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Abstract

In this dissertation, I discuss the phenomenology of new massive
neutral gauge bosons, or Z’' bosons, concentrating on experimental
tests by which the properties of a Z’ boson could be determined.

In Chapter I, I briefly review the Standard Model of elementary
particle physics, and discuss the motivation for extending it. I review
some of the extensions to the Standard Model that predict the exis-
tence of Z’ bosons, and present a general, model-independent parame-
terization of the Z'’s properties, as well as a simpler parameterization
that applies to the most important class of models. In Chapter II,
I discuss present-day limits on the existence of Z’ bosons, both from
direct searches, and from indirect higher-order tests.
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Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of
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In Chapter III, I discuss the production and discovery of a Z'
at a future hadron collider, such as the CERN Large Hadron Collider
(LHC). Discovery of a Z' at the LHC may be possible if its mass is less
than 5 TeV. I also discuss the experimental tests of its properties that
could be performed at such a collider, emphasizing the measurement
of leptonic asymmetries.

Finally, in Chapter IV, I discuss the experimental tests that could
be performed at an ete™ collider with /s = Mz. I include several
higher-order effects, such as initial-state radiation and beamstrahlung,
whose inclusion is necessary for a realistic description of the experi-
mental environment at a very high energy e*e™ collider.

The combination of leptonic and hadronic experiments permits the
measurement of all of the parameters discussed in Chapter L
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Chapter 1

Introduction

1.1 The Standard Model

All known experimental results in elementary particle physics are described by,
or at least are consistent with, the so-called “Standard Model,” a non-abelian gauge
theory [1] based on the gauge group SU(3) x §U(2) x U(1), or G33;. To establish notation,
I discuss the main features of the Standard Medel.

Every gauge theory necessarily possesses one massless spin-1 field for each gen-
erator of the gauge group. For the Standard Model, these twelve gauge bosons are the
eight gluons G;, (corresponding to the generators of SU(3)), the three W bosons, Wy, W,,
and W3 (corresponding to the generators of SU(2)), and the B boson (corresponding to
the generator of U(1)). The gluons mediate the strong interaction, while the W and B
bosons mediate the electromagnetic and weak interactions.

In addition to the gauge bosons, which are the minimal particle content of any
gauge theory, the most general renormalizable gauge theory [2] may also contain spin-0
and spin-% fields. The Lagrangian for the most general gauge theory based on G3j; may
be written

ﬁ=£b+£,+£f+£y, (1.1)

where £, contains the gauge bosons’ kinetic energy terms, L£; contains the fermions’
kinetic energy term, L, contains the scalars’ mass term, kinetic energy term, and self-
interactions, and Ly, the Yukawa sector, contains interactions between the fermions and
the scalars. Because the scalars’ and fermions’ kinetic energy terms involve the covariant
derivative D¥, given in Eq. (1.6), their kinetic energy terms imply interactions between
the gauge bosons and the scalars and fermions. Explicitly, the terms in Eq. (1.1) are

Ly = —}B"B,, -iWlFWwW,,-1G¥G,., (1.2)
L, = (D*®)!(D,®)-V(®), (1.3)
Ly = Y(iP)v, (1.4)
Ly = H(%,%,9), (1.5)

where V(@) contains all scalar interactions of quartic and lower order that are invariant
wder G3p, and H(¥, ®) contains all interactions that are linear in ¥, ¥, and @, and that



Table 1.1: Particle content, and SU(3), SU(2), and U(1) quantum number assignments, for the
first generation of fermions. The Higgs boson, &, is not part of any of the three generations, and
is listed here only for convenience.

Particle | SU(3) multiplet | SU(2) multiplet | Y

QL triplet doublet 1/3
Ly singlet doublet -1
uR triplet singlet 4/3
dr triplet singlet -2/3
er singlet singlet -2
® singlet doublet 1

are invariant under Lorentz transformations and under G3z;. The quantities £2#¥, W/,
and G are the gauge bosons’ field strength tensors, and D¥, the covariant devivative, is
given by

D* = 9" +ig,I,G¥ +igT;W} + ig'}z:B"- (1.6)

The constants g,, ¢, and ¢’ are, respectively, the coupling constants of SU(3),
SU(2), and U(1), and I;, T}, and Y/2 are a representation of the gauge group’s generators.
To specify the theory fully, it suffices to choose some specific representation, that is, to
choose the quantum numbers of the fermion and scalar states.

In the Standard Model (3], these states consist of a single complex scalar that
transforms as a singlet under SU(3) and a doublet under SU(2), and three “generations,”
each of which consists of 15 massless fermions arranged into singlets and triplets of SU(3)
and singlets and doublets of SU(2). This decomposition into irreducible representations
of SU(2) and SU(3) specifies J and T completely, but Y is still an arbitrary diagonal
matrix, subject only to the condition that every particle i in an SU(2) or SU(3) multiplet
must have the same value of ¥;. The Standard Model quantum number assignments are
summarized in Table 1.1. The symbol Q; in Table 1.1 refers to the left-handed up and
down quarks, and L, refers to the left-handed electron and electron neutrino. The right-
handed up quark, down quark, and electron are ug, dg, and and eg. The scalar doublet

can be written explicitly as
+
¢ = ( zﬂ ) ’ (1'7)

where both ¢* and ¢° are complex scalar fields.

Given these particle assignments, it is possible to write down the most general
form for the functions V and H that appear in Egs. (1.3) and (1.5). The scalar and
Yukawa sectors of the theory are

L, = (D*¥)'(D,®)+,28'8 — 1A (2'8)’, and (18)
Ly = —her®'Ly - hedp®' QL — h,iir®!QL +h.c., (1.9)



where u is a constant with dimensions of mass, and A, h., h4, and h, are dimensionless
constants. The field @, is the charge conjugate of ®, defined as

3, = io, ", (1.10)

where o2 is one of the familiar Pauli matrices. As in Table 1.1, Eq. (1.9) contains the
couplings only for a single generation of fermions. The generalization to the full three
generations of the Standard Model is straightforward.

Eq. (1.1) describes a world where all gauge bosons and fermions are massless;
this is not the world we live in. The Standard Model exhibits spontaneous symmetry
breaking [4]. That is, although the fundamental Lagrangian is invariant under the gauge

group G321, the ground state of the theory is not Specxﬁcally, the scalar potential,
Eq. (1.8), is minimized not for ¢ = 0, but for |®|? = v?, with v? ‘i— The true vacuum, by
definition, is the state of minimum energy, so  must have a nonzero vacuun. expectation
value, with |($)|?> = v2. The ground state, then, is not invariant under G3;;. Forming a
perturbative expansion about this ground state yields an effective Lagrangian that is not
invariant under G321, but merely under SU(3) x U(1) g5;. The factor U(1) gp, is nct the
U(1) factor of G3z;; it is generated by a linear combination of that group’s generator and
the diagonal generator of SU(2), and it is the gauge group of electromagnetism.

Straightforward but laborious algebra yields the Lagrangian

- o 1 -
L= - j(awS-aw)) (W - W) - z (aw;F) (W) (111)
2
+ 1w w- - -(a Z,-8,2,) - (a"z,,)2 3 (i—) v222
- 1(8,4,-08,4,)* - % (6%4,)* - 1 (a,,G: - 8,G%) (3“G** - *G**)
age)’ + 1o L1)y2h2 + Lgkg? o _l(e\?, 502
- £( ) 30°hd,h — §00’h? + 184¢°0,8° - 2 (=) &’
+ 046%9,0™ — Letetem - gt (W W)’ - (WHRW )]
- e[AWr-w) - (4-WH(A4-wT)
- dg [z wr-wo) - (Z-w)(z-w-)|
~ ecg [2(A-Z)WH- W) — (A-WHZ-W™) = (Z-WH)(4-W")]
+ ie [P ATWIWS + W TIWE A, + W AW | + b
+ icg [BHZUWIWS + W W Z, + W T W) | + he.
- 162G GNG - Gf s — L, (3,65 - B.G}) GHoGHS 1o

_ Avh3 A

4__";’_’_ 02_§o4__'\_202_ - _ 1132 -
5 8h 5 ho 8¢ 4h ¢ vAh¢t o™ — 1 AR
— 1agP¢% ¢ - Ix(¢%97)2 + (ieA” ¢ 0,0~ +hoc.)

1€ gg +5 4 e 09 5 _ 0
( s S (1- 2624470, +h.c.)+2ch" (6°8,h — h3,4°)

+




+

:

gW*H (k0,67 - 6~ 9,h) + kgW+ (¢0,4" - °8,67) + h.c.]

| .

2.,
) vhZ? + %gzth'*' W™+ (%%¢—W+ A+ h.c.)

2
(—-¢—w+ -Z+ h.c.) +1g?RWt . W+ % (fz) hz?

1240w+ . W + % (i)ch"zzz + 2t g A% + L2t oW . W
e \? e?
(E&E) (1-26)26%¢72% + S(1 - 27)6% 474 2
[ﬁh¢-w+-A -~ ffh¢-w+-z + iff¢°¢ WA ¢°¢—W+ Z +he.
28 2¢ 28

anﬁ+6“77+ - %92602ﬁ+77+ + 6uﬁ—3“n— - %9251’ -0~ + apﬁza 12
3 -aapna _ igsfabca“—aGp.,b c

e
(23 ) §v ez + Oufly 0¥ 1y + i€ (Opfi4 N4 — Oufj-n-) A*

e (10uiiyn-W* — iy n,W** + h.c.) + ige (Bufiiny — 9ufi-n-) Z*
2 v
gc (8, fin-W* — id,f4n,W** + h.c.) - g-f- (hfien4 + hil_n_)

e \? ig%€v [ 0. —
(-2—) &v hij.n; + —94—5— (6°7-n-— °fi4my) - € (67 iany + 7 7-m4)
ety —_ e"gv — -
E (1 232) (¢+ﬁ+"k +¢ 77—77:) + Fic (¢+'7z77— + ¢ :n4)
u(zﬁ)v+€(iﬂ— m,)e + 4 (i - my)u+d(ip —mg)d

Tiaeh - Tv"—u h— —ddh

z-@—e75e¢°—z-—-d'75d¢° z~;—u75u¢° \/-m,( 1 275V¢”'+h.c.)

-\?: [J(m" ; Td | Tu ; mdys) ug™ + h.c.]
\/—(WJ'- Se + W+1 275d+hc)+g.uG“ u+g,d¢°‘
eéde + -§ed4d - §eﬁ4u - %EVZ(I -+ %;zaz (1-457- 15) e

18:2(1_8,2_ 187 _24_2_)
4scu‘Z(l 33 "/5)u+4“dZ(l 3.9 vs ) d,

where A and Z, the photon and the Z boson, are linear combinations of the W3 and the
B; ¢ is an arbitrary real dimensionless parameter that determines a particular gauge; 2}\“
are the Gell-Mann SU(3) matrices and 2t the SU(3) structure constants; ¢*, ¢—, and ¢°
are unphysical Goldstone bosons resulting from the symmetry breaking; and 7., 7, 7,,
7z, and 7, are the unphysical Faddeev-Popov ghosts that arise [5] from the quantization




of a non-abelian gauge theory in a covariant gauge.

The parameters e, s, and c that appear in Eq. (1.11) are combinations of pa-
rameters that appear in the unbroken Lagrangian. Specifically, s and c are abbreviations,
respectively, for sin6,, and cosé,,, and

!
tanf, = %—, (1.12)

/

99

T\/—r-{-—f—-g_'— = gsinew = g’ cos6,,.

Similarly, the particle masses are defined in terms of the parameters of Egs. (1.8)
and (1.9). The mass of a fermion f is given by

(1.13)

my = h,v. (1.14)

The masses of the W and Z bosons, and of the Higgs boson, are

My = 1g%’ (1.15)
M= 182 _1(2)p 116

-t -i(3) (116
my = Ml (1.17)

The vacuum expectation value v is directly related to the Fermi constant, the effective
strength of low-energy weak interactions, which is defined as

Gr 9
.ﬁ — m‘z;". (1-18)

Experimentally, v = 246 GeV.
The photon and the Z, which arise from the requirement that the mass matrix
of physical fields be diagonal, are defined by

A* = sin,W{ + cos6,B* (1.19)
z¢ cos 0, W3 — sin 6,,B*. (1.20)

Eq. (1.11) is rather formidable, but, fortunately, much of the complexity can be
made to disappear. The gauge-fixing parameter ¢ is arbitrary; for tree-level calculations
it is convenient to work in the so-called unitary gauge, where ¢ — oo [6]. In this limit, the
unphysical Goldstone bosons become infinitely massive and decouple from any physical
processes. The Faddeev-Popov ghosts do not appear at all until the one-loop level, so,
for tree-level calculations in unitary gauge, it is possible to ignore all terms in Eq. (1.11)
that involve either ghosts or Goldstone bosons.

An abbreviated version of the Standard Model Lagrangian, suitable for tree-level
calculations in unitary gauge, is
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The generalization to three generations, rather than one, is straightforward. The
only important change is in Ly, which becomes

Ly = —-EpHgd'L; — DpHp®' QL - UrHy®!Qy + hec., (1.22)

where E, D, U, L, and Q now refer to column vectors rather than to individual fields,
and Hg, Hp, and Hy are arbitrary complex 3 x 3 matrices of coupling constants. After
symmetry breaking the fermions acquire mass, and, by definition, the mass matrices of
physical particles must be diagonal.

The lepton mass matrix can be diagonalized simply by making physically ir-
relevant field redefinitions. Diagonalizing the quark mass matrix, however, leads to off-
diagonal terms in the couplings of quarks to the W+ boson. That is, the charged-current
interaction of quarks becomes

o= SLOWH L‘zﬂvp +he, (1.23)



where V is a unitary 3 x 3 matrix, the Kobayashi-Maskawa (7] mixing matrix. The
Kobayashi-Maskawa matrix is roughly diagonal: Each quark couples most strongly to its
partner in the same generation. Some off-diagonal terms, however, most notably that
connecting the s and u quarks, are substantial. Additionally, there is no a priori reason
to expect that the elements of the Kobayashi-Maskawa matrix should all be real. The
most general Kobayashi-Maskawa matrix, up to physically irrelevant field redefinitions,
can be parameterized by three real angles and one complex phase factor.

At present, using experimental data and tb« unitarity constzaint, the 90% con-
fidence limits on the magnitudes of the Kobayashi-Maskawa matrix elements are [8]

0.9747 to 0.9759 0.218 to 0.224 0.002 to 0.007
[Vijl = | 0.218 to 0224 0.9735 to 0.9751 0.032 to 0.054¢ |, (1.24)
0.003 to N.018 0.030 to 0.054 0.9985 to 0.9995

where the matrix elements are labelled

Vud Vu: Vub
Ved Ves Voo |. (1.25)
Via Vs Vo

The phase has not been measured. A non-zero value would explain the experimental
observation of C'P violation in the K meson system.

Many physical quantities, in particular those involving low-energy properties of
hadrons, have not yet been calculated from first principles. The problem is simply that
Eq. (1.11) describes the interactions of quarks, rather than the interactions of hadrons, and
the necessary computational techniques for obtaining quantitative low-energy predictions
about hadrons do not yet exist. Preliminary results from such methods as lattice gauge
theory {9] and chiral perturbation theory [10], however, suggest that the flaw is indeed in
our calculational ability rather than in the theory.

All quantities for which both theoretical and experimental results are available
exhibit agreement between the measured values and the values predicted by the Standard
Model [11], and there is no indication of any experimental result that is inconsistent with
Standard Model expectations.

1.2 Defects of the Standard Model

Despite the spectacular successes of the Standard Model, it is theoretically prob-
lematic in many ways, and it is unlikely that the Standard Model is actually a complete
description of nature. Most of the unresolved issues can be grouped into three broad cat-
egories: Problems associated with the gauge bosons and with their couplings to fermions,
Eq. (1.6), problems associated with the Yukawa sector, Eq. (1.22), and problems associ-
ated with the scalar sector, Eq. (1.8).

The most serious objection to the gauge sector of the Standard Model is its
arbitrariness. The gauge group Gsz1, SU(3) x SU(2) x U(1), is not simple. The gauge
theory associated with this group thus has three independent coupling constants, and the
Standard Model provides no understanding of their relative magnitudes.




