


II
I i



STATIC AND DYNAMIC NUCLEAR MANY-BODY DESCRIPTIONS
ON PARALLEL ARCHITECTURES

C. R. Chinn, A. S. Umar
M. R. Strayer, and M. Valli6res



• ft

Static and Dynamic Nuclear Many-Body
Descriptions On Parallel Architectures

C. R. Chinn t'2' A. S. Umar 1'2, M. R. Strayer 1 and M. Valli_res 3

1Center for Computationally Intensive Physics
Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

2Department of Physics & Astronomy, Vanderbilt University
Nashville, TN 37235

• 3Department of Physics & Atmospheric Science, Drexel University,
Philadelphia, PA 19104

t Speaker, e-mail address" chinn_compsci.cas.vanderbilt.edu

(615)343-1706, (615)352-9501; FAX: (615)343-7263

April 1, 1994

Abstract

Numerical methods used to solve the system of stiff, nonlinear partial differential

equations in static Hartree-Fock descriptions of many-body nuclear systems are pre-

sented along with an extension of the time dependent Hartree-Fock solution to linear

response theory. A full three dimensional representation is obtained by using a collo-

cation basis spline spatial lattice. Numerical procedures used for parallel applications

J are discussed. Comparisons are presented for MIMD massively computers, including
the Intel Paragon and the iPSC/860 hypercube. Algorithms used to improve communi-

cation overhead, especially pipelining the Gramm-Schmidt orthogonalization routine,
and difficulties with limited node memory will be discussed.



1 Introduction

Mean field studies of physical systems have provided successful and useful fundamental

dcscriptions of a variety of atomic and nuclear many-body phenomena [1, 2, 3, 4] and promises

to provide an important development in future understandings in nuclear astrophysics.

From a numerical point of view, recent new techniques have been developed, which

provide a much more sophisticated desciption of Hartree-Fock mean field calculations. In

particular, equations of motion were obtained via the variation of the lattice representations

of the constants of the motion, such as the total energy [5, 6, 7, 8]. In this variation after

discretization approach, resulting equations exactly preserve the constants of the motion.

Previous calculations have had to rely on alternate basis expansions, such as harmonic os-

cillators, which are cumbersome, or on coordinate space lattice representations, which are

much easier to use, but typically depend on inaccurate finite difference representations of

the derivative operator. Here we use a basis spline collocation lattice, where the derivative

operators can be accurately represented in a basis expansion, while also taking advantage of

the more tractable lattice grid representation.

Due to limitations in computational power, one tended to assume specific symmetric

descriptions, such as spherical or cylindrical symmetry, along with z-parity symmetry and

no spin degrees of freedom. Time-reversal symmetry was also used to a great degree. With

recent new supercomputer technologies such assumptions are no longer required to perform

calculations. In this paper a full three dimensional calculation using basis spline techniques

is presented, where symmetries such as time-reversal, need not be imposed. Full spin repre-

sentations of the wave functions are also included. These calculations are very intensive and

require Grand Challenge level computing resources.

The same difficulties that exist in the static mean field case apply to the time-dependent

calculation. A new method of calculating linear response theory has been developed which

relies on a time-dependent evaluation of the linear response equations [9]. This calculation is

constructed on top of the static Hartree-Fock calculation, hence the full sophistication that

exists in the static case also exists in the dynamic one. Previous random phase approximation

[RPA] calculations have limitations similar to those that have plagued mean field calculations

[10, 11, 12, 13]. By not imposing constraints, such as spatial and time-reversal symmetries,

one can increase greatly the level of sophistication.

The linear response equations are calculated by applying a specific time-dependent per-



turbation to the static Hartree-Fock llamiltonian. The system is then evolved by solving

time-dependent-Hartree-Fock [TDHF] equations. The result is fourier transformed to give

the total transition amplitude for a specific collective mode.

Both the static and dynamic calculations are solved on a three dimensional collocation

basis spline lattice. The same hamiltonian is used in both the static and dynamic calcu-

lations, providing a complete consistency, which historically has not been tile usual case.

Eventually we would like to pursue linear response studies of _-decay calculations of exotic

nuclei.

In Section 2 the static Hartree-Formalism is presented in brief. A numerical discussion

of the numerical discretization of the mean field calculations, specifically the basis spline

collocation lattice is given in Section 3. A short discussion of the time-dependent evaluation

of linear response theory is in Section 4. A detailed description of the parallel implementation

is presented in Section 5, especially the pipelining of the Gramm-Schmidt orthogonalization

routine. Time studies are given in Sections 6 and 7 for the static and dynamic calculations,

respectively, followed by a Conclusion.

2 Static Hartree-Fock Formalism

2.1 Continuous Equations

The details of the derivation of the Hartree-Fock equations can be found in [5, 6, 7, 8, 9].

The zero-range skyrme force is used to represent the effective two-body interaction in both

the static Hartree-Fock and the dynamic linear response calculations. The expectation value

of the skyrme hamiltonian is represented in terms of the energy density.

