/\ /v/
G4
V4

nd Image Management

e, Suite 1100

A
\ 7
A7 4
aﬂ%\m\\&@w.«v . (ﬁm%//
O//// 4

Centimeter

0 11 12 13 14 15 mm

9

8

2 3

1

5

2.5
22

l
l

12 |l
122

)
= = =

20

i
E-

23
FEE EFFRERE

10

I

Inches

Iol
re——
———
na———
———
—

I
I

18

I
I

16

1
—
—
o

—
——
e——
—
——

Il

125

—
——

£, //,0 <
\\.\ 4//\ »AﬁA%MWm@%V
p &%

MANUFACTURED TO AIIM STANDARDS

BY APPLIED IMAGE, INC.

N

(onE=94111§--7

STATIC AND DYNAMIC NUCLEAR MANY-BODY DESCRIPTIONS

ON PARALLEL ARCHITECTURES

C.R. Chinn, A. S. Umar
M. R. Strayer, and M. Valliéres

to be published in Proceedings of

- manufacturer, of otherwise

Josds
3 & mmm
P Ag *5d s
il
S f3 -1l
3 28 mwm?
. Z mm@mm

DISCLAIMER

pared as an accoust of work sponsored by an agency o::nc::&mﬁ..a
i the United States Government nor any agency thereof, nor any of their
arranty, cXpress or implied, or assumes any Jegal liability or responsi-
mpleteness, of uscfulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, of service by trade name, trademark,

does not necessarily constitute or imply its endorsement, recom-
ted States Government or any agency thereof. The views

mendation, or favoring by the Uni
u—x_s?monmcn authors cxpressed hercin do not necessarily state or reflect those of the

United States Government or any agency thereof.

L TR O Thul PO INARTY T N el W

IRGEE

mwmﬂﬂw.fmu.s‘ﬁmvlum

Static and Dynamic Nuclear Many-Body
Descriptions On Parallel Architectures

C. R. Chinn'?, A. S. Umar!?, M. R. Strayer! and M. Vallieres®

1Center for Computationally Intensive Physics
Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
2Department of Physics & Astronomy, Vanderbilt University
Nashville, TN 37235
3Department of Physics & Atmospheric Science, Drexel University,
Philadelphia, PA 19104

t Speaker, e-mail address: chinn@compsci.cas.vanderbilt.edu
(615)343-1706, (615)352-9501; FAX: (615)343-7263

April 1, 1994

Abstract

Numerical methods used to solve the system of stiff, nonlinear partial differential
equations in static Hartree-Fock descriptions of many-body nuclear systems are pre-
sented along with an extension of the time dependent Hartree-Fock solution to linear
response theory. A full three dimensional representation is obtained by using a collo-
cation basis spline spatial lattice. Numerical procedures used for parallel applications
are discussed. Comparisons are presented for MIMD massively computers, including
the Intel Paragon and the iPSC/860 hypercube. Algorithms used to improve communi-
cation overhead, especially pipelining the Gramm-Schmidt orthogonalization routine,
and difficulties with limited node memory will be discussed.

1 Introduction

Mean field studies of physical systems have provided successful and useful fundamental
descriptions of a variety of atomic and nuclear many-body phenomena {1, 2, 3, 4] and promises
to provide an important development in future understandings in nuclear astrophysics.

From a numerical point of view, recent new techniques have been developed, which
provide a much more sophisticated desciption of Hartree-Fock mean field calculations. In
particular, equations of motion were obtained via the variation of the lattice representations
of the constants of the motion, such as the total energy [5, 6, 7, 8]. In this variation after
discretization approach, resulting equations exactly preserve the constants of the motion.
Previous calculations have had to rely on alternate basis expansions, such as harmonic os-
cillators, which are cumbersome, or on coordinate space lattice representations, which are
much easier to use, but typically depend on inaccurate finite difference representations of
the derivative operator. Here we use a basis spline collocation lattice, where the derivative
operators can be accurately represented in a basis expansion, while also taking advantage of
the more tractable lattice grid representation.

Due to limitations in computational power, one tended to assume specific symmetric
descriptions, such as spherical or cylindrical symmetry, along with z-parity symmetry and
no spin degrees of freedom. Time-reversal symmetry was also used to a great degree. With
recent new supercomputer technologies such assumptions are no longer required to perform
calculations. In this paper a full three dimensional calculation using basis spline techniques
is presented, where symmetries such as time-reversal, need not be imposed. Full spin repre-
sentations of the wave functions are also included. These calculations are very intensive and
require Grand Challenge level computing resources.

The same difficulties that exist in the static mean field case apply to the time-dependent
calculation. A new method of calculating linear response theory has been developed which
relies on a time-dependent evaluation of the linear response equations [9]. This calculation is
constructed on top of the static Hartree-Fock calculation, hence the full sophistication that
exists in the static case also exists in the dynamic one. Previous random phase approximation
[RPA] calculations have limitations similar to those that have plagued mean field calculations
(10, 11, 12, 13]. By not imposiug constraints, such as spatial and time-reversal symmetries,
one can increase greatly the level of sophistication.

The linear response equations are calculated by applying a specific time-dependent per-

turbation to the static Hartree-Fock hamiltonian. The system is then evolved by solving
time-dependent-Hartree-Fock [TDHF] equations. The result is fourier transformed to give
the total transition amplitude for a specific collective mode.

Both the static and dynamic calculations are solved on a three dimensional collocation
basis spline lattice. The same hamiltonian is used in both the static and dynamic calcu-
lations, providing a complete consistency, which historically has not been the usual case.
Eventually we would like to pursue linear response studies of f—decay calculations of exotic
nuclei.

In Section 2 the static Hartree-Formalism is presented in brief. A numerical discussion
of the numerical discretization of the mean field calculations, specifically the basis spline
collocation lattice is given in Section 3. A short discussion of the time-dependent evaluation
of linear response theory is in Section 4. A detailed description of the parallel implementation
is presented in Section 5, especially the pipelining of the Gramm-Schmidt orthogonalization
routine. Time studies are given in Sections 6 and 7 for the static and dynamic calculations,

respectively, followed by a Conclusion.