Even more arbitrary than the gauge group itself, however, is the representation
of that group used by the Standard Model, i.e., the matter content of the theory. The
Standard Model provides no understanding of why fermions are replicated in three gen-
erations, and even within a single generation the gauge group’s representation is very
complicated: It is formed from many different irreducible representations. The hyper-
charge assignments, i.e., the U(1) quantum numbers, are postulates of the theory, rather
than predictions: U(1) is abelian, so there is no obvious reasen why the U(1) quantum
numbers should be, as they are (see Table 1.1), small integers or ratios of small integers.
Although the requirement of anomaly cancellation [12] imposes a sum rule on the U(1)
quantum numbers, there is still a great deal of freedom in their assignments. Finally,
although it has been known for decades that weak charged currents couple only to left-
handed fermions, the Standard Model provides no explanation for this asymmetry. It is
simply postulated, in Table 1.1, that left-handed fermions are members of SU(2) doublets
and right-handed fermions members of SU(2) singlets.

The mass matrices in Eq. (1.22), or in more physica) terms, the fermion masses
and the Kobayashi-Maskawa mixing matrix, are also simply free parameters of the theory:
The Standard Model provides ro explanation for any of the mass ratios or the mixing
angles. Given that the ratio between the mass of the lightest massive fermion, the electron,
and that of the heaviest fermion, the ¢ quark [13], is more than 3 x 10°, some explanation
of these ratios is called for. Similarly, while the presence of a complex phase in the
Kobayashi-Maskawa matrix can explain the existence of CP violation, it does not explain
why CP is so nearly conserved in weak interactions; still less does it explain why CP
violation in strong interactions is, if present at all, measured [14] to be suppressed at least
nine orders of magnitude relative to the value that would naively be expected [15] due to
nonperturbative topological effects.

To some extent, many of these objections are essentially aesthetic: Our precon-
ceptions, which suggest that a fundamental theory must be simple, may be in error. The
problems in the scalar sector are considerably more serious. The Standard Model relies
on elementary scalars, the complex doublet &, to break SU(2) x U(1) symmetry. Theories
with self-interacting elementary scalar fields, however, suffer from two inherent problems,
known as “naturalness” and “triviality.”

The problem of naturalness deals with the scalar’s mass renormalization, which
is quadratic in the high-energy cutoff. If an elementary scalar is much lighter than the
cutoff, its mass is thus the difference of two very large numbers. This situation is not only
unnatural, requiring an extraordinarily precise cancellation, but is also unstable under
higher-order corrections.

Just as naturalness is related to the mass renormalization of scalar fields, so
triviality is related to coupling constant renormalization. The simple one-loop 3 function
for the scalar self-interaction given in Eq. (1.8) is

poe = A2, (1.26)



This has the solution

) (1.27)

1

- )
A~} (o) — zir In (i)
which diverges at a finite energy scale. If this one-loop result is to be believed, then the
only way for a scalar field theory to be valid for all energy scales is if the coupling constant
vanishes exactly. In fact, more sophisticated analyses confirm the conclusions suggested
by the one-loop calculation. There is now very strong evidence [16], although not yet a
rigorous proof, to support the idea that the only self-consistent scalar field theory in four
dimensions is the free theory.

This does not, of course, mean that theories involving scalar fields are inadmis-
sible; it merely means that these theories cannot be valid at all energy scales, but must
instead be regarded as effective field theories that describe interactions at 2nergies less
than some scale A, where . is less than the scale at which the scalar coupling constant
would diverge. Or, put less abstractly, it means that scalars cannot be elementary par-
ticles but must have some substructure, and that the substructure will he revealed at
distances of O(1/A).

The larger the scalar self-interaction X is at low energies, the lower must be the
energy scale A at which new physics appears. Since Eq. (1.17) relates A to the mass of the
Higgs boson, this is equivalent to saying that a heavy Higgs boson requires new physics
at low energy scales. This argument can be made quantitative [17]: If the Higgs boson
has a mass of 175 GeV or less, then the Standard Model may be valid for all energies less
than the Plank mass, while a mass of 300 GeV or more implies that the upper limit of
validity must be less than about 103 TeV.

While none of these arguments, including triviality, is conclusive, they suggest
that the Standard Model is probably incomplete, and may, at some high energy scale A,
be embedded in a more complete theory.

1.3 Extensions of the Standard Model

1.3.1 Expansion of the gauge group

Many different extensions of the Standard Model have been proposed in order
to address one or more of the issues discussed in Section 1.2. Because of the general
phenomenon in physics that problems are often alleviated by symmetries, many of these
extensions involve introducing additional symmetries beyond the SU(3) x SU(2) x U(1)
gauge symmetry of the Standard Model.

Such models include the Peccei-Quinn model [18], which explains the suppression
of CP violation in strong interactions by postulating an additional global U(1) symme-
try; horizontally symmetric models [19], which explain the patterns of fermion masses and
mixing angles by introducing global or local symmetries between generations; technicolor
models [20], which introduce a new set of fermions, with new gauge interactions, in order
to break SU(2) x U(1) symmetry without the use of elementary scalars; and supersym-
metry [21, 22], which introduces a symmetry relating bosons and fermions, and which
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eliminates many of the technical problems associated with the renormalization of theories
containing elementary scalars.

Gauge symmetries have a special status in field theory, so many extensions of
the Standard Model involve expanding the gauge group from SU(3) x SU(2) x U(1), or
G321, to some larger group G which contains G3a; as a subgroup. Since this larger gauge
symmetry is not observed at low energies, spontaneous symmetry breaking must once
again be invoked. Enlarging the gauge group implies the existence of new gauge bosons;
the symmetry must be broken in a manner that leaves only the 12 gauge bosons of the
Standard Model observable at low energies.

The group G3a1 is a Lie group of rank 4, meaning that its Cartan subalgebra
is four-dimensional. In more physical terms, this means that the gauge theory based on
G321 has four neutral gauge bosons, i.e., gauge bosons whose interactions with fermions
change none of the fermions’ quantum numbers. These gauge bosons are the photon, the
Z, and two of the gluons.

It is a general result that if G; and G are Lie groups, and G; C G, then the
rank of G2 cannot be less than that of G;. The group G, in which G32; is embedded,
must then have a rank greater than or equal to four. If G is of rank greater than four, the
gauge theory based on it will have additional neutral gauge bosons, which are generically
known as Z' bosons.

It should be emphasized that Z’ bosons are a generic feature of any theory that
includes a gauge group of rank greater than four: They appear naturally in many different
extensions of the Standard Model. Given that the Standard Model is almost certainly
incomplete, it is thus very plausible that Z’' bosons exist. This does not, of course, mean
that they are observable: The mass of a Z’' could well be at an experimentally inacces-
sible energy, such as the GUT scale. In many models, however, even models where the
fundamental symmetry-breaking scale of G is very large, Mz is essentially unconstrained
and could lie in an experimentally accessible range. A Z' necessarily provides information
about an expanded gauge sector; a low-mass Z’ could well be the only direct experimental
probe of an expanded gauge sector.

1.3.2 The left-right symmetric model

As shown in Table 1.1, the Standard Model assigns left-handed fermions to SU(2)
doublets, and right-handed fermions to SU(2) singlets. It thus provides no explanation
of parity violation, but simply postulates it. The left-right symmetric model [23, 24]
postulates a second SU(2) symmetry that acts on right-handed particle states, so that the
fundamental Lagrangian of the theory conserves parity. Parity violation is then explained
by spontaneous symmetry breaking: If the symmetry breaking occurs in such a fashion
so that the gauge bosons associated with the right-handed SU(2) are much more massive
than those associated with the left-handed SU(2), low-energy weak interactions will violate
parity.

The gauge group of the left-right symmetric model is SU(3) x SU(2),, x SU(2) p x
U(1), and the quantum number assignments, instead of the Standard Model assignments
of Table 1.1, take the somewhat more orderly form shown in Table 1.2. The symbols



11

Table 1.2: Left-right symmetric model particle content, and SU(3), SU(2),, SU(2), and U(1)
quantum number assignments, for the first generation of fermions. Note the presence of a right-
handed neutrino, which is absent in the Standard Model.

Particle | SU(3) | SU(2), SU(2)p 1UQ)
QL 3 2 1 1/3
Ly 1 2 1 -1
Qr 3 1 2 1/3
Lp 1 1 2 -1

Qr and L have the same meanings as in Table 1.1, while Qp refers to a right-handed
quark doublet, up and dg, and Lp refers to a right-handed lepton doublet, eg and vp.
The right-handed neutrino, v, has not been observed, and is not present in the Standard
Model. Unlike the “hypercharge” of the Standard Model, the U(1) quantum number
given in Table 1.2 has a simple physical interpretation: It is B — L, where B is a particle’s
baryon number and L is its lepton number. The gauge coupling constant of SU(2)p is
taken to be the same as that of the familiar SU(2),.

The group SU(3) xSU(2); xSU(2) 5 x U(1) has rank 5, so the left-right symmetric
model has five neutral gauge bosons. Four of them, the photon, the Z, and two of the
gluons, are the same as in the Standard Model, while the fifth is a Z’. The photon, Z,
and Z' do not, however, simply correspond to the diagonal generators of U(1), SU(2) L
and SU(2)z. Just as the photon and Z of the Standard Model are linear combinations of
the W3 and the B, so the physical neutral gauge bosons of the left-right symmetric model
are linear combinations of the neutral gauge group generators, the details of this mixing
being determined by the symmetry breaking.

As in the Standard Model, symmetry breaking in the left-right symmetric model
is accomplished by means of interacting scalar fields with a nonzero vacuum expectation
value. The scalar sector of the left-right symmetric model, however, is much more compli-
cated than that of the Standard Model. The simplest version of the left-right symmetric
mode! contains three different complex scalar multiplets, one of which transforms as a
triplet under SU(2), one as a triplet under SU(2)p, and one as a doublet under both
SU(2), and SU(2); this is a total of 20 scalar degrees of freedom. The scalar fields of
the left-right symmetric model, and their quantum numbers, are specified in Table 1.3.

The reason for including so many scalars is that the two scalar triplets, the A
and Ap, are required to break the left-right invariance, while the doublet field, ¢, plays
roughly the same role as does the Higgs doublet & in the Standard Model: It breaks
SU(2) x U(1) down to U(1). This general hierarchical scheme, where one mechanism
is responsible for the symmetry breaking G — SU(3) x SU(2) x U(1) and another for
SU(3) x SU(2) x U(1) — SU(3) x U(1), is repeated in many different extensions of the
Standard Model.

The most general renormalizable potential involving these scalar fields is quite
complicated: It depends on 18 independent parameters [25], three of which are masses
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Table 1.3: Scalar fields, and their quantum numbers, in the left-right symmetric model.

Particle | SU(3) | SU(2), [ SU(2), | U(1)
A 1 3 1 2
Ar 1 1 3 2
é 1 2 2 0

and the other 15 are coupling constants. The minima of this potential have not been
investigated in full detail, but it has been shown [26] that there exists a range of value of
these parameters such that the minimum takes the form

0

(ApL) = 0 (1.28)
VR,L

@ = (5%) (1.20)

with v, € & € vg. In this model, x? + &' sets the scale of M3, and M3, as does v? in
the Standard Model.
The mass matrix for the W3 1, W3 g, and B is [24]

32 (R + K% +40}) —1g%(x® +K7) —2gg'v? Wit
[WsL War B] | —19%(x? + &%) 102 (x? + K + 4v}) -299'v} Wir
—29g'v} -2g9'vh g% (v} +v}) B
(1.30)

Although it is possible to diagonalize Eq. (1.30) exactly, the results are too complicated
to be of much use. In the limit where vy is very large, however, and Z-Z' mixing is
negligible,

2
2 . g 2 ”
M: =~ %cosza,,,(n + &%) (1.31)
M2 = 2(g® + g% )h, (1.32)

and the photon, as electromagnetic gauge symmetry demands, remains exactly massless.
Without knowledge of the parameters in the scalar potential, it is impossible to
make a more quantitative prediction of Mz /Mz or of the mixing angle between the Z
and the Z'.
Assuming that mixing between the Z and Z’ is negligible, the Z’ coupling to
fermions is given by

Ling = QZ'foZ'f, (1.33)

where
g

92 = 1220,

(1.34)
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Table 1.4: Charges Q for the coupling of one generation of fermions to a Z' of the left-right
symmetric model. The normalization of Q; is defined by Eq. (1.33).

Left-handed states R.i%ht-handed states
Particle Q Particle Q
eL 3sin® 6, eR sin® @, — 3 cos® @,
| w $sin20, VR 1 cos?6,
dy —--i* sin? @, dr % sin? 0, — % cos? 4,
ur ~1sin%6, uR —£sin? 9, + # cos? 6,
and
Qy = sin? 0, (TsL — Q) + cos? 6, Tsr. (1.35)

In Eq. (1.35), T3 and T3 refer, respectively, to the fermion's left-handed and right-
handed isospin assignments, and Q refers to its electromagnetic charge. These couplings
are given explicitly in Table 1.4.

1.3.3 Grand Unified Theories

Much of the complexity of the Standard Model stems from the fact that its gauge
group, Gsz;, is not simple. Grand unified theories (GUTSs) are models in which G32; C G,
where G is a simple group. The symmetry group G breaks spontaneously to G32;.

In GUTSs, all gauge interactions are characterized by a single coupling constant.
This appears to be contradicted by experiment, since the coupling strengths of the strong,
weak, and electromagnetic interactions are very different, but, in fact, the relative mag-
nitudes of the three Standard Model gauge coupling constants are a strong argument for
the plausibility of grand unification.

A simple one-loop calculation [27] yields the 8 functions of the three Standard
Mode! gauge coupling constants:

dgi _ _ b

dn = " 1e% (1.36)
where, for NV generations of fermions,
bgy@s) = —-;-N +11 (1.37)
bsyiz) = —g—N + 232 - % (1.38)
byay = —g—N - 113. (1.39)

More careful calculations [28], which include two-loop diagrams and the effects of heavy-
particle thresholds, do not modify these equations significantly [29): These higher-order
effects are small corrections.
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Table 1.5: Assignment of a single generation of left-handed fermions to irreducible representations
of SU(5). All 15 fermionic states can be assigned to two irreducible representations. The symbol
fi refers to the left-handed component of the charge conjugate of the fermion f.

Multiplet | Particle content
5* [vedi,
10 [uduc e,

Integrating these equations yields the values of the coupling constants at an
energy scale p in terms of their values at a scale pg:

o) = 3 (£) + o7 (uo) (140)
When the known low-energy values of the three Standard Model gauge coupling constants
are inserted into Eq. (1.40), it turns out that although the coupling constants have very
different values at low energies, their values at high energies (u ~ 10'® GeV) become
roughly equal. This is suggestive of the behavior predicted by a GUT, where, at some
scale MgyT, they would be exactly equal.

The smallest simple group that can contain G3;; as a subgroup, and that has
representations in which the Standard Model fermion representations can be embedded,
is SU(5) [30]. The fifteen states of a single generation of fermions can be embedded in
two irreducible representations of SU(5), a 5* and a 10: The decomposition of these
irreducible representations of SU(5) into representations of SU(3) x SU(2) is

5 = (3*,1)®(1,2) (1.41)
10 = (3*,1)9(3,2)®(1,1). (1.42)

The assignments of left-handed particles to SU(5) multiplets are shown in Table 1.5. Note
that left-handed charge conjugate states, rather than right-handed states, are included in
this table. This is because all particles in a gauge multiplet must transform the same way
under Lorentz transformations, or, more succinctly, because gauge transformations and
Lorentz transformations commute.

As is the case in the left-right symmetric model, the gauge symmetry must
be broken in two stages. At energy scales large compared to the GUT scale, the gauge
symmetry is SU(5); at energy scales small compared to the GUT scale, but large compared
to the electroweak scale, the gauge symmetry is SU(3) x SU(2) x U(1); and at energies
small compared to the electroweak scale, the gauge symmetry is SU(3) x U(1). Again,
much as in the left-right symmetric model, this hierarchical symmetry breaking may be
accomplished with a scalar sector consisting of two different species o scalars. In the case
of SU(5), the minimal phenomenologically acceptable scalar sector consists of a 24 and a
5 of SU(5), where the 24 breaks SU(5), and the 5 breaks electroweak symmetry. The 5
contains the familiar Standard Model Higgs doublet &.

The group SU(5) is 24-dimensional, so SU(5) has 12 more gauge bosons than
does the Standard Model. Its rank, however, is 4, so it has no additional neutral gauge
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bosons. There are no other rank 4 groups that can contain SU(3) x SU(2) x U(1) as a
subgroup: Every other extension of the Standard Model gauge group, and, in particular,
every other GUT, has at least one Z'.

This fact is significant, because the minimal SU(5) model has been conclusively
ruled out. There are two convincing arguments against minimal SU(5). First, SU(5) pre-
dicts an excessively fast decay rate for the proton. The 12 new gauge fields introduced by
SU(5) are fractionally charged; their interactions with matter connect quarks to leptons,
and these interactions lead to proton decay [31], suppressed by Mg,jT. Although there
is some uncertainty about the calculation of the proton lifetime, due both to the uncer-
tainty in Mgyr and to the difficulty of calculating low-energy hadronic matrix elements,
the experimental 90% confidence limit (8] for the decay p — e*n® is 7,/B > 9 x 1032 yr,
which is two orders of magnitude larger than the upper limit allowed by minimal SU(5).