E= (_1_1_)= f d_ _(_), (1)

Using the variational principle we take the functional derivative of the Hartree-Fock energy

with respect to the wave function, X_:

_E = _] a_(_). (2)

A coupled set of non-linear partial differential eigenvalue equations is then obtained:

hxa = c_Xa, (3)



where X_ is a two-component vector (spinor)

Xo = X2 "

The hamiltonian h has the following form (using natural units h - l, c = 1, m = 1):

h = -'21V2 + W(p,r,j,J)

w = VN(r)+ Vc(r), (5)

where VN is the nuclear potential depending on various currents and densities, which in turn

depend on the states X_,. The Coulomb interaction, Vc, requires the solution of the Poisson

equation in three-dimensional geometry

VVc( ) = -4,,dp(r). (6)

As can be seen from above the solution of the system of equations (3) has to be done

self-consistently and an accurate solution requires a good representation of various deriva-

tives of the states Xa. Currently, most HF and TDHF calculations are performed using finite

difference lattice techniques. It is desirable to investigate higher-order interpolation methods

which result in the improvement of the overall accuracy and reduction in the total number of

lattice points. The lattice solution of differential equations on a discretized mesh of indepen-

dent variables may be viewed to proceed in two steps: (1) obtain a discrete representation

of the functions and operators on the lattice. (2) solve the resulting lattice equations using

iterative techniques. Step (1) is an interpolation problem for which we could take advantage

of the techniques developed using the spline functions [14, 15, 16]. The use of the spline

collocation method leads to a matrix-vector representation on the collocation lattice with a

metric describing the transformation properties of the collocation lattice.

The static Hartree-Fock solution is calculated using an iterative scheme as outlined below:

1. Guess a set of orthogonal single-particle states

2. Compute the densities

3. Compute the Hartree-Fock potential

4. Solve the Poisson equation

5. Perform an imaginary time step with damping [17, 4]



6. Do a Gramm-Schmidt orthogonalization of all states

7. Repeat beginning at step 2 until convergence

As a convergence criteria we have required the fluctuations in energy

AE 2-x/<H 2>- <H>2 (7)

to be less than 10-s. This is a more stringent condition than the simple energy difference

between two iterations, which is about 10-l° when the fluctuation accuracy is satisfied. The

calculation of the HF hamiltonian also requires the evaluation of the Coulomb contribution

given by Eq. (6). Details of solving the Poisson equations using the splines are given in Refs.

[15, 16].

3 Nummerical Discretization

3.1 Collocation Basis Splines

An Mth order spline function denoted by B M is constructed from piecewise continuous

polynomials up to order M- 1. The set of points or knots {xi} consists of the points

where the spline functions are joined continuously up to the (M - 2) derivative. The basis

spline functions have minimal support in that the ith spline functions is nonzero only in the

interval (xi, Xi+M), where the spline function, BM, is labelled by the first knot. For the space

containing the N + 1 knots in one dimension, there must be M nonzero spline functions in

each interval, hence N + 2M- 1 total spline functions make up the full basis, where M - 1

spline functions extend beyond each boundary.

A function, f(x) continuous in the interval (xmi,, x,,a=) is expanded in terms of the spline

basis functions:
N+2M-1

= ,. ). (s)
i

The expansion coefficients, ci are ":_rived from f(x) by evaluating f(x) at a specific set of

points called collocation points, {z'}. There are various ways of choosing the {x'}. For odd

order splines we have chosen the collocation points to lie at the center of each knot interval

within the range (Xmi,,X_ax).

Xmi n "-- XM

Xi+M-I dr Xi+M
z,, = i = cr, Va = l, ., N

, .o



By evaluating eq. (8) at {x_}, a set of linear equations are constructed which constrain the

coefficients, d: •
N+2M-1

M X,i ¢if(z_)= _ B, (_,) . (9)
i

- ' it is necessary to in-Since there are N + 2M 1 unknown coefficients and N points z a,

troduce 2M - 1 additional constraining equations as boundary conditions. One can also

impose periodic boundary conditions. Combining the functions B_(x') and the boundary

conditions into a square invertible matrix, B, the coefficients, ci can be expressed as:

E [B-']'° (10)
t_

where f_, - f(x2)is the collocation representation of the function, f(x).

Consider the action of an operator upon a function:

N+2M-I

Of(x) = E [OBM(x)] ci" (11)i

If we evaluate the above expression at the collocation points and substitute in eq. (10) for

the ci the following is obtained.

o:(..)= z
Of,_ - _ O_f_, (12)

where now the quantity, 0_ is the collocation representation of the operator, (9 on the lattice.

N+2M-1

" M , 1 (13)o:- E
i

Note that the representation of 0_ is not a sparse matrix.
A

The function, f(x), and the operator, O, can both be represented on a lattice, i.e. the

collocation points, through the use of the collocation basis spline method. This holds true

for gradient operators, where the gradient of the basis spline functions is required. The basis

spline functions, BM(x) and their derivatives, _ can be evaluated at the collocationax n

points using iterative techniques. Through similar methods one can obtain the appropriate

integration weights. For more details on the collocation basis spline method please see

Ref.[15].



