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corrector strengths can be transformed into a diagonal matrix.
Abstract The mechanism of this transformation is provided by the

: A theory of global orbit correction using the technique of technique of singular value decomposition (SVD)[1-3] of
singular value decomposition (SVD) of the response matrix matrices. Each diagonal element represents the correction
and simulation of its application to the Advanced Photon efficiency of an orbit correction channel and the channels are
Source (APS) storage ring are presented. The response matrix independent of one another. The AC global orbit correction is
relates beam motion at the beam position monitor (BPM) then equiv dent to a combination of the DC global correction
locations to changes in corrector magnet strengths. SVD algorithm and multiple non-interacting feedback systems. The
re.configures the BPMs and correctors into the same number of analysis of a single-channel feedback system in frequency and

time domains is treated in Ref. [4]."transformed" BPMs (t-BPMs) and "transformed" correctors
(t-correctors), each t-BPM being coupled to at most one t-
corrector and vice versa with associated coupling strength II. THEORY

which determines the efficiency of orbit correction. The Let us consider M BPMs and N correctors used for closed
coefficients of these linear transformations can be used to orbit correction in the storage ring. The i-th BPM has beta
determine which BPMs and correctors are the most effective, and phase functions (Bi,Vi), and similarly, the j-rh corrector
Decoupling the weakly coupled pairs will enhance the overall has (_cj, _tcj). The response matrix Rijcorresponding to the
correction efficiency at the expense of accuracy. The orbit beam motion at the i-th BPM per unit angle of kick by the j-th
errors at decoupled t-BPMs are conserved and the strengths of corrector is then given by [5]
decoupled t-correctors can be adjusted appropriately to
optimize the actual corrector strengths. This method allows
for estimating the limitation on orbit correction with given sets R_j= .___a..2sin _-vcos (J_/i - xi/cii-/w). (1)
of BPMs and correctors, as well as optimizing the corrector

- strengths without overloading the corrector magnet power v is the betatron tune of the machine. The response matrix Rij

_" supplies, can be obtained from measurements by reading beam position
changes while varying the corrector strengths one by one.

I. INTRODUCTION A. SVD Formalism

The third generation synchrotron light sources, of which
With the response matrix R thus obtained, we write R as athe Advanced Photon Source (APS) is one, are characterized

by low emittance of the charged particle beams and high product of three matrices U, W, and V as [1]

brightness of the photon beams radiated from insertion R--U.W.V T, (2)
devices. Transverse stability of the particle beams is a crucial
element in achieving these goals and the APS will implement where U is an M x M unitary matrix (lfr.u = U.UT = 1), W is
extensive beam position feedback systems, which include 320 an M x N diagonal matrix with positive or zero elements, and
corrector magnets, 360 positron beam position monitors V is an N x N unitary matrix (vT.v = V.Vx = 1). M is the
(BPMs) distributed around the storage ring, miniature BPMs number of BPMs and N is the number of correctors. This
for insertion device beamlines, and photon beam position decomposition is unique only to a certain extent, and there are
monitors in the front end of X-ray beamlines, other ways of decomposing the matrix R. [2, 3]

The beam position feedback systems can largely be divided Let us denote by Ax the global orbit change due to the
into the global and local feedback systems according to the corrector strength change AOand define
extent of correction, and the DC and AC feedback systems
according to the bandwidth of correction. Axt= UT'Ax and AOt = vr.A0. (3)

In this work, we will concentrate on the theory of DC
Then, from Eqs. (2) and (3) we have

global orbit correction and its application to the APS storage

ring. We will show that the global response matrix relating Axt= W.A0t. (4)
the beam motion at selected BPMs and changes in steering
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Equation (3) is the rule of transformation for the BPMs and orbit correction. Usually, e is set to the smallest value such
correctors. Axt and A0 t are the vectors in the transformed that none of the power supplies saturates.
BPM (t-BPM) space and transformed corrector (t-corrector) For a given matrix R, we define era(R) as
space, respectively. The columns of the matxices U and V are
the orthogonal basis vectors {ui} and {vi}. The elements of eta(R) = max {e Iwa > E W,_x for ali wn _:0}. (13)

the matrix W is given by That is, em is the largest possible value for e in order to retain

Wij -- Wmin(i,j) _ij. (5) ali non-zero eigenvalues. The inverse matrix Rmvsatisfies

We call these diagonal elements wa (> 0, 1 < n < min(M, N)) R.Rinv.R = R (E < eta) and Rin,,'R'Rinv = Rinv (for ali e). (14)

eigenvalues, which represent the coupling efficiency between

the t-BPMs and t-correctors. The matrix R is singular if any C. Minimization of Orbit Error
of the eigenvalues are equal to zero. The basis vectors are
related through the relation Orbit correction when the number of BPMs M is not larger

than the number of coupled channels C (< min(M, N)) is
R'va = wn Un. 1 < n < min _qvI,N) (6) trivial since the solution that satisfies Eq. (8) always exists.