2 Static Hartree-Fock Formalism

2.1 Continuous Equations

The details of the derivation of the Hartree-Fock equations can be found in [5, 6, 7, 8, 9].
The zero-range skyrme force is used to represent the effective two-body interaction in both
the static Hartree-Fock and the dynamic linear response calculations. The expectation value

of the skyrme hamiltonian is represented in terms of the energy density.
E=(g|H|g) = [&r H(r), (1)

Using the variational principle we take the functional derivative of the Hartree-Fock energy

with respect to the wave function, x,:
SE =6 / PrH(r). (2)
A coupled set of non-linear partial differential eigenvalue equations is then obtained:

th = Caxa b) (3)

where x, is a two-component vector (spinor)

xa=(x‘t)- ")

Xa

The hamiltonian h has the following form (using natural units A =1,c=1, m = 1):

h =~V 4 W(p,mi),
W o= Va(r)+ Vo(r), Q

where Vy is the nuclear potential depending on various currents and densities, which in turn
depend on the states xo. The Coulomb interaction, V;, requires the solution of the Poisson

equation in three-dimensional geometry
VVe(r) = —4welp(r) . (6)

As can be seen from above the solution of the system of equations (3) has to be done
self-consistently and an accurate solution requires a good representation of various deriva-
tives of the states xo. Currently, most HF and TDHF calculations are performed using finite
difference lattice techniques. It is desirable to investigate higher-order interpolation methods
which result in the improvement of the overall accuracy and reduction in the total number of
lattice points. The lattice solution of differential equations on a discretized mesh of indepen-
dent variables may be viewed to proceed in two steps: (1) obtain a discrete representation
of the functions and operators on the lattice. (2) solve the resulting lattice equations using
iterative techniques. Step (1) is an interpolation problem for which we could take advantage
of the techniques developed using the spline functions [14, 15, 16]. The use of the spline
collocation method leads to a matrix-vector representation on the collocation lattice with a
metric describing the transformation properties of the collocation lattice.

The static Hartree-Fock solution is calculated using an iterative scheme as outlined below:

1. Guess a set of orthogonal single-particle states

Compute the densities

© N

Compute the Hartree-Fock potential
4. Solve the Poisson equation

5. Perform an imaginary time step with damping [17, 4]

6. Do a Gramm-Schmidt orthogonalization of all states

7. Repeat beginning at step 2 until convergence

As a convergence criteria we have required the fluctuations in energy

AE*=V< H? > — < H >? (7N

to be less than 107%. This is a more stringent condition than the simple energy difference
between two iterations, which is about 107!° when the fluctuation accuracy is satisfied. The
calculation of the HF hamiltonian also requires the evaluation of the Coulomb contribution
given by Eq. (6). Details of solving the Poisson equations using the splines are given in Refs.
(15, 16].

3 Nummerical Discretization

3.1 Collocation Basis Splines

An Mth order spline function denoted by BM is constructed from piecewise continuous
polynomials up to order M — 1. The set of points or knots {z;} consists of the points
where the spline functions are joined continuously up to the (M — 2) derivative. The basis
spline functions have minimal support in that the ith épline functions is nonzero only in the
interval (z;, z;4r), where the spline function, B¥, is labelled by the first knot. For the space
containing the N + 1 knots in one dimension, there must be M nonzero spline functions in
each interval, hence N + 2M — 1 total spline functions make up the full basis, where M — 1
spline functions extend beyond each boundary.

A function, f(z) continuous in the interval (Zmin, Tmaz) is expanded in terms of the spline

basis functions:
N42M -1

flzy= 3% BMz)' (8)

i
The expansion coefficients, ¢' are -l»rived from f(z) by evaluating f(z) at a specific et of
points called collocation points, {z/,}. There are various ways of choosing the {z/,}. For odd
order splines we have chosen the collocation points to lie at the center of each knot interval

within the range (Zmin, Zmaz)-

Tmin = IM,
TipM-1 + TisM .
T, = M-t Y, i=a Va=1,..,N
2

By evaluating eq. (8) at {x/}, a set of linear equations are constructed which constrain the

coeflicients, c":

4

N+2M -1
)= Y, BMa)C 9)
i
Since there are N + 2M — 1 unknown coefficients and N points z., it is necessary to in-
troduce 2M — 1 additional constraining equations as boundary conditions. One can also
impose periodic boundary conditions. Combining the functions BM(z!,) and the boundary
conditions into a square invertible matrix, B, the coefficients, ¢! can be expressed as:

=Y B fe (10)

[+

where f, = f(z!) is the collocation representation of the function, f(z).

Consider the action of an operator upon a function:
R N+2M-1 .
Ofz)= Y. [0BM(2)|< (11)
i
If we evaluate the above expression at the collocation points and substitute in eq. (10) for

the ¢' the following is obtained.

R N+2M -1
Of(z.) = [0BM(=)]| [B“]
i)
6]0 = Zégfﬂv (12)
[

where now the quantity, 52 is the collocation representation of the operator, O on the lattice.

_ N4aM-1 8
0f= 3 [0BM)] B (13)

Note that the representation of 62 is not a sparse matrix.

The function, f(z), and the operator, 5, can both be represented on a lattice, i.e. the
collocation points, through the use of the collocation basis spline method. This holds true
for gradient operators, where the gradient of the basis spline functions is required. The basis
spline functions, BM(z) and their derivatives, ——B-'—-(—l can be evaluated at the collocation
points using iterative techniques. Through simllar methods one can obtain the appropriate

integration weights. For more details on the collocation basis spline method please see

Ref. [15].