3.2 HF Equations in Collocation Space

In order to obtain a set of lattice equations which preserve tile conservation laws associated

with the continuous equations, it is essential to develop a modified variational approach. This

goal is achieved by performing a variation to the discretized form of a conserved quantity,

i.e. total energy. Consequently, the resulting equations will preserve all of the conserved

quantities on the lattice.

AV_t_w{h(aflT)- ea 2} , (14)
o0-t

where indices a,/3, and _/denote the lattice points in three-dimensional space, and A V_t3_is

the corresponding infinitesimal volume element. Due to the presence of derivative operators

in the hamiltonian, the explicit form of these expressions will depend non-locally on theJ

lattice indices. The general variation, which preserves the properties of the continuous

variation, is given by

a
The details of the discrete variation for the finite-difference case are given in Refs. [5, 6].

The three-dimensional expansion in terms of splines is a simple generalization of Eq. (8)

Xa(x,y,z) = E ciJkBi(x)BJ(y)Bk(z) • (16)
ijk

The knots and collocation points for each coordinate can be different. With the appropriate

definition of boundary conditions, all of the discretization techniques discussed in the previ-

ous section can be generalized to the three-dimensional space. The details of this procedure

are given in Refs. [15, 16].

A typical nonlocal term is illustrated below:

(VX_),,O-v -- E u_,"°'X_i(a'fl'y)i + E D_'X_(aff "/)j
0 o 0 I

+ _ 4 ±

where the matrices D denote the first derivative matrices in z, _t, and z directions (they can

be different although the notation does not make this obvious) calculated as described in the

previous subsection. Finally, the HF equations can be written as matrix-vector equations on

the collocation !_._!c,,

hx_ "-* h. X_ . (17)



The essence of this construction is that tile terms in tile single-particle hamiltonian h are

matrices in one coordinate and diagonal in others. Therefore, h need not be stored as a full

matrix, which allows the handling of very large systems directly in memory.

4 Dynamical Formalism: Linear Response Theory

The linear response equations can be derived from a specific functional perturbation of the

TDHF equations [18]. For a detailed discussion and proof please see Ref. [9].

A specific time-dependent perturbing function is added to the static hamiltonian:

Htot = H + H_=(t). (18)

This external piece is defined as:

"ff_,Ct) = Ff(t)

= [fd3xa(x,t)F(x)]f(t), (19)

where _(z, t) is the number density operator and the function F(x) is chosen to represent a

particular collective mode. The f(t) will be chosen later.

By solving the time-dependent-Hartree-Fock equations and evolving the system in time,

detailed information about the collective dynamic modes of the nuclear system can be ex-

tracted. It can be shown that in the linear approximation, the total transition probability

can be extracted, corresponding to the collective transition represented by the function,

F(;_). By calculating the fluctuations in the nuclear density, _(_(x, t)), as a function of time

and then fourier transforming the result into frequency space we obtain the following:

f(w)S(w) = f d3x6(n(x,w))Ft(x)
1

= -_ f d3z f d3z'Ft(elD*(_.,_;wlF(_)f(w), (20)

where S(w) is the linear response structure function and DR(_, _"; w) is the retarded density

correlation function. By taking the imaginary part of S(w) the total transition probability

associated with F(g) is obtained.

= I/ )Im[S(w)] = --_ ') 6 w E,, - Eo- h , E. >_E0. (21)

The structure function is evaluated using a time-dependent perturbative technique. By

constructing an explicit form for f(t), one can solve the time evolution of the Hartree-Fock



system using f(t) and F(_) as perturbing functions. In our case f(t) is chosen to be a,

Gaussian of the following form:
I

I(t) = ee-_'_, t > to
2_ __

f(w) = eV --_--e 2_, (22)

where e is some small number (~ 10-s), chosen such that we are in tile linear regime. Tile

parameter, a, is set to be 1.0 c/fm, which allows for a reasonable perturbation of collective

energies up to _ 150 MeV.

In practice, to evaluate the TDHF equations tile time-evolution operator is used to evolve

the system.

=r f,; (23)
where T [ ... ] denotes time-ordering. Using infinitesimal time increments, the time-evolution

operator is approximated by

U(t.+l, t.) = e-_ f*n t.+,de_,o,(e)

e -'ka'g'*'('"+ _) (24)

(N __ t ot

1+_ _i '
k-'l J

where the quantity ot is evaluated by repeated operations of Htot upon the wave func-

tions. Typically the value of N, the maximum number of applications of H"_otfor a given

iteration and wave function, will be about 4 or 5.

The procedure is to then choose a particular form for F(1), using eq. (22) for f(t), and

time evolve the system using eq. (24). The Fourier transform in time of the result then gives

us f(w)S(w), from which the linear response structure function of the system is extracted.

5 Parallel Implementation

In this section we discuss the details of implementing the lattice representation of the Hartree-

Fock equations on the Paragon XPS5 and XPS35, and Intel iPSC/860 hypercube supercom-

puters at Oak Ridge National Laboratory. These machines are distributed memory, multiple

instruction multiple data (MIMD) computers. The Intel iPSC/860 has 128 nodes with 8

MB of memory per node and a peak rating of 60 Mflops per node leading to a 7.6 Gflop



aggregate speed; on the XPS/5 and XPS/35 tile peak rating per node is 75 Mflops leading to

aggregate speeds of approximately 5 Gflops and 38 Gflops, respectively. Among other differ-

ences, iPSC/860 is a hypercube architecture whereas the Paragon is a 2D mesh. The peak

internode communication speed of the iPSC/860 is 2.8MB/sec and Paragon is 200 MB/sec.