Independently, minimal SU(5) is ruled out because in this model the three Stan-
dard Model coupling constants do not actually unify. The values of the Standard Model
coupling constants at Mz are now known precisely enough to make it clear that, although
they approach a similar magnitude at very high energies when they are evolved upwards
using Eq. (1.36), they never actually become equal. The electroweak coupling constants
a1(Mz) and as(Mz) are obtained by the LEP measurements of agy(Mz) snd sin® Oy,

yielding [32]

ar(Mz) = 0.016887 = 0.000040 (1.43)
as(Mz) = 0.03322 + 0.00025, (1.44)

and the strong coupling constant a3 can be extracted from a variety of experiments; the
Particle Data Group [8] reports a world average of as(Mz) = 0.1134 + 0.0035. Using
these values, as shown in Fig. 1.1, coupling constant unification is ruled out by more than
seven standard deviations [32].

This does not mean that grand unification must be abandoned altogether, but,
rather, that grand unification is tenable only if the assumptions implicit in the application
of Eq. (1.36) are abandoned. Using Eq. (1.36) to run the coupling constants from Mz
to Mgy is only valid if there are no thresholds between those scales, i.e., if there is no
new physics until Mgyr. Grand unification is still possible if some new physics exists at
intermediate energy scales.

In minimal SU(5), no such intermediate scales exist: SU(5) breaks directly to
SU(3) x SU(2) x U(1). Suitable GUTs that do possess intermediate scales include su-
persymmetric SU(5), and GUTs based on gauge groups larger than SU(5). Larger gauge
groups are worthy of consideration in any case: SU(5) still uses two different irreducible
representations to accommodate each generation of fermions, while a larger group can
accommodate them in a single irreducible representation.

Other than SU(5), the smallest candidate for a GUT gauge group is SO(10) [33].
All fermions of a single generation can be accommodated in a single 16-dimensional SO(10)
multiplet. The decomposition of the 16 of SO(10) into SU(5) multiplets is

[16]s0(10) = 5" +10 +1, (1.45)
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One-loop calculation of running coupling constants
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Figure 1.1: One-loop calculation of the ruaning of the SU(3), SU(2), and U(1) gauge coupling
constants. The three lines represent the central values of the coupling constants, and the shaded
regions represent the one-o errors. Note that the three coupling constants never actually become
equal.
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Table 1.8: Value of the charge Q for the coupling of an SO(10) Z', or Z,, to one generation of
left-handed fermions. Note that the coupling is the same for all members of an SU(5) multiplet.

{| SU(5) multiplet | Particle QL
10 et,d,u, v | QY = —-ﬁg
5° e, v. |[QY = E%L

and, as discussed above, all known fermions of a single generation can be embedded in
the 5* and the 10 of SU(5). The SU(5) singlet describes an additional fermion state, an
electrically neutral fermion that transforms neither under SU(3), nor under SU(2),. This
state may be thought of as a right-handed neutrino.

The group SO(10) has rank 5, so the SO(10) GUT does predict the existence of
a Z'. Also, since SO(10) has a larger rank than that of G33;, there are several ways in
which it can be broken down to G32;. One symmetry-breaking scheme is that suggested

by Eq. (1.45):

SO(10) — SU(5) x U(1) (1.46)
— SU(3) x SU(2) x U(1) x U(1)
— SU(3) x U(1) x UQ1).

The SO(10) gauge interactions, like those of the left-right symmetric model, conserve
parity; in fact, it is possible to embed the left-right symmetric model in SO(10), via the
breaking scheme

S0(10) — SU(4) x SU(2) x SU(2) (1.47)
— SU(3) x SU(2) x SU(2) x U(1)
— SU(3) x U(1) x U(1).

The 2’ in the symmetry-breaking scheme of Eq. (1.47) arises from the breaking of
left-right symmetry, so its couplings are those described in Section 1.3.2. In the symmetry-
breaking scheme of Eq. (1.46), however, the Z', conventionally called Z,, has a different
set of couplings. The generator of the Z, commutes with the SU(5) generators, so the
fermionic couplings of the Z, are the same for all fermions in an SU(5) multiplet. The
coupling of the Z, to fermions is ¢'Q, where ¢’ is the same as the U(1) gauge coupling
constant in the Standard Model, and where Q is given in Table 1.6.

As is the case with the left-right symmetric model, each successive stage of
symmetry-breaking in Eq. (1.46) or Eq. (1.47) involves a separate Higgs multiplet. In
the case of the symmetry-breaking scheme of Eq. (1.46), the predicted mass of the Z,
depends crucially on the structure of the Higgs sector: Mz, may be of up to O(Mgur).
For at least one choice of Higgs bosons, however [34], the Z, may have a mass as low as
a few hundred GeV without any unnatural fine-tuning of parameters.
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1.3.4 The Eg model

Superstring theory suggests FEg as a candidate GUT gauge group. Regardless of
the status of superstrings, Eg is a useful example of a model that predicts the existence
of at least one Z'. If superstring theory is indeed a correct description of nature, this
would imply that the Lagrangian of the theory should be supersymmetric, although the
scale of supersymmetry breaking could conceivably be as high as Mgyr or even Mpin.
In any case, however, Fg can be treated purely as a GUT, without including any effects
of supersymmetry. For the purposes of understanding the gauge boson sector of Eg, the
most important effect of supersymmetry would simply be a modification of the 3 function
associated with the running of the gauge coupling constants.

The group Eg has rank 6. There are many ways that it can break [35] down to
the low-energy gauge group SU(3) x SU(2) x U(1); the most common assumption is that
it breaks according to the pattern

Es — S0(10) x U(1),, (1.48)
— SU(5) x U(1), x U(1),
— SU(3) x SU(2) x U(t)y x U(1), x U(1),.

The factor U(1)y is the familiar hypercharge group, while U(1),, and U(1), are additional
symmetries. The U(1), factor commutes with SO(10), so the couplings of the U(1),,
are the same for all left-handed states. The couplings of the Z, are, as discussed in
Section 1.3.3, the same for all particles in an SU(5) multiplet, but are different for the 5*
and the 10 of SU(5).

In general, neither the Z, nor the Z, will be a physical particle. A light Z’ will
be a linear combination of the generators of these two U(1) groups, which is typically
parameterized [36] by the mixing angle a:

Z' = Zycosa+ Z, sina. (1.49)

In principle the Z' could mix with the Z, but this mixing is experimentally known to be
small [37], and is expected to be negligible for Mz >> Mz.

A generation of fermions in Eg forms a 27 representation, that is, it consists of
27 left-handed states related by a gauge symmetry, and another 27 right-handed states.
Only fifteen left-handed fermionic states in each generation are known; Eg, then, predicts
an additional twelve “exotic” fermions. In the breaking scheme of Eq. (1.48), the 27 of
Es decomposes into irreducible representation of SO(10),

[27)g, =16 +10 + 1. (1.50)

The 16, in turn, as discussed in Section 1.3.3, decomposes into irreducible representations
of SU(5):
[16]so(10) = 5* + 10 + 1, (1.51)

and thus includes all of the known fermions and a right-handed neutrino. The 10 and the
1 of SO(10) are composed entirely of exotic fermions.
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Table 1.7: Values of the charge Q for the coupling of one generation of left-handed fermions to
an E; Z'. Note that the coupling is the same for all members of an SU(5) multiplet.

SU(5) multiplet | Particle QL
10 et,dyu,u¢ | Q)P = -;—(\/gcosa+\/§sina)
5* d,e,v. |QF = & (\/gcosa - /& sin a)

Using the normalization conventions of Ref. [36], the coupling of a Z’ to matter

Lint = gz (QLZ0Fin" f + QLZLFrr* fr) (1.52)
where gz is the ordinary U(1), coupling constant, i.e.,
) e
v =g = ; .53
92 =9 = Cos 0w (1.53)

Eq. (1.53) is exact only at the GUT scale: There are corrections when ¢’ and
gz are run down from the GUT scale to experimentally accessible energies. These cor-
rections, however, are only logarithmic. In any case, calculating them requires knowledge
of the physics between Mz and MgurT, such as thresholds due to new fermions and to
supersymmetry. Even in the context of the Eg¢ model, then, gz is best regarded as a
quantity to be determined experimentally rather than as one for which there is a precise
theoretical prediction.

In this Eg model, the charge Q is a linear combination of the U(1),, and U(1),
charges. The normalization has been fixed by Eq. (1.53), and the charges for known
fermions are given in Table 1.7. The right-handed charge Qg is fixed by CPT invariance:

Qh=-qf. (1.54)

The width of the Z’, if exotic fermions are too heavy to be produced and if the
masses of all conventional fermions may be neglected, is

’ 2; .
Tz = 292 10008 + 8(QE ). (1.55)

For a Z' of 1 TeV, this varies between 4 GeV and 10 GeV.

1.4 Parameterization of Z' properties

The fact that Z's are a generic feature of many models makes it plausible that
they exist, but it also means that the mere observation of a Z’ tells us very little about
the physics that gives rise to it. Only by detailed study of its properties can the nature of
the expanded gauge group that gives rise to it be determined. There is a large literature
discussing tests that can distinguish one model from another, but, since the true physics
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of an expanded gauge sector might not be that described by any of the currently popular
models, it is desirable to have a model-independent parameterization of Z' properties.

Many models that predict the existence of a Z’ boson, such as the Eg model, also
predict the existence of additional fermions that couple to the Z'. I assume, for the sake of
simplicity, that all of these “exotic” fermions, if they exist, have a mass greater than %M 71
If any exotic fermions have a mass less than %M 7', this will have the effect of increasing
the Z'’s width and decreasing its branching ratio to ordinary fermions, thus decreasing
its production cross section. This would make precision Z' studies more difficult, but,
of course, by allowing direct study of new fermions, it would provide a great deal of
additional information about the expanded gauge group. Assuming that this information
will not be available, and that only the Z’ will be accessible to study, is the conservative
assumption.

I further assume universality, that is, that the Z’ couples in the same way to each
generation, and also the lack of flavor-changing neutral currents in the coupling of the 2’
to ordinary fermions. Note that these three assumptions are not completely independent:
Sufficiently light exotic fermions are likely to induce flavor-changing neutral currents [38].

The most general Z' consistent with this set of assumptions can be described by
seven parameters. Two of these are the Z'’s mass and its mixing to the ordinary Z, Mz
and 6, and the other five are coupling constants, which I will denote gz, ge, 90, gu, and
ga- Because of SU(2), invariance, the coupling to left-handed electrons and neutrinos
must be the same, just as SU(3) invariance implies that the Z’ must couple equally to the
three quark colors. The coupling to left-handed electrons and neutrinos is denoted ¢r.
Similarly, gq is the coupling to left-handed quarks, and g,,, g4, and g. are the couplings to
right-handed up quarks, down quarks, and electrons. The sign of the couplings is defined
by the interaction Lagrangian

Cint = g1 F2'f. (1.56)

Del Aguila, Cveti¢, and Langacker [39] have proposed a different model-indep-
endent parameterization, introducing the four normalized couplings

2

- 9L
v = 1.57
L™ g+ (157
: 2
e = _99
v = 1.58
L™ g +g2 (1.56)
- g2
v = =% (1.59)
9q
- g2
D = 3, (1.60)
9Q
and del Aguila and Cvetit [40] have proposed yet another parameterization,
+ Ge
pl, = LTS 1.61
v gL — Ge ( )
P} = 99 (1.62)

gL — Ge
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PE = -g‘-’c"; (1.63)
P = 93:;. (1.64)

These particular combinations of coupling constants are measured directly in certain ex-
periments.

In fact, an important special case is even simpler: In many models, the couplings
of the Z' are invariant not only under SU(3), x SU(2),, but under SU(5). This is always
true, in particular, for models in which at some energy scale the gauge group takes the
form G x H, where the Z' is one of the generators of H, SU(5) C G, and the Standard
Mode! gauge group is contained in that SU(S).

Most of the Z' models commonly discussed in the literature, including the SO(10)
model discussed in Section 1.3.3 and the Eg model discussed in Section 1.3.4, are of this
form. The only notable exceptions, in fact, are the left-right symmetric model discussed
in Section 1.3.2, and the so-called sequential Z’ model. The sequential model simply
postulates a Z' whose couplings are identical to those of the Z; this model is completely
unmotivated theoretically, and appears in the literature only because of its computational
simplicity.

The special case of SU(5)-invariant couplings requires one additional assumption
beyond those discussed above: 2’ couplings are invariant under SU(5) only if mixing
between the Z and the Z’ is negligible. In fact, however, this assumption is already
known to be true: As discussed in more detail in Section 2.2.1, experiments at LEP
already constrain 8 to be very small [37]. Except in the case of precision studies, such
as rare decay modes of the 2/, it is valid to neglect mixing.

All known elementary fermions in a single generation can be assigned to two
irreducible representations of SU(5): vr, e, and d}, are assigned to a 5*, and uz, dz, u§,
and ej to a 10. Instead of five independent coupling constants, then, a theory of this
form only has two, gs- and g;0. The couplings of such a Z' to fermions take the form

gL = gs- (1.65)
9@ = %o

ge = =—g10

gu = —910

9d = —G5-.

For most purposes, a different parameterization of the SU(5)-invariant couplings
is more convenient:

gss+ = gsinf (1.66)
gio = écosﬁ.

Different models correspond to different values of 8. The Z}, and Z of Eg [36], for
example, correspond respectively to 8 = /4 and 8 = — tan™1(3).
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A measurement of Z' couplings, in this language, means a measurement of a
physically observable quantity that depends on § and 8. Note that a quantity that
depends only on the magnitudes of the couplings, not the signs, must have periodicity =
or less.

This general class of SU(5)-invariant models is no less predictive than is the
E¢ model: Both describe all ratios of coupling constants in terms of a single parameter.
Although the Eg model is seemingly more predictive in that it specifies the Z’' coupling
constant gz in terms of the U(1) coupling constant g, that, as discussed in Section 1.3.4,
is an illusion: The precise value of gz/ can be predicted only by making assumptions about
physics at energy scales between Mz and Mgyr.

The width I'z: is not an independent parameter of the theory. The partial width
for Z' decay into a fermion-antifermion pair is

Mzn _i m2 2 2
Tr =2\~ 55 [(1—34—,-) () +(QR))+M2 eg,,gR] (1.67)

where gi and g{, are the fermion’s left-handed and right-handed couplings to the Z'. In
the case of quarks, this must be multiplied by a color factor of 3, for the three quark
colors, times a small enhancement factor due to final-state QCD interactions.

The only fermion whose mass cannot be neglected is, of course, the top quark.
For Mz: = 500 GeV and m; = 175 GeV [13], the corrections due to nonzero m; depend
on the relative sign and magnitude of g} and g}, but are typically at least 10%.

Assuming that the Z’ only decays into known fermions, and assuming Mz >
2my,, the width of the Z' is

Mz
'z —-8—- 207 + 92+3¢3+0d (5+(1—z)VI—4=v) (1.68)
+ gﬁ(2+(1—z)\/1—4z)+63\/1—4zgqgu],

where z = m?/M2,. In the case of a Z' with SU(5)-invariant couplings, this simplifies to

Iz = A'Isz i3 [5 + cos? (3 +2(1-z)vV1—4dz - GzM)] . (1.69)

This expression is graphed in Fig. 1.2, setting the Z' coupling constant § equal to the
Standard Model U(1) coupling ¢’. This normalization is solely for convenience: In most
realistic models, it is considerably smaller. In most models, I'z:/Mz ~ 1%. As is seen in
this graph, the corrections from a finite top mass can be substantial if M is sufficiently
small.
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Width of a Z', scaled by its mass
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Figure 1.2: Graph of Eq. (1.69), I'z:/M3z: for a Z' with SU(5)-invariant couplings. The coupling
constant, g, is taken to be equal to the U(1l) coupling constant g’ of the Standard Model. The
angle 3 determines the 2'’s relative coupling strength to the SU(5) 5* and 10 multiplets. The
solid line is for m? /M3, negligible, and the dashed line is for m?/M3, = 0.1.
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Chapter 2

Present-day limits on the
existence of a 7/

Limits on the existence of a Z' may be divided into two categories: Limits from
direct search, and limits from indirect arguments. Direct search limits arise from the
failure to observe a Z’ resonance in high-energy collisions, whereas indirect search limits
arise from a diverse collection of effects where the existence of a Z’' would affect physical
observables even if the Z' were too massive to be produced on-shell.

