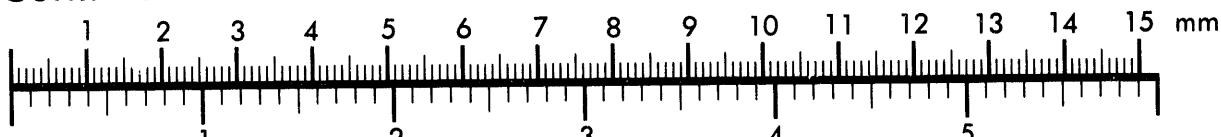
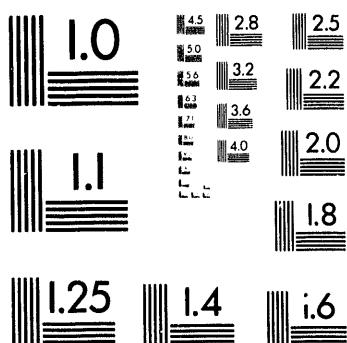


AIIM


Association for Information and Image Management

1100 Wayne Avenue, Suite 1100


Silver Spring, Maryland 20910

301/587-8202

Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

1 of 1

CONF-940766--8

Note: This is a preprint of a paper submitted for publication. Contents of this paper should not be quoted or referred to without permission of the author(s).

For publication in
Proceedings of the 13th International Congress on Electron Microscopy,
Paris, France, July 17-22, 1994

ATOMIC-RESOLUTION CHARACTERIZATION OF INTERFACE
STRUCTURE AND CHEMISTRY IN THE STEM

N. D. Browning, M. M. McGibbon, A. J. McGibbon,
M. F. Chisholm, and S. J. Pennycook

Solid State Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6030

V. Ravikumar and V. P. Dravid

Northwestern University
Department of Materials Science and Engineering
Evanston, IL 60208

"The submitted manuscript has been authored
by a contractor of the U.S. Government under
contract No. DE-AC05-84OR21400.
Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or
reproduce the published form of this
contribution, or allow others to do so, for U.S.
Government purposes."

SOLID STATE DIVISION
OAK RIDGE NATIONAL LABORATORY
Managed by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
under
Contract No. DE-AC05-84OR21400
with the
U.S. DEPARTMENT OF ENERGY
Oak Ridge, Tennessee

March 1994

Atomic Resolution Characterization of Interface Structure and Chemistry in the STEM

N. D. Browning, M. M. McGibbon, A. J. McGibbon, M. F. Chisholm, and S. J. Pennycook
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6030. USA

V. Ravikumar, and V. P. Dravid
Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208. USA

1. INTRODUCTION

Recent developments in the scanning transmission electron microscope (STEM) have enabled electron energy loss spectroscopy (EELS) to be used to determine elemental compositions (Browning et al (1993)) and map the local electronic structure (Batson (1993)) at interfaces on the atomic scale. This high spatial resolution spectroscopy is obtained by using an atomic resolution high-angle annular dark field or "Z-contrast" image (Pennycook and Jesson (1990)) to position the probe. The Z-contrast image, being incoherent in nature, allows the intuitive interpretation of interface structures without the need for preconceived models and, as only the high-angle scattering is used for the image, EELS can be performed simultaneously from a single atomic column defined by the image. The combination of Z-contrast imaging and EELS thus allows the local structure and chemistry of interfaces to be determined on the atomic scale. In this paper, we use these two complimentary techniques to analyse the structure and chemistry of a nominally 25 degree [100] symmetric tilt boundary in a bicrystal of the electroceramic SrTiO_3 .

2. INTERFACE CHARACTERIZATION

A Z-contrast image of a symmetric region of the grain boundary is shown in figure 1(a). In the image the brightest spots correspond to the positions of the strontium columns, $Z=38$, with the less bright spots being the positions of the titanium columns, $Z=22$, (oxygen columns are not imaged). In figure 1(b) the maximum entropy image processing technique (Gull and Skilling (1984)) is used to enhance the contrast so that the positions of the metal atom columns in the grain boundary can be clearly observed. Using the Z-contrast image to position the probe, oxygen K-edge and titanium L-edge spectra were taken in single unit cell steps across the grain boundary. Oxygen K-edge spectra from the bulk and boundary (figure 2(a)) show that there is a change in the ratio of the π^* and σ^* peaks indicating a disruption of the linear titanium-oxygen coordination at the boundary (Brydson et al (1992)). The titanium L-edge spectra (figure 2(b)) however, show there is no shift in the edge onset and no change in either L2/L3 ratio or total L-edge intensity, indicating that the local titanium valence at the boundary is not substantially changed.