The nodes are connected according to a binary interconnection scheme.

As with most parallel implementations we face the problem of limited memory per node

and the optin_ _ation of the algorithms to minimize the communication among nodes. It

was realized that distribution of the tiilbert space rather than the distribution of the spatial

dimensions over the nodes is by far the preferred mode of operation. By placing a subset of

the Hilbert space, i.e. some of the single particle wave functions, on each node and having all

of the spatial operations occur locally oll each node, the communication overhead is basically

limited to two major operations, which will be discussed below. In general it was found that

the best performance is obtained by placing one nucleon wave function of a given isospin on

each node.

5.1 Reading and Distribution of Input

The code is set up in a hostless structure, except for i/o to various files. The initial input

information is read by one node, designated as node '0', where the information is placed into

buffer arrays and broadcasted to the other nodes using the following subroutine:

call bcast(iarch,buf,mbytes,O,retype).

Here iarch chooses the appropriate parallel architecture (Paragon or iPSC/860), buf contains

the real input, rnbytes is the length of the message in bytes, the "0" corresponds to the

originator node of the broadcast, and retype is an integer tag that is incremented every time

an i/o operation is performed (tags the many messages being sent between nodes and is used

in order of arrival/departure). For output, information is passed to node '0', which then

sorts the information and outputs it.

5.2 Gramm-Schmidt Orthonormalization

The Gramm-Schmidt procedure used to orthogonalize the single particle wave functions can

be summarized in the following equation:
i-1

= _ > 2 (25)
s-, ' -



where r labels the isospin index, distinguishing between the proton and neutron states, and

the vector _ represents the grid collocation lattice in Cartesian coordinates. The matrix

element (_¢(r)l¢,(r)) is defined as:

-- f dZCJ(', ",'). (26)
On a distributed memory parallel machine difficulties arise since the wave functions are

spread out over the nodes of the computer, hence the wave function vectors must be passed

between the nodes during the orthogonalization process. This creates a large communica-

tions overhead since the wave function vectors are dimensioned by the three dimensional

collocation lattice and are therefore very large (~ 0.25 - 0.5 Mbytes). The procedure used

here is outlined in the flow chart in Fig. 1, where each node, defined locally by the va,iable,

me, executes this sequence. Initially on each node, the local wave functions, ¢, are xmr-

realized. There is an outer loop, 500, which loops over the node number, where np is the

total number of nodes. For the one node, me = inode, the local ¢'s are orthogonalized via

eq. (25). Here r is the isospin index, which loops over the proton and neutron states. In

many cases time-reversal symmetry is assumed (itim = 1), where only half of the total num-

ber of states need be explicitly considered. In this case it is still necessary to orthogonalize

the wave functions with respect to the time-reversed states:

A -,o

¢,(i, r) =_T¢(z, r), (27)

where the operator T is the time-reversal operator. At this time the orthogonalized state

is then normalized with a call to psnorm. Not only are normalized states desired in the

end, but for subsequent orthogonalizations the Gramm-Schmidt procedure in Fig. 1 assumes

normalized states. For loop 200, the array npnu(inode + 1, r) contains the number of wave

functions on node inode with isospin r. The state, ej,, on node inode is placed into the

vector, ¢* and then broadcast to all of the other nodes. For the nodes, me > inode, the local

wave functions, ¢, are orthogonalized with respect to ¢' via eq. (25). Again the time-reversal

case can also be considered. For the last node it is not necessary to broadcast the local ¢'s.

At the end all of the wave functions are already normalized on their respective local nodes.

To optimize the Gramm-Schmidt procedure for use on the Paragon several modifications

were made. One change alluded to earlier is to place the neutron and proton states on non- *

overlapping sets of nodes. The ideal situation is to place either one neutron or one proton

10
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Figure 1: A Schematic diagram outlining the parallel Gramm-Schmidt procedure used in
the code

state only, on each node. The Gramm-Schmid: procedure would then proceed among the

neutron and proton states separately with no communication between the two sets during

the orthogonalization process. In Fig. 1, the index r is set to be 1 in the neutron sector and

2 in the proton sector. The neutron states are placed in nodes, 0,1,..., np(1) - 1, while the

proton states are placed into nodes, np(1),np(1) + 1,... ,np(1) + np(2) - 1.

A second modification involved using the Paragon communication, routine 9_;endz, in

place of using beast. It is clear that not all of the nodes need to receive the broadcasted

wave function vectors, especially with the separate neutron and proton sectors. The routine,

9sendx sends a vector to a specific set of destination nodes, defined in an integer array iu a

semi-global operation. The simplest way to do this is to fill an array with all of the destination

nodes in either the proton or neutron sector in decreasing node number, and then to call

11



gsendz with the appropriate number of destination nodes specified. This algorithm is simple,

but inefficient. Because the receiving nodes are listed in decreasing order in the integer array

ianode, the last node in the Gramm-Schmidt sequence receives the broadcasted vector first.

