
Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

1 2 3 4 5

IIIllInches I.O _ 112-----8III1_
,. i_ 111113-.2-

_ IIII1_

lilil _ 11111"-----8

IIIIINIIII1_IIIIIg

DISCLAIMER
0

8

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their

"The submitted manuscript has been employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
authored by s contractor of the U.S. bility for the accuracy, completeness,or usefulnessof any information, apparatus, product, or
Government under contract DE- processdisclosed,or represents that its use would not infringe privately owned rights. Refer-
AC05-84OR21400. Accordingly, the ence herein to any specific commercial product, process,or service by trade name, trademark,
U.S. Government retains e manufacturer, or otherwise does not necessarilyconstitute or imply its endorsement, recom-
nonexclueive, royalW -free license to mendation, or favoring by the United States Government or any agency thereof. The views
publish or reproduce the published
form of this contribution, or allow and opinions of authors expressed herein do not necessarily state or reflect those of the
others to do so, for U.S. Government United States Government or any agency thereof.
purposes."

A NEW COMMUNICATION SCHEME FOR THE NEUTRON
DIFFUSION NODAL METHOD

IN A DISTRIBUTED COMPUTING ENVIRONMENT*

Bernadette L. Kirk

Yousry Azmy

Oak Ridge National Laboratory
P.O. Box 2008, Oak Ridge, TN 37831-6362

615-574-6176

KEYWORDS" Neutron diffusion; distributed computing; nodal method

ABSWRACT
i

+

A modified scheme is developed for solving the two-dimensional nodal diffusion equations on
distributed memory computers. The scheme is aimed at minimizing the volume of communication among

processors while maximizing the tasks in parallel. Results show a significant improvement in parallel
efficiency on the Intel iPSC/860 hypercube compared to previous algorithms.

1. INTRODUCTION

The rapid progress in processor speed has accelerated the computation of CPU (central processing
unit) intensive algorithms as seen in discretized elliptic partial differential equations like the neutron
diffusion equation. Fuahermore, the integration of several of these fast processors into a distributed
environment has enabled ti,e computational scientist to solve complex problems in parallel. The neutron
diffusion equation is a prime example. Kirk and Azmy I discussed the two-dimensional nodal method
equations as solved on shared memory parallel computers (Sequent Balance 8000) and distributed parallel
computers (lntel iPSC/2). Y. H. Kim and N. Z. Chao," in a recent study, performed the parallel
solution of the neutron diffusion equation, on a series of transputers. Th_ results by Kirk and Azmy
showed that the shared memory architecture produced higher efficiency compared to the distributed
memory architecture. In their algorithm, each processor is assigned an equal number of rows/columns
to solve for the surface fluxes. The nodal averages are updated at each stage of the iteration using the

*Research sponsored by the Office of Science and Technology, U.S. Department of Energy,

under contract DE-AC05-84OR21400 with Ma;tin Marietta Energy Systems, Inc. _" _ .ii_ i/

I ,_i'7, < " 7'

" :-TF!.IBUTION OF THIS DocUMENTIS UNLIMITED

newly computed surface fluxes. However, in the hypercube application (i.e., the iPSC/2), the processors
have to globally sum the full array of nodal averages to each other in order to obtain the most recent
iterate. Also, the convergence test is performed over the entire mesh simultaneously by all utilized
processors. These two components of the execution time on the iPSC/2 comprise a large fraction of the
total execution time, especially when a large number of processors is used, resulting in the previously
observed I rapid deterioration in parallel efficiency.

In this paper, we develop a new algorithm for solving the nodal diffusion equations on the lntel
iPSC/860 hypercube. The iPSC/860 differs from the iPSC/2 in processor power and communication
speed, particularly its much lower message-passing latency. 3 In the hypercube topology, communication
time grows linearly with the size of the message which in our application constitutes the node-averaged
flux array. It is this portion of the communication time component that we address in our new algorithm.