Let us now consider the case when M is larger than C, the

B. Matrix lnversionandOrbit Correction maximum number that does not saturate the corrector
strengths, and let Ax be the initial orbit error. Then the new

Let Ax be the orbit error given by the difference between difference orbit Ax' after applying the correction AO given by
the reference orbit xr and the current orbit Xm. That is, Eq. (9), using Eqs. (2) and (3), is

Ax = xr - x m. (7) Ax' = (1 - R'Rinv)'Ax = U.(I - W'Winv).UT.Ax, (15)

In order to bring the orbit to the reference orbit, we need to or, in the t-BPM space,
calculate AO such that

Ax 't=UT.Ax' = (1 - W.Winv).Ax t. (16)

R.A0 = Ax. (8)
Since the transformation conserves vector norm, Eq. (16)

In case such solutions do not exist, we want the solution that gives

minimizes the difference lR.A0 - Axl. SVD provides this ( "_
solutionas lAx'l-Ix"l= IAxti 12 1/2. (17))i---'C+1

AO = Rinv'AX, (9)
In F-xi.(17), the position error Axtl is reduced to zero for

where the coupled t-BPMs (1 < i < C) after correction, while it is
conserved for the decoupled t-BPMs (C + 1 < i < M).

Rinv= V.Winv.U T. (10) Therefore, the orbit error cannot be reduced further than given

Win,, is a diagonal matrix of dimension N x M and the by Eq. (17) unless C is increased by, e.g., optimizing the
corrector strengths. This is also proven by showing that the

elements are given by corrector strengths are not changed any more. From Eq. (14),

Wiav,ij = qmin(i,i)_ij, (1 l) AO' = Rinv.Ax'= (Rinv- Rinv'R'Rinv)'Ax = 0. (18)

where Particularly, with C equal to N, Eq. (17) is the absolute

0, wn < EWmax minimum beyond which no further orbit correction is possible
qn = 1 otherwise. (1< n < min (M, N)) (12) by any methcxl. However, in reality, error in the measurement

wa of the response matrix R, changes in the machine condition,
and external perturbations cause residue in the closed orbit

e is the singularity rejection parameter in the range [0,1]. This error. Correction of this error is done by AC orbit correction
parameter is determined primarily by the orbit correction with appropriate bandwidth.
needs and the corrector strength limits. Zero q,'s correspond

to decoupled channels which do not contribute to orbit D. Optimization of Correctors

correction. When the number of correctors N is larger than C, the
When e = 0, ali the non-zero eigenvalues are retained and number of coupled channels, the correctors can then be

the most accurate correction will result. However, this will optimized in various ways. Between successive corrections of
require very robust power supplies for the correctors. On the the closed orbit, some of the correctors can be close to
other hand, if e = 1, Rinvis a null matrix and there will be no saturation, thus preventing any further corrections. In this
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case, if N is larger than C, the decoupled t-correctors can be E(j) = _ wnVjn 2. (1 < j <_320) (23)
used to relieve those correctors, n

Let Vs be the submatrix of V that corresponds to the
decoupled t-correctors. That is, When those con'ectors are removed, Embecomes 6.656x10 4.

The function E(j) is a measure of the efficiency of the j-th

Vsij = Vi,i+c. (1 < i < N, 1 <j < N--C) (19) corrector. A similar function can be defined for the BPMs and
these functions can be used to select a subset of BPMs and

The desired corrector strengths change, ABs, is transformed in correctors with the condition that Embe maximized.
the subspace of t-correctors spanned by the corrector basis
vectors vj (C+I < j < N) and then inverse-transformed. The _ U_l

........... U_
resulting AOs'given by o.1 i ' ' _ ' ' _ ' ' _ ' ' /

! I , il ! i !!Ao;- v,.v_.ao, (2o) . i _

will then be the closest to the A0s while disturbing the orbit 0.05 i" ,,.'i" " "ii'i !" ' _ " "

;_ 0 .

[AOI =[A0t[ -" (j_=l [A0tj[2/|/2 (21) _-
-0.05

since A0tj = 0 for the decoupled t-correctors (C + 1 < j _<N).
: Tlmt is, lA01given by Eq. (21) is the minimum value possible.

Particularly, when C - N, it is the absolute minimum among -0..1
ali solutions that satisfy Eq. (8). o 90 .180 270 360

In a similar manner, if 0 is the current corrector strengths, i

" 0' given by Fig. 1: The BPM basis vectors Uil and Ui2 (1 < i < 360) for the
most strongly coupled channels (w_ = w2 = 1.140x103 m/rad)

-_ 0'= Rinv'R'0. (22) in the vertical plane (Vv = 14.2987) for the APS storage ring.

will minimize the overall corrector strengths. In case N > C, .104 ,,, _....... ........... t,,,

further optimization can be done by applying Eq. (20).
_- ......... - ..................... _............................................ : .........

1

III. ANALYSIS OFTHE APS STORAGE RING .1o2 _ i,_...... _,........... ,,.......... ,_..........._.......... :...............................

In this section, we will analyze global orbit correction for

the APS storage ring in the vertical plane. There are 40 sectors _ " ............a-....._iI"..........."..........................................

in the machine and each sector has nine BPMs (total 360) and _:= "10° ........._..........__ ..........- .........:

eight correctors (total 320) available for global orbit ! icorrection. The distribution of BPMs and correctors is ......................................................
• : i i _ !

identical for ali sectors. :_ : :
Figure l shows the plot of the BPM basis vectors Ui_ and 102 ,,,_,,,_,,,i,,_i,,,f,,,i,,,i,,,

Ui2 as functions of the BPM index i. These vectors are 0 40 80 120 .160 200 240 280 320
- mutually orthogonal and correspond to the largest eigenvalues n

wl and w2 equal to 1.140x103 m/rad. They also have the same Fig. 2: Plot of the eigenvalues in descending order for the APS
frequency as the integer tune (Vv = 14.2987) of the machine, storage ring. M = 360, N = 320. em= 8.005x10 -s.

which means that perturbation with the harmonic number 14
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