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Abstract

A _nobile robot equipped with an array of sonars is required to navigate to a destinatioll

lhrough a planar terrain populated by polygonal obstacles whose locatioIls and sllapes are
unknown. A navigation method is proposed based on a trapezoidal decolxlposition of tile

terrain for an abstract formulation, where elementary navigational steps consist of following

lhe obstacle edges and turning around the corners. The convergence of an abstract version

of tile algorithnl is first analytically established. Then experimental results on implenlenting
the algorithm on an experimental mobile robot are reported.

1 Introduction

Navigation and path planning constitute critical tasks in the operation of autonomous mol)ile
robots. In the past decade, various abstract formulations of this I)rol)lem have been solv(,d

by several researchers (Latombe [4], and ttwang and Ahuja [2]). The rzavigoliorz problem

deals with computillg a collision-free path for a robot from a source position to a destination
position in a terrain polmlated with obstacles. In a known ter'r'ain, a comple.te model of tilt:

terrain is available, and tile path planning can be performed using several techniqlles sucll

as retraction, decomposition, etc. (Sharir [10]). In an unknowrt te'r"r'a.i'_t,the model of the
terrain is not known but a sensor system is employed for navigational pllrposes. For the
first part of this paper, we consider an abstract formulation consisting of I)Oint-sized tool)lie

robot equipped with a discrete vision s._nsor, which detects all visible (from the present

location) parts of tile obstacle boundary in a single scan operation. \Ve then t)rieflv considm"
a contmuous vision sensor that detects all visible parts of the obstacle bollndary ,as the

robot moves along a path. The abstract formulation allows us to theoretically vali(tate the

algorittl_n. Then we describe an imI)lmnentation of a navigation algorithm for a illol_ile r(_l_ol
eqllil)lmd with an array of sonars.



Figure 1: TRC Labmate with sonar arrays.

A number of sonar-based navigation algorithms have been developed based on dift'c,vt,t_t

methods. For example, Elfes [1] describes a method based on occuImncy cells, \Vatanat)e anct
Pin [11] describe a method based on fuzzy logic, and _[ataric [5] describes a reactive metl_oct.
Tl_ese methods are designed for a circular arrangement of sonars and are not sI)cwificalls

designed to take into account the polygonal nature of the obstacles. *Iain attractive fc,aturc, s

of sonars are their low cost and simplicity of the information returned. On the negativc_
side, the information returned by them is not very accurate and is prone to errors..-k sinoMle

sonar returns an estimate of a distance to an obstacle contained within a spatial cone in
a direction. Thus even if the distance estimate is accurate, there, are. inforn_ation-l)ased

limitations in "realizing" a scan operation (described above) using sonar arrays. Sonar

readings, however, are fairly reliable and accurate in Ineasuring distances to walls located
within certain operative range. Our method employs an array of sonars to follow walls an¢t

turn around the corners so that the obstacles are kept (to the most extent) in a s_ital_lc,
range of the sonars.

Abstract (non-heuristic) algorithms for the robot navigation in unknown terrains t_ax't,

been studied by a number of researchers in the last decade (Rao et al. [9])..-k navigatio1_al
course is a 1-skeleton embedded in the set of all free-positions of the robot. In the cast, _t'

a discrete vision sensor, Rao [7] showed that if the navigation course, satisfies the follI" pVOl_-

erties of finiteness, connectivity, terrain-visibility and local-constructibility, then navigatior_

problem can be solved by employing a graph search algorithm. For polygonal terrains, one,
can employ navigational structures based on the visibility graphs and the \'oronoi cliagran_s

[7]. Generally, visibility graph methods require that the robot navigate along the ol_sta-
cle walls" thus this method is not practical due to inaccuracies in robot motions. (3_ th(,

other hand, the retraction based methods keep the robot far way fron_ the ot)stacles st) that

accurate obstacle information is not easy to obtain (for terrain mapifing puri)oses): this is

particularly a problem with a circular sonar arrangements because the sonar vesol_tio_ cl_-
creases with the increase of distance fi'om the robot. Furthermore for sonars, the acc_vac'v

of the readings is good when the obstacles are within some proxi_nity of the .,_et_st)rs. It_ tl_is

paper, we present a method based on a trapezoidal decox_position of fre.e-sI)ac,e' the, ictc,a _)["

this method wins first proposed by Kim [3] and analyzed by Rao [8]. In this _,tt_,_,t. tl_,
robot uses the obstacle edges ,as guidelines without getting too close to or too fa_v;_wav fvt)_
them.