The Intel iPSC/860 at Oak Ridge National Laboratory (ORNL) is a 128-processor hypercube. Each
processor has 8 megabytes of memory. The hypercube has a peak rating of 5 gigaflops.

2. THE NODAL DIFFUSION METHOD EQUATIONS

The two-dimensional nodal method equations for neutron diffusion theory are derived from the
general equation:

where
D = diffusion coefficient

tr = macroscopic removal cross section
= neutron scalar flux

S = volumetric external source of neutrons.

The detailed derivation of the nodal method equations from Eq. (1) has been presented in Kirk and Azmy l
and results in three systems of equations: nodal neutron balance equations,

I 2 x] 2 y

_ _ 7mP/_
-Din ?mPm (_)Ym -- 2_m . _)Y-m) .

2 1 - P[, I - PY..,

(2)

x (,. - . . --

m--l,...,l

x-current continuity conditions across x = constant edges of the computational cells,

_Y+,. m + Dt
2amP,_ 2atP:

[- I - ,,,_ I - ,4- #.. o. - _,o_ (3)
2a,ne,_ 2ate:

amP: ! [ail'/']

and y-current continuity conditions across y = constant edges of the computational cells,

*x*m m 2bmPYm + D,, 2bnP_

- 1' -J. __:.o.l' -_ (4)- _" D'n 2b,,,P_ 2bnPYn

- r_. D.,e. - L D.<
b.p'. . o,

where we have used the definitions,

2 " amiDm"tm

am - average value of o over cell m

D m - average value of D over cell m

x " tanh(Tmam)/TmamPm

x m x 2
tom ('tmamP_) /(1 - e X)

and the l'th computational cell is adjacent to the m'th computational cell in the positive x direction such
that the two surfaces x =-am and x = at coincide (analogously for the y-current continuity equation).

3. THE ITERATIVE SOLUTION ON PARALLEL COMPUTERS --
THE SPANNING TREE MODEL

The iterative solution of the above equations is based on setting initial estimates for the nodal averages;_m
m= 1,..., 12 in the current continuity equations (for purposes of this study, we will consider square
meshes, I × I, only). Equations (3) and (4) then reduce to tridiagonal systems with unknowns

m

;_:m and _b:t,,.

Our previous algorithm (Refs. 1 and 4) proceeded along the following scenario -- processors
alternately solve the tridiagonal systems corresponding to rows and columns as seen in Fig. 1. The
integers printed outside the outer box in Fig. 1 denote the processor identification assigned to the
corresponding row or column in the 8 × 8 mesh and 4-processor case. At the end of each iteration,

w

processor 0 will have values of _bx corresponding to rows 1 and 5, and values for 4rv corresponding to
columns 1 and 5; and so on. Thus, each processor will be solving four tridiagonal systems of equation
in the case shown in Fig. 1.

Processor Processor

0 1 2 3 0 1 2 3
, , ,.... ..,

I
0 Row 1 i

• !
1 Row2 C C IC C C C C C
2 Row3 o o IO o o o o o

1 1 I1 1 1 1 ! 1
3 Row4 u u I u u u u u u

0 Row 5 m m I m m m m m m
. n n In n In n n n

1 Row 6 I

2 Row7 1 2 13 4 15 6 7 8

3 Row 8

Row assignment to processors on an 8 × 8 Column assignment to processors on an
mesh. 8 × 8 mesh.

Figure 1: Assignment of 4 processors for an 8 x 8 mesh according to the
spanning tree scheme.

After the tridiagonal matrix equations are solved, each processor computes its contribution to the

node-averaged flux, _, via the balance equation, Eq. (1). A global summation of these contributions
across processors is accomplished by the Intel system routine gdsum, which implements a spanning tree
routing for the global summation phase and the broadcast phase (see Fig. 2). The scheme described has
these characteristics: a) the processors are in a minimally configured distance mode, and b) even in the
best case as discussed in Ref. 1, there is overhead in mapping a two-dimensional array to a single array
for the message exchange. The second property is evident from the model for communication in Azmy
and Kirk. 4

0 1 3 2 6 '7 5 4

Send operation / / / /
SummaLion 0 3 6 5

Send operation / /
Summalion 0 6

Send operation
Summation 0

Figure 2: Spanning tree for 8 processor GDSUM model.