For example, if we list the nodes np,, _ 0 for the neutron sector, in the first pass, node 0 via

'gsendx' sends ¢_to nodes, np(1) - 1,...,2, 1 in this order. Tim next node to send its local

state, ¢', is node 1. Node 1 must wait to receive the vector from node 0 before proceeding

to orthogonalize its local ¢_ with respect to the wave function vector sent by node 0 and

then to broadcast the local ¢_. Therefore, in this scenario, node 1 must wait for all of the

destination nodes to receive the vector from node 0, before it can proceed. This represents

a bottleneck in the communication sequence. A significant improvement in performance is

made when the order of the destination nodes in ianode is reversed to increasing order. In

this case node 0 broadcasts to nodes 1,2,... ,np(1)- 1 in this order. Since node 1 is the first

node to receive ¢' from node 0, it can immediately proceed to process and broadcast its own

•local ¢_, even before all of the destination nodes have finished receiving the vector sent by

node 0. For cases with a large number of states, several nodes can actually be broadcasting

their local vectors, simultaneously. The entire procedure remains naturally sequential and

orderly.

This sequence of communications was deciphered and verified with the help of the per-

formate monitoring tool Paragraph, which was found to be very useful.

5.3 Broadcasts and Global Summations

Here we discuss some of the algorithms used in performing the communication tasks men-

tioned above. We have already discussed the communication tasks involved in the Gramm-

Schmidt process. In addition to Gramm-Schmidt we have to perform global sums for the

densities and currents, which are used to calculate the hamiltonian. In practice, we treat

global sums on the iPSC/860 differently from the Paragon's due to their architectural dif-

ference (hypercube versus 2D mesh). For the iPSC/860 the basic algorithm is the broadcast

algorithm which ensures that messages are transmitted along routes which do not interfere

with others and the communication load is distributed in a balanced way. For the hyper-

cube architecture the neighboring nodes are identified by their Gray codes [19, 20]. This

is a binary interconnection scheme where the processors are numbered as decimal numbers,

beginning with 0, and arranged such that their binary representation only differ by a single •

12



bit location. To perform broadcast and global sums we have used tile subcube broadcast

algorithm [21]. Below is tile algorithm we have used on the iPSC/860:

k=l

do i=l ,n

if (me. it .k) then

call send(... ,me+k)

elseif(me.lt.2*k) then

call racy(...)

end if

k=2*k

end do

where n is the dimension of the cube and me denotes the node number. The last argument

of the ,send routine is the destination node. On the Paragon the broadcast is done by using

the synchronous csend and crecy routines as follows:

if (me. eq. O) then

call csend (msgtyp, buf, mbytes ,-1,mptype)

else

call crecv(msgtyp,buf,mbytes)

end if

where most arguments have been described previously and the -1 asks trend to send the

message to all nodes except itself.

The generalization of the above broadcast algorithm can be used to perform global sum-

mations on the iPSC/860. This is done by first performing a reverse broadcast by starting

from the bottom of the broadcast tree and accumulating the results at node 0. Subsequently,

node 0 performs a forward broadcast to distribute the result to all nodes. The Fortran code

used on the iPSC/860 for backward broadcast is given below:

k=np

do i=l ,n

k=k/2

if(me.It.k) then



call recv(...)

...add the received quantity to the resident one....

elseif(me.it.2*k)then

call send(...,me-k)

end if

end do

where most quantities are defined above and np is the total number of nodes. On the Paragon

we again use the resident routine gdsum for global doubi_ precision summation

call gdsum(buf,mbytes,dummy).

Of course for 2" nodes, the algorithms used for the iPSC/860 can also be used on the

Paragon. It was found that the iPSC/860 algorithms and the Paragon message passing

routines discussed here give very similar timings.

6 Timing Studies for Static Calculations

For timing comparisons executions on several platforms were performed. On the parallel

machines the maximum number of nodes possible for each case was used, where one nucleon

state was placed on each node (A = 4# of nucleons = # of nodes), unless otherwise stated.

Nuclei with equal number of protons, Z, and neutrons, N, were calculated, where in this

situation the calculation and communication time for the proton and neutron sectors will be

essentially equivalent. For the vast majority of nuclei, N and Z are not equal, and hence the

computational burdens of the 2 sectors will be unequal, where basically the time difference

will correspond to the different amount of time spent within the Gramm-Schmidt procedure.

Static Hartree-Fock calculations were performed for 160, 32S, e4Ge and nSGd nuclei,

where N = Z in these cases. The size of the basis spline collocation lattice was also varied,

where we studied grids of 163, 203, 243 and 263 lattices. For timing comparisons the code

was run for 100 iterations, although typical calculations will require about 500 itcrations or

more.