Both direct and indirect searches lead to model-dependent constraints. Although
the direct and indirect limits on Mz are similar, the ranges of parameter space excluded
by the two methods are different, and the two methods are complementary.

2.1 Direct search limits

At present, the most stringent direct search limits for new gauge bosons are
those obtained by the CDF Collaboration [41] at the Fermilab Tevatron.

CDF’s search limit is based on the non-observation of the reaction pp — Z' —
I*1~, where I*]™ is either an electron or a muon pair. The actual quantity whose value
is bounded, then, isn’t Mz but rather o(pf — Z')B(I*!~). In any particular model,
o(pp) and B(I*1~) can both be obtained as functions of Mz, and, by comparison with
this prediction, the experimental upper bound on Z’ production can be turned into a
model-dependent lower bound on Mjz:.

For both the e*e™ and the utu~ modes, CDF required a candidate event to
consist of an opposite sign dilepton pair, both members of which have high transverse
momentum (p; > 25 GeV for electrons, p; > 20 GeV for muons). One member of each
pair was required to be central (|n| < 0.6 for muons, |g| < 1.1 for electrons) the other only
to lie within the central tracking chamber (|| < 1.4). For both channels, the dilepton
invariant mass was required to be greater than 40 GeV. The total sample, after all cuts,
consists of 148 u*u~ events, none of which has M,, > 155 GeV, and 1244 e*e™ events,
none of which has M., > 320 GeV.

The limit on o(2')B(I*!™) is obtained by fitting the observed invariant mass
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distribution to a distribution that includes both Drell-Yan production and Z’ decay, taking
into account trigger efficiencies and geometric acceptances. This limit is mass-dependent,
mainly because the kinematics of Z' production and decay depends on Mz:: Higher mass
2Z's tend to be produced more centrally, and their decay products tend to have higher p,,
so it is more likely that such events would pass CDF's cuts. The upper bound on ¢B
(95% confidence limit) ranges from 0.8 pb for a 260 GeV 2’ to 0.2 pb for a 600 GeV Z'.

CDF obtains a model-dependent lower bound on Mz simply by finding the
lowest value of Mz for which the predicted value of oB is less than the experimental
upper limit. For the model where the Z'’s couplings are equal to those of the Standard
Model Z, this limit is Mz > 495 GeV (95% confidence limit). This model, however,
is poorly motivated theoretically. For more plausible models, such as those based on a
broken Eg symmetry, the limits are on the order of 350 GeV.

Similar upper limits for B have been reported by D0 [42], UA1l [43], and
UA2 [44]. CDF’s limit is the most stringent.

CDF has also studied the dijet channel [45), and found no statistically significant
excess over QCD expectations for M;; up to 930 GeV. CDF does not report an upper limit
on o(pf — Z' — ¢§) based on this measurement, or a lower limit on Mz, but it is possible
to obtain such limits [46]. These limits are similar to, but somewhat weaker than, those
obtained in the dilepton channel. The difference is partly because dijet mass resolution is
worse than dilepton mass resolution, and partly because of uncertainties in the calculation
of QCD background. This limit is nevertheless valuable because the dilepton search limits
apply only to models where the Z’' couples to both quarks and leptons, while the dijet
search applies also to models where the Z’ couples only to quarks.

2.2 Indirect search limits

2.2.1 Measurements at M;

In the case of the left-right symmetric model, Section 1.3.2 shows that the Z
and the Z' mix—that is, that the neutral gauge boson associated with the new generator
of the gauge group, and the neutral gauge boson associated with SU(2) x U(1), are not
mass eigenstates of the theory. In fact, this phenomenon is general. There is no symmetry
forbidding mixing, so a general analysis of Z' models must include it.

If Zp is the massive gauge boson of SU(2) x U(1) and Z; is the new massive
gauge boson, their mass matrix is, in general,

M2 M} Z
' 2, z2z 0
The physical Z and Z’, however, are (by definition) mass eigenstates, with the diagonal

mass matrix \
nf M 0 Z
[Z Z](OZ Mgl)[zl] (2'2)
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The states (Z, Z') and (2, Z;) are related by

Z = cosbpmZy+sinbpnZ, (2.3)
Z' = -sinbpyZy+ cosbpyZy, (2.4)

where the mixing angle, 6, is determined in terms of of M3 /M §6 and M3, /M3 . More
conveniently, it can be expressed in terms of M3 /M3 and M3,/M} :

M3, - M}
sin? 0y = —J——2 (2.5)
le - Mz
or
M2 - M2
tan®Oy = —2 Z, (2.6)
Mzg bl Mzo

Generally, for M3, > M3, 0p ~ M3/Mz. This is only a general statement about the
magnitude of the mixing angle, however: A quantitative prediction depends on details of
the Higgs sector.

The physical Z boson, then, is a mixture of the Staridard Model Z; and the
2Z'. This mixing has two effects. First, it changes the mass of the physical Z boson from
the mass Mz, predicted by the Standard Model}, and second, it changes the couplings
of the Z from the Siandard Model values to those values plus an admixture of the Z'’s
couplings.

The mass shift is immediately obtained from Eq. (2.5). For 6 <« 1 and
M3,/M3 > 1,

M3 - M% = 63 M3, (2.7)
or
M3,
M3, = M} (1 + 0{,—1&%-) . (2.8)
¥4

The Standard Model relation between the W and Z masses is in terms of Mz,, not
Mz. When expressed in terms of the physical Z mass, Mz, this relation thus acquires a
correction of O(63,M32,/M3). Since 6y ~ M3 /Mg, these corrections are of O(fs).

In fact, it turns out that this mass shift is not as sensitive a test as might be
hoped. First, the uncertainty in My is large enough so that, even in the absence of
any theoretical difficulties, 63, M2,/M2% would have to be on the order of 1% to have any
observable effect. Second, however, and more important, this shift has exactly the same
form as other corrections to My /Mz, and it is difficult to disentangle the Z’’s contribution
from the rest. Specifically [47), it is simply an additional term in the p parameter, which
already, in the Standard Model, receives contributions from the ¢ quark and the Higgs
boson. This effect is unobservable [48] unless 63, M3, /M3 > 0.05, a range that is already
excluded by (model dependent) limits.

In some renormalization schemes, the mass of the physical Z is taken as a defining parameter of the
Standard Model—that is, other masses are predicted in terms of Mz, rather than the other way around.
In these schemes, what is changed is the mass of the W predicted in terms of Mz.




27

Although this upper bound on the Z-Z’ mixing angle is not as stringent as those
obtained by considering the effect of mixing on the Z’s couplings, it has the virtue of
being model-independent: Unlike every other lower bound on Mz, or upper bound on
6, it requires no assumptions at all about the Z’’s couplings.

The shift in Z couplings due to mixing with the Z’ provides more stringent
constraints, but does require assumptions about the Z'’s couplings to fermions. If the
Standard Model Zy’s coupling to some fermion f is g,,, and the pure Z'’s coupling is 92
then the physical Z and 2’ couple with strengths

gs = co80pg,, —sin oMgsa (2.9)
gy = 8infpg,, + cos OMQ:;,- (2.10)

As an extreme illustration of the model-dependence of any limit based on this mixing,
consider the “sequential” model, where the Z' has the same couplings as the Standard
Model Z. Clearly, this model is completely unconstrained by such limits.

Less pathological models, however, are subject to very strong constraints. Many
observables measured at LEP depend on Z couplings; the only challenge is finding combi-
nations of observables that are independent of other corrections to the Standard Model.
Two particularly useful quantities [47)] are

. 2
Ye = Ye— ‘3'5 (2.11)
. 2
“w E W- 55, (2.12)

where v, and 4, are the normalized ete™ and v partial widths,

_ 9 Te+4e-
T = a(Mz) Mz
9 T

Y T 2a(Mz) My’

(2.13)
(2.14)

and
f= =t
M3 cos? 6,
These quantities have been measured at LEP. Comparing them to the values expected
in various Z' models yields [49] a limit of |0p| < 0.01 for most models. This can be
combined with the limits on 63, M2,/M3 to obtain a model-dependent lower bound on
M3z, which, in most models, is 100 to 150 GeV [50].

(2.15)

2.2.2 Low-energy measurements

Other indirect limits can be derived from low-energy experiments. At low en-
ergies, parity-violating effects would be affected both by the shift in Z couplings due to
mixing with the Z', and by exchange of virtual Z’s. Note that effects due to virtual 2’
exchange cannot be observed on the Z resonance. Observation of these effects requires

i
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either energies much less than or much greater than Mgz; at present, of course, only the
first is an option.

Analyses of atomic parity violation [51] provide model-dependent bounds on Mz:
and 0p. For most models, |8¢] is constrained to be less than a few percent, and Mz to
be greater than 200 or 300 GeV. This is a region of parameter space already ruled out by
combining the direct search at the Tevatron with the mixing experiments at LEP.

Marciano and Sirlin [52] have found another indirect constraint, based on ra-
diative corrections to low-energy weak interactions—specifically, radiative corrections to
the four-fermion charged current contact interaction. In any model where the Z' couples
differently to quarks than it does to leptons, box diagrams involving a Z’ have the effect of
changing the relative strength of lepton and quark four-fermion operators. This relative
strength is already parameterized by the elements of the Kobayashi-Maskawa matrix, and
Marciano and Sirlin show that, if corrections from Z’ exchange are considered to be cor-
rections to the Kobayashi-Maskawa matrix, they have the effect of effect of destroying its
unitarity relationship. In the first row of the Kobayashi-Maskawa matrix, |V,;| is known
to be small (see Eq. (1.24)); |V.ud4| and |V,,,| come close enough to saturating unitarity so
that the unitarity constraint can be used to limit the Z’’s mass and couplings. The Z,
of SO(10), for example (see Section 1.3.3), must have a mass greater than 260 GeV. This
too, however, is a mass range already ruled out by direct search at the Tevatron. Note
also that this calculation cannot constrain a Z’, such as the Zy of Eg (see Section 1.3.4),
that couples with equal strength to all quarks and leptons.

These methods are interesting, and provide nontrivial constraints, but they are
dominated by theoretical error and there is little prospect for significant improvement in
the near future. It is likely that the best constraints on Mz and 84 will continue to come
from collider experiments.

2.3 Future prospects

Precision measurements at e*e~ colliders, with /s > Mz, are expected to yield
new constraints on the Z' mass and coupling. These constraints would mainly be due
to the interference of the v, Z, and Z' propagators. At LEP, where measurements are
made at Mz, this interference is negligible, but it must be included at /s > Mz. This
is discussed in more detail, in the context of studying a Z’' already known to exist, in
Section 4.4.

These measurements can establish a model-dependent lower bound on M3z of
roughly two or three times the center of mass energy at which they are made. Limits from
LEP 200, then, will probably not raise the lower bound on Mz: by more than 100 or 200
GeV. A high-energy e*e™ collider, with /3 = 500 GeV, will be able to rule out a higher
range of 2’ masses, but the lower bounds on Mz established by indirect experiments at
such a collider are expected to be lower than those established by direct search at the
LHC. The e*e™ limits are complementary, however, in that they apply to models where
the Z' couples only to leptons.
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Chapter 3

Measurements at hadron colliders

3.1 Z' production and discovery

3.1.1 The parton model

At a hadron collider, Z' production proceeds through the process ¢q§ — 2Z'.
Quark and antiquark beams are impractical, however; a hadron collider uses proton or
antiproton beams. The cross section for Z’ production in pp or pfp collisions is calculated
using the parton model.

A high-energy hadronic collision can be thought of as a collision involving quarks
and gluons (generically referred to as partons), illustrated in Fig. 3.1. The partons are
constituents of the incoming hadrons, and it is assumed that a collision involves one
parton from each hadron, rather than either hadron as a whole. The other constituents of
the hadrons do not take part in the hard scattering, but comprise the underlying event.
The fundamental assumption of the parton model is that even though the constituents
of hadrons are strongly bound, those partons that participate in the hard scattering may
be treated as free particles; formal justification for this assumption relies on the operator
product expansion [54].

If the hadrons are labelled A and B, and their momenta are p, and p;, then the
momenta of the partons are defined to be z,p, and z,p;, where z, and z;, the momentum
fractions, are dimensionless numbers between 0 and 1. The probability that a parton i in
hadron A has a8 momentum fraction z, is denoted f;/4(=a), where i can refer to a gluon
or to any flavor of quark or antiquark. The parton distribution functions are normalized
by the requirement that the momenta carried by the hadron'’s constituents add up to th»
hadron’s momentum, or

Z/ol dzzfi(z) =1, (3.1)

where the sum is over all species of partons. Requiring that the sum of the electric charges
of the partons equals the hadron’s charge yields another such sum rule.

A hadronic cross section, in the context of the parton model, is given as the
incoherent sum of the partonic contributions, where each contribution is weighted by the
parton distribution function f. Specifically, for a process that proceeds only through
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Figure 3.1: Parton model diagram of Z' production at a hadron collider. A 2’ is produced by
¢d annihilation, where the quark and the antiquark are constituents of the initial-state hadrons.
The other constituents of the initial-state particles, the underlying event, are shown schematically.
Particles produced in the underlying event typically have small angles with respect to the incoming
beams.

quark-antiquark annihilation, the total cross section is
o(AB — X) = 3 [ dredss [fya(za fy5(@) + fyp(en) fya@a) $(aa — X),  (32)
q

where the sum is over all flavors of quarks, and where 6 is the cross section for the
reaction ¢§ — X, i.e., for the production of X by the annihilation of a free quark and
a free antiquark with center-of-mass energy /3, where § = 4z,zyp,ps. The sum in the
square brackets represents the fact that there are two possibilities for the origin of the
partons: Either the quark can come from A and the antiquark from B, or the quark from
B and the antiquark from 4,

All of the parton distribution functions f;(z) fall to 0 as z — 1. For the u and
d valence quarks in a proton, zf,/,(z) peaks at about z = 0.2, while for gluons, all other
quarks, and all antiquarks, zf;/,(z) peaks at z = 0. In other words, it is very unlikely that
all of a proton’s momentum, or even most, is carried by just one of its quarks or gluons.
Most energetic parton-parton events at a badron collider, then, take place at energies v/3
considerably lower than the center-of-1nass energy of the two hadron beams.

Any calculation involving the parton model requires knowledge of the parton
distribution functions f;(z). The parton distribution functions are typically extracted
from fits to experiments such as deep inelastic scattering; these experiments are usually
performed at relatively modest energies, so the parton distribution functions are not
directly measured for very small values of z. The distribution functions for small r are
obtained by extrapolation, sum rules, theoretical expectations about hadronic structure,
and other methods. Similarly, due to higher-order QCD corrections [55], the parton
distribution functions depend not only on z, but also on the energy, /3, of the collision
itself. Qualitatively, as 5 increases, the parton distribution functions become increasingly
biased toward small values of z; this dependence is logarithmic in 5 For experiments at
a different (usually higher) § than those used in the fit, the parton distribution functions
must incorporatie these corrections.
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GRY set HO parton distribution functions
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Figure 3.2: Graph of z times the parton distribution functions for u and d quarks and antiquarks
in protons, using the GRV HO [61] set. The value of 5 used in this plot is 1 TeV, the scale relevant
for Z' production at the LHC. The solid line is zf, /,(z), the dashed line is zf4/,(z), and the dotted
line is either zf;/,(z) or zf3;,(z). In the GRV parton distribution functions, the distributions
for @ and d are equal. The curve peaks at z = 0 evan for fu/p(z) and f,/p(z) because this graph
includes all u and d quarks, not just the valence quarks.

Many different sets of parton distribution funrtions are in common use today,
including EHLQ [56], Duke and Owens [57], HMRS [58], Morfin and Tung [59), DFLM [60],
and GRV [61]. Each of these sets represents a different fit to experimental data and a
different way of calculating the parton distribution function for values of z and § outside
those that entered the fit. When performing a parton-level calculation, it is common to
estimate the theoretical uncertainty due to the parton distribution functions as the range
of predictions obtained when the choice of parton distribution functions is varied. As an
example, the GRV (set HO) quark distribution functions are plotted in Fig. 3.2.

3.1.2 Production rates

If a Z' is discovered in the near future, discovery will almost certainly be at the
CERN Large Hadron Collider (LHC), a proposed pp collider with a center of mass energy
of 14 TeV! and a luminosity of 1.5 x 103 cm~25~1, or 150 fb~! /yr. Specifically, discovery
will be through the e*e™ and p*u~ channels. In general the [*i~ final state receives
contributions from the v, Z, and Z’, but interference between the Z’ and the two lighter
bosons is negligible on the Z’ resonance, so it suffices to consider only the Z’. The I+1-
events arising from v and Z can be treated as a background.