The organization of this paper is as follows. \Ve discuss preli_inaries at_¢t at_ at,stva_'_
algorithmic framework for the navigation in unknown terrains in St!ctic)_l '2. I_ _t,t,lit_t_-

3 and 4, we discuss dual graphs b_ed on trapezoidal decon_pc_sition tt_at aw* s_li_;tl_l_,['_,_
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Figure 2: Discrete and continuous vision sensors.

navigation using discrete and continuous vision sensors respectively. An iTIil)leIll{qltatioI)()rl

TRC Labmate tnobile robot, shown in Fig. 1, is described in Section 5.

2 Preliminaries

\Ve consider a finite two-dimensional terrain populated by a finite and non-intersecting set O

of polygons. Two points p and q are visible to each other if the line segment joining t) and q
is not intersected by any obstacle. For the abstract formulation of the prol)lem, the rol)ot R

is point-sized an(t equipped with a vision scnsor. A discrete vision sensor is characterized by

a scan operation: a scan operation performed from a i)osition (i)oint) 1_returns the t_isibilily

polygon of p, which is the polygonal region consisting of all points in the terrain visible to

p (Fig. 2(a)). A continuous vision sensor when invoked as the rot)ot Ilioves along a I)ath
P returns the generalized polygonal region such that every point of this polygon is visible

from some point or) P (Fig. 2(b)), i.e. the polygon returned in this case is th(, ilnion of

the visibility polygons of all points on P. Thus, in general, the ol)eration of a continuous
vision sensor" cannot be simulated by a discrete vision sensor if only a finite nurlfl)m" ()1"scan

operations by the latter are allowed.

\Ve now describe dual graphs based on a trapezoidal (tecomposition. First, we (lecoml)OS(,

the free-space into trapezoids by' sweeping a line (for example, moving a horizontal lille from

top to bottom) such that whenever the line p_ses through a vertex, we extend a ,,_,.,eet_-liJ_'.
segment from this vertex into fl'ee-st)ace until it touches an obstacle I)otln(tarv or extends to

infinity as shown in Fig. 3. Now free-space is partitioned into trapezoids. For eacll sweei)-lin(,

segment we have one of the two following cases: (a) if the segment is finite, the dual gral)h
node corresi)onds to the mid point of the segment, or (b) if the segment is nol fiIiile, the

dllal graph node corresponds to a point on the segment at a distance a ft'onl the vertex. Two

no(tes belonging to the boundary of the sanle trapezoid are connected l)v an edge of the (tllal
graph (see Fig. 3).

An algorithmic framework for solving the navigation and terrain model acqllisition l)rol)-

!o.ms using discrete vision sensors has been prol)osed by Rao [7]. Here tile robot R ilses a
one-skeleton (a collection of one-dimensional curves) _c(O), called the 'navigutio'nal co'wr,s'c:

{(O) can be siml)iy viewed as a combinatorial graph such that each _c-verl(_x sI)('(:ili('s a I)()-

sition for R and each _C-edge (u, v) specifies a path from _/to t:. To navigat(, fl()_n .s to el, R

performs a "graph search" on {(O). Initially _c(O) is not known to R, !)_i it is in(:ren_(mtailv
constructed from the sensor ol)erations. From s, R initially cl_ecks to set, if d is r(m('t_able,

and moves to it, if yes. If not, R computes a start _-vertex _'0and moves It) it, an(t t'r()_i__'0, R



Figure 3: Dual graph based on trapezoidal decomi)osition.

