using equation 1.3b) given by

dE" (O'/,#?f) = J (O'/,#pf) cos(0f )da 7, (2.12)

and after reflection from the back side of layer i-1 produces an additional incident irradiance on the
front side of layer i due to a first order (pair of) reflections of

dE(l_x..,i_I, ._)
(2.13)

COS(0(0)'_d_¢'_(0)Ix i-l/ i-I pb(n(O> [h(O). r,_f)p:(Or l_r'n _ r, O, ,, .r, ,.-,-,, .,.,-,)dE(O,_, _,_, )cos(O, )d_X'i-i 9"ffi-I

When we note that for the directly transmitted ray,

dE(O,_,,_,_,) = a.Q,_,cos(O,_,)T:_,(O,_,,_,_,;0;__,_,-2), (2.14)

as in equation 2.1 (where i-2), and that each outgoing ray from layer i-1 may undergo a pair of
reflections such that it arrives back at the front side of layer i with a direction 0__°:,#__o:,we see that

the effect of the first-order reflection is to replace the function "r:__(0:°?,O:°_;0,_2,_i_2)with the
convolution integral

• I d_-_i-ICOS(Oi_ I)M"' (0:°_,#:_0_;Oi_,' #),_,) r{_,(0,_,, ¢),_,;0i_2,_i-2 )' (2.1 5)



where the first-order reflection function is given by

x v i-I _ _t'i-I _ i-I_Y'i-I)'-

(2.16)
COS( o(a)_d_(a, f i.}b ¢_a I r r f r r. o_b_, (b' r r", ,_,,_ ,_,j_,(o___,._;o,,¢,)p,(o,,¢,, ._ ¢,_,)cos(O,)d_,

I

This function essentially maps an incident direction (b) in zeroth order to an incident direction (a) in
first order reflection. By repeating the above argument it is easy to show that an nth order (pair of)
reflection(s) produces a convolution integral of the same form as 2.15 with an nth order reflection
function M c")in place of M cj_,where M (") is given by the recursion relation

_,vi_ I_ _f-i-I _ ) --

IM(_)(O_E_,,_(_)._(_)_(c,_i/l(,)tA(c) _(c).A(b) (b) (_) (,')" (2.17)'ri-I, "i-I, "ri-I,"" ,"i-I, vi-I, "i-!, ¢i-n)cos(el_ I)d£2__I

Reflections to all orders are now included in the transmission calculation by replacing the function

r[__,..__jc_(o),,_to)._,___,0__:,__2 ) with the sum

Tf_,rO(°),_(°).Oi _.¢,__)x i-I __'i-I _ -

(2.18)
+ M("'rO_°,,,_,.¢_°__;0,_,.¢,_,)r/_,(O,.,_.¢,_,'0,__..¢,_,)cos(O,_,)da,,_

n-.I

We now convert these integrals into finite sums in the same manner as was done in the derivation
of equation 2.10. Referring all backward-hemisphere rays to the reflected coordinate system in
Fig. 1.2 and breaking up the solid angle for integration into finite pieces in the same manner as was
done above, we define reflected irradiance and radiance column vectors by

r r,I r,I

e;+,(O;.,.¢,+,)]
r r.2 r,2 lE_+_= EI+_(01+_'¢'+_) (2.19)!
r r,N r,N )J

and

r,I r,!

J(o,+,.¢,+,)]
r,2 r,2 /

J,+,= Y(O,+,,¢,+,)i. (2.20)
r.N r,N

J(O., .¢,+,)J



We define a matrix of front biconical reflectance distribution functions for layer i,

f r l r,l N N )f r, ,.,.0, ' f ,, _r.,.Cj2¢__,) ... P,(0i',¢_,;0,_,,¢,_,)Pi (Oi" '_i ' i-I'_i-l) Pi (Oi" '_'i 'vi-I'
f r 2 r,2 I I

• , , _, ,0__,,__,) ...... (2.21)p{= p,(o,.,¢_,•o,_,_,_,) pf(O?_, "_.
0.0 .0. ..1

