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Abstract

A theory of global orbit correction using the technique of
singular value decomposition (SVD) of the response matrix
and simulation of its application to the Advanced Photon
Source (APS) storage ring are presented. The response matrix
relates beam motion at the beam position monitor (BPM)
locations to changes in corrector magnet strengths. SVD
reconfigures the BPMs and correctors into the same number of
"transformed" BPMs (t-BPMs) and "transformed” correctors
(t-correctors), each t-BPM being coupled to at most one t-
corrector and vice versa with associated coupling strength
which determines the efficiency of orbit correction. The
coefficients of these linear transformations can be used to
determine which BPMs and correctors are the most effective.
Decoupling the weakly coupled pairs will enhance the overall
correction efficiency at the expense of accuracy. The orbit
errors at decoupled t-BPMs are conserved and the strengths of
decoupled t-correctors can be adjusted appropriately to
optimize the actual corrector strengths. This method allows
for estimating the limitation on orbit correction with given sets
of BPMs and correctors, as well as optimizing the corrector
strengths without overloading the corrector magnet power
supplies.

I. INTRODUCTION

The third generation synchrotron light sources, of which
the Advanced Photon Source (APS) is one, are characterized
by low emittance of the charged particle beams and high
brightness of the photon beams radiated from insertion
devices. Transverse stability of the particle beams is a crucial
element in achieving these goals and the APS will implement
extensive beam position feedback systems, which include 320
corrector magnets, 360 positron beam position monitors
(BPMs) distributed around the storage ring, miniature BPMs
for insertion device beamlines, and photon beam position
monitors in the front end of X-ray beamlines.

The beam position feedback systems can largely be divided
into the global and local feedback systems according to the
extent of correction, and the DC and AC feedback systems
according to the bandwidth of correction.

In this work, we will concentrate on the theory of DC
global orbit correction and its application to the APS storage
ring. We will show that the global response matrix relating
the beam motion at selected BPMs and changes in steering
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corrector strengths can be transformed into a diagonal matrix.
The mechanism of this transformation is provided by the
technique of singular value decomposition (SYD)[1-3] of
matrices. Each diagonal element represents the correction
efficiency of an orbit correction channel and the channels are
independent of one another. The AC global orbit correction is
then equivlent to a combination of the DC global correction
algorithm and multiple non-interacting feedback systems. The
analysis of a single-channel feedback system in frequency and
time domains is treated in Ref. [4].

II. THEORY

Let us consider M BPMs and N correctors used for closed
orbit correction in the storage ring. The i-th BPM has beta
and phase functions (B;, y;), and similarly, the j-th corrector
has (B, ;). The response matrix R;; corresponding to the
beam motion at the i-th BPM per unit angle of kick by the j-th
corrector is then given by [5)

=2 sin v ©0 (i - Yl - v). (1)

v is the betatron tune of the machine. The response matrix R;;
can be obtained from measurements by reading beam position
changes while varying the corrector strengths one by one.

A. SVD Formalism

With the response matrix R thus obtained, we write R as a
product of three matrices U, W, and V as [1]

R=U-W.VT, 2)

where U is an M x M unitary matrix (UT-U = U-UT = 1), W is
an M x N diagonal matrix with positive or zero elements, and
V is an N x N unitary matrix (VT.V = V.VT =1). M is the
number of BPMs and N is the number of correctors. This
decomposition is unique only to a certain extent, and there are
other ways of decomposing the matrix R. [2, 3]

Let us denote by Ax the global orbit change due to the
corrector strength change A8 and define

Ax'=UT-Ax and A8'=VT.A@. (3)
Then, from Eqgs. (2) and (3) we have

Ax = W-AP, 4)
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Equation (3) is the rule of transformation for the BPMs and
correctors. Ax' and A@' are the vectors in the transformed
BPM (t-BPM) space and transformed corrector (t-corrector)
space, respectively. The columns of the matrices U and V are
the orthogonal basis vectors {u;} and {v;}. The elements of

the matrix W is given by
Wij = Wringig 05 - )]

We call these diagonal elements w, (2 0, 1 S n < min(M, N))
eigenvalues, which represent the coupling efficiency between
the t-BPMs and t-correctors. The matrix R is singular if any
of the eigenvalues are equal to zero. The basis vectors are
related through the relation

Rv,=w, u,. 1<n<min M, N) ©)

B. Matrix Inversion and Orbit Correction

Let Ax be the orbit error given by the difference between
the reference orbit x, and the current orbit x;,. That is,

AX =X, - X, N

In order to bring the orbit to the reference orbit, we need to
calculate A@ such that

R-AO = Ax. (8)

In case such solutions do not exist, we want the solution that
minimizes the difference IR-A@ — Axl. SVD provides this
solution as

AD = R, Ax, )
where
Ry = V-W,,-UT, (10)
Wi is a diagonal matrix of dimension N x M and the
elements are given by
Wiavij = Qmindiy) Sij» (1)
where

0, w,<eWna
n = __1_

n

otherwise. (ISn<min(M,N))  (12)

¢ is the singularity rejection parameter in the range [0,1]. This
parameter is determined primarily by the orbit correction
needs and the corrector strength limits, Zero q,'s correspond
to decoupled channels which do not contribute to orbit
correction.