3.2 HF Equations in Collocation Space

In order to obtain a set of lattice equations which preserve the conservation laws associated
with the continuous equations, it is essential to develop a modified variational approach. This
goal is achieved by performing a variation to the discretized form of a conserved quantity,
i.e. total energy. Consequently, the resulting equations will preserve all of the conserved
quantities on the lattice.
> AVagy {h(aBy) - e Ixa (B} (14)
ofy
where indices a, B, and v denote the lattice points in three-dimensional space, and AV,g, is
the corresponding infinitesimal volume element. Due to the presence of derivative operators
in the hamiltonian, the explicit form of these expressions will depend non-locally on the
lattice indices. The general variation, which preserves the properties of the continuous

variation, is given by
' Sxu(aBy) 1
Ex3(«B) AVapy
The details of the discrete variation for the finite-difference case are given in Refs. [5, 6].

bxubatabprpbory . (15)

The three-dimensional expansion in terms of splines is a simple generalization of Eq. (8)
Xa(2,y,2) = Y c* Bi(z) B;(y) Bi(2) - (16)
ik
The knots and collocation points for each coordinate can be different. With the appropriate
definition of boundary conditions, all of the discretization techniques discussed in the previ-
ous section can be generalized to the three-dimensional space. The details of this procedure
are given in Refs. [15, 16).

A typical nonlocal term is illustrated below:
(VXX)apr = Z DY xx(a'By)i + Z D x3(aB')j
+ E D"’ (aﬁ'y

where the matrices D denote the first derivative matrices in z,y, and z directions (they can
be different although the notation does not make this obvious) calculated as described in the
previous subsection. Finally, the HF equations can be written as matrix-vector equations on

the collocation lattice

hxt — h-x%. (17)

The essence of this construction is that the terms in the single-particle hamiltonian h are
matrices in one coordinate and diagonal in others. Therefore, h need not be stored as a full

matrix, which allows the handling of very large systems directly in memory.

4 Dynamical Formalism: Linear Response Theory

The linear response equations can be derived from a specific functional perturbation of the
TDHF equations [18]. For a detailed discussion and proof please see Ref. [9].

A specific time-dependent perturbing function is added to the static hamiltonian:

ﬁtat = ﬁ‘*‘ ﬁez’(t)° (18)
This external piece is defined as:
H.(t) = Ff)
= [[@zt 0F@) 1) (19)

where 7i(z,t) is the number density operator and the function F(z) is chosen to represent a
particular collective mode. The f(t) will be chosen later.

By solving the time-dependent-Hartree-Fock equations and evolving the system in time,
detailed information about the collective dynamic modes of the nuclear system can be ex-
tracted. It can be shown that in the linear approximation, the total transition probability
can be extracted, corresponding to the collective transition represented by the function,
F(Z). By calculating the fluctuations in the nuclear density, §(7(z,t)), as a function of time

and then fourier transforming the result into frequency space we obtain the following:
f@)Sw) = [dabin(z,w)Fi(a)
1
= = [/ Lo FH () DR(E, 7, w)F(F) f(w), (20)

where S(w) is the linear response structure function and D®(Z,7";w) is the retarded density
correlation function. By taking the imaginary part of S(w) the total transition probability

associated with F(Z) is obtained.

MSW)=-3 %

2 —
é(w——————'E" E°), E.> Eo. (21)

/ P’ (a | (F,w) o) F(Z) :

The structure function is evaluated using a time-dependent perturbative technique. By

constructing an explicit form for f(t), one can solve the time evolution of the Hartree-Fock

system using f(t) and F(&) as perturbing functions. In our case f(t) is chosen to be a

Gaussian of the following form:

f(t) = ee™i, 121

flw) = ege‘% (22)

where ¢ is some small number (~ 107%), chosen such that we are in the linear regime. The
parameter, a, is set to be 1.0 ¢/fm, which allows for a reasonable perturbation of collective
energies up to ~ 150 MeV.
In practice, to evaluate the TDHF equations the time-evolution operator is used to evolve
the system.
Ult,te) =T [e—% f.:., dt'ﬁ.oc(t’)] , (23)

where T'[...] denotes time-ordering. Using infinitesimal time increments, the time-evolution

operator is approximated by

U(tn+1,tn) = e_*Ln"'“d"ﬁwt(")

~ e~ hOtH(tat4Y) (24)
—~ \k
N (-3AtHuw)

~ 14 o

k=1

]

where the quantity (Eot)k is evaluated by repeated operations of Hiot upon the wave func-
tions. Typically the value of N, the maximum number of applications of Hy, for a given
iteration and wave function, will be about 4 or 5.

The procedure is to then choose a particular form for F(Z), using eq. (22) for f(t), and
time evolve the system using eq. (24). The Fourier transform in time of the result then gives

us f(w)S(w), from which the linear response structure function of the system is extracted.

5 Parallel Implementation

In this section we discuss the details of implementing the lattice representation of the Hartree-
Fock equations on the Paragon XPS5 and XPS35, and Intel iPSC/860 hypercube supercom-
puters at Oak Ridge National Laboratory. These machines are distributed memory, multiple
instruction multiple data (MIMD) computers. The Intel iPSC/860 has 128 nodes with 8
MB of memory per node and a peak rating of 60 Mflops per node leading to a 7.6 Gflop

aggregate speed; on the XPS/5 and XPS/35 the peak rating per node is 75 Mflops leading to
aggregate speeds of approximately 5 Gflops and 38 Gflops, respectively. Among other differ-
ences, iPSC/860 is a hypercube architecture whereas the Paragon is a 2D mesh. The peak
internode communication speed of the iPSC/860 is 2.8MB/sec and Paragon is 200 MB/sec.
The nodes are connected according to a binary interconnection scheme.

As with most parallel implementations we face the problem of limited memory per node
and the optim: .ation of the algorithms to minimize the communication among nodes. It
was realized that distribution of the Hilbert space rather than the distribution of the spatial
dimensions over the nodes is by far the preferred mode of operation. By placing a subset of
the Hilbert space, i.e. some of the single particle wave functions, on each node and having all
of the spatial operations occur locally on each node, the communication overhead is basically
limited to two major operations, which will be discussed below. In general it was found that
the best performance is obtained by placing one nucleon wave function of a given isospin on

each node.

5.1 Reading and Distribution of Input

The code is set up in a hostless structure, except for i/o to various files. The initial input
information is read by one node, designated as node ‘0’, where the information is placed into

buffer arrays and broadcasted to the other nodes using the following subroutine:
call bcast(iarch,buf,mbytes,0,mtype) .