4. TIlE ITERATIVE SOLUTION ON PARALLEL PROCESSORS -
THE PARQUET SCHEME

An alternative method for handling processor communication to reduce contention among processors
is based on global combine operations which offer the least communication penalty. 5 The idea is to
reduce the volume of data traffic across the network.

We start with a new row and column assignment for the participating processors. Suppose there are
P processors, then the first P/2 processors are assigned to solve contiguous columns, and the remaining
set of P/2 processors is assigned to solve contiguous rows. This scheme has the following properties
(assuming P/2 and 21/P axe integers):

1. All messages consisting of contributions to the nodal averaged flux are the same length (21/P) 2 and

are stored in the vector _,,,, re=l, . .., 12 .

2. Processors solving rows do not need to communicate their nodal averaged contributions to one
another; similarly for processors solving columns.

3. At each step, there will be one SEND followed by one RECEIVE per processor.

4. The number of processors must be divisible by 4.

Figure 3 shows the new designation for a 4-processor case or an 8 × 8 mesh.

Upon conclusion of the tridiagtmal systems solutions, the participating processors communicate the

contribution they computed to the new iterate of _ following the pattern shown in Fig. 3. The four
internal boxes depicted in Fig. 4 represent the four quadrants of the full mesh shown in Fig. 3; thus each
such box contains 4 x 4 computational cells. The entries within the internal boxes denote the sending

and receiving processors of the _ contributions for the computational cells within each quadrant box. In

Processor Processor

0 0 0 0 1 1 1 1
, ,,,

! i
2 Row 1

2 Row2 C C C C C C C C]

2 Row3 o o o o o o o o t
1 1 1 1 i i 1 1 I

2 Row4 u u u u u u u u !

3 Row 5 m m m m m m m m
n n n n n n n n

3 Row 6
1 2 3 4 5 6 7 8

3 Row 7 i i

13 Row 8

Row assignment to processors on an 8 x 8 Column assignment to processors on an
mesh. 8 x 8 mesh.

Figure 3: Assignment of 4 processors for an 8 × 8 mesh according to the Parquet scheme.

u

each instance the receiving processor sums the received message to its own contribution to _ along rows

or columns as depicted in Fig. 4, thus generating the new iterate of _ for that particular quadrant, and
tests its convergence compared to a pointwise relative convergence criterion. In the case of 4 processors
considered here, the entiro communication stage is concluded in one step. This process is easily extendible
to P> 4, encompassing PI4 steps analogous to the one described above. This extension is illustrated via
an example of an 8 x 8 mesh on 8 processors, shown in Fig. 5.

2 --, 0 1--2

0--3 3 -- 1

Figure 4: Communication pattern for the 4-processors case, 8 x 8 mesh.

For the 8-processor case, there are P/4 = 2 steps involved in the communication, as seen in Fig. 6.
Each processor will solve (2I/P)=2 rows or columns. Each message is of length (21/P)2=4.

Processor Processor

0 0 1 1 2 2 3 3
]

4 Row l
i

4 Row 2 C C C C C C C C I

5 Row 3 o o o o o o o o I
l l I ! l I I ! I

5 Row 4 u u u u u u u u I

6 Row 5 m m m m m m m m '
n n n n n n n n

6 Row 6
1 2 3 4 5 6 7 8

7 Row 7

7 Row 8 [

Row assignment to processors on an 8 x 8 Column assignment to processors on an
mesh. 8 x 8 mesh.

Figure 5: Assignment of 8 processors for an 8 x 8 mesh according to the Parquet scheme.