3. CONCLUSIONS

Using the Z-contrast image and EELS data, two model grain boundary structural units can be determined that occur in approximately equal numbers; one with TiO columns (figure 3(a)) and the other without (Figure 3(b)), both of which preserve charge neutrality in bond-valence sum calculations. The grain boundary structure itself is composed of an array of these repeating units separated by the occasional (~every four structural units) SrTiO_3 unit. The large number of structural units containing voids indicates that the occupancy of titanium at these sites is very sensitive to the local strain. The voids themselves offer potential sites for accomodation of dopant atoms, which are known to alter the electrical properties of the boundary (Yamaoka et al (1983)). While such an experimental determination obviously does not include relaxation

effects or give the exact location of the atomic columns, it does provide a valuable starting point for theoretical models and in the determination of the relationship between grain boundary structure and bulk properties.

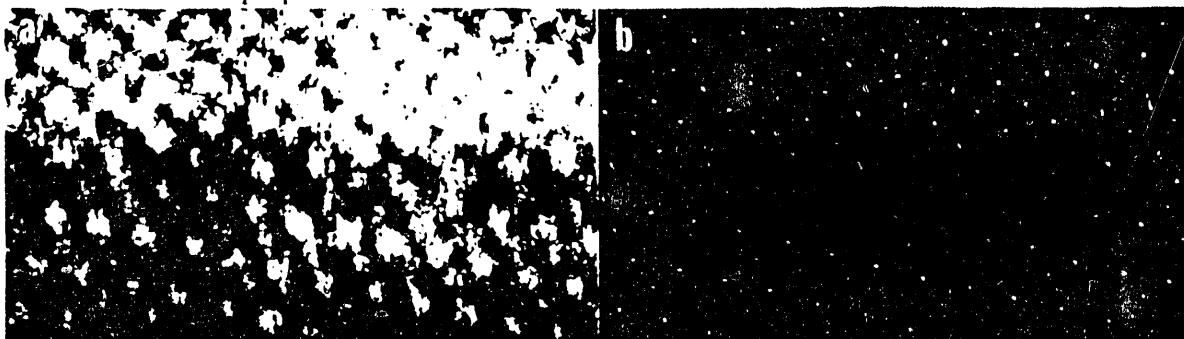