Here iarch chooses the appropriate parallel architecture (Paragon or iPSC/860), bu f contains
the real input, mbytes is the length of the message in bytes, the "0” corresponds to the
originator node of the broadcast, and mtype is an integer tag that is incremented every time
an ifo operation is performed (tags the many messages being sent between nodes and is used
in order of arrival/departure). For output, information is passed to node ‘0’, which then

sorts the information and outputs it.

5.2 Gramm-Schmidt Orthonormalization

The Gramm-Schmidt procedure used to orthogonalize the single particle wave functions can

be summarized in the following equation:

(1) = w(E) - S oz GO
¢t(’) 'ﬁ:(3) ;1/)1())(j(T)hbj(T)) y >2 (25)

i, 7) = P&)/ (Di(n)i(7)),

where 7 labels the isospin index, distinguishing between the proton and neutron states, and

the vector 7 represents the grid collocation lattice in Cartesian coordinates. The matrix

element (;(7)|¢:(7)) is defined as:

Wi(rlw(r)) = [dEVYE, (7). (26)

On a distributed memory parallel machine difficulties arise since the wave functions are
spread out over the nodes of the computer, hence the wave function vectors must be passed
between the nodes during the orthogonalization process. This creates a large communica-
tions overhead since the wave function vectors are dimensioned by the three dimensional
collccation lattice and are therefore very large (~ 0.25 — 0.5 Mbytes). The procedure used
here is outlined in the flow chart in Fig. 1, where each node, defined locally by the variable,
me, executes this sequence. Initially on each node, the local wave functions, %, are nor-
‘malized. There is an outer loop, 500, which loops over the node number, where np is the
total number of nodes. For the one node, me = inode, the local 1’s are orthogonalized via
eq. (25). Here 7 is the isospin index, which loops over the proton and neutron states. In
many cases time-reversal symmetry is assumed (itim = 1), where only half of the total num-
ber of states need be explicitly considered. In this case it is still necessary to orthogonalize

the wave functions with respect to the time-reversed states:

(%, 7) = Ty(z,7), (27)

where the operator T is the time-reversal operator. At this time the orthogonalized state
is then normalized with a call to psnorm. Not only are normalized states desired in the
end, but for subsequent orthogonalizations the Gramm-Schmidt procedure in Fig. 1 assumes
normalized states. For loop 200, the array npnu(inode + 1, 7) contains the number of wave
functions on node inode with isospin 7. The state, ¥;,, on node inode is placed into the
vector, ¥’ and then broadcast to all of the other nodes. For the nodes, me > inode, the local
wave functions, ¥, are orthogonalized with respect to ¥’ via eq. (25). Again the time-reversal
case can also be considered. For the last node it is not necessary to broadcast the local ¥’s.
At the end all of the wave functions are already normalized on their respective local nodes.
To optimize the Gramm-Schmidt procedure for use on the Paragon several modifications
were made. One change alluded to earlier is to place the neutron and proton states on non- -

overlapping sets of nodes. The ideal situation is to place either one neutron or one proton

10

[Locally Nonualize all g-'gl

(——"l do 300 inode = vnaded — 1, wnende — ﬂ

do j, =2, ny(r)

W inode = e X dojy=1,5~1
- 05, 1) = 3 (7,7) = BlF, N9 (7))
(it $# 0) then
(7, 7) & Ty (7.7)
!‘.'il(;vf) = 'r':’il(;"!'r) - ‘."’l(i|7)(\"'"(7“'f’il('))
end if :
ewd do

r"J\—lv-?-—i“ inode = wode - 1 | eall poworn (w;,(7,7))

ewd do

Ll

(’{(lo 200y, =1, np\m(imnle-{-l,r)]

il (imode = we) then

A o (3

(7, 7) = v, (7, 7)

. - e 4 3, wadron o — wpy = =irusbn |, ceton
inl = { wnnde 4 7~ ap., prooen rode = { np bemirisdde | gurvoton

call geendx (wtype, o', meslgn, iswde(inl,r), juode)
el i ((me > inode) then

call crecy (ntype, @, weslgn)

end if

Iil inode < e 'l re do j3 =1, ne(r)

" F"}}‘zv T) = #’h(i'r) - #”'(;v 7)(?‘”(7)"5"1"1('»
W im#0) then
Wi(F, 1) = TY(#,7)
B {7, 7) = 95, (F, 1) = O)(F,) (8i(1)} (7))
end §f
call pmorin (Pi(7, 7))
end do

k————'-——‘

Figure 1: A Schematic diagram outlining the parallel Gramm-Schmidt procedure used in
the code

state only, on each node. The Gramm-Schmid$ procedure would then proceed among the
neutron and proton states separately with no communication between the two sets during
the orthogonalization process. In Fig. 1, the index 7 is set to be 1 in the neutron sector and
2 in the proton sector. The neutron states are placed in nodes, 0,1,...,np(1) — 1, while the
proton states are placed into nodes, np(1),np(1) +1,...,np(1) + np(2) — 1.

A second modification involved using the Paragon communication, routine gsendz, in
place of using bcast. It is clear that not all of the nodes need to receive the broadcasted
wave function vectors, especially with the separate neutron and proton sectors. The routine,
gsendz sends a vector to a specific set of destination nodes, defined in an integer array in a
semi-global operation. The simplest way to do this is to fill an array with all of the destination

nodes in either the proton or neutron sector in decreasing node number, and then to call

11

gsendz with the appropriate number of destination nodes specified. This algorithm is simple,
but inefficient. Because the receiving nodes are listed in decreasing order in the integer array
tanode, the last node in the Gramm-Schmidt sequence receives the broadcasted vector first.
For example, if we list the nodes np, — 0 for the neutron sector, in the first pass, node 0 via
‘gsendx’ sends ¥’ to nodes, np(1) — 1,...,2,1 in this order. The next node to send its local
state, ¥', is node 1. Node 1 must wait to receive the vector from node 0 before proceeding
to orthogonalize its local ¢’ with respect to the wave function vector sent by node 0 and
then to broadcast the local 1’. Therefore, in this scenario, node 1 must wait for all of the
destination nodes to receive the vector from node 0, before it can proceed. This represents
a bottleneck in the communication sequence. A significant improvement in performance is
made when the order of the destination nodes in ianode is reversed to increasing order. In
this case node 0 broadcasts to nodes 1,2,...,np(1)—1 in this order. Since node 1 is the first
node to receive ¢’ from node 0, it can immediately proceed to process and broadcast its own
local 1’, even before all of the destination nodes have finished receiving the vector sent by
node 0. For cases with a large number of states, several nodes can actually be broadcasting
their local vectors, simultaneously. The entire procedure remains naturally sequential and
orderly. :

This sequence of communications was deciphered and verified with the help of the per-

formace monitoring tool Paragraph, which was found to be very useful.