Due to memory limitations we were unable to perform calculations with grids larger than

223 on the iPSC/860. Although the Paragon is a virtual machine, if there is any significant

swapping of memory, then the performance on the Paragon deteriorates dramatically. The

Paragon models, XPS5 and XPS35 at ORNL presently have 16 Mbytes/node memory, with

14



about 10 Mbytes available for computational use. The xps35 will be expanded in tile near

future to 32 Mbytes/node. Eventually ORNL will obtain a machine with 64 Mbytes/node,

which will eventually be expanded to 128 Mbytes/node. The increased memory will be very

useful for our purposes, because larger lattices will be required for large exotic nuclei. With

present memory limitations on the Paragon we are essentially constrained to a maximum of

243 lattices sizes.

t-
O 0.5

• _

o.o e-:-.-$'.-.--.-_.-.-.-_... ,..,, :. : ,,. :.. :
' " " " _ " e-me Max Paragon[100 it]

/' O---OMin Paragon [100 it]

20.0
- /,- II IBM RS6000/360 [100 it]

o.o __ _=Dm_ _ e=_' "O

_-'___-_'yT"T.,-TT,, ,, =. : :. : : :

0.0 _

100.0
0

so.o ._I.-

0.0 ........... ' ........... ' ....
16 32 48 64 80 96 112 128

A, the numberof singleparticlestates

Figure 2: A comparison between the performance of different platforms is shown. The
collocation lattice grid is fixed to 20a points. The bottom panel shows the total execution
time/node in minutes, the middle panel displays the time spent in the Schmidt routine in
minutes, while the top panel shows the fraction of time spent in the Schmidt routine.

The total CPU time/node as a function of A is shown in the lower panel of Fig. 2 for a

203 collocation lattice. The CPU execution time is retrieved for each node. The 'total CPU

time/node', as defined in this paper, is NOT the average execution time per node, but the

nodal execution time which is the longest. This would then correspond to the amount of wall

clock time required for execution with no time-sharing. The average nodal execution time

and the maximum nodal execution time are in general very close due to necessary global

synchronizing operations.

In Fig. 2 the timing results are shown for the Paragon, iPSC/860 and for an IBM

RS6000/360 workstation, which has been rated at 22.5 Mflops for double precision For-
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tran Linnpack. One can see that the Paragon provides a superior platform in comparison to

both the IBM workstation and the iPSC/860.

For large A, the execution time/node appears to increase linearly for A > 32, although

there seems to be a some fluctuations in the calculated CPU time, probably due to traffic

and machine fluctu_.tions. For example, for A = 128 and a 203 lattice we obtained a CPU

time/node of 38.48 minutes in one run and 40.23 minutes in another.

The time used for communication resides basically in 2 places. The global double precision

sums described in section 3.5 take about 10% of the total nodal CPU execution time. This

10% overhead remains consistent when varying the size of the lattice and the number of

nodes or wave functions, and even in comparison between the iPSC/860 and the Paragon's.

For cases where the number of nodes = A/2, then the global sums take about 6 - 7% of the

total nodal execution time.

The largest amount of communication time is used during the Gramm-Schmidt orthogo-

nalization procedure. This procedure cannot be executed in parallel and involves the passing

of large messages between the nodes. Since this procedure involves both computation and

communication which are in general performed sequentially, the timing of the whole Schmidt

procedure will be considered. It is difficult to separate out the communication time, since

some nodes 6nly send messages, while other nodes will only receive messages and most nodes

will do a combination of both. Because of the nonparallel nature of Gramm-Schmidt, for

both the neutron and proton sectors, all of the other nodes in the sector must first finish

and pass their local wave vectors before the last node in the procedure can process its local

wave vector. Hence the the last node will have some idle time, while the first node will

complete its Gramm-Schmidt procedure quickly and take much less time than the last node.

For N # Z nuclei the sector with more nucleons may take much more time than the other

sector.

In the middle panel of Fig. 2 the maximum and minimum nodal time spent within

the Schmidt routine is shown to illustrate the nonparallel nature of this procedure. As

the number of nodes, A, is increased the maximum and minimum Schmidt execution time

increases linearly. This scaling feature will be discussed in more detail later in this section.

In the top panel of Fig. 2 the fraction of the total nodal execution time is shown. These

fractions are obtained by dividing the times given in the middle panel by the corresponding

nodal execution times given in the lower panel. As A increases, it is clear that the Paragon
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is much more efficient in communication in comparison with tile iPSC/860. On the Paragon

for large A the maximum fraction of time spent in the Schmidt is about 40 - 50%, thus

creating a significant overhead for tile program.

In the Fig. 3 a comparison is made between runs using A nodes, where one proton or

neutron state resides on each node, and runs with A/2 nodes, where either 2 proton or

neutron states are on each node. Also shown are runs, where bcast is used in an old version

of the Schmidt routine, where on each node there is one proton and one neutron state with

A/2 nodes.