1The LHC was originally to have /3 = 17 TeV, and most published studies of Z’' production at the
LHC assume that value. The change from 17 TeV to 14 TeV significantly worsens the possibilities for
observation and study of a 2’ at the LHC.
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The cross section for pp — Z' — [*!~ can be estimated, in the context of the
parton model, by approximating Z’ production as a simple Breit-Wigner. The total cross
section & for g§ — Z' — I+~ depends only on § = z,z3s, so the integration over the
momentum fractions is particularly simple. Making the additional approximation that
the proton contains only u and d quarks,

1222 1 S § Y78 dlq
o= H‘Z’—Mz' B(Z' = 1I"l7) x 6 [-r-a-;—I‘.m + 77— ar Tal, (3.3)
where dc
T = [ daadesd(r - 2azs) [fp@adfasp(an) + fop(a fapl@n)],  (3:4)

T'ug and T'y; are the partial widths for Z' — ui and 2’ — dd, and and 7 = M2, /s. The
factor of 1/9 comes from the requirement that the quark and antiquark must have the
same color in order to annihilate.

This expression can be rewritten as

ar? 1 - r dl,
a—-—;-r——ﬁ-z—B( ete” )[ u+RMd;]de, (3.5)
where
= (dLg/dT)/(dLy/dT). (3.6)

This expression is actually quite simple. In the ratio R, much of the theoretical uncertainty
of the parton distributions cancels out, as does much of the energy dependence. In fact, R
is typically a number of order %, the value one would naively expect from the observation
that a proton in the static quark model has twice as many up quarks as down quarks.
Eq. (3.5), then, consists of three factors: A model-independent overall factor that falls as
1/M2,, a model-dependent combination of Z’' coupling constants, and a mass-dependent
factor that requires knowledge of the parton distribution functions.

With the branching ratio and widths of Section 1.4 (taking m? <« M%), Eq. (3.5)
becomes
x 1 (sf +92) (92 + g3 + R(3 + gq))
18 M2, 2g% +92 + 6g% + 392 + 3¢} dr

or, in the case of SU(5)-invariant couplings,

_m B R+2cos’B_dL,
= 90M2, 1+cosip | dr (3.8)

o=

3.7)

The quantities 7dL, /dT and R can be obtained, for various choices of parton distribution
functions, using the computer program PDFLIB [62]. These numbers are given in Table 3.1
for a range of Z’' masses and a representative sample of parton distribution functions.
Table 3.1 and Eq. (3.8) together determine the cross section for Z' production as
a function of M3, g, and B. This cross section is plotted in Fig. 3.3 for several values of
M3z, assuming that g, the Z’ coupling constant, is equal to 0.15, a value typical of many
models. The cross section for production of 2 1 TeV Z' in /s = 14 TeV pp collisions
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Table 3.1: Differential luminosity d, /dr and luminosity ratio R, defined in Eqs. (3.4) and (3.6),
where 7 = M2,/s and s = (14 TeV)?. The parton distribution functions are EHLQ 1 [56),
DFLM (60], and GRV HO [61]. The Z' production cross section is on the order of (r/M2,)dC, /dr.

EHLQ 1 | DFLM GRV
Mz | rdC./dr | R rdL,/dr R TdLy JdT R

1TeV [ 5.25 x 10~7 ] 0.448 || 5.16 x 10~ | 0.490 || 5.75 x 10T | 0.477
2 TeV || 1.05 x 10~ | 0.366 || 9.87 x 10~2 | 0.409 || 1.22 x 10~ | 0.375
3 TeV || 2.36 x 10~2 | 0.314 || 2.31 x 10~2 | 0.365 || 2.86 x 102 | 0.307
4TeV || 524 x10~3 | 0.273 || 5.68 x 10~3 | 0.310 | 6.29 x 10~3 | 0.258
5 TeV || 1.06 x 10-3 | 0.239 || 1.36 x 10~ | 0.268 || 1.23 x 10~3 | 0.220
6 TeV || 1.94 x 10~4 | 0.210 || 3.02 x 10—* | 0.230 || 2.06 x 10~* | 0.190

is about 100-200 fb, which at the LHC will result in a production rate on the order of
25000 Z’ events per year. Even though only a few percent of these events will have e*e™
or utu~ final states, this is a large enough production rate so there is no doubt that a
1 TeV Z' could be discovered at the LHC. A 2 TeV Z' is probably still observable, but
3 TeV is marginal at best, and a 4 TeV Z’ is out of the question unless its couplings are
much larger than those assumed for this calculation.

The leptons resulting from 2’ decay are preferentially produced with a transverse
momentum of My /2, as shown in Fig. 3.4; this effect is simply due to the change of
variables from angular variables to the transverse momentum. As a result, it is possible
to impose very stringent cuts on the leptonic transverse momentum without substantial
loss of data.

The signature for a Z' candidate event at the LHC is exactly the same as at
the Tevatron—an opposite-sign dilepton event where both leptons have high transverse
momentum. The only difference is the scale: At the Tevatron, the transverse momentum
cut is p; > 20 GeV, but at the LHC, for Mz > 1 TeV, even a cut of 100 GeV rejects
very few genuine Z’ — [*1~ events. The Z’ is a narrow resonance; the Z’' peak in the {11~
invariant mass spectrum will be quite striking if the Z’ is light enough to be produced with
sufficient statistics and if the detector’s electromagnetic calorimeter has sufficient energy
resolution to resolve the peak. Studies taking detector effects into account [63, 64, 65]
suggests that it may be possible to observe a Z’ as massive as 5 TeV; these studies reach
such optimistic conclusions because they postulate much larger Z’ couplings than the ones
used for Fig. 3.3. For a 1 TeV Z', it may be possible to measure Mz with a precision of
100 MeV, and I'z: with a precision of 200 MeV.

The maximum observable value of Mz depends on the Z"’s couplings to u and d
quarks, but the most important limiting factor is the behavior of the parton distribution
functions, which fall rapidly at large 2. Production of a 5 TeV 2’ at the LHC requires
19 ~ 0.1.

To lowest order, a Z' is produced with zero transverse momentum, but this is
simply an artifact of the O(a?) calculation. The dominant production process for a 2’ is
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quark-antiquark annihilation, which produces Z's with no transverse momentum. Higher
order processes result in a Z' with nonzero transverse momentum, accompanied by one
or more jets. The most important one-jet processes are gg — Z'q and g§ — 2'g; for
two or more jets, many different partonic processes contribute. A Z’ with finite trans-
verse momentum, however, is no more difficult to observe than one with zero transverse
momentum.

3.2 Hadronic decays of the Z'

It has been proposed [66] that, despite the enormous QCD background, it might
be possible to observe the decay Z' — ¢ at the LHC, and, even more optimistically, that
it might be possible to distinguish Z' — bb from ¢ [67). This would be quite valuable, since
measurement of the leptonic decay modes alone does not permit individual determination
of the three quark coupling constants gg, gu, and g4, but only of the combination that
appears in the Z’ production rate.

Specifically, the proposal is to examine do/dM;;, where M;; is the invariant
mass of the two jets from Z’ decay. If the Z’ has already been discovered in the dilepton
channel, and its mass is known precisely, it might be possible to see a small increase in
do/dM;; at M;; = Mz

Unfortunately, this would be an extraordinarily difficult measurement. At any
hadron collider, the cross section for production of events with two or more jets is quite
large: At the LHC, the cross section for dijet production with an invariant mass of 1 TeV
is larger than the peak Z' cross section by a factor of at least 10. A set of aggressive cuts,
relying mainly on the fact that the QCD dijet production cross section falls steeply as
a function of the jet transverse momentum, while the transverse momentum of Z' decay
products is typically on the order of Mz/ /2, can reduce this background. Even with the
miost optimistic possible assumptions about 2’ production rates and the effects of cuts,
however, direct calculation using the Monte Carlo program PAPAGENO [68] shows that the
signal to background ratio at M;; = My is still at most 0.1.

An enhancement of 0.1 in the dijet cross section is not necessarily unobservable,
but it is important to remember that this is the peak value of the enhancement, and that
the Z' peak is quite narrow. Observation of Z' — g¢§ at the LHC requires a detector
whose dijet mass resolution is 2I'z' or better, an understanding of QCD background to a
level much better than 10%, and high enough statistics in the region Mz —2I'z: < Mj; <
M3z + 2T'z to make a small excess statistically significant. None of these assumptions is
particularly plausible.

For the remainder of this chapter, I will assume that a Z’ can only be studied
at the LHC through its decays to leptonic final states.

3.3 Forward-backward asymmetry

The forward-backward asymmetry has long been recognized as a useful means
for studying a Z' produced in pp collisions [69]. It is also possible to define a non-zero
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forward-backward asymmetry in a pp collider [36, 70], even though it is not immediately
obvious how to define “forward” and “backward” in a collider where both beams consist
of the same type of particle. The leptonic couplings of the Z’ can be probed by measuring
the forward-backward asymmetry, Arp, in the e*e™ and p*u~ modes.

Ideally one would like to define App as the cross section for 0 < § < § minus
the cross section for § < 6 < 7, where 0 is the angle between the /™ and the ¢ momenta
in the ¢ center of mass frame. Since we cannot know which proton contributed the ¢ and
which the §, this does not define a measurable quantity. However, since the quark distri-
bution function zf,/,(z) peaks at a higher value of the momentum fraction z than does
the antiquark distribution zfy/,(z), the Z’s will usually be produced with longitudinal
momentum in the same direction as that of the quark. Making the approximation that
the longitudinal direction of the Z' always tells us which beam contributed the quark, this
allows a forward-backward asymmetry to be defined at a pp collider. This assumption is
usually correct for Z's with large longitudinal momentum, but is frequently incorrect for
Z's with small longitudinal momentum; the net result is that the measurable asymmetry
is washed out, with the Z’s produced nearly at rest providing no information.

More formally, if oF and o2 are the forward and backward cross sections de-
scribed above and y is the Z' rapidity, then

ang < "~ fians] [ — ] .
[fo-(ln s Jn 1')/2] [d‘f“; + d‘f-:] dy

This can be related to the Z’ couplings, using the unintegrated parton luminosity functions
GE(y,7) = q(za)d(zs) £ q(#4)3(%a), Where z, = /Te*¥ and 2 = /Te™¥. Then the
asymmetry is predicted to be [36]
Apg =3 (9L) - (gh)* X, [(e1)* - (g)*) Hy
4 (g2 + (9R)? T, l(91)% + (9R)21HY

where the sum is over the quark flavors that contribute to Z' production, and where

(3.9)

(3.10)

' p S 0
Hf = [/ 2 :i:/l
0 §-ln'r

Specializing to SU(5)-invariant couplings, and making the approximation that
only u and d quarks and antiquarks are found in tke proton,

dyGi. (3.11)

3 H;

App = —=cos?283- d .
FB = e N o BT (312)
where only H; appears in the numerator because a Z' with SU(5)-invariant couplings
couples equally to left- and right-handed u quarks. The quantities HZ and H, ff can easily

be obtained by numerical integration of the parton distribution functions provided by
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PDFLIB [62]. For a 1 TeV Z' at the LHC, and using the GRV [61] parton distribution
functions, the results are

Hy = 23.6 (3.13)
H} = 534
Hy = 719
H} = 12

Independent of the Z' model, Arp will be reduced from its parton-level value because,
for both u and d, H;y /Hf < 1. In models with SU(5)-invariant couplings there is an
additional suppression: Protons contain more u quarks than d quarks, but the u quark
couplings of such a Z' do not contribute to its forward-backward asymmetry.

The forward-backward asymmetry, as calculated using Eq. (3.12), is shown in
Fig. 3.5. The asymmetry attains its maximum absolute value at 8 = 7 /2, when the Z’
doesn't couple to u quarks at all, but even this maximum value is rather small. Fur-
thermore, Fig. 3.5 is only valid under the unrealistic assumption that all leptons from
Z' decays, regardless of their pseudorapidities, can be used for the measurement of App.
This is particularly important because the events that contribute the most to Arp are
those where the Z' has substantial longitudinal momentum, and those are precisely the
events where the Z''s leptonic decay products are likely to have so much longitudinal
momentum that at least one of them falls cutside the pseudorapidity coverage of the de-
tector. A more realistic assumption is that the only usable events are those where both
the I* and the !~ satisfy the requirement || < fmax, where the value of nyna., depends
on the details of the detector. The maximum absolute value of Arp will be reduced by
about 40% even assuming fmax = 5.

The statistical error in a measurement of Arp is roughly 1/v/N, where N is
the number of events used in the measurement. Assuming a sample of 25000 Z' events
of which 10% decay into e*e~ or utu~, the statistical error will be approximately 2%.
Since even the maximum possible value of App is rather small, however, the relative
error, 6Arp/Arp, will be quite large. Note also that theoretical interpretation of a
measurement of App will be difficult. The forward-backward asymmetry is determined
by a rather complicated combination of couplings to leptons, u quarks, and d quarks,
and it depends on quantities, H¥ and Hf‘, that are obtained by integrating the parton
distribution functions. Only the ratios of HX and H ff enter into the expression for App,
so much of the theoretical uncertainty in the parton distribution functions will cancel out,
but, as can be seen from the range of values for R in Table 3.1, some uncertainty exists
even in ratios.

3.4 Tau polarization asymmetry

3.4.1 Definition of 4,

Despite the unobserved neutrinos from 7 decay, it is also possible to study the
polarization asymmetry Ay, that is, the asymmetry in Z’ — 7%+~ between production
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Figure 38.5: Forward-backward asymmetry Arp in pp — Z' — 11~ as a function of 8, for a Z'
with SU(5)-invariant couplings. The expression for App as a function of 8, Eq. (3.12), depends
on quantities obtained by integrating parton distribution functions. This plot uses the GRV [61]
parton distribution functions, and assumes Mz = 1 TeV and /s = 14 TeV. See text for the
definition of Arp at a pp collider.
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Figure 3.6: Polarization asymmetry in the decay 2’ — 7+, for a 2’ with SU(5)-invariant
couplings. Note that A,, may have any value within the range (—1,1), and that it depends
strongly on 8, as defined in Eq. (1.66). Even an imprecise measurement of Ay, provides useful
information about 8.

of left-handed and right-handed 7~ leptons [71). If oy, is the production cross section for
77 and og the production cross section for 75,

oL — OR

. 3.14
oL+on ( )

Apol =
The decay of the 7 proceeds through the weak interaction, which violates parity. Left-
handed and right-handed 7s thus have different decay properties, and it is possible to
distinguish them on a statistical basis. This method has been used to study Z couplings
at LEP [72]. There are additional complications at a hadron collider, but they are not
prohibitive.

In general, measurement of a polarization asymmetry for the production of some
fermion f requires that f decay within the detector, that the decays of fr and fr be
distinct, and that f’s decays be both measurable and theoretically well understood. For
the purpose of studying a Z' at a hadron collider, the only fermion f that meets these
requirements is the 7.

Unlike Arp, which depends on both the quark and lepton couplings, Ay de-
pends only on the Z'’s couplings to the 7. Assuming universality, and using the notation

of Section 1.4,
Apol = M
Pe T g + g2

The 7 polarization asymmetry does not depend on the Z’’s couplings to u or d quarks, or
on the parton distribution functions, but only on g2/g%. For a Z’ with SU(5)-invariant
couplings,

(3.15)

Apai(B) = —cos 28. (3.16)

This is shown in Fig. 3.6. Note that it depends strongly on ; even an imprecise mea-
surement of Ay, provides a reasonably precise measurement of g2/g2.
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3.4.2 Decays of the 7 lepton
The matrix element for the decay 7~ — v, X~ is
Gr

M= -EJ(‘:)J“, (3.17)
where
Ity = #(Pu)1* (1 = 15)7(Pr, 87) (3.18)
(n)
and
JH = (X|J4|0). (3.19)

When X = eb, or ub,, the final state matrix element J* is completely calculable. Even
for some simple hadronic states, however, J# can be determined up to an overall normal-
ization. In fact, it turns out that these well-understood decays have a branching ratio [8]
of about 80%. i

The quantity that depends on the 7’s polarization is the angular distribution of
the 7's decay products in the 7’s rest frame. For a relativistic 7, an equivalent quantity,
more directly related to experimental measurements, is the distribution in z, the visible
momentum fraction. The visible momentum fraction is defined as z = pyis/p,, where pyi,
and p, are respectively the momenta of the visible decay products and the decaying 7,
both measured in the lab frame. The visible decay products are defined to be all decay
products except for neutrinos.

Tsai [73] discussed 7 decays in detail more than 20 years ago, before the 7 was
even discovered, and expressions for the decay of a polarized 7 in terms of the visible
momentum fraction = have been obtained [74] for most simple decay modes.