5.3 Broadcasts and Global Summations

Here we discuss some of the algorithms used in performing the communication tasks men-
tioned above. We have already discussed the communication tasks involved in the Gramm-
Schmidt process. In addition to Gramm-Schmidt we have to perform global sums for the
densities and currents, which are used to calculate the hamiltonian. In practice, we treat
global sums on the iPSC/860 differently from the Paragon’s due to their architectural dif-
ference (hypercube versus 2D mesh). For the iPSC/860 the basic algorithm is the broadcast
algorithm which ensures that messages are transmitted along routes which do not interfere
with others and the communication load is distributed in a balanced way. For the hyper-
cube architecture the neighboring nodes are identified by their Gray codes [19, 20]. This
is a binary interconnection scheme where the processors are numbered as decimal numbers,

beginning with 0, and arranged such that their binary representation only differ by a single -

12

bit location. To perform broadcast and global sums we have used the subcube broadcast

algorithm [21]. Below is the algorithm we have used on the iPSC/860:

’

k=1
do i=1i,n
if(me.lt.k) then
call send(...,me+k)
elseif(me.lt.2xk) then
call recv(...)
end if
k=2*%k
end do

where n is the dimension of the cube and me denotes the node number. The last argument
of the send routine is the destination node. On the Paragon the broadcast is done by using

the synchronous csend and crecv routines as follows:

if (me.eq.0) then

call csend(msgtyp,buf,mbytes,-1,mptype)
else

call crecv(msgtyp,tuf,mbytes)

end if

where most arguments have been described previously and the —1 asks csend to send the
message to all nodes except itself.

The generalization of the above broadcast algorithm can be used to perform global sum-
mations on the iPSC/860. This is done by first performing a reverse broadcast by starting
from the bottom of the broadcast tree and accumulating the results at node 0. Subsequently,
node 0 performs a forward broadcast to distribute the result to all nodes. The Fortran code
used on the iPSC/860 for backward broadcast is given below:

k=np

do i=1,n
k=k/2
if(me.1lt.k) then

13

call recv(...)
...add the received quantity to the resident one....
elseif (me.1lt.2*k) then

call send(...,me-k)
end if

end do

where most quantities are defined above and np is the total number of nodes. On the Paragon

we again use the resident routine gdsum for global doubic precision summation
call gdsum(buf,mbytes,dummy) .

Of course for 2" nodes, the algorithms used for the iPSC/860 can also be used on the
Paragon. It was found that the iPSC/860 algorithms and the Paragon message passing

routines discussed here give very similar timings.

6 Timing Studies for Static Calculations

For timing comparisons executions on several platforms were performed. On the parallel
machines the maximum number of nodes possible for each case was used, where one nucleon
state was placed on each node (A = # of nucleons = # of nodes), unless otherwise stated.
Nuclei with equal number of protons, Z, and neutrons, N, were calculated, where in this
situation the calculation and communication time for the proton and neutron sectors will be
essentially equivalent. For the vast majority of nuclei, N and Z are not equal, and hence the
computational burdens of the 2 sectors will be unequal, where basically the time difference
will correspond to the different amount of time spent within the Gramm-Schmidt procedure.

Static Hartree-Fock calculations were performed for ¢0, 32S, ®4Ge and '?Gd nuclei,
where N = Z in these cases. The size of the basis spline collocation lattice was also varied,
where we studied grids of 163, 203, 243 and 263 lattices. For timing comparisons the code
was run for 100 iterations, although typical calculations will require about 500 itcrations or
more.

Due to memory limitations we were unable to perform calculations with grids larger than
223 on the iPSC/860. Although the Paragon is a virtual machine, if there is any significant
swapping of memory, then the performance on the Paragon deteriorates dramatically. The -

Paragon models, XPS5 and XPS35 at ORNL presently have 16 Mbytes/node memory, with

14

about 10 Mbytes available for computational use. The xps35 will be expanded in the near
future to 32 Mbytes/node. Eventually ORNL will obtain a machine with 64 Mbytes/node,
which will eventually be expanded to 128 Mbytes/node. The increased memory will be very
useful for our purposes, because larger lattices will be required for large exotic nuclei. With
present memory limitations on the Paragon we are essentially constrained to a maximum of

243 lattices sizes.

o
8 0.
8
&
5
E
L
I s vk S
) % [®—e Max Paragon [100 if] R
g / |O-=~=OMin Paragon [100 i}]
= 20.0 | / m IBM RS6000/360 [100 it] B
2 " |6—iPSC/860 [100 i) I
5 10¢ [* :
h [
0.0
> 1000
(3]
£ s00
-

0.0) PPN WS RPU B | T | DR

16 22 48 64 8 96 112 128
A, the number of single particle states

Figure 2: A comparison between the performance of different platforms is shown. The
collocation lattice grid is fixed to 20° points. The bottom panel shows the total execution
time/node in minutes, the middle panel displays the time spent in the Schmidt routine in
minutes, while the top panel shows the fraction of time spent in the Schmidt routine.

The total CPU time/node as a function of A is shown in the lower panel of Fig. 2 for a
203 collocation lattice. The CPU execution time is retrieved for each node. The ‘total CPU
time/node’, as defined in this paper, is NOT the average execution time per node, but the
nodal execution time which is the longest. This would then correspond to the amount of wall
clock time required for execution with no time-sharing. The average nodal execution time
and the maximum nodal execution time are in general very close due to necessary global
synchronizing operations.