4_0 2_4 4_1 3_4

5---1 3---5 5-_0 _ 2---5

0 *6 6 -*2 1-,6 6-,3

, ,,, _- ,

1 -*7 7 -*3 0-,,1 7-,2

__ I ' "

Figure 6a: Communication pattern for the 8 Figure 6b: Communication pattern for the 8
processors -- step 1. processors -- step 2.

At the end of the message passing stage, the processor will have the new iterate of _ on the 2 x 4
or 4 x 2 cells as shown in Fig. 7. As before this is followed by the convergence test and so on. The
resemblance of the pattern in Figs. 4 and 7 to that of a Parquet tile explains the name of our new scheme.

Column

1 2 3 4 5 6 7 8
_1 I I I I

1
4

2
0 1

3
5

4
Row --

5
---- 6

6
2 3

7
---- 7

8
.............

Figure 7: Distribution of new iterate vector among
participating processors whose id numbers
appear in the corresponding vector.

5. RESULTS

In order to test the p_rformance of the Parquet scheme, we implemented it in our parallel nodal
diffusion code, t and used it to solve a simple test problem on a sequence of 32 × 32, 64 × 64, and
96 × 96 meshes. For each mesh, we measure the execution time on various number of processors for

10o×
the Parquet and the spanning tree schemes. The measured parallel efficiency, E -- , where

PT

T1 and 7'_ are the measured execution times for a given mesh using 1 and P processors,/'espectively,P .

are presented m Tables I, II, and Ill.

Table I: Efficiency (%) for 32 x 32 Table II: Efficiency (%) for 64 x 64
mesh. mesh.

Number of Spanning tree PARQUET Number of Spanning tree PARQUET
processors processors

,,,, ,, ,

4 75.3 89.5 4 76.6 91.8
8 51.3 81.0 8 52.9 87.7

16 28.6 57.6 16 30.0 78.5
32 13.8 40.4 32 14.8 56.5

64 7.3 18.3 64 6.8 43.0
........

Table III: Efficiency (%) for 96 x 96
mesh.

Numberof Spanningtree PARQUET
processors

,,, ,,,

4 "/6.9 91.3
8 52.8 87.6

16 30.2 81.8
32 14.9 68.8
64 6.8 56.3

The results in the preceding tables clearly show the PARQUET method to be superior to the spanning
tr_-e.More importantly, the Parquet scheme scales up with mesh size, providing a greater potential for
higher efficiency on larger meshes, and three dimensional applications. In the 64-processor case, for
example, the spanning tree saturated at about 7% efficiency for each of the mesh sizes. The Parquet
scheme, on the other hand, continued to rise in efficiency as the mesh is refined.

Finally, we wish to note that our present implementation, hence the above results also, of the Parquet
scheme is still in its preliminary stages, and we anticipate further performance improvement as it matures.

REFERENCES

1. Bernadette L. Kirk aiid Yousry Y. Azmy, "An Iterative Algorithm for Solving the
Multidimensional Neutron Diffusion Nodal Method Equations on Parallel Computers," Nucl. Sci.
Eng., 111, 57--65 (1992).

2. Yong Hee Kim and Nam Zin Chao, "Parallel Solution of the Neutron Diffusion Equation with the
Domain Decomposition Method on a Transputer Network," Nucl. Sci. Eng., 114, 252-270 (1993).

3. Thomas H. Dunigan, Communication Performance of the Intel Touchstone Delta Mesh, Oak Ridge
National Laboratory report ORNLFFM-11983, January 1992.

i

4. Y. Y. Azmy and B. L. Kirk, "Performance Modeling of Parallel Algorithms for Solving Neutron
Diffusion Problems," submitted for publication in Concurrency: Practice and Experience, 1993.

5. Robert A. van de Gejin, LAPACK Working Note 29 on Global Combine Operations, University of
Tennessee, CS-91-129, April 1991.