• p[(O?Ncr.N.O, ' _ "'_ "'_ " N, , ,_,,e_,_,) ...... p,(O,",¢,";O;_,,¢,,_,)J

so that equation 1.2bbecomes

J, =£{ .E,_, (2.22)

while for backward-hemisphereincident radiation, equations 1.2cand 1.2d become

J, = x_. E;+, (2.23a)

I i =p_ .Ei+ I . (2.23b)

We note that the matrix notation contains the directional information in the position of an element in
a vector or matrix. The labeling convention for the reflected (backward-going) radiation has been
chosen so that a specularly reflected ray would appear in its reflected vector in the same position as
the incident ray; similarly, a specularly transmitted ray would also appear in the same position as its
incident ray. With this convention, the specular analogs to the biconical transmittance and
reflectance matrices (which will be defined below) will have non-zero elements only on their
diagonals. This convention is not necessary, but will prove convenient.

We could next proceed to define A matrices for the reflected rays; however, with the choice of
labeling the definitions would coincide with equation 2.8. In fact, the A matrices are simply
geometrical weighting factors; they depend on the partitioning of the solid angle and on the choice
of the underlying basis of directions, but not on the properties of layers. Since our choice of basis
is the same for all layers and for both left-moving and right-moving radiation (due to the different
coordinate systems to which these are referred), the A matrices are independent of layer and
hemisphere. Thus, the layer notation that we have hitherto added to the A matrices will be
dropped, and no superscript referring to hemisphere will be introduced. The defining equations
relating irradiance to radiance then become

El_ i = A-Ii_ I (2.24a)

ET+,= A. J,., (2.24b)

• With these definitions equation 2.16 is approximated by the matrix equation

M¢"= A. p__,-A .p[, (2.25a)



while 2.17 becomes

M _"+t_= M °_•Mt"_ (2.25b)

and expression 2.18 becomes

1 + M C") -A. "t(.1. (2.26)
n=l

It is shown in Appendix 1 that the quantity in parentheses is simply (1 - M _))-j. Thus, the correct
extension of equation 2.10 for the front transmission of a pair of layers, including the
interreflections between them is

T_{i_I.i} = Z'f "(1- A'p__," A.p[) -t. A- zL,. (2.27)

Optical Property Matrices for Muitilayer Systems

If we consider the general situation of optical propagation through a pair of adjacent layers i-I and i
within an optical system, it is clear that we must consider radiation incident from both forward-
going and backward-going hemispheres, as indicated in Figure 6(A), since if layer i is not the last
layer in the system, even for a situation in which radiation is incident only on the front side
(forward-going), transmitted radiation may be reflected back from other layers downstream. We
can write the outgoing radiances indicated in the figure as

b r (3.1a)
I i = Tf{i_l,i} • Ei_ 2 + R2{i_I.i} • Ei+I

and

b .E_., (3.1b)Ji = R2f(i-_,i} "Ei-2 + T2{i-i.i}

in terms of the front and back two-layer (sub)system transmittance and reflectance matrices, as
indicated in Figure 6(B) and (C). We have already derived the equation for the 2-layer front
transmittance in Section 2,

T_{i_,,i} = "t'; "(1- A'p__," A-p()-'' A" _;_, (3.2a)

and examination of the diagrams in Figure 6(B) and (C) with reference to the scheme for applying
matrices indicated in Figures 3 and 5 allows us to write down immediately the expressions for the
other subsystem matrices:

R2/l;_,.;)= p[_, + r___.(1 - A.p/. A .p b_,)-'. A.p/-A. r[_, (3.2b)

T o - z__,.(1 - A.p/- A-p__l )-'-A. ,'_ (3.2c)2{i-!,i} --



R b = (1 p__, A-p()-' A "r_ (3.2d)_._,_.,_p_+,f . - ^.... ¢,_,.A.

These relations can immediately be applied to an arbitrary system by considering layer i to be the
' n+ 1st layer and layer i-1 to be a subsystem composed of the preceding n layers:

T f.,f,..+,, _'[., (1 A Rb f )-'' = .... p.+_ ._..) (3.3a)nil,n}" A • A . T f

b -!