keeps visiting new {-vertices until it reaches a {-vertex v/from which d is found roacl_al)le. II_
tile case d is not reachable from s, R visits all {-vertices and concludes that the destination

is not reachable. The requirement on the graph search algorithnl is that it must l_e capal)l_,

of visiting all vertices of a connected component of the g_(O) in which it is i_litiat_'cl, o.g.

depth-first search and A" algorithms [6].
We now consider four properties for {(O): (i) finiteness property requires that lhe n_llnl)(,r

of sO-vertices and edges be finite, (ii) terrain-visibility requires that every l)oint olltsi_to tt,e

obstacles is visible from some {-vertex, (iii) conncctivit'y property requires that every tmir c)t'

{-vertices be connected by a graph path on {(O), and (ix') local-constructibilitil/reqllir_,s ttlat
the adjacency list of a {-vertex v be computable from the information obtained l_y l)eri'c_rriliIl,4

a finite number of sensor operations. Then the following result can be easily shown [7].

Result 2.1 Given a navigational course {(O), that satisfies the properties of finitert_,,ss.

comzcctivity, terrain-visibility and local-constructibility, a graph search algorithrrt cart b_:em-

ployed to solve the navigation problem using a discrete visio'n sensor.

3 Navigational Structure and Algorithm

In the trapezoidal decomposition, each trapezoid is bounded by at most two ((,Olllillllt)ll.-,

segnwnts of) obstacle edges and at most two (but at least one ) sweep-line segments: ('a¢'}l
such sweep-line segment contains at least one obstacle vertex. Note that cacti trai_('zoid is

convex, and the line segment joining two vertices of a trapezoid does not intm'sect the int_,rit_r
of any obstacle.

Theorem 3.1 Consider a terrain such that no two obstacles arc co-linear 'with rc,s'twct to

the sweep-line. The number of vertices in the dual graph Dr(O), based on the, trap_'zoidol

decomposition, is upperbounded by N+ 2n for a terrain of 72t;olygo'nal obstacles crm,si,,ti'n_.t_)f

a total of N vertices. Also, Dr(O) satisfies the properties of conncclivitg, tcrr'(_i',-ce._'ibilit!/
and local-constr'uctibility.

Proof: First consider the bound on tile vertices of D-r. The obstacle vertices cal_ I)e classifi_,¢t

into two main categories, those which form an inflection point (a point that sui)t_orts a 1o('_,,1

tangent) in the chosen sweep-line direction and those that do not; vertices of fi_'sl kin(t ar¢,
called inflection vertices and those of second kind are called non-inJt_,ction ccr'tz_:e:.s(s¢,¢,Fig.

4). Without loss of generality we assume that the sweep-line is l_orizontal. An infl¢,ctiot_

vertex v is pointing up (pointing down) depending on if the obstacle i:_ the x'it,i_ilx t)[' t' is

below (above) the sweep-line through v. From each non-inflection vertex tt_¢,r¢,will t_, a
segment of the sweep-line (through it) that contains precisely one node of Dr. I_ g_q_('ral
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Figure 4: Inflection and non-inflection vertices.

each inflection vertex generates two vertices of DT, and thus one can obtain a cruets, llpl_er

bound of 2N on the numl_er of nodes of Dr. _,\_ now tighten this bound to .V+ '2;_nocles.
Consider the terrain with convex polygonal obstacles such that no two vertices have ttl_,

same X-coordinate. Here each obstacle contains precisely two inflection vertices, oath of
which generates two nodes of DT, and every non-inflection vertex generates a single Dr

node. Thus the total number of nodes of DT is exactly, N + 2n for this case. \Ve now

show that ,\: + 2n is an upper bound for the case containing possibly non-coIivex I)olygonal
obstacles..ks each obstacle is swept, we have two extreme inflection points corresponding

to the first and the last times the obstacle is encountered: each of these inflection l)oints
account for two nodes of DT.