The 7~ decays into e~ J.v, and u~¥,v, with the same branching ratio—about
17%. The calculation is identical to that for s decay. There are no theoretical ambiguities,
and

J* =1(p)y* (1 - vs)v(py)- (3.20)

From this, it is straightforward to derive the normalized decay distributions for left- and
right-handed 75,

(%%)L = %(1—:1:3) (3.21)
(%g)n = 2(1-32"+22%). (3.22)

These two decay distributions, unfortunately, have very little discriminating power; one
way to understand this is that the polarization information contained in the angular
distributions is diluted by the integral over the momenta of two neutrinos. Distinguishing
Iy from ' for leptonic decays will require very high statistics.
The 7~ decays into 7~ v, about 11% of the time. The only possible Lorentz
structure for J* in this case is
J* o Kk, (3.23)
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where k is the momentum of the pion. Neglecting terms of O(m3/m2), this gives the very
simple relations

(il"%)b = 2(1-z) (3.24)
(%%)R = 2. (3.25)

Some multi-hadronic decays are also calculable. The data are consistent with
the assumption that the two- and three-r final states are dominated by single hadronic
resonances (75], the most common of which are the vector decay, pv,, and the axial
vector decay, a1(1260)v,. If the p or a; is treated as a unit, and the pions are not
distinguished, the Lorentz structure of J, is again completely determined up to a constant
of proportionality:

Ty o € f(M?), (3.26)

where ¢ is the polarization vector, and M? the mass squared, of the resonance. In the
approximation where the form factor f is taken to be constant, the normalized decay
distributions are

(%%) L 52?:*;?:‘:{ [(1-2¢%) - @ - 20)] (3.27)
(%%) R 2‘(3-_':—4?:{ [(¢ + (1 - 2¢)2)], (3.28)

where ¢ = M2/m3, and kinematics require { <z < 1.

Because both the p and the a; are wide resonances, it is inappropriate to treat
¢ as a fixed parameter; it is, instead, necessary to convolve these distributions with the
appropriate line shapes. Making the assumption that the p and a; are simple Breit-
Wigner resonances with the measured masses and widths, the smeared distributions are
shown in Figs. 3.7 and 3.8. The two distributions for the a, are so similar that this mode
is unlikely to be useful, except as a trigger. The two distributions are more distinct in
the case of p decay, but, unfortunately, it is difficult experimentally to distinguish the p’s
from the a;’s decay products. At the LHC, none of the 7's multihadronic decays are likely
to be useful for measuring 7 polarizations.

The 7, and 75 decay spectra are most distinct for the decay v~ — n~v. The
observed spectrum dN/dz for 7 — mv, where z is the visible momentum fraction, is the
weighted sum of (dN/dz); = 2(1—-z) and (dN/dz)p = 2z; a one-parameter fit determines
the coefficient of this sum, hence the polarization asymmetry. Note that the background
for 7 — nv is likely to be lower than for the other decay modes: There are very few
plausible sources of high-energy isolated pions.

1t is likely, then, that only the 20% of 77~ events where at least one 7 decays
to v can be used for measurement of the polarization asymmetry. The other 7 decay
modes may still be useful, however, in distinguishing 7*7~ events from background.




42

04t

01}

4

S Ta— 08 08 1
Figure 3.7: The decay distributions } &L for left- and right-handed 7~ s decaying into pv,, nor-
malized to the branching ratio of this decay mode. The distributions have been smeared to account
for the finite width of the p. The solid line is the distribution for 7; — p~v,, and the dashed line
is the distribution for 75 — p~v,.
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Figure 3.8: The decay distributions 4L for left- and right-handed =3 decaying into a1vy,
normalized to the branching ratio of this decay mode. The distributions have been smeared to
account for the finite width of the a;. The solid line is the distribution for 7, — ajv,, and the

dashed line is the distribution for 75 — ay vy,
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Figure 3.9: Diagram of a Z' — 7+~ event. The transverse momenta of the v+ and the 7~ are
pf, and q_‘f are the transverse momenta of the “visible” 7 decay products—that is, all of the decay
products other than the neutrinos. The visible momentum fraction, z, is defined by p* = z4p*.
The observable quantities are q* and k;, where k is the transverse momentum of the 2’. The
mgle¢hoonmninedtolieinttumgeos¢5m

3.4.3 Reconstruction of r momenta

The visible momentum fraction z is defined in terms of the 7’s momentum and
the momentum of its visible decay products. Because at least one of a 7's decay products
is always a neutrino, the momentum of a r is not a directly observable quantity. A
2Z' — T+7™ event, however, is sufficiently constrained that is it possible to reconstruct
the momenta of both 7s.

For all but a small fraction (O(m,/E,)) of events, a 7 and its decay products
are essentially collinear in a frame where its momentum is much greater than its mass.

In such a frame,
q* = ztp*t (3.29)

where p is the momentum of the 7, g is the total momentum of all of the r's decay products
except for the neutrino, and z is the “visible” momentum fraction, that is, the fraction
of the 7's momentum contained in decay products which are observable through tracking
and calorimetry.

If a 77~ pair is known to be the product of a 2’ decay, it must satisfy two
constraints. Since the width of the 2’ is expected to be small compared to its mass, the
invariapt mass of the 7+r~ system must equal Mz, assumed to be a known quantity.
Similarly, measuring jets not part of the r decay and demanding transverse momentum
balance yields the transverse momentum of the Z'. These constraints, using the notation
defined in Fig. 3.9, are

1 .. 1 .\

(=+q +z_q ) = Mz (3.30)
.l-q‘.‘ -+ —l_.q"' = kJ_ (3.31)
T, + ozt '

where k is the transverse momentum of the 2’. These equations uniquely determine z.,
and z_.
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For simplicity, first consider the special case where k; = 0. Egs. (3.30) and (3.31)
immediately yield

zez- = (2¢"-q7)/Mb, (3.32)
zefz- = qt/a]- (3.33)

In the case where k; # 0, the situation is more complicated. There are three
constraints but only two unknown parameters, and the problem is overdetermined. In
principle, it would be possible to determine z, and z_ using any two of these equations
(or some combination) and to use the remaining information as a consistency check. In
the presence of experimental error, however, the most practical way to determine z,
and z_ consistently is simply to make them part of the fit that determines experimental
quantities. That is, g%, r, and k, are to be chosen such that x? is minimized, subject
to the constraints of Eqs. (3.30) and (3.31). It is cambersome to express the results of
this procedure in closed form, but there are no conceptual difficulties in performing it.

If the minimum value of x? is unacceptably large for some event, or if it min-
imized for unphysical values of 4, then the event can be rejected as inconsistent with
Z' — 7t7~. A simpler consistency condition, which is useful for the study of background,
can be obtained by noticing that if k; = 0, the 7s must be collinear; more generally, the
degree of acollinearity yields 2 minimum value for k. If ¢ is the angle of acollinearity,

rigges
ky>2 gﬁ‘:m‘ng—s. (3.34)

3.4.4 Background

Background is not a serious obstacle to discovery of the 2’ at a hadron collider
tl..agh its decay into e*e™ and u*u~, or to the study of Arp in those modes: The
invariant mass of the ete™ system will stand out above any likely background. For the
study of 7+r~ pairs, however, this is no longer true. The 7+ and 7~ themselves are
unobservable, so an event must be identified as a Z' — r+7~ event by some means other
than its invariant mass.

As discussed in Sec. 3.1, the Z’ decay products have a very high transverse
momentum, peaking at p; = Mz /2. The transverse momenta of the 7s’ decay products
is less than this, but it is still possible to impose very stringent cuts on transverse momenta
without rejecting a very large fraction of genuine Z' — 7+7~ events. The most serious
backgrounds, after such cuts, are if pairs, conventional Drell-Yan production of 7+~
pairs, and possibly jet misidentification.

There is no reliable way to estimate the rate of jet misidentification in advance
of experiment; this rate depends both on parton fragmentation functions at very high
energies, and on the tracking and calorimetry capabilities of LHC detectors. The QCD
cross section for dijet production at a high-energy hadron collider, however, is enormous,
and if any appreciable fraction of jets can mimic single isolated pions, measuring Ay, at
the LHC may be impossible.
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The cross section for production of ¢ at the LHC will be extremely large. Taking
my = 175 GeV, direct calculation using PAPAGENO [68] and the EHLQ 1 parton distribu-
tion functions [56] shows it to be about 800 pb. Even after requiring that both ¢ quarks
decay to 7 and imposing a p; cut of 100 GeV on both s, the cross section is still 200 fb,
which is on the same order as the production cross section for a 1 TeV Z'. After requiring
that at least one 7 have p; > 200 GeV, the cross section is 50 fb. Further cuts are still
necessary if the 2/ —+ 7tr~ mode is to be useful.

It is likely, however, that these further cuts can be found. Top events differ from
Z' events in three crucial ways. First, all tf events contain two b quarks, which, if b jets
can be identified as such, may be used to discard these events. Second, the invariant
mass of a t quark’s decay products must be less than my; in particular, if a ¢ decays into
bro,, then M%, < m? — M2, where M, is the invariant mass of the r and the b. For
my = 175 GeV, this is 155 GeV. Third, the momenta of the 7s’ visible decay products
in a genuine Z’' — 77~ event must satisfy a consistency condition, Eq. (3.34), which, in
general, will not be satisfied by the rs produced by the decay of a tf pair.

Tagging of b jets at hadron colliders through observation of a secondary vertex
has already been demonstrated at the Tevatron; at the LHC, where the b quarks will
be more energetic and their decay lengths greater, b tagging should be easier. Rejecting
events with tagged b jets may [64) reduce tf background by up to a factor of 2. Similarly,
the consistency condition of Eq. (3.34) will provide roughly another factor of 2 [71]. The
effectiveness of the M., cut depends on the detector’s jet momentum resolution, and also
on the jet multiplicity in Z' production at the LHC. If Z’ events tend to have a high jet
multiplicity then an overly aggressive M, cut will reject genuine Z' events, because even
a genuine Z' — 71~ event will be likely to have a jet such that M, ;e is fairly small.

Optimization of these cuts will have to wait until the properties of leptonic Z'
decays have been studied in the ete™ and u*u~ channels, but it is plausible that these
cuts, or others, can reduce the £ background sufficiently.

Drell-Yan events, finally, are events with a high-p, 7+~ pair produced by a
virtual v or Z; they are essentially the same process as Z' — r+7~. The only kinematic
distinction between Z' — 7+7~ events and conventional Drell-Yan events is the invariant
mass of the 7 pair, which is not an observable quantity.

Conventional Drell-Yan events are peaked at low transverse momentum, and a
100 GeV p; cut reduces their contribution to about 20% of the Z’ cross section. The
remaining Drell-Yan events have essentially the same kinematics as Z' — 77~ events.
They are an irreducible background, and must be dealt with by subtracting the Drell-Yan
cross section as measured in the ete™ and pu*u~ channels.

3.4.5 Evaluation of discriminating power

If it actually is possible to obtain a clean sample of Z' — 7+7~ events where at
least one 7 decays to nv, then measuring the spectrum dN/dz corresponds to measuring
the average T polarization A,,. The measured spectrum is a sum of the left-handed and
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right-handed 7 — wv decay spectra, both of which are linear. Specifically,

i‘g- = 1—"*-2‘—42-‘11(2(1 ~z))+ 1-25‘521(2@ (3.35)
= 1+ Apa - 224 (3.36)

Generally, if a distribution g(z) depends on a parameter ¢, the value of ¢ can
be extracted from the measured distribution by means of a maximum likelihood analysis.

This analysis will have an uncertainty [76)
21-1/2
% (%c‘l) ] . (3.37)

1
Ac= — /dz
‘ JN[
Applying this to the case at hand,

Adyy = -3 (1o L Apal _ g4 s 3.38

For most values of Apq, Adpg = 1.5/VN.

At the LHC, as discussed in Section 3.1.2, the rate for the production of a 1
TeV Z' is on the order of 25000 per year. Assuming that the branching ratio to 7+7~ is
5%, that in 20% of 7+7~ events at least one 7 will decay to a pion, and that, because of
cuts, only half of these events will be usable, this leaves only about 120 events for this
measurement. The error in Ay, then, will be 15%.

This is significantly worse than the precision with which App can be measured,
but Ap is inherently a more sensitive test of Z’ couplings. The forward-backward asym-
metry is restricted to the range (—0.3,0), while the polarization asymmetry can attain
any value between —1 and 1. Both measurements will be needed in order to measure the
Z' couplings to both quarks and leptons.

3.5 Rare Z’' decay modes

The Z-Z' mixing angle, @), is already known to be small; the upper bounds,
obtained from measurements at LEP, are discussed in Section 2.2.1. If a Z’ is discovered,
0r may be determined by measuring the branching ratio for rare Z' decays that can only
proceed if 05s is nonzero.

One particularly useful rare decay mode is Z' — W*W~ [77]. This decay would
be forbidden if there were no Z-Z' mixing, since the W’s couplings are just those of
an SU(2) gauge boson. For finite Z-Z' mixing, however, the Z’' has an admixture of Z
couplings, so this decay proceeds via the trilinear ZWW term in Eq. (1.11), which, in
turn, is due tc the trilinear SU(2) gauge boson self-interaction found in a pure Yang-Mills
theory.

The decay Z' — W+W~ is suppressed by a factor of 62,, but it is enhanced
by a factor of M}. /M}, due to interactions between the longitudinal components of the
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gauge bosons, and the branching ratios may, for 8, sufficiently large, be large enough to
be observable.

The background for this mode is substantial: The production cross section at
the LHC for W+W ™ pairs, calculated using PAPAGENO [68], is almost 50 pb. In most
Z' - W*W ™ events, however, the W+ and W~ have very high transverse momenta, while
the transverse momentum of W+W ~ pairs from direct electroweak production peaks at
small values. A 200 GeV p, cut on the transverse momentum of both members of the W
pair reduces the background by a factor of about 70. The W*W = pairs from 2’ decay
have other distinctive kinematic properties as well, and several studies (78] have concluded
that they can probably be distinguished from the background due to electroweak W+W~
pair production, at least in the channel where both W's decay leptonically.

Unfortunately, these studies were all performed at a time when it was assumed
that the t quark was lighter than the W; we now know that m; > M. A t quark decays
to bW with essentially probability 1, so tf is another source of W*W ™ pairs. In fact,
since tf pairs are produced by QCD, this is the dominant source of W*+W~ pairs: As
discussed in Section 3.4.4, the production cross section for ¢ pairs is more than ten times
that for direct electroweak W+W — pair production. Although it is possible to reduce this
background somewhat by b tagging, it is unlikely that it could be reduced sufficiently so
that the rare decay Z' — W+W ™ could be observed.

The rare decay Z' — I£1;W ¥ may be observable at the LHC [79, 80] despite the
tf background, but this decay is less interesting theoretically. It results from an ordinary
Z' — I*1~ event where one of the leptons produces a W* by final-state bremsstrahlung
and turns into a v;. Because the W couples only to the left-handed component of the
charged lepton, this branching ratio is an indirect measurement of the I*!~ polarizations,
and thus, like A, provides information about g2/g2. It does not, however, provide any
information about 6.
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Chapter 4

Study of a Z’ at future lepton
colliders

4.1 Production of Z' bosons in e*e~ collision

4.1.1 Corrections to the cross section

To first approximation, the line shape for the Z’' production cross section is a
simple Breit-Wigner:

127 I2/4
olete” = 2'Y= —B(Z' » ete” )
( )=5H )(\/_-Mz')z +T?%/4

Several corrections, however, render this a poor approximation.

The most important correction is the essentially classical phenomenon of initial-
state radiation of photons from the incident beams. Although this is a purely electromag-
netic effect, and is thus suppressed by a factor of a, it is nonetheless significant because
it is enhanced by a factor of In(M2, /m?), representing the presence of two very different
energy scales. Using the formalism of Kuraev and Fadin [81], it is possible to sum all
orders of initial-state radiation by performing a single integral:

o(s) = tfoﬁn dk [% (1 + %) (%)t - —5—; (1 - %)] o|(Ve-K'],  (42)

where ,
=22 (ln (Mz_) _ 1) , | (4.3)
T m?

and where oy is the cross section in the absence of initial-state radiation. For a Z’ of mass
500 GeV, t ~ 0.13.