R I.,.I,...,,- R./I,..I- +T °.l,.., •(1-A.p.Y., •A.R li..t ) .A •p.Y., •A •T.II,..t (3.3b)

( )-'T o b f b b.+_._R..+_}- T.<_..} 1- A. •A. -A (3.3c)- " P.+_ R.(i..) "L+_

Rb _ / ( R b /)-I Rb b= ' P.+l ._l..) rJ;+l..l._l..+l) P..I + Z';,+I 1-A" ._..) "A. .A- -A- (3.3d)

By using the first two layers in an n-layer system to form 2-layer subsystem property matrices
using equations 3.2 and then repetitively applying equations 3.3 to add the next adjacent layer, the
system property matrices for the complete system may be derived.

The directional-hemispherical transmittance or reflectance of a given layer is computed by summing
the particular column of the layer property matrix over the outgoing solid angle, with a cos(0)
weighting to account for the projection of a given element of surface area in each outgoing
direction. If this process is repeated for each column of the matrix the result is a row vector of
directional-hemispherical layer transmittances for each of the basis directions. This process can be
included in the matrix formalism by defining auxiliary column and row vectors u and u r as
follows:

u= (3.4a)

u• ={1 _ ... 1} (3.4b)

and defining the directional-hemispherical row vectors for layer i by

_[._"=u_•a. _{, (3.5)

with similar definitions for back transmittance and front and back reflectance, i.e., the addition of
the superscript DH to the property matrix symbol indicates that it is a row veer _r of directional-
hemispherical transmittances formed by left-multiplication of the property matrix by u_. A. One
can form an analogous column vector of hemispherical-directional properties by right-



multiplication of the matrix by A. u, as indicated in Appendix 1, but we will not have occasion to
use these.

We then define layer front and back absorption row vectors using Kirchhoff's Law:
p

eL: = 1- 't,f '°n _ pf .On (3.6a)
e

and

eL_= 1- T, bi 'oH _ pb.Ott (3.6b)

These two vectors correspond to the absorption of layer i taken in isolation (e.g., as measured in
the scanning radiometer). However, for the same layer as the ith layer of an M layer system, the
situation is complicated by multiple reflections between the ith layer and the upstream and
downstream layers, as indicated in Figure 7(A). In addition to an incident ray that is transmitted
through the first i-1 layers and absorbed in layer i, one must also consider rays which (1) are
reflected from layer i, rereflected from an upstream layer, and absorbed in i; (2) are transmitted
through i, reflected from a downstream layer, incident on the back side of i and absorbed; (3)
transmitted through i, reflected from a downstream layer, transmitted again through i, rereflected
by an upstream layer, and absorbed in i; together with all possible higher-order combinations of
these processes. In general, then, it can be seen that the front and back layer/system absorptances,

A_M and Atb:M,for layer i as the ith layer of an M-layer system each depend on both the isolated-

layer absorption vectors eL{and eL_.

We can compute these layer/system absorptances by using the two alternative decompositions of
the M-layer system into a pair of subsystems shown in Figure 7(B) and (C). For radiation incident
on the front of layer i we decompose the system as shown in (B), while for radiation incident on
the back of layer i we decompose it as shown in (C). The resulting expressions for the
system/layer absorption vectors are

A::M= eL: -(1 - A. R b •A-R(M_,+,,._,.M,)-'.A. T f
;-J.0.i-J_ ;-J.0.i-I_ (3.7a)

+eL_.(1 A / Rb _-I.A.R / "A-T f-- • R(M_i),(i+I,M) • A" i.(i.i)y (M-i),{i+l,M} i.{I.i}

b
f . R b _-I. A. TM_i,O+I.M)A,b.M= eL_-(1 - A. RcM_,,._i+_.M).A i.o.i_,

(3.7b)
b f -t b b

+eLf.(1 - A. Ri_I.{I.i_I) • A-R(M_i+I),{i.M} ) • A. Ri_l.0.i_l) • A. TM_i+I,(i.M )

The elements of the row vector A_M are the layer front absorptions of eqn. 1.1 evaluated at the
incident angles corresponding to points on the coordinate net in Figure 2:

A[M=(Aa(O_,¢_) A,(O_,d:2o)...A:(O_,d?_)}. (3.8)

Thesystemdirectional-hemisphericalfronttransmittancerowvector,

f (3.9)T_;on = U T • A • TM.{I,M ),

10



is similarly an array of the system front hemispherical transmittance function values on the
coordinate net:

• ...