In Fig. 2 the timing results are shown for the Paragon, iPSC/860 and for an IBM
RS6000/360 workstation, which has been rated at 22.5 Mflops for double precision For-

15

tran Linnpack. One can see that the Paragon provides a superior platform in comparison to
both the IBM workstation and the iPSC/860.

For large A, the execution time/node appears to increase linearly for A > 32, although
there seems to be a some fluctuations in the calculated CPU time, probably due to traffic
and machine fluctuations. For example, for A = 128 and a 20® lattice we obtained a CPU
time/node of 38.48 minutes in one run and 40.23 minutes in another.

The time used for communication resides basically in 2 places. The global double precision
sums described in section 3.5 take about 10% of the total nodal CPU execution time. This
10% overhead remains consistent when varying the size of the lattice and the number of
nodes or wave functions, and even in comparison between the iPSC/860 and the Paragon’s.
For cases where the number of nodes = A/2, then the global sums take about 6 — 7% of the
total nodal execution time.

The largest amount of communication time is used during the Gramm-Schmidt orthogo-
nalization procedure. This procedure cannot be executed in parallel and involves the passing
of large messages between the nodes. Since this procedure involves both computation and
communication which are in general performed sequentially, the timing of the whole Schmidt
procedure will be considered. It is difficult to separate out the communication time, since
some nodes oaly send messages, while other nodes will only receive messages and most nodes
will do a combination of both. Because of the nonparallel nature of Gramm-Schmidt, for
both the neutron and proton sectors, all of the other nodes in the sector must first finish
and pass their local wave vectors before the last node in the procedure can process its local
wave vector. Hence the the last node will have some idle time, while the first node will
complete its Gramm-Schmidt procedure quickly and take much less time than the last node.
For N # Z nuclei the sector with more nucleons may take much more time than the other
sector.

In the middle panel of Fig. 2 the maximum and minimum nodal time spent within
the Schmidt routine is shown to illustrate the nonparallel nature of this procedure. As
the number of nodes, A, is increased the maximum and minimum Schmidt execution time
increases linearly. This scaling feature will be discussed in more detail later in this section.
In the top panel of Fig. 2 the fraction of the total nodal execution time is shown. These
fractions are obtained by dividing the times given in the middle panel by the corresponding

nodal execution times given in the lower panel. As A increases, it is clear that the Paragon

16

is much more efficient in communication in comparison with the iPSC/860. On the Paragon
for large A the maximum fraction of time spent in the Schmidt is about 40 — 50%, thus
creating a significant overhead for the program.

In the Fig. 3 a comparison is made between runs using A nodes, where one proton or
neutron state resides on each node, and runs with A/2 nodes, where either 2 proton or
neutron states are on each node. Also shown are runs, where bcast is used in an old version
of the Schmidt routine, where on each node there is one proton and one neutron state with
A/2 nodes.

In comparison with the A node calculation represented by the circles, the MINIMUM
nodal time spent in the new Schmidt routine is the same as the A/2 node calculation using
the new Schmidt routine. To make a comparison with the MAXIMUM nodal timein Schmidt
we need to consider the amount of communication and computatioi: involved in the time the
last node in each sector must spend in the Schmidt routine. First comparing communication
time, given N neutrons, for the A node case the last node must perform or wait for N — 1
sends and receives. For theAA/ 2 node case the last node is involved with 2 x (% - 1) =N-2
sends and receives. So even though it would seem that with fewer nodes and a sequential
process, there should be less communication, this is not the case. The actual communication
time involved with the last node is essentially the same for these two cases. This is reflected
in Fig. 3, except for the A = 128 point, which is probably high due to fluctuations in traffic
on the machine. Since the amount of communication involving the last node is proportional
to NV, the time spent within the Schmidt routine should scale linearly, which is precisely the
pattern observed in Fig. 2.

The Gramm-Schmidt procedure in a strictly sequential sense does not increase linearly,
but geometrically. The behavior seen in Fig. 3 can be understood with the following discus-
sion. As described in Section 5.2 the modified new Gramm-Schmidt routine uses gsendz in
a pipeline fashion. By having a node broadcast the local wave vector in a particular order,
i.e. to the next node in the orthogonalizing sequence, one can make the communication
more efficient and reduce the idle time. For example the following sequence for the new
Schmidt routine can be stated as follows: Node 0 computes, then broadcasts to nodes 1, 2,
...y N — 1. Since node 1 is the next node in the sequence and is the first to receive the wave
vector from node 0, node 1 can immediately receive, compute, and then broadcast its local

wave vector to nodes, 2, 3, ..., N — 1. Node 2 then proceeds as well, et cetera. Hence the

17

.. I OT o kg P

. "—.-...-.—--

48 80 96

64 112 128
A, the number of single Particle stateg

results wij] pe shown for axial isoscalar quadrupole collectjve modes using the skm* Skyrme
effective interactiop [22]. For skm* the time step used jp €q. (24), At = 0.4 fm/c works well
and the calculation can be extended o 32768 time steps.

18

Reasonable results are obtained if the parameter ¢ is chosen to fall in the range 1.0 x
107® < € £ 2x1077. By varying the value of ¢, the amplitude of the time-dependent density
fluctuation then scales proportionally to €, thus indicating that we are weli within the linear
regime of the theory.

The linear response calculations require well converged initial static HF solutions. For
'%0 it was found that static HF solutions with the energy fluctuation, defined earlier as
\/I(ﬁ’) ~ (ﬁ)’l, less than about 1.0 x 10~ provide adequate starting points for the dynamic

calculations, although the smaller the energy fluctuation the better.