The first term in the integral is the result of summing all orders of soft photon
emission, while the second is due to single-photon hard bremsstrahlung, and turns out to
be negligible when oy is sharply peaked. When o is a Breit-Wigner, in fact, it is possible

(4.1)
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Figure 4.1: Cross section for e*e™ production of a Z' near resonance, setting B(2' — ete™) = 1.
The solid line includes the effects of initial-state radiation, and the dashed line is an unmodified
Breit-Wigner. The Z’ is taken to have a mass of 500 GeV, and a width of 5 GeV.

to do the integral analytically, yielding [82]
_ 8t\ (Tz\' 5 [, Ve~ Mz 2
0’(8) = (1 + 4 ) (\/;) d (2 T Uo(le), (4.4)

where

= Tt 2y(t-1)/2 g [ — ) eos=! —=2 ]
o\ = sinvrt(l+'\ ) sin |[(1 - t)cos A (4.5)
This effect is familiar from studies at the Z resonance, where it leads to a 26% reduction
in the maximum value of the cross section. In the case of the Z’, where ¢ is larger and
where, in most models, I'/M is smaller, this effect is even more significant. The effect of
initial-state radiation is shown in Fig. 4.1.

What is actually observed, however, is not the cross section o, but rather an
effective cross section obtained by convolving o with a collider’s energy distribution. At
future e*e™ colliders, this distinction is expected to be significant: At high energies and
luminosities, when an electron and a positron bunch collide, the electromagnetic field
from one bunch causes the particles in the other bunch to radiate. This effect, known
as “beamstrahlung” [83], causes a broadening of the effective beam energy spectrum. In
extreme cases, beamstrahlung can lead to the sort of broad-band distribution function
more familiar in hadron colliders than in e*e™ colliders, but most modern designs for
high-energy linear ete™ colliders yield a relatively narrow spectrum, where almost all
particles have an energy close to the nominal energy of the machine.

The beamstrahlung spectrum depends on two parameters, the effective “beam-
strahlung parameter” Y4, a dimensionless measure of the beam'’s average magnetic field,
and o, the length of a bunch in the lab frame. If a beam’s energy spectrum, in the
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absence of beamstrahlung, is a sharp delta function at E’, then the approximate effect of
beamstrahlung is to modify this to [84]

1 e o e=1E/E) ,
Ve (E) = A ((1 — e )(E - E)+ ——ph (n(E/E ))) ) (4.6)
where
1(a) = 3{—; Z-1, %)
JOEpRcLe BON (48)
n=1 '

the classical number of photons N, radiated per particle in traversing an opposing bunch
is given by
Nc = =-Q —__Teﬁ, (4-9)

and m. and r, are the electron mass and the classical electron radius. The actual energy
spectrum is time dependent: The energy spectrum of a bunch is modified during its
traversal of the opposing bunch. The expression in Eq. (4.6) is a time average, defined by

L/
wE) =2 [Tarum,o, (410

where L is the length of each bunch. If the longitudinal beam profile is gaussian, the
effective bunch length is L = 2v/30.

Although Eq. (4.6) is strictly valid only for Y.z < 1, it provides a reasonable
approximation to the gross features of the beamstrahlung spectrum even for Y.z ~ 1 [85].
A fully realistic prediction would, in any case, require detailed machine-dependent calcu-
lations that take into account the measured beam shape and linac energy spread.

A beam’s electromagnetic field varies depending on the transverse position within
the beam; properly, it is necessary to perform an integral over the transverse (z-y) plane.
The parameter Y.z is an effective field strength resulting from such an integral [84], and
has the value
5Ey riN

Ypn o0 TN
T~ §m, ao,(os +0y)’

(4.11)
where Ej is the nominal beam energy, NNV is the number of particles per bunch, and ¢, and
gy are the widths of the beam in the transverse plane. Eq. 4.11 relies on the assumption
that the beam shape is gaussian in both z and y, but it is not necessary to assume that

Even in the absence of beamstrahlung, of course, the beam’s energy spectrum is
not a sharp delta function, but has a finite spread. The details of this spread vary from
machine to machine; naively, however, it suffices to model it as a gaussian,

1 AF—
pio(B) = —==e (B-Eo)'/28" (4.12)
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Figure 4.2: Energy spectrum of a beam at an e*e~ collider, averaged over its traversal of the
opposing beam. The nominal energy of the beam is 250 GeV, the beamstrahlung parameter Y.z is

0.1, and the linac energy spread is 0.6%. The solid line in the graph includes both beamstrahlung
and the linac energy spread, while the dashed line includes only the linac energy spread.

where Ej is the machine’s nominal energy, and é? is its variance. This is to be convolved
with the beamstrahlung spectrum. That is, the observed beam energy spectrum is

- oo
b5a(B) = [ dE'pg,(E'YYer(B). (413)
This integral can be performed explicitly, yielding
7 = X (1_ N L _—(BE-Eo)i/28
Ve(B) = F(1-e) o= (414)
S S _l(E’-Eo)2+ 1 Bo-E 1 E-E§
N.vVams P |74\ 3Ty E 01, E E?

00 n/3
¥(n +1,N,) 26 E - E, 26
X ,.Z:; ! ) CB\T5 T3T,E)

where D, (z) is the parabolic cylinder function. This function is shown in Fig. 4.2. The
collider design parameters used for this calculation, and for the calculation shown in
Fig. 4.3, are discussed in Section 4.1.2.

Each beam loses energy through beamstrahlung. For T,y <« 1, a good approx-
imation [84] is that only the electron or the positron, but not both, loses a significant
amount of energy. For Y.y ~ 1 (the regime relevant at very high energy e*e™ collid-
ers) this approximation breaks down: Even for T = 0.1, neglecting the case where both
particles lose energy changes the spectrum by roughly 10%.
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Effective cross section for Z' production

25

o (nb)

15

-
-
-
P
-
——

| £ 1

475 480 485 490 495 500 505 510 515 520 525
Center of mass energy (GeV)

Figure 4.3: Effective cross section for Z' production at an e*e™ collider, setting B(Z' — e*e™) =
1. The Z''s mass and width are, respectively, 500 GeV and 5 GeV. The machine’s beamstrahlung
parameter Y.z is taken to be 0.1, and its linac energy spread to be 0.6%. The solid curve includes
the effects of initial-state radiation, linac energy spread, and beamstrahlung, as given by Eq. (4.15).
The dashed curve includes only the effect of initial-state radiation.

The observed cross section, the result of convolving the physical cross section
with the beamstrahlung spectrum for each beam, is

oun(s) = [ [ dErAE ip(B1) o Bo)o(4EL Br). (4.15)

This integral must be performed numerically.

The effective cross section near resonance for ete™ — Z’, including initial-state
radiation, linac energy spread, and beamstrahlung, is shown in Fig. 4.3, again setting
B(ete™) = 1, and again assuming Mz = 500 GeV and I'z: = 5 GeV. As might be
expected, the major effects of linac energy spread and beamstrahlung are to reduce the
maximum cross section and to increase the width of the peak. The maximum is also
shifted by about 500 MeV, and the cross section in the tail above the peak is increased.
This tail represents events in which a high-energy electron or positron loses just enough
energy so that it falls on the resonance.

The main practical importance of these results for the purpose of studying a Z’
is the reduction in the total number of Z’' events that can be observed by running the
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collider on resonance. The combined effects of initial-state radiation, beamstrahlung, and
linac energy spread are quite dramatic: After including all of these effects the peak cross
section is only 17 nb, compared to 59 nb for the maximum value of the pure Breit-Wigner.
This is a reduction by more than a factor of three.

4.1.2 Collider parameters

Production rates of a Z’ can only be calculated in the context of a specific
accelerator design. It is likely that a high-energy ete™ collider will be built, partly to
study gauge interactions at high energies and partly to study tf physics [86]; generically,
such a collider is referred to as the “Next Linear Collider,” or NLC. Its actual design
parameters, however, are quite uncertain. There have been many different proposals for
a high-energy e*e™ collider [87, 88, 89, and it is likely that by the time the NLC is built,
and more thought has been given to practical engineering questions, the design will be
different than any currently being discussed.

Note that one difficult design issue is the minimization of beamstrahlung while
maintaining high luminosity: Many of the machine parameters that affect the luminosity,
such as the number of particles per bunch and the beam shape in the transverse plane,
also affect the beamstrahlung parameter Y.y. As has been seen above, beamstrahlung
can dramatically reduce the usable luminosity, and a high-luminosity collider is of no use
if much of the beam energy spectrum lies in a region of no physical interest.

Note, further, that the luminosity-beamstrahlung tradeoff depends to a great
extent on the physics for which the machine is designed. For the study of resonant
phenomena, such as Z' physics, only that part of the energy spectrum in a rather narrow
range is useful, so reduction of beamstrahlung, even at the cost of reduced luminosity, can
boost the event rate. For the study of continuum phenomena, however, this is not true.

An NLC built after the discovery of a Z’, and designed with Z’ physics in
mind, would probably be a very different machine from the NLC designs discussed today.
These designs are based on the assumption that there are no resonant phenomena at
v/ = 500 GeV, and that cross sections will be very small; they are thus designed to
have extraordinarily large luminosities. As discussed in Section 4.1.3, however, the event
rate for Z' production at such a collider would be large enough so as to make statistical
error negligible. The dominant errors would be systematic, and a broad-band spectrum
would contribute to that systematic error. For the purpose of studying the Z’ resonance,
it would almost certainly be preferable to choose a design that sacrifices some of this
luminosity in exchange for a cleaner beam energy spectrum.

Rather than design my own NLC, however, I will assume design parameters
typical of proposed NLC designs. These designs usually feature a high bunch rate, a
beam with a very small spot size, and a beam shape that is flat in the transverse plane—
that is, one where 0;/0y is a large number. In some designs, in fact, g./a, > 100. I
assume already in Section 4.1.1, and elsewhere, the following collider parameters:

L = 14x10% cm™%"! (4.16)
Vs = 500 GeV (4.17)
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0z = 612nm (4.18)
oy = 3.4nm (4.19)
o, = 110 pym (4.20)
N = 1.67 x 1010 (4.21)
Ty = 0.11 (4.22)
6 = 0.6%, (4.23)

where the beam shape is assumed to be gaussian in each dimension, with lab-frame widths
Oz, Oy, and o, and with N particles per bunch, and where Ty and &, as discussed in
Section 4.1.1, are the effective beamstrahlung parameter and the spread in the linac
energy. None of these values is either the largest or the smallest that have been proposed.

4.1.3 Event rates
The cross sections plotted in Figs. 4.1 and 4.3 take B(e*e™) = 1. The actual
branching ratio for this mode is

1 9 +97
B(ete™) = = e L — 4.24
(%) 3293 +92 4393 +92(2+y) + 95 (5 + ¥) + 6§99’ (4.24)

where z = m}/M2,, y = (1 - z)¥/1— 4z, § = z/1— 4z, and the couplings are those
defined in Section 1.4. Specializing to SU(5)-invariant couplings, this becomes

1 1
te~) = = .
Ble™eT) 3[5+coszﬂ(3+2y—sg)]’ (4.25)
or, when m? /M2, can be neglected,
1 1
te"y = — | —
B(ee™) = 15<1+cosz ﬂ)' (4.26)

As shown in Fig. 4.4, including the mass of the top can have a sizeable effect.

Typically, B(e*e™) lies in the range 0.03-0.07. The observed production cross
section, then, using the maximum value from Fig. 4.3, is 0.5-1.2 nb. Despite the degra-
dation of the peak, this cross section is still quite large. If the ambitious NLC luminosity
of Eq. (4.16) can be achieved, Z’ production will be copious, with a rate comparable to
that of Z production at LEP. A year’s running should, for any reasonable assumptions
about Z' couplings, provide a sample of at least a million Z' events. This is a sufficient
statistical sample for high-precisions studies.

4.2 Measurement of the Z’ width and branching ratios

4.2.1 Measurement of Mz and 'z

As seen in Fig. 4.3, the observed Z' line shape at the NLC will be significantly
distorted. The cross section’s maximum value is at a value about 1 GeV higher than M3z,
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Figure 4.4: Branching ratio B(Z' -+ e*e~). The solid curve is for m; = 175 GeV and Mz =
500 GeV, and the dashed curve is for m? €« M3,. The two curves are equal for 8 = x/2 because
the Z' does not couple to ¢t quarks at all at that value of 5.

and the width of the peak is greater than I'z/. Extraction of Mz and I'z, then, will be
more complicated than simply fitting a Breit-Wigner to the measured line shape.

This is familiar from LEP measurements of Mz and I'z [90], where the Z line
shape is distorted by initial-state radiation. The same methods used at LEP can be
applied at the NLC—that is, running the accelerator at several energies in the vicinity
of Mz and comparing the measured line shape to the line shape predicted by a Monte
Carlo program that includes initial-state radiation, linac energy spread, beamstrahlung,
and detector resolution. As at LEP, the statistical error in this measurement is likely
to be negligible; the dominant systematic error will probably be the prediction of the
beamstrahlung spectrum.

An alternative method, not possible at LEP, takes advantage of the relatively
broad energy distribution of the NLC. If the accelerator is run at a single, fixed energy, the
spread in the actual collision energy is sufficient to cover the entire Z’' peak. A detector
with sufficiently precise energy resolution can reconstruct the invariant mass of leptonic
Z' events, and measure the invariant mass spectrum. The necessary precision is high,
but not inconceivably so. In most realistic models, I'z:/Mz ~ 1%. Resolving a 5 GeV
peak in the e*e~ — u*u~ channel requires an electromagnetic calorimeter with energy
resolution of a few GeV or better.

Both methods rely on a detailed understanding of the beamstrahlung spectrum,
but they use that information in somewhat different ways. Consistency between these two
methods can be used to verify that the Monte Carlo program is predicting beamstrahlung
correctly.
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4.2.2 Heavy-quark flavor tagging

The 2''s branching ratio into ete™ or u*u~ is given in Eqgs. (4.24-4.26), and is
plotted, for the special case of SU(5)-invariant couplings, in Fig. 4.4. It is also possible [67)
to measure the branching ratios into up- and down-type quarks.

There is no reliable way of differentiating jets from up, down, and strange quarks,
but, for t and b quarks, it is quite practical. At the NLC, b quarks will be very distinctive:
A b quark with energy 250 GeV has a decay length of more than 2 cm. This large decay
length, and a beam with a very small spot size, should make it easy to see secondary
vertices. Although ¢ quarks and r leptons also exhibit secondary vertices, they do not
present a serious background problem. Using the known multiplicity of b decays, and
possibly also the presence of a ¢ in the decay products, it should be possible to distinguish
bb events from cz and 7+ 7~ events with high reliability.

Top quark events will be even more distinctive: A t quark decays to a band a W
with a branching ratio of essentially one. The signature for a tf event at the NLC, then,
is a bb pair and the decay products of two Ws. These decay products could either be two
D) pairs, an [D; pair and two jets, or four jets. None of those three signatures is likely to
be mimicked by any significant background. It is possible to reduce the background still
further by requiring that the kinematics of the ostensible W decay products be consistent
with the hypothesis that they result from W decay.

Using the same notation as for B(e*e™), the branching ratios to bb and #f are

2 2
94 + 90
B = - 4.27
(®) 297 + 92 + 393 + 92 (5+y) + 92 (2 + v) + 6iigqgu (4.27)
B - v (92 + 93) + 6iigqg. w2s)
292 + 92+ 393 +95 (5+) + 92 (2 + y) + 67999’ '
or, if m} « M3,
2 2
T 94 +99
B(b}) = 4.29
®) 297 +92 +3g] + 3¢ + 693 (4.29)
2 2
+
B(#) = 29 (4.30)

297 +92 +3g3 + 393 + 693

Measurement of B(bb), B(tf), and B(ete™) is a simple matter of counting, so the
statistical error for each of these measurements is roughly 1/v/N, where N is the number
of events in each mode. At the NLC, a sample of at least a million Z’ events should be
obtainable, but, assuming only 10% events, the statistical errors in the e*e™ and in the
heavy-quark modes should be on the order of 1.5% and 1% respectively. The dominant
sources of systematic error will probably be uncertainty in the detector’s acceptance and
in its heavy-quark identification efficiency.

These two measurements, when combined with the total width I'z/ (shown in
Eq. (1.68) and, for SU(5)-invariant couplings, in Fig. 1.2), determine g3 + g}, and g2 +
gé. These data are still insufficient to determine all three quark couplings, but that
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determination only requires one additional independent measurement. One of the quark
asymmetries, such as the bb or t# forward-backward asymmetry, would be an obvious
choice.

Similarly, the e*e~ partial width depends on g3 + g}. A measurement of g3/g},
such as the ete™ forward-backward asymmetry, or the 7 polarization asymmetry, then
allows the determination of g3 and g.

Note the importance of the assumption that b5 and tf events can be identified.
Heavy-quark flavor tagging allows the measurement of the magnitudes of all five Z' gauge
coupling constants; without it, however, only a combination of g3, g3, and g} can be
measured.

4.3 Asymmetries

Generally, the quantity determined by measuring an asymmetry is the difference
between the right-handed and left-handed couplings to some fermion. Specifically, define

2 2
, (o) -(sh)
=

(o£)" + (sh)"

The fermion f may be a lepton, an up-type quark, or a down-type quark, so this defines
three quantities, A°, AU, and AP. Measurement of AU and AP will require the ability to
tag heavy flavors, as discussed in Section 4.2.2.

