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OBJECTIVE

Argonne  National Laboratory is
providing support to Allied Signal Aerospace
Company in the development of the monolithic
solid oxide fuel cell (MSOFCQC).

PROJECT DESCRIPTION

During the current reporting period,
ANL’s effort was concentrated on exploring the
co-sintering  of  anode/interconnect/cathode
trilayers, investigating the interfacial
electrochemistry, and performing stress analysis.

Co-sintering of the anode/interconnect/
cathode trilayer is an important step in the
manufacturing of multicell MSOFC structures.
The interconnect, separates fuel and oxidant
strearns of adjacent cells and must therefore be

Richard Gibson (Allied Signal)
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dense. It also connects the individual cells

mechanically and electrically, requiring strong
bonding between adjacent anodes and cathodes,
and also requiring low electrical resistances.

The difficulty in co-sintering anode/interconnect/
cathode trilayers is matching the sintering
characteristics of the three layers. The
interconnect material, strontium-doped
ianthanum chromite, is typically sintered to high
density at temperatures exceeding 1600°C and
low oxygen partial pressures. Under these
conditions the lanthanum manganite air electrode
decomposes. To make trilayers, conditions must
be found for obtaining dense lanthanum
chromite in the 1300-1400°C range. [Earlier
attempts [0 use sintering aids in the lanthanum
chromite were unsuccessful.  During this
reporting period, several dopatits were explored.
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RESULTS

Co-sintering of
anode/interconnect/cathode ilavers

The initial approach to lowering the
sintering temperature of lanthanum chromite was
to explore double doping with calcium on the
lanthanum site and cobalt on the chromium site.
Powders were made by the Pechini method and
were calcined at 700°C.  After optimizing the
doping levels, we were able to make dense
interconnect tapes at 1400°C in air, as shown in
Fig.1.

Figure 1,

Lanthuanum Chromite Sintered
at 1300°C

Figure 2,

Tri-layer Sintered at 1400°C.

However, when the same material was used for
making anode/interconnect/cathode trilayers, the
interconnect was found to be too porous, as
shown in Fig. 2. Since calcium and chromium
were detected in the cathode, it appeared that a
liquid phase was forming in the interconnect and
was wicking out into the adjacent cathode layer.

Shrinkage and differential  thermal
analysis (DTA) data, as shown in Figs. 3 and 4,
indicate that the liquid may be forming in the
temperature range of 1000- 1050°C. Interestingly,
the CaO-Cr,0, phase diagram shown in Fig. 5
has a eutectic at 1022°C. It appears that a
calcium chromate liquid phase is forming when
calcium-doped LaCrO, is heated up. ‘The liquid
is wicked into the anode and cathode structure,



resulting in a loss of material that leads to
porosity in the interconnect layer. By using new
dopants for the lanthanum chromite, we have
been able to fabricate trilayers with dense
interconnects.
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Figure 4.

An alternative route to overcoming the
wicking problem was to explore whether the
conventonal anode and cathode materials could
be replaced by porous lanthanum chromite.
Trilayers consisting of LaCrOy/ZrO,/LaCrO,
were made and tested electrochemically. Figure
6 shows the interfacial resistances of several
such two-material fuel cells. The early versions
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had a relatively high interfacial resistance or. the
fuel electrode, indicating that lanthanum
chromite is not a very good hydrogen electrode.
However, reformulating the two electrodes, we
have made steady progress toward reaching the
goal.
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Interfacial Elecrochemistry

During the testing of single cells, we
noticed that the concentration of oxygen in the
oxidant had a pronounced effect on the
polarization curves. Fig. 7 shows pelarization
curves at oxygen concentrations of 3.5, 20.9, and
100%. At first glance, one would attribute the
potennal differences to diffusion nverpotentials



in the air electrode. However, such diffusion
overpotentials at 1000°C, given the dimensions
of the electrode pores, were calculated to
account for only a few millivolts.
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Figure 7. Polarizetion Curves of NVZrO,/ZrO,/LaMnO,
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To better understand the reasons for the
effect, we measured interfacial resistances of
cathode/electrolyte/cathode trilayers over a range
of oxygen partial pressures. These results are
given in Fig. 8. [t is evident that the interfacial
resistance changes by about an order of
magnitude over the 3.5-100% oxygen range.
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We interpret these results to indicate that the
concentration of electrochemically active species
is changing dramatically. - Conversely, the
composition of the interface will also affect the
concentration of these species, as is evident by
the difference between the three curves.

Stress Analyses

A model of the monolithic structure was
developed of calculate stresses during cool-
down. The model consists of a flat
anode/electrolyte/ cathode corrugations on the
outside faces. An illustration is shown in Fig. 9.
Using the measured physical property values
given in Fig. 9, fracture maps were calculated.
The results, shown in Figs. 10 and 11, indicate
that fairly thin electrolytes and
anode/electrolyte/cathode thickness rations of
2:1:1 are optimal.
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