The dynamic calculations involve using eq. (24) to evolve the system. Since U(t,t') is an
unitary operator, the orthonormality of the system is preserved, therefore it is not necessary
to re-orthogonalize the solutions after every time-step. This means that the communication
intensive Schmidt routine is not needed ror used in the dynamic calculation. The stability
of the calculation is checked by testing the vreservation of the norm of each wave function.
The number of terms in the expansion of the exponent in eq. (24) is determined by requiring
the noim to be preserved to a certain accuracy (typically to < 1.0 x 10~ — 1.0 x 10~1°).

The time-dependent perturbing part of the hamiltonian is evaluated when the exponent
in eq. (22) is greater than some small number, £.,. Since it is not difficult to evaluate the
action of the external part of the hamiltonian on the wave function, €, is chosen to be
very small, (1.0 x 10~1°). To allow the fourier transform of f(t) to be evaluated easily, it
is necessary to integrate ¢ from —oo to co and hence we would like the entire Gaussian of
the perturbing function, f(t), to be included into the time evolution to the desired accuracy.

The parameter ¢, is therefore chosen such that the complete nonzero contribution of the

2logecys
alt

Pairing can be easily included using the BCS [23] or Lipkin-Nogami [24] prescriptions.

.

time-dependent perturbation is included. ¢, = —At (2 +

These two methods have been included into the static Hartree-Fock calculations and can be
easily incorporated into the dynamical calculation. For studies of f—decay it will be nec-

essary to include pairing, thus producing calculations of responses to quasi-RPA excitation

modes.

7.1 Quadrupole Excitation Modes

For the study of the isoscalar quadrupole moment, the perturbing function F(Z), introduced

in eq. (19), is chosen to be the mass quadrupole moment, Q30 = 2z — (22 + y?). It turns

19

out that other even multiple modes are also excited at the same time (i.e. Qq0, Qso, -..). it
is therefore possible to study the resonance structure for these other cases, although their
transition amplitudes cannot be extracted. The same holds true for the odd multipoles.

The quadrupole collective resonar.ces are calculated for 'O using various Skyrme force
parametrizations for comparisons. Although smaller grid sizes are appropriate for static
calculations, for the dynamic time-evolution to be able to proceed to large times, it was
found that there must be at least a 20° lattice. For a 183 lattice the time evolution broke
down at about 14000 iterations, while for 20 lattice points, the calculation was able to
proceed to 32768 time steps.

In Fig. 4 the time-dependent evaluation of the multiple moment defined as:

(@ult) = (F2)) = [P28(7(z,0))F(z), (28)

is shown for the skm* case. This figure illustrates the periodic character of the calculation,

where in this case the smallest oscillation is about 65 fm/c.

3 0.005 16384 iterations
< ; .
! ool
5 0.000 I AT }E!) lit‘ ki i‘;l }j li1 ‘l?}.O ’ ‘h\ ! I[E L 0 ‘ Tiw%;‘ if! ‘J,;L' »l E : Il
o [
g !
|
-0.005 s 1 PR 1
0.0 4000.0 6000.0
t [fmvc)
F Oes00 4
= [Linear Response using TDHF|
a [
@ -le+04 EWSR = 92 %]
< [s Experiment
2 ses04 | ¥ —— Skyrme skm", isoscalar Q”l
10.0 ‘1 5.0 20. 25.0 30.0 35.0 40.0

E [MeV]
Figure 4: The linear response results using skm*, for the collective axial quadrupole vibra-

tional mode. The upper panel is the time-evolution result, while the lower panel shows the
result after fourier transforming into energy space.

A fast fourier transform [FFT] is used to calculate the fourier transform of (Q0(t)) to

give (ng(w)) = f(w)S2(w). The time-dependent perturbation function, f(w) can be then

20

easily factored out (20).

The experimental isoscalar quadrupole giant resonance is a broad peak centered about
an energy of approximately equal to 20.7 MeV with a width (FWHM) of about 7.5+ 1 MeV
(25]. According to eq. (21) the imaginary part of S(w) should be purely negative. As can be
seen in the lower panel in Fig. 4, the result here is almost purely negative as theoretically
predicted. One constraint is the so-called energy weighted sum rule [EWSR], which provides
a confirmation of the accuracy of the response calculation. This sum rule can be shown to
depend on the structure of the hamiltonian and can be calculated from the hamiltonian as
well as in RPA calculations. It is found that we are able to calculate 92% of the sum rule.

The FFT is designed to give the correct fourier transform when the integral over time
encompasses the whole region in which S(t) is nonzero. For other forces the result was not
as clean as the result shown in Fig. 4. This is due to the fact that the evolved solution in
time does not die off to zero, but maintains a relatively constant strength. This means that
the FFT gives only an approximate solution and it may be necessary in some cases to go to

larger maximum times.

7.2 Timing for the Dynamic Calculation

Timing comparisons for the dynamic calculation are give in Fig. 5, where the time in minutes
is given for executing 100 time steps. The actual runs used many more time steps, so the
points in Fig. 5 are normalized to 100 time steps. In the lower panel the total CPU time per
node is shown. The two parallel machines are much faster than the sequential workstation,
while the Paragon is faster than the iPSC/860 by about a factor of three.

The time-depenuent calculation has much less communication overhead than the static
calculation, since it is not necessary to perform the Gramm-Schmidt orthogonalization pro-
cedure. The only large-scale communication is performed by the global summation routine,
gadd. In the upper panel the times in minutes for the global sums are given for the parallel
machines. For a 203 lattice the Paragon is much more efficient, where gadd on the iPSC/860
requires about 24% of the total CPU time/node, the corresponding figure for the Paragon
is about 7%. For the larger 223 lattice grid, the fraction of communication time on the
Paragon is about 17%. This surprisingly large increase may be due to some saturation of
the communication buffers.