We thus see that both of the solar-optical quantities necessary to the computation of the solar heat
" gain coefficient may be calculated from the layer properties for systems of any degree of

complexity.

Specular Layers

Specular layers represent a special case for which the generality of the above computations, with
their implicit integrations over soli, l angle, is unnecessary. For the integral language of Paper I
specular layers always have property matrices containing the mathematically well-known delta
distribution, which plays the role of an identity operator in integral transformations:

[.8(x',x)f(x')dx" = f(x) (4.1)

for any function f and any region of integration including x (otherwise the integral is zero).

Physically, this means that a ray incident on a given layer i with a given direction must result in a
ray incident on the next (or reflected back to the previous) layer with the same (or the specularly
reflected) direction, with the intensity multiplied by the specular transmittance (reflectance)
corresponding to that direction. In our matrix language that means

S)i "'"

0 .,.(2) 0 ...
"(s)i .E,_i, (4.2a)Ei = A'xi'Ei-I = ... 0 ...

_(N)
0 ... 0 _(s)U

where the quantities on the diagonal cf the matrix are the specular transmittances of the specular
layer i for each incident (and outgoing) direction, or, in terms of the individual matrix elements,

(E,)k = E(A),.- (z,),,,:- (E,_,), =(Z(s),)k .(E,_,)k. (4.2b)
l,ra

This means that the transmittance matrix for the specular layer must be given by

rl_)_; 0 ... 0

i

"r(2) 0
Xi = A-1. "(s)i "'" (4.3a)0 ... 0 -

0 _(N)•" _(S)i

11



or

(cu
'_ 0 0

,.(2)

0 "**...A_0
Xi = ^,2, ... (4.3b)

... 0 ... 0
r(N) .

0 ... 0

With this def'mition for front and back transmittance matrices, alld the analogous ones for front and
back reflectance, utilizing the appropriate directional specular properties for the computation of the
diagonal matrix elements, specular layers may be included in the calculation scheme on an equal
footing with non-specular layers.

An Example Calculation

As an example of the calculation method, we consider a simplified example of a perfectly-diffusing
interior shade with a clear double-glazed window. We shall suppose that the shade is a Lambertian
diffuser in both transmittance and reflectance, with a hemispherical transmittance of 0.21
independent of incident angle, and an angle-independent hemispherical reflectance of 0.62. This is
a strong (and possibly unrealistic) assumption, since even for a featureless shade one can assume
at best reflection symmetry through the plane of incidence for incident angles other than normal; it
is made to simplify the calculation. The calculation can be visualized by referring to Figo_,: 7 _or
the case i-2, M-3.

With this assumption the calculation is independent of the angle {_in both the incident and outgoing
directions. As a result, each ray of the angular networks shown in Figure 2 will have identical
values. We can thus suppress the azimuthal dependence and deal with 7X7 dimensional matrices
in the variable 0, instead of the 145X145 dimensional matrices that a more complicated case would
require. We take as our angular basis the points

0,={0 ° 15° 30° 45° 60° 75° 86.25°}, (5.1)

with the corresponding propagation matrix

r0.054 0 0 0 0 0 0

0 0.407 0 0 0 0 0

0 0 0.704 0 0 0 0

A = 0 0 0 0.813 0 0 0 . (5.2)