In comparison with the A node calculation represented by the circles, the MINIMUM

nodal time spent in the new Schmidt routine is the same as the A/2 node calculation using

the new Schmidt routine. To make a comparison with the MAXIMUM nodal time in Schmidt

we need to consider the amount of communication and computation involved in the time the

last node in each sector must spend in the Schmidt routine. First comparing communication

time, given N neutrons, for the A node case the last node must perform or wait for N - 1

sends and receives. For the m/2 node case the lasi node is involved with 2x (_ - 1) = N-2

sends and receives. So even though it would seem that with fewer nodes and a sequential

process, there should be less communication, this is not the case. The actual communication
!

time involved with the last node is essentially the same for these two cases. This is reflected

in Fig. 3, except for the A = 128 point, which is probably high due to fluctuations in traffic

on the machine. Since the amount of communication involving the last node is proportional

to N, the time spent within the Schmidt routine should scale linearly, which is precisely the

pattern observed in Fig. 2.

The Gramm-Schmidt procedure in a strictly sequential sense does not increase linearly,

but geometrically. The behavior seen in Fig. 3 can be understood with the following discus-

sion. As described in Section 5.2 the modified new Gramm-Schmidt routine uses gsendz in

a pipeline fashion. By having a node broadcast the local wave vector in a particular order,

i.e. to the next node in the orthogonalizing sequence, one can make the communication

more efficient and reduce the idle time. For example the following sequence for the new

Schmidt routine can be stated as follows: Node 0 computes, then broadcasts to nodes 1, 2,

..., N- 1. Since node 1 is the next node in the sequence and is the first to receive the wave

vector from node 0, node 1 can immediately receive, compute, and then broadcast its local

wave vector to nodes, 2, 3, ..., N- 1. Node 2 then proceeds as well, et cetera. Hence the
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Figure 3: Comparison of new vs. old Gramm-Schrnidt routines as a function of A, the
number of nucleons. The collocation lattice grid is fixed to 20a points. The bottom panel
shows the total execution time/node in minutes, the middle panel displays the time spent in
the Schmidt routine in minutes, while the top panel shows the fraction of time spent in the

Schmidt routine.

broadcasting is performed in a pipeline fashion, since for large N, there can be several Wave

vectors being broadcasted from Several nodes at the same time, all of which will eventually

be received by node N-- 1. While for example node 1 is receiving and COmputing, the other

nodes are also receiving and computing at essentially the same time, with some delay. Thus

the COmputations within the Schmidt routine are also performed in a pipeline fashion and

hence the COmputation time should increase linearly with A as well as the communication

time.

7 Dynamical Results for Linear ReSponse Theory

Calculations of isovector and isoscalar dipole, octupole and quadrupole collective modes

have been calculated for ]eO Using several pararnetrizations of the Skyrrne interaction. Here

results will be shown for axial isoscalar quadrupole collective modes using the skin* Skyrme

effective interaction [22]. For skrn* the time step used in eq. {'24), At = 0.4 fm/c works welland the calculation can be extended to 32768 time steps.
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Reasonable results are obtained if tile parameter e is chosen to fall in tile range 1.0 x

10-s _<e < 2 × 10-r. By varying the value of e, the amplitude of the time-dependent density

fluctuation then scales proportionally to e, thus indicating that we are weli within the linear

regime of the theory.

The linear response calculations require well converged initial static HF solutions. For

*60 it was found that static HF solutions with tile energy fluctuation, defined earlier as

_/l(H 2) - (_')21, less than about 1.0 x 10-s provide adequate starting points for the dynamic

calculations, although the smaller the energy fluctuation the better.

The dynamic calculations involve using eq. (24) to evolve the system. Since U(t, t') is an

unitary operator, the orthonormality of the system is preserved, therefore it is not necessary

to re-orthogonalize the solutions after every time-step. This means that the communication

intensive Schmidt routine is not needed nor used in the dynamic calculation. The stability

of the calculation is checked by testing the _reservation of the norm of each wave function.

The number of terms in the expansion of the exponent in eq. (24) is determined by requiring

the nolm to be preserved to a certain accuracy (typically to < 1.0 × 10-s - 1.0 x 10-t°).

The time-dependent perturbing part of the hamiltonian is evaluated when the exponent

in eq. (22) is greater than some small number, _,,t. Since it is not difficult to evaluate the

action of the external part of the hamiltonian on the wave function, e_t is chosen to be

very small, (1.0 x 10-1°). To allow the fourier transform of f(t) to be evaluated easily, it

is necessary to integrate t from -oo to oo and hence we would like the entire Gaussian of

the perturbing function, f(t), to be included into the time evolution to the desired accuracy.

The parameter to is therefore chosen such that the complete nonzero contribution of the

time-dependent perturbation is included, to = -At (2 + _fl2|_g_' I).

d'

T I

Pairing can be easily included using the BCS [23] or Lipkin-Nogami [24] prescriptions.

These two methods have been included into the static Hartree-Fock calculations and can be

easily incorporated into the dynamical calculation. For studies of _-decay it will be nec-

essary to include pairing, thus producing calculations of responses to quasi-RPA excitation

modes.

7.1 Quadrupole Excitation Modes

For the study of the isoscalar quadrupole moment, the perturbing function F(_), introduced

in eq. (19), is chosen to be the mass quadrupole moment, Q2o = 2z 2 - (=2 + y2). It turns
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out that other even multiple modes are also excited at the same time (i.e. Q4o, Q6o, ...). -_'_

is therefore possible to study the resonance structure for these other cases, although their

transition amplitudes cannot be extrazted. The same holds true for the odd multipoles.