When € = 0, all the non-zero eigenvalues are retained and
the most accurate correction will result. However, this will
require very robust power supplies for the correctors. On the
other hand, if £ = 1, R;;, is a null matrix and there will be no
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orbit correction. Usually, € is set to the smallest value such
that none of the power supplies saturates.
For a given matrix R, we define ¢,(R) as

Em(R) = max {€ | w, > € wp,, for all w, #0}. (13)

That is, €, is the largest possible value for € in order to retain
all non-zero eigenvalues. The inverse matrix R, satisfies

R-R;;vR=R (e<gy) and Ry R-Rjpy = Ry, (for all €). (14)

C. Minimization of Orbit Error

Orbit correction when the number of BPMs M is not larger
than the number of coupled channels C (£ min(M, N)) is
trivial since the solution that satisfies Eq. (8) always exists.
Let us now consider the case when M is larger than C, the
maximum number that does not saturate the corrector
strengths, and let Ax be the initial orbit error. Then the new
difference orbit Ax' after applying the correction A® given by
Eq. (9), using Egs. (2) and (3), is

Ax' = (1 - R-Ripy)-Ax = U-(1 - W-W; ) UTAx, (15)
or, in the t-BPM space,
Ax"'=UTAx' = (1 - W-W, ) Ax!, (16)

Since the transformation conserves vector norm, Eq. (16)
gives

|ax| = | ax| =( ) IAx‘ilz)m. (17)
1=C+1

In Eq. (17), the position error AxY; is reduced to zero for
the coupled t-BPMs (1 < i < C) after correction, while it is
conserved for the decoupled t-BPMs (C + 1 <1 < M).
Therefore, the orbit error cannot be reduced further than given
by Eq. (17) unless C is increased by, e.g., optimizing the
corrector strengths. This is also proven by showing that the
corrector strengths are not changed any more. From Eq. (14),

A®' = RivAx' = (Rigy — Rigy' R-Ripy)-Ax = 0, (18)

Particularly, with C equal to N, Eq. (17) is the absolute
minimum beyond which no further orbit correction is possible
by any method. However, in reality, error in the measurement
of the response matrix R, changes in the machine condition,
and external perturbations cause residue in the closed orbit
error. Correction of this error is done by AC orbit correction
with appropriate bandwidth.

D. Optimization of Correctors

When the number of correctors N is larger than C, the
number of coupled channels, the correctors can then be
optimized in various ways. Between successive cormrections of
the closed orbit, some of the correctors can be close to
saturation, thus preventing any further corrections. In this
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case, if N is larger than C, the decoupled t-correctors can be
used to relieve those correctors.

Let V, be the submatrix of V that corresponds to the
decoupled t-correctors. That is,

Vi =Vige. (1SiSN,15j<N-0O) (19)

The desired corrector strengths change, A8, is transformed in
the subspace of t-correctors spanned by the corrector basis
vectors v; (C+1 < j < N) and then inverse-transformed. The
resulting A@,' given by

AB,' =V V.T.A8 (20)

will then be the closest to the A@, while disturbing the orbit
the least. As a special case, when A = 0, we have

|ae] = |a0| = (il |A6‘j|2)"2 @
j=

since ABY = 0 for the decoupled t-correctors (C + 1 <j< N).
That is, 1A0] given by Eq. (21) is the minimum value possible.
Particularly, when C = N, it is the absolute minimum among
all solutions that satisfy Eq. (8).

In a similar manner, if 0 is the current corrector strengths,
0' given by

0'=R;,vR-0. (22)

will minimize the overall corrector strengths. In case N > C,
further optimization can be done by applying Eq. (20).

III. ANALYSIS OF THE APS STORAGE RING

In this section, we will analyze global orbit correction for
the APS storage ring in the vertical plane. There are 40 sectors
in the machine and each sector has nine BPMs (total 360) and
cight correctors (total 320) available for global orbit
correction. The distribution of BPMs and correctors is
identical for all sectors.

Figure 1 shows the plot of the BPM basis vectors U;; and
U;, as functions of the BPM index i. These vectors are
mutually orthogonal and correspond to the largest cigenvalues
w, and w, equal to 1.140x10° m/rad. They also have the same
frequency as the integer tune (vy = 14.2987) of the machine,
which means that perturbation with the harmonic number 14
can be corrected the most efficiently. The first two corrector
basis vectors V;; and Vj, show similar behavior.

Figure 2 shows the eigenvalues w, (1 < n £ 320) in
descending order when all BPMs and correctors are used. The
maximum and minimum values are 1.140x103 and 9.126x10-
(€m = 8.005x107%) in units of m/rad, respectively. The
machine periodicity is exhibited in the discontinuous changes
of w, at every 40. The large decrease at n = 240 indicates that
80 of the correctors are redundant and therefore do not
contribute much to orbit correction. These correctors have the
smallest values of the function

“J

E@=Y w,V;s2 (1<j<320) (23)
n
When those correctors are removed, €, becomes 6.656x104,
The function E(j) is a measure of the efficiency of the j-th
corrector. A similar function can be defined for the BPMs and

these functions can be used to select a subset of BPMs and
correctors with the condition that €, be maximized.
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Fig. 1: The BPM basis vectors U;; and Uy, (1 <i < 360) for the
most strongly coupled channels (w; = w; = 1.140x103 m/rad)
in the vertical plane (vy = 14.2987) for the APS storage ring.
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Fig. 2: Plot of the eigenvalues in descending order for the APS
sterage ring. M =360, N = 320. ¢, = 8.005x1075.
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