0 0 0 0 0.704 0 0

0 0 0 0 0 0.407 0

0 0 0 0 0 0 0.054

In defining solid angle segments, boundaries between angular regions were taken to be the
midpoint between the values in equation 5.1 except for the final bin, which extends from 82.5 ° to
90°. The actual calculation was carded out using more significant figures than will generally be
presented here, so that in reproducing the calculation the reader must allow for round-off error.
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Under the assumptions, the bidirectional transmittance of the shade will be simply _"/_ and the bi-

directional reflectance P_H/_,independent of angle. Hence the layer property matrices for this layer
(number 3 in the system) will be

r0.067 0.067 0.067 0.067 0.067 0.067 0.067 _

. 0.067 0.067 0.067 0.067 0.067 0.067 0.067

0.067 0.067 0.067 0.067 0.067 0.067 0.067

b= 0.067 0.067 0.067 0.067 0.067 0.067 0.067 (5.3a)_/= 1;3

0.067 0.067 0.067 0.067 q. 067 0.067 0.067

0.067 0.067 0.067 0.067 0.067 0.067 0.067

0.067 0.067 0.067 0.067 0.067 0.067 0.067

and

(0.198 0.198 0.198 0.198 0.198 0.198 0.198'

0.198 0.198 0.198 0.198 0.198 0.198 0.198

0.198 0.198 0.198 0.198 0.198 0.198 0.198

p_=p_= 0.198 0.198 0.198 0.198 0.198 0.198 0.198. (5.3b)
0.198 0.198 0.198 0.198 0.198 0.198 0.198

0.198 0.198 0.198 0.198 0.198 0.198 0.198

0.198 0.198 0.198 0.198 0.198 0.198 0.198

For the glass layers we use published (Rubin 1985) transmittance and reflectance data for 2.5mm
thick clear glass,

Zs(0t)={0.856 0.855 0.850 0.832 0.773 0.532 0.152} (5.4a)

and

Ps(Ot)={O.077 0.077 0.079 0.093 0.146 0.387 0.818}, (5.4b)

from which we can construct the specular layer matrices:

q5.99 0 0 0 0 0 0

0 2.10 0 0 0 0 0

0 0 1.21 0 0 0 0

" _( = l:,b= X2/= 1:2b= 0 0 0 1.02 0 0 0 (5.5a)
0 0 0 0 1.10 0 0

0 0 0 0 0 1.31 0

0 0 0 0 0 0 2.84

13



and

'1.44 0 0 0 0 0 0 "_

0 0.189 0 0 0 0 0

0 0 0.112 0 0 0 0

p(= p_= p21= p_= 0 0 0 0.114 0 0 0 . (5.5b) .

0 0 0 0 0.207 0 0

0 0 0 0 0 0.952 0

0 0 0 0 0 0 15.28

From these we can now carry out the calculation. We first calculate the system properties of the
double glazing sub-system (which of course is front-back symmetric):

r13.77 0 0 0 0 0 0

0 1.81 0 0 0 0 0

0 0 1.03 0 0 0 0

T2__._ b == T_o.__ 0 0 0 0.859 0 0 0 (5.6a)
0 0 0 0 0.867 0 0

0 0 0 0 0 0.819 0

0 0 0 0 0 0 1.30

'2.50 0 0 0 0 0 0

0 0.329 0 0 0 0 0

0 0 0.194 0 0 0 0
f #

R2o.2;= R2o.2>= 0 0 0 0.194 0 0 0 (5.6b)
0 0 0 0 0.334 0 0

0 0 0 0 0 1.27 0

0 0 0 0 0 0 16.35
\

using equations 3.2. In this we have used the subsystem interreflectance matrix,

'1.01 0 0 0 0 0 0

0 1.01 0 0 0 0 0

0 0 1.01 0 0 0 0

(i- A-p_-A.p_)-_= 0 0 0 1.01 0 0 0 (5.7)

0 0 0 0 1.02 0 0

0 0 0 0 0 1.18 0

0 0 0 0 0 0 3.02
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from which it is apparent that multiple reflectances for this subsystem are important only at large
angles. From equations 3.3 we can then obtain the system transmittance matrix,

:0.058 0.058 0.057 0.055 0.048 0.026 0.005 '_

0.058 0.058 0.057 0.055 0.048 0.026 0.005

0.058 0.058 0.057 0.055 0.048 0.026 0.005

T_= 0.058 0.058 0.057 0.055 0.048 0.026 0.005, (5.8)
0.058 0.058 0.057 0.055 0.048 0.026 0.005

0.058 0.058 0057 0.055 0.048 0.026 0.005

0.058 0.058 0.057 0.0550.048 0.026 0.005

from which the system directional-hemispherical front transmittance is computed using equation
3.9:

T/'°H=(0.1823 0.181 0.1790.172 0.150 0.082 0.017). (5.9a)

Similarly, the system directional-hemispherical front reflectance may also be computed, although it
is not required for the solar heat gain coefficient calculation:

R;'°"=(0.4700.4700.4680.4770.5140.6680.907). (5.9b)3

For calculation of the layer directional absorptances one also needs the sut'system reflectance
matrix for the pairing of layers 2 and 3:

' 1.60 0.160 0.159 0.155 0.144 0.10 0.03 "_

0.160 0.349 0.159 0.155 0.144 0.10 0.03

0.159 0.159 0.270 0.154 0.143 0.10 0.03

R2_2.3>Y= 0.155 0.155 0.154 0.265 0.140 0.10 0.03 (5.10)
0.144 0.155 0.143 0.1400.338 0.09 0.03

0.10 0..10 0.10 0.10 0.09 1.014 0.02

0.03 0.03 0.03 0.03 0.03 0.02 15.29

The system/layer front directional absorptances for the three layers can then be calculated, first
using equations 3.6 to calculate the directional absorptions for the individual (isolated) layers from
equations 5.3 and 5.4:

b=azl °=(0.067 0.068 0.071 0.075 0.081 0.081 0.03) (5.11a)_i t"= 111 = II.2

b=(0.167 0.167 0.167 0.167 0.167 0.167 0.167) (5.11b). _3y = _3
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then using equations 3.7 to get the system-dependent layer absorptances:

A_3 = (0.103 0.104 0.107 0.111 0.117 0.115 0.044) (5.12a)

Az =(0.102 0.102 0.104 0.105 0.100 0.070 0.018) (5.12b)2;3

A3_3=(0.143 0.143 0.141 0.136 0.119 0.065 0.014). (5.12c)

These are system-dependent quantities because of the multiple reflections. The calculated system
properties are shown in Figure 8.

Conclusion

Beginning with the equations derived in Paper I, we have seen how the overall system solar-optical
properties of a multilayer fenestration with one or more non-specular layers can be calculated from
the individual layer hi-directional properties. It has been shown that multiple reflections between
layers can be represented with an inverse matrix, in complete analogy to the formulas used for
specular multilayer systems. New features appearing in the calculation were diagonal propagation
matrices, which are layer-independent geometrical quantities. Scalar quantities in the specular
treatment become matrices, and of course the ordering of terms in products becomes significant; a
notation was chosen in which propagation from front to back through a system corresponds to
moving from fight to left in the corresponding matrix expression.

We have seen that a pair of adjacent layers can be combined into a subsystem, and by repeatedly
considering pairings between a subsystem and an adjacent layer, system properties may be built up
recursively in a manner that automatically includes all interreflections between layers. We have
seen how to calculate the system directional-hemispherical transmittance from the system bi-
directional transmittance, and how to use the same procedures of combination into subsystems to
determine the layer absorptances. In a simplified example calculation, we have seen how the
calculation scheme is utilized to determine all of the solar-optical system properties.

In the example, extreme symmetry assumptions were made to reduce the calculation to a tractable
one. For more realistic cases where less symmetry can be assumed a priori the calculation uses
very large matrices for which computer calculation is the only feasible method. The equations have
been incorporated into a set of computer programs (called TRA) that was used in the to carry out
the system property determinations for the project.
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Appendix 1. Convergence of the Multiple Reflectance Series

. Here we present a mathematical proof that the multiple reflectance series of reflectance matrices
converges, and hence that the use of an inverse matrix operator in Section 2 is justified. While
convergence of the reflectance series is necessary, on physical grounds--otherwise energy would

• not be conserved--it is still desirable to show that for the finite matrix representation chosen this
necessary condition is preserved. The proof will rest on the fact that as defined, each column of
the matrix representing the product A. p sums to produce a directional-hemispherical reflectance
for the layer, while summing a row produces a hemispherical-directional reflectance:

E(Apf),. = r/i.on., (Al.la)
!