(4.31)

4.3.1 Forward-backward asymmetries

On resonance, the forward-backward asymmetry for ete™ — 2’ — ff is given
by

Alp = %A‘A' : (4.32)
This equation assumes that the final-state fermions are massless, and thus that the differ-

ent helicity amplitudes do not interfere; if the final-state fermions are ¢ quarks, A* must
be be generalized to

2 a2
A=tz 99 ~ 9u . (4.33)
(1-z) [g’Q + gﬁ] + 6z9qgu

" where z = m?/M}3,. If Mz is sufficiently small, this correction can result in a sizeable
decrease in App. Note also that it depends on the relative signs of gg and g., rather than
just on their magnitudes. As is discussed below, however, this potential sensitivity to the
sign is not useful in SU(5)-invariant models.

Off resonance, interference terms become important, and the variation of App
with energy can, in principle, be used to determine not only the magnitude, but also the
sign of the Z’ couplings. For energies within a few tens of GeV of Mz/, however, App
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Figure 4.5: Graph of forward-backward asymmetry in ete~ — Z' — ff. The couplings of the
2' are assumed to be invariant under SU(5), and 3, defined in Eq. (1.66), determines the relative
strength of couplings to fermions in the 5° and 10 representations of SU(5). The solid line is for
the case where the final-state fermions are charged leptons, the dashed line for down-type quarks,
and the dotted line for up-type quarks.

typically changes only by a few percent. This is fortunate: If Arp varied quickly, then
any effect would be likely to be smeared out by beamstrahlung.

If the Z’' has SU(5)-invariant couplings, as discussed in Section 1.4, then for any
final-state fermion f, Aﬂ- p depends only on the parameter S defined in Eq. (1.66). This
dependence is shown in Fig. 4.5. Explicitly,

AEp = %cosz 28, (4.34)
ARy = —%cos’Zﬂ, (4.35)
Afp = O (4.36)

It is a general result in models with SU(5)-invariant couplings that AV and A% are
necessarily zero, because the left- and right-handed up-type quarks appear in the same
representation of SU(5), G

When interference terms are included A% is no longer exactly zero, but is still
small. The full expression for Arp is somewhat cumbersome, and depends not only on
the ratios of the Z' couplings to fermions, but also on their magnitude relative to the v
and Z couplings. Fig. 4.6 shows A% as a function of energy for a Z' with SU(5)-invariant
couplings, assuming g = gz, Mz = 500 GeV, and m, = 145 GeV. Although it is possible
in principle to measure AY p at some energy other than /s = Mz, Fig. 4.6 shows that
AYp is unmeasurably small except at energies so far off resonance that there will be too
few events for a precise measurement. It can thus be taken as a definite prediction of all
models with SU(5)-invariant Z' gauge couplings that A%, = 0.

Even with very high statistics, the effects described in Section 4.1.1 would make
measurement of an energy-dependent asymmetry very challenging: Any sample of events
would probe Z’ couplings not at any one energy, but at a range of energies, and if taken
above Mz, would be heavily contaminated by on-resonance events. Making this mea-



59

Forward-backward asymmetry
0.25 T Y v v T T T

02

0.15

0.1

@ 005}

<

0

-0.05 |
.0.1 .,

-0.15 | e

.0‘2 A A i A 1 i i
480 485 490 495 500 505 510 515 520

E (GeV)

Figure 4.6: Graph of forward-backward asymmetry in e*e~ — Z' — tf as a function of energy,
for Mz: = 500 GeV and I'z: = 10 GeV. The 2’ couplings are assumed to be invariant under
SU(5), and g, defined in Eq. (1.66), is assumed to be 0.15. The five curves refer to five different
values of the parameter 3, also defined in Eq. (1.66). The Z' width, I'z, is given by Eq. (1.69),
and, for these values of Mz and g, varies between 2 and 4 GeV.

surement would require a precise understanding of the beamstrahlung spectrum in order
to understand at exactly which energies A} is actually being measured.

At a hadron collider a 2’ is usually produced with a sizeable longitudinal momen-
tum, so its decay products are often nearly collinear with the incoming beams. Addition-
ally, detector coverage of pseudorapidity is usually limited to fairly small values of 5, so
a substantial fraction of events are unusable. At an e*e™ collider, however, Z's produced
on resonance are produced at rest, thus yielding roughly isotropic decay distributions.
Essentially all events should be usable for the purpose of measuring Arp.

Measuring the forward-backward asymmetry in some mode involves measuring
two quantities, Np and Np; their statistical uncertainties §Np and §Np are /NFf and
V/NB, or, if N is the total number of events in this mode, roughly /N, 72. The statistical

error of App is
_ 8Arp\* 3AFB)2
§App = ‘/ (6Np s ) + (6NB o) (4.37)

or roughly 1/\/17 . With a sample of 5000 events in each mode, this is about a 1.5%
statistical error. Most systematic errors cancel out in the ratio, so the actual error in this
measurement will probably not be much larger than Eq. (4.37).
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4.3.2 Polarization asymmetries

In addition to the left-right asymmetry, for certain final-state fermions it is
also possible to measure the polarization asymmetry, i.e., the asymmetry between the
production of right-handed and left-handed particles in the final state. Specifically, if o,
is defined to be the cross section for production of left-handed particles and op the cross
section for production of right-handed particles, the polarization asymmetry is defined to
be

_0L—OR
Apa = T (4.38)

Measurement of A, requires that the final-state fermions be unstable, that
they have well-understood decays, and that the decays of left-handed and right-handed
particles be substantially different. The only particles that meet these requirements are
7 leptons. In the future, ¢ quarks [91] may also be suitable candidates, but not enough is
known at present about the extent to which polarization is affected when the ¢t quarks or,
more likely, their decay products, hadronize.

Unlike App, which depends both on the Z’ couplings to the initial-state electrons
and to the final-state fermions, A,, depends only on the couplings of the final-state
fermions: In the notation of Eq. (4.31),

Ay = A", (4.39)
For the special case of SU(5)-invariant couplings,
Ao = —cos2p. (4.40)

For the 29, A;ol has been measured at LEP [72]; as discussed in Section 3.4, it is poten-
tially also valuable as a diagnostic tool for studying a Z’ at hadron colliders.

The relevant quantities, at both lepton and hadron colliders, are dN;/dx and
dNpg/dz, the normalized decay spectra for left- and right-handed 7s. The measured decay
spectrum, dN/dz, can be fitted to a linear combination of dNr /dz and dNg/dz, and this
fit directly determines A;o,: If

dN _ dN, dNp
iz =cr . +cr o (4.41)
then er — o
L —CR
T = ——— 4.42
Apoi L T cn (4.42)

Although measurement of A7 at a hadron collider would be a very challenging
experiment, essentially none of the difficulties involved in this measurement apply to Z’
studies at an e*e™ collider. The two main difficulties at a hadron collider are that it
is necessary to find the decay products of a 7+7~ pair above all possible backgrounds
(chiefly QCD jets and tf pairs), and that the kinematics of Z' — 7+7~ events at hadron
colliders, in which the Z"’s longitudinal momentum is unknown, and in which the Z’ is
often produced with substantial transverse momentum, make it difficult to reconstruct
the momentum of the 7+ and 7~.
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Neither of these presents a problem at an e*e™ collider. Reconstruction of the
s’ momenta is trivial, since the 2’ is produced at rest in the lab frame: Both the 7+ and
the 7~ always have a momentum of Mz /2, so determination of z, and z_ is a simple
matter of measuring the momenta of the r decay products. Background, similarly, is
negligible.

The reason that background is a serious problem at a hadron collider is that,
while the invariant mass of the 7+7~ pair is equal to Mz, the invariant mass of the 7s’
visible decay products is reduced by a factor of ,/Z;T_, and there are many other processes
that can result in an event with an invariant mass of ,/Z;Z_Mz:. At an ete™ collider
with /s = Mz there are no such processes: Essentially all events have an invariant mass
of Mz, so the only events that could conceivably mimic 77~ events are other events
where unstable particles are produced at the Z’ resonance and then decay. It is almost
impossible, however, that bb, ¢z, or tf decays could be mistaken for 7+7~ decays: The vast
majority of 7 decays are one-prong, while heavy quark decays have a high multiplicity.

One possible source of low-invariant mass events is pair production of e*e™ or
ptu~, in conjunction with a high-energy bremsstrahlung photon. This is not a resonant
process, however, so such events will be rare. Moreover, bremsstrahlung is strongly peaked
in the beam direction, so these events will always have a very small missing transverse
momentum and can be rejected by a simple cut.

The statistical error in Ao is roughly 1.5/vN, where N is the number of 7% 7~
events used in the measurement. Assuming a sample of 5000 7+~ events, of which 20%
decay into channels that are sufficiently well understocd to be used in this measurement,
this error is about 5%. This is significantly larger than the error in Apg, but Ayq is
more sensitive than is App to variations in 4., which is the actual quantity of interest.
Assuming universality, App is proportional to A2, while A, is equal to A.. If A, is small,
Apo will provide a better measurement than Arpp despite the larger statistical error.

Finally, it is possible to combine Azp and Apo, i.e., to measure the forward-
backward asymmetry separately for left-handed and right-handed 7s. This simply involves
fitting the 7 decay spectra separately for forward and backward events, and yields the
results 3

Afg=-AF = ZA‘. (4.43)
Except as a test of universality, this measurement is redundant: If e and 7 couplings are
cqual, it provides the same information as A;ol, but with less precision.

4.3.3 Polarized beams

If one of the initial beams is partially longitudinally polarized (there is no advan-
tage to polarizing both, because the cross section for production of a J = 17~ resonance
by a relativistic ete~ pair vanishes when the electron and the positron have the same
helicity), it will be possible to measure yet another polarization asymmetry, Arz. This is
defined as the cross section for Z’ production by a left-handed e~ minus the cross section
for production by a right-handed e, divided by the sum of the cross sections. That is,
.. 9L —OR

Arp = .
LR or+0op

(4.44)
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The value of this asymmetry is . ,

_9.-9c _

Arr g% T ol (4.45)
Measurement of Az g is straightforward: Counting the number of events for each polar-
ization.

Note that, except as a test of universality, Azr and Ay are redundant: Both of
these methods provide direct measurements of g2/g3 . If, however, it is possible to obtain
a sufficiently high degree of polarization, then Ay p can be measured more preciscly than
Apal

4.4 Study of a Z' below resonance

Although the possibility is not ruled out by present search limits, it is perhaps
overly optimistic to hope that a new gauge boson will be found with a mass sufficiently
low for it to be the subject of on-resonance studies at the NLC. This section discusses the
possibility that a Z’ will be discovered at the LHC with a mass higher than the NLC’s
maximum value of /3. If the Z' has a mass less than a few TeV its couplings can still be
measured at the NLC, but only through virtual Z’ exchange. Several detailed studies of
this case [40, 92] have been performed.

In fact, evenifa Z’ is sufficiently light that it can be produced at an e*e™ collider,
studies of it at energies far below its mass would still be valuable: All of the measurements
discussed up to this point deal only with the magnitudes of the Z's couplings, but studies
below the resonance are able to determine their signs as well [40, 92, 93].

At the NLC, with /s < My, the effect of Z-Z’' mixing on Z couplings will be
no greater than the same effect at LEP. Since mixing is already known to be small and
NLC measurements will be less precise than those at LEP because of the lower statistics
associated with running off-resonance, mixing may safely be neglected. The Z' will affect
observables at the NLC simply though interference between the v, Z, and Z' propagators.

In general, an event at the NLC is of the form e*e~ — ff. The three Feynman
diagrams that contribute to this reaction are shown in Fig. 4.7, and the matrix element
takes the form

M=My+ Mz+ Mgz (4.46)

Observable quantities depend on [M|2. The largest contribution from the Z' comes from
the interference between the v and Z’ propagators, but none of the terms in this product
may be neglected. .

The quantities that can be measured at the NLC are the production rates and

asymmetries discussed in Sections. 4.2 and 4.3, specifically o(ete— — ff), A]{ol’ and, if

one beam can be polarized, A{R. The identifiable final-state fermions are e, y, 7, ¢, b,
and i. I assume, as before, that only the 7 can be used in the measurement of Ay . It is
possible, however, that t polarization asymmetry might also be measurable.

Off resonance, the tree-level cross section o(ete~ — f f) is

A~ 1
o(ff)= ZEE(F£L+F’IIR +Flp+F), (4.47)
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Figure 4.7: Feynman diagrams for ete~ — ff, for the case where Mz < /3 < Mz. On
resonance only diagram (c) contributes, but off resonance all three are important, and interference
between the diagrams must be included. The interference terms depend on the signs, not just
the magnitudes, of the Z’ couplings. If the final-state fermions are electrons, interference from
t-channel gauge boson exchange must also be included.
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Figure 4.8: Cross section for o(ete™ — u*u~) at /s = 500 GeV as a function of 8, assuming
a Z' with SU(5)-invariant couplings whose overall coupling strength g is equal to 0.2. The cross
section is plotted for Mz =1 TeV, Mz = 1.5 TeV, Mz =2 TeV, Mz = 3 TeV, and Mz = oo.

where the individual helicity terms are

2
) . L. 8 ... g
Ff = (ezQthQé’i; +93'95 s + 959E ;"__—H'g,‘) : (4.48)
This expression assumes that the final-state fermions are not electrons, and that their
masses can be neglected. In the case of quarks, it must be multiplied by a color factor of
3. Fig. 4.8 shows o(ete™ — u*u™) at 500 GeV (below Mz:/) as a function of § for four
different values of Mz, for SU(5)-invariant Z’ couplings and g = 0.2. The Z’ contribution
to o falls as 1/MZ,, so, while a 1 TeV Z' has a very substantial effect, a 2 TeV Z’ results
in a cross section that is scarcely distinguishible from the Standard Model value.

The Standard Model prediction at /s = 500 GeV is o(ete™ — putu~) =~ 450 fb.
An e*e™ collider with the parameters described in Section 4.1.2 has an integrated lumi-
nosity (for one year of running) of about 10 fb~!. With 5000 u*u~ pairs o(utp~) can be
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measured with a statistical error of about 1.4%, or about 6 fb. As can be seen in Fig. 4.8,
this means that the effect of a 1 TeV Z’' on o(ete” — u*u~) will be quite clear, and
it will even be possible to obtain nontrivial information about 5. The effect of a 2 TeV
Z' will, however, be difficult to tell from a statistical fluctuation in the Standard Model
cross section, and a 3 TeV Z' will be essentially invisible. As always, the effect is larger
if the Z' has larger couplings than those assumed here.

Note that this cross section is not individually sensitive either to the Z' gauge
coupling constant or to Mz, but only to the two in combination. This is a general
feature of experiments at /s < Mz:: None of the measurements discussed in this section
can determine Mz. For Mz > /s, the Z' coupling is essentially a contact interaction;
increasing Mz has the same effect as decreasing its coupling strength.

Using the same notation as in Eq. (4.47) and making the same assumptions, the
forward-backward asymmetry for ete~ — ff is

i._u__&_._L}L_LFf + Fip— Ffy - Fip (4.49)
4 Fl +Fl,+Fl +Fl,

Expressions for the other observables are equally straightforward.

Del Aguila and Cveti¢ [40] have analyzed the precision to which Z’ coupling
constants can be measured at the NLC, assuming Mz = 1 TeV. Assuming polarization
of the initial e~ beam, they find that the parameters P}, P{, P3, and P§, defined in
Egs. (1.61-1.64) can be determined to 10-20%, the exact degree of uncertainty depending
on the central values of the parameters.

This analysis does not include the effects of initial-state radiation or beam-
strahlung, but far off resonance, where no quantities are varying rapidly with respect to
energy, these effects should be less important than at /s = Mjz:. Since the quantities
being measured are small deviations from Standard Model predictions, however, it is im-
portant that all Standard Model effects at /s = 500 GeV be understood in as much detail
as possible.

4.5 Conclusions

If a Z' is discovered at the LHC, experiments there will be able to determine the
its mass, width, and the magnitude of all of its couplings except those to quarks. These
couplings must be measured at an e*e™ collider.

Combining results obtained at the NLC with those obtained at the LHC, all
of the parameters described in Section 1.4 may be determined. An ete~ collider at
v# = Mgz, with low beamstrahlung and relatively low luminosity, would allow high-
precision measurement of all Z' parameters. Even if it proves impossible to build such a
machine all of these parameters can still be obtained, to a reasonable degree of precision,
from the combination of LHC measurements and off-resonance measurements at the NLC,
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