Although the dynamic calculation as a parallel operation is much more efficient than

21

200 F T /" T
L rd 4
150 | 7]
g e]
- e 9
o q]
5.0 - / o
0.0 | -t y +]
1250 @ —®Paragon, A=n =16 3
; W RS6000/360, A = 16 :
g 100.0 | @ @ iPSC/B60,A=n_= 16 .
3 - 3
S s0fF @7 3
5 Lol ~
250 '____,,,/0/. 3
0.0 v . —

18 20 22

Number of lattice points

'Figure 5: Timing comparisons are given for the dynamic TDHF calculation of linear response
theory. The lower panel contains the Total CPU time/node in minutes for 100 time steps of
executation. The upper panel contains the time requires for the global summation routine,

gadd.

the static calculation, the dynamic calculation requires a greater amount of computational
resources. Presently, the dynamic calculation has been tested for 16 nodes, and will shortly
be expanded to cases involving 32 and 40 nodes. The dynamic calculation requires about
16000 time steps, which corresponds to runs on the order of days. The static calculation
requires much fewer iterations. When the Paragon’s at Oak Ridge expand to larger mernories,
we will then be able to proceed to address much large and more exotic nuclei by using much

larger collocation lattice spaces. .

8 Conclusions

Massively parallel platforms, such as the iPSC/860 and the Paragon provide a much improved
vehicle for performing mean field calculations. Because of the increased computer resources
calculations of large complex and exotic nuclear many-body systems can now proceed with a
greater sophistication. For the static Hartree-Fock mean field calculation a program, which
uses a full three dimensional basis spline collocation lattice, has been developed with no

spatial or time-reversal symmetries imposed. This program has been ported to the iPSC/860

22

and the Paragon. An algorithm was developed, which takes advantage of some of t! e features
of the Paragon to streamline the communication intensive Gramm-Schmidt orthogonalization
routine by pipelining the message passing and the computations.

A dynamical extension of the Hartree-Fock mean field theory in the form of time-
dependent Hartree-Fock enables us to perform calculations of the linear response of the
nucleus. This program is a highly efficient parallel approach, since the time-evolution that is
used to perform the calculation involves a unitary operation, which preserves the orthonor-
mality of the many-body system. It is therefore not necessary to perform the Gramm-
Schmidt operation and hence there is little necessary communication required in the dynamic
calculation. With the future expansion in nodal memory planned for the Paragon computers
at Oak Ridge, we should be able to proceed with an active program to investigate further

linear response calculations.
Acknowledgements

This research has been supported in part by the U.S. Department of Energy (DOE) Office
of Scientific Computing under the High Performance Computing and Communications Pro-
gram (HPCC), as a Grand Challenge titled the Quantum Structure of Matter, and in part
by DOE under contract No. DE-AC05-840R21400 managed by Martin Marietta Energy
Systems, Inc., and under contract No. DE-FG05-87ER40376 with Vanderbilt University.
Some of the numerical calculations were carried out on the Intel Paragon and iPSC/860 par-
allel computers at the Oak Ridge National Laboratory, and Cray computers at the NERSC,

Livermore.

23

References

[1] K. T. R. Davies, K. R. S. Devi, S. E. Koonin, and M. R. Strayer, in Treatise on Heavy
Ion Science, edited by D. A. Bromley, (Plenum, New York, 1985), Vol.3, page 3.

[2] A.S. Umar and M. R. Strayer, Comp. Phys. Comm. 63, 179 (1991).
[3] C. Bottcher, G. J. Bottrell, and M. R. Strayer, Comp. Phys. Comm. 63, 63 (1991).

[4] A.S. Umar, M. R. Strayer, R. Y. Cusson, P.-G. Reinhard, and D. A. Bromley, Phys.
Rev. C 32, 172 (1985).

[5] A.S. Umar, M. R. Strayer, P. -G. Reinhard, K. T. R. Davies, and S. -J. Lee, Phys. Rev.
C 40, 706 (1989).

[6] K. T. R. Davies and S. E. Koonin, Phys. Rev. C 23, 2042 (1981).
[7] P. Hoodbhoy and J. W. Negele, Nucl. Phys. A288, 23 (1977).

(8] S. E. Koonin, K. T. R. Davies, V. Maruhn-Rezwani, H. Feldmeier, S. J. Krieger, and J.
W. Negele, Phys. Rev. C 15, 1359 (1977).

"[9] ‘Time-Dependent Evaluation of Linear Response Theory’, C. R. Chinn, A. S. Umar and
M. R. Strayer, To be submitted.

[10] G. F. Bertsch and S. F. Tsai, Phys. Reports 18, 125 (1975).

[11] S. Kyewald, V. Klemt, J. Speth and A. Faessler, Nucl. Phys. A281, 166 (1977).

[12] K. F. Liu and G. E. Brown, Nucl. Phys. A265, 385 (1976).

{13] N. Van Giai and H. Sagawa, Nucl. Phys. A371, 1 (1981).

[14] C. De Boor, Practical Guide to Splines, (Springer-Verlag, New York, 1978).

[15] A.S. Umar, J. Wu, M. R. Strayer, and C. Bottcher, J. Comp. Phys. 93, 426 (1991);
[16] C. Bottcher and M. R. Strayer, Ann. of Phys. 175, 64 (1987).

[17] C. Bottcher, M. R. Strayer, A. S. Umaa, and P.-G. Reinhard, Phys. Rev. A 40, 4182
(1989).

(18] A.L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, (St. Louis:
McGraw-Hill Book Co., 1971).

[19] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems
on Concurrent Processors, Vol. I (Prentice-Hall, Englewood Cliffs, 1988), p. 261.

[20] T.F. Chan and Y. Saad, IEEE Trans. Computers, C-35 (1986) 969.

[21] G. C. Fox, S. W. Otto, and A. J. G. Hey, Parallel Computing 4 (1987) 17; and Ref. 27,
p. 244.

[22] J. Bartelm, O. Quentin, M. Brack, C. Guet and H. B. Hakansson, Nucl. Phys. A 386,
79 (1982).

[23] P. Ring & P. Schuck, The Nuclear Many-Body Problem, (N.Y.: Springer-Verlag 1980).

[24] H. C. Pradhan, Y. Nogami and J. Law, Nucl. Phys. A201, 357 (1973); Y. Nogami,
Phys. Rev. 134, B313 (1964).

[25] K. T. Knopfle, G. J. Wagner, K. Breuer, M. Rogge, C. Mayer-Boricke, Phys. Rev. Lett.
35, 779 (1975).

24

DATE

FILMED
10/a1/94