"- ri-I,HD,k i-I,DH,k , (Al.lb)
l

where the second equality in Al.lb follows from time-reversal invariance, i.e., the reflectance
property is unchanged if the directions of all incoming and outgoing rays are simultaneously
reversed. For each layer surface, we define the quantity r (with appropriate subscripts and
superscripts) to be the maximum value of the directional-hemispherical reflectances for that
surface. Hence.,

E(AP[),. < r/y < 1 (A1.2a)
l

_(Ap__,)k, <r__, <1, (A1.2b)
1

where the strict inequality on the right follows from the fact that for any non-perfect reflector the
directional-hemispherical reflectance is less than one.

The multiple reflection series between layers i-1 and i, indicated by the diagram in Figure 5, is
given by

1+ _M _n), (A 1.3)

where

tl

M _=YI(A,_,p[_,A,pf), (A1.4)

and it is understood that successive factors in the product are formed from right to left. If we

consider an arbitrary element M_ of the matrix M_ we can see that it has the following form:
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N N
n f n-I,-==EE(A,_,o,__,),,(^,o,),M,o (A1.5a)

1=1 p=l

for n > 1, while
e

N

l h b .M_.=Z( ,_,o,_,),,(A,of)_ (A_.Sb)
1=1

By the Schwartz inequality,

1

rl/ t( r)}_v A b A,pf) (AI.6)E( ,_,o,,),,(A,pf),.-< A,_,o,__,),, ,. ,
/=1 /=1 =

while A 1.2 combined with the fact that all of the terms in each series are positive implies that

N N

_[( r _] <r_, (A1.7a)
A,_,o,__,),,< (A,,o_,),,

--- l=]

and

N N

E[(n.pf),.]_<E(A,p/),.<_r[. (A1.7b)
I=l l=l

Thus

Mira< (rS,rf) ½ (AI.8)

Substituting this relation into A 1.5a for n = 2, we see that

½N A b
N

M= <(r/b_ff) E( i-lP;-I)klE(AiPf)lp
1=! p:l

. (Al.9)
N

b
-- _ A< (rb ,r[ )½r[ E ( ,-,Pi-, )k,<(r_-'ri/ )'+½

1=1

Repeating this argument, one can readily prove by mathematical induction that

Mtm< (rbi_,rf)"-½. (AI.IO)

This means that the series for an arbitrary matrix element in A 1.3 is dominated term-by term by a
geometric series:

1+ £ M_ <1+ (r__,r[,)-{£(r__,rf)" (AI.I 1)
n:l n=l
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and must therefore converge. Since each matrix element of expression AI.3 converges to a finite
limit, the matrix expression also converges. We denote the limit of the matrix series by M.

We note that equation A1.5 recast in matrix form means that

M ! _M N = M N+l. (Al.12)

" We use this relation to show that the standard argument for summing the geometric series also
holds for the interreflectance matrix series

** I

1 + M = 1 + _'_M _"_. (AI.I 3)
n=l

If we left-multiply this series by the factor 1 - M t we obtain

(1-M').I.ZM' ' -1-M'.M'-M'.M'.M_=t . (Al.14)

+...-M _. M N + M _'+l +...

It can be seen that because of A1.12, successive pairs of terms in this series cancel, leaving

(1-M'). I+_M <_, =1 (Al.15)
n=l

and if we denote the inverse matrix of 1 - M 1by (1 - M i)-_ znd use equation A1.4 we obtain

I+_M '_' (I b /)-'= - Ai_Ip;_iAipi
_=l (Al.16)

This completes the proof.
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y, yr