Figure 1: (a) Z-contrast image, (b) maximum entropy processed image

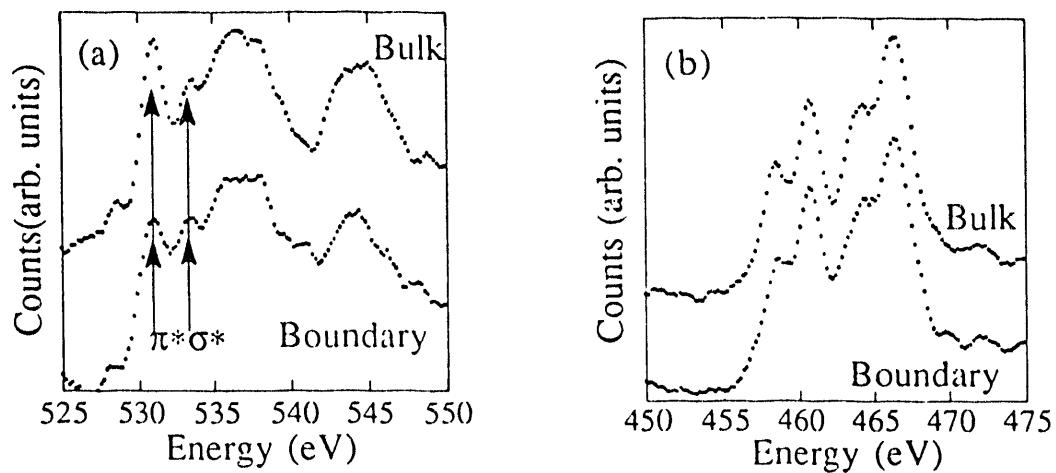
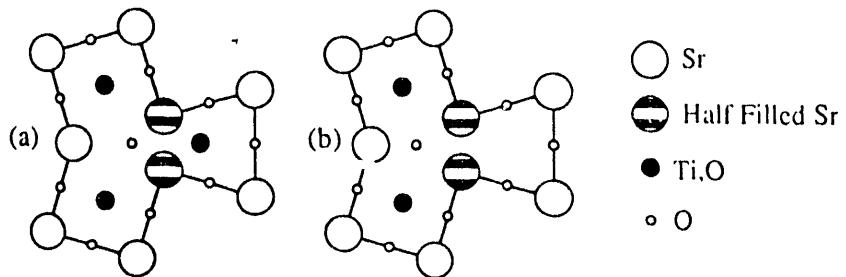
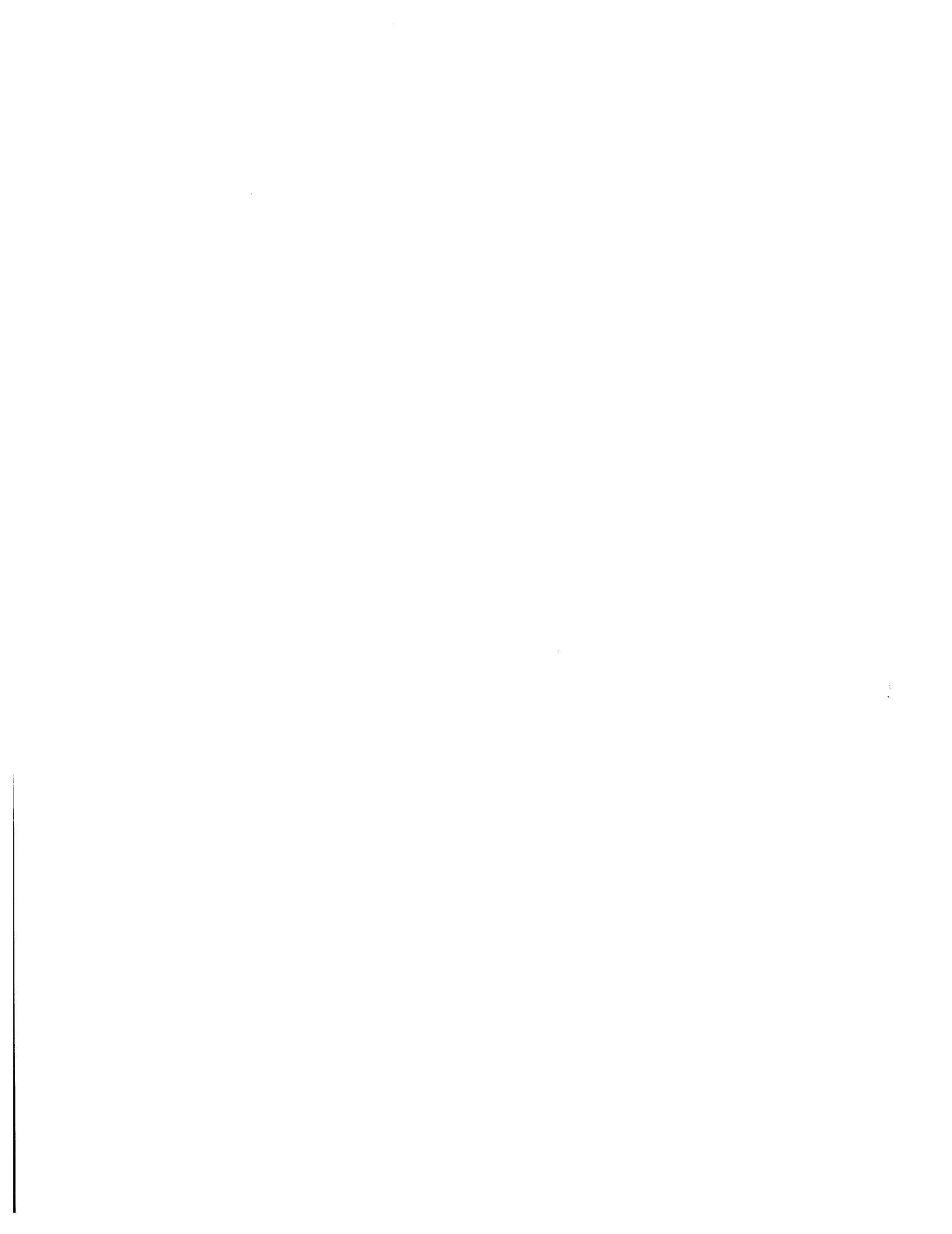


Figure 2: (a) Oxygen K-edges and (b) Titanium L-edges from the bulk and boundary.




Figure 3: Boundary structural unit with (a) and without (b) TiO columns

This research was sponsored by the US DOE, under contract No. DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc., and supported in part by an appointment to the ORNL Postdoctoral Research Program administered by the ORISE. VR and VPD are supported by U.S. DOE Grant No. DE-FG02-92ER45475.

Batson, P. E. (1993) *Nature* **366**, 727
 Browning, N. D, Chisholm, M. F. and Pennycook, S. J. (1993) *Nature* **366**, 143
 Brydson, R et al (1992) *J Phys Condens Matter* **4**, 3429
 Gull, S. F. and Skilling , J. (1984) *IEE proceedings* **131F**, 646
 Pennycook, S. J. and Jesson, D. E. (1990) *Phys Rev Lett* **64**, 938
 Yamaoka, N., Masuyama, M. and Fukui, M. (1983) *Bull Am Ceram Soc* **62**, 698

5
2
1
0
9
8
7
6
5
4
3
2
1
0

DATE
MED
FILE
10/4/94