The quadrupole collective resonar,ces are calculated for 160 using various Skyrme force

parametrizations for comparisons. Although smaller grid sizes are appropriate for static

calculations, for the dynamic time-evolution to be able to proceed to large times, it was

found that there must be at least a 203 lattice. For a 183 lattice tile time evolution broke

down at about 14000 iterations, while for 203 lattice points, the calculation was able to

proceed to 32768 time steps.

In Fig. 4 the time-dependent evaluation of the multiple moment defined as:

. (Q2o(t)) = (f(x))= f d3x,5(_(x,t))ft(x), (28)

is shown for the skm* case. This figure illustrates the periodic character of the calculation,

where in this case the smallest oscillation is about 65 fm/c.
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Figure 4: The linear response results using skin*, for the collective axial quadrupole vibra-
tional mode. The upper panel is the time-evolution result, while the lower panel shows the
result after fourier transforming into energy space.

A fastfouriertransform[FFT] isusedtocalculatethefouriertransformof(_)2o(t))to

give{Q2o(w))= f(w)S2o(w).The time-dependentperturbationfunction,f(w)can be then
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easily factored out (20).

The experimental isoscalar quadrupole giant resonance is a broad peak centered about

an energy of approximately equal to 20.7 MeV with a width (FWHM) of about 7.5 :t: l MeV

[25]. According to eq. (21) the imaginary part of S(w) should be purely negative. As can be

seen in the lower panel in Fig. 4, the result here is ahnost purely negative as theoretically

predicted. One constraint is the so-called energy weighted sum rule [EWSR], which provides

a confirmation of the accuracy of the response calculation. This sum rule can be shown to

depend on the structure of the hamiltonian and can be calculated from the hamiltonian as

well as in RPA calculations. It is found that we are able to calculate 920£ of the sum rule.

The FFT is designed to give the correct fourier transform when the integral over time

encompasses the whole region in which S(t) is nonzero. For other forces the result was not

as clean as the result shown in Fig. 4. This is due to the fact that the evolved solution in

time does not die off to zero, but maintains a relatively constant strength. This means that

the FFT gives only an approximate solution and it may be necessary in some cases to go to

larger maximum times.

7.2 Timing for the Dynamic Calculation

Timing comparisons for the dynamic calculation are give in Fig. 5, where the time in minutes

is given for executing 100 time steps. The actual runs used many more time steps, so the

points in Fig. 5 are normalized to 100 time steps. In the lower panel the total CPU time per

node is shown. The two parallel machines are much faster than the sequential workstation,

while the Paragon is faster than the iPSC/860 by about a factor of three.

The time-depenuent calculation has much less communication overhead than the static

calculation, since it is not necessary to perform the Gramm-Schmidt orthogonalization pro-

cedure. The only large-scale communication is performed by the global summation routine,

gadd. In the upper panel the times in minutes for the global sums "are given for the parallel

machines. For a 203 lattice the Paragon is much more efficient, where gadd on the iPSC/860

requires about 240£ of the total CPU time/node, the corresponding figure for the Paragon

is about 7%. For the larger 223 lattice grid, the fraction of communication time on the

Paragon is about 17°£. This surprisingly large increase may be due to some saturation of

the communication buffers.

Although the dynamic calculation as a parallel operation is much more efficient than
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executation. The upper panel contains the time requires for the global summation routine,
gadd.

the static calculation, the dynamic calculation requires a greater amount of computational

resources. Presently, the dynamic calculation has been tested for 16 nodes, and will shortly

be expanded to cases involving 32 and 40 nodes. The dynamic calculation requires about

16000 time steps, which corresponds to runs on the order of days. The static calculation

requires much fewer iterations. When the Paragon's at Oak Ridge expand to larger memories,

we will then be able to proceed to address much large and more exotic nuclei by using much

larger collocation lattice spaces..

8 Conclusions

Massively parallel platforms, such as the iPSC/860 and the Paragon provide a much improved

vehicle for performing mean field calculations. Because of the increased computer resources

calculations of large complex and exotic nuclear many-body systems can now proceed with a

greater sophistication. Forthe static Hartree-Fockmean field calculation a program, which

uses a full three dimensional basis spline collocation lattice, has been developed with no

spatial or time-reversal symmetries imposed. This program has been ported to the iPSC/860
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and the Paragon. An algorithm was developed, which takes advantage of some of tl e features

of the Paragon to streamline tile communication intensive Gramna-Schmidt orthogonalization

routine by pipelining the message passing and the computations.

A dynamical extension of the Hartree-Fock mean field theory in the form of time-

dependent Hartree-Fock enables us to perform calculations of the linear response of the

nucleus. This program is a highly efficient parallel approach, since the time-evolution that is

used to perform the calculation involves a unitary operation, which preserves the orthonor-

mality of the many-body system. It is therefore not necessary to perform the Gramm-

Schmidt operation and hence there is little necessary communication required in the dynamic

calculation. With the future expansion in nodal memory planned for the Paragon computers

at Oak Ridge, we should be able to proceed with an active program to investigate further

linear response calculations.
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