X, xr

zr

e_
,.'-_.,,_#,. / 7 incidence

J

Fig.I. Definitionof theCoordinateSystemsfora
Layer. The incidenth'radiance and the
forward-going(i.e.,transmitted)radianceI(O_,_)are
describedin thexyz coordinatesystem,whilethe
backward-going(i.e.,reflected)radianceJ(0[,_[) is
describedinthereflectedcoordinatesystemxryrzr,
whichisleft-handed.Allquantitieswithasuperscriptr
refertothelatter.ForthegeneralcaseI andI may have
any directionin theirrespectivehemispheres,as
indicated.ForspecularradiationbothIandJwouldlic
intheplaneofincidence,with0_= 0i. Notethatthe
forwardandbackwardcoordinatesystemsarcrelatedby
a reflectionthroughthexy plane,sothatinthatplane
theyrepresentthesame two spatialaxesviewedfrom
oppositesides.
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(A) Y 5

, , 4 3

/

(B)3 4

1

I

Fig. 2. Angle Coordinates for Incident, Transmitte_land
Reflected Rays. (A) Coordinates for incident and
forward-going radiation. The angles are refered to the
xyz coordinate system of Fig. 1.2; in this figure the z
axis is perpendicular the plane and points toward the
viewer. The numbers indicate the ordering of directions
in constructing vectors and matrices. (B) Coordinates
for backward--going radiation. The angles are refered to
the xryrzrcoordinate system in Fig. 1.2; the zraxis points
out of the plane of the figure.
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(A)

(e)
mmm mare

Fig. 3. Schematic Representations of Transmission Through a Pair
of Generalized Layers. (A) Incident radiation E0 in a particular
direction is scattered in the first layer, producing a distribution of
output rays. The function of the A matrix in converting the outgoing
radiance for each ray into the incoming irradiance at the next layer is
indicated. Of all the outgoing rays from the second layer, the
radiance I2 in a particular direction is specified. (13) The more
abbreviated schematic which will be used for the same process,
indicating an incident irradiance E0, a transmission 'el, a propagation
A, a transmission z2, and an outgoing radiance 12.
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Fig. 4. Multiple Reflection Corrections to the Transmission
Through a Pair of Layers. As in Figure 3, each indicated backward-
going ray is in reality a set of rays distributed over the appropriate
pair of outgoing angles, which are given in the backward-going
coordinate system (hence the superscript r). The superscript (0) on
the forward-going rays indicates that a particular incident direction
for layer i has been selected from among the distribution of rays
reflected off the front of layer i-1.
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Fig. 5. Schematic Representations of Interreflections
Between Adjacent Layers. (A) A representation of the
physical process, showing that the first reflection at layer
i produces a distribution of reflected rays, and that each
of these rays produces another distribution on reflection
by layer i-1. The role of the propagation matrix in
converting each ray from an outgoing radiance to an
incoming irradiance at the next layer is indicated. (B)
The more abbreviated notation for the same process. In
this notation, single paths between layers symbolize
entire distributions of intermediate rays and serve to
indicate the sequence of scattering events (and thus the
order of matrices in the calculation) rather than the
physical path of intermediate rays. t
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(A)

i-1 i
(8)

i-1 i

(C) 1

i-1 i

Fig. 6 Diagrammatic treatment of an interior pair of layers,
for which racUation may be incident on both front and back
(A), showing how the pair of layers may be composed into
front (B) and back ((2) subsystem transmittances.
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(A)
1... (i-1) i (i+l)...M

,m, ,.=, =,., ,m ,,D ,,m

(a) (C)
1...i-1 i i+l...M 1...i-1 i i+l...M

'_ .
,,

iUJ,rIL h m. m
v ',wm

Rf Rb
(IVl-i+l),{i,M} i,{1,i}

Fig. 7. Diagrammatic representationof the calculation of
layer absorptions. As indicated in (A) the situation is
complicated by the fact that rays reflecting from upstream
or downstream layers may be either reflected or
transmitted by the layer of interest, in addition to being
absorbed. As shown in (B) and (C), this problem may
be handled by decomposing the system into two
subsystems in one way for forward-going radiation (B)
and in a different way for backward-going radiation (C).
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Example Calculation of System Properties
Double Glazing with Interior Lambertian Blind

.--.. systemTransmlltance | I

0.8- - - SystmRetW_mme | .°*

0.6 - - -. Layer 3 (Shade) Absop..rUon ; S

e s S
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Incident Angle (Degrees)

Fig. 8. Calculated system solar-optical properties for the
example system in section 5.
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