\Ve show that for each non-extreme inflection vertex v there corresponds a concave vertc,x
u' that does not generate a node of DT; w accounts for one of the nodes on the s¢,gn_e,nt

through v. We show this result for pointing up non-extreme inflection points and tllat for
pointing down non-extreme inflection points is similar. To make the discussioll concrete, we

assume that of the two graph nodes generated by v, the one to the l¢,ft of u is account(,d

for by v and the one to the right is accounted by the yet to be descril)ed _'. \'isualize tl_at

we move the sweep-line from top to bottom. As we sweep, extend the sweep fro_ no_-

extreme inflection point r to the right until it meets the obstacle that c' bdongs to at point 2:
(pretend that the rest of the obstacles are transparent for this construction). Tl_t:n consider

the polygonal region P1 enclosed by the line segment and the boundary of the. obstacle from t'

to z. As the sweep-line moves down from v, we follow the intersection point of the boundary

of P1 with the sweep-line until we encounter a concave vertex u, of tile origi_al obstacle.
Note that no nodes of Dr are generated when the sweep-line meets 'u,,,since the sweep-line

lies inside the obstacle around w. It is possible that before 'u' is found another non-extren_e

inflection point u on the boundary of P1 is met t)3, the sweep-line: if that halq_ens the graph
node to the left of u is accounted by u. The proof is complete by noting that u' always exists

since P1 is a polygonal region.

We now consider the connectivity property. Consider two points :r and 9 in free,-space,
and a shortest path P between them. Then P can be ¢tecomposed into line segnlents such

that each segment is entirely contained in a trapezoid; let the resultant segn_ents l_e denoted

by a:pl,plp'2,...,pm-lP,n,pm9 listed in the sequence ms we navigate froI_ :r to .r/. \Ve now

navigate along this sequence and generate a path on the dual graph as follows. In the

trapezoid that contains .r., note that pl lies on a sweep-line segment; now we sli¢l¢, ttl,, p_-end
of the segment _ along the sweep-line until we reach a graph node at point l'l. Thml in tll_,

next trapezoid, we consider the segment p_p_, and we slide the p,,-end of tt_is s_'grnCmt along
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tilt swett)-line until we meet the nodt p,_. This process is continued in the s(,cl_l(,nc(,until tll('
, last trapezoid is reached. Note that each slide ot)eration is I)Ossiblt since, each tral)tzoid i)_

which the sliding operation takes place is convex. Tht resultant path x, pl,14,...,i>_, !1 is a
pat]) on the graph DT.. By restricting x and y to the nodes of DT, the conlltctivity l)rOi)(,rly
follows.

In the decomposition, the free-space is decomposed into trape, zoidal regions and th(,r(,
is at least one node of l_r associated with each of the trapezoids. Since each trapezoid is
convex every point in a trapezoid is visible from the correspoIlding node of Dr, and thlls
every point in the free-space is visible from some node of DT.

When a scan operation is performed from a node c' E DT, the trapezoidal region t.hat
contains u will be contained in the visibility polygon returned by the scan operation. Given

the sweep-line direction, the required trapezoid region can be obtained b,v COrlll_Uting l}l(,

closest vertex to the sweep-line containing v in the required part of the visibility t)olygon.
Thus local-constructibility property is satisfied, t-q

In the navigation problem, the task is to reach a destination position d, while avoiding
obstacles on the way, or to conclude that d is not reachable. R keeps visiting n(,wlv co)nl)llt('d
vertices until d is reachable. For example, R can employ the det)th-first starch to visit lhe
vertices.

Finally, some other decompositions such as triangulation, convex pol,vgonal dtconlI>osi-
tion, etc., can be used to generate suitable navigational courses. Also, even in the cast of

trapezoidal decomposition, there could be other ways of defining a dual grai)tl. For txanli)le.

each dual node could correspond to the centroid of a trapezoid, and a dual edge joins two
nodes whose trapezoids share a sweep-line segment.

4 Continuous Vision Sensors

In terms of the general paradigm, we only require that the navigation ('.ours(, use_l i)v a

continuous vision sensor is a 1-skeleton that satisfies the two following protmrties: (a) co_z-
nccted,_ess, which requires that there is a path on the navigation course between any two

points of the navigation course, and (b) terrain-visibility, which requires tllat every point irl

the fret-space is visible from some point on the navigation course. \Ve also requirt ttlat lh_'
navigation course to be a 1-skeleton in plane such that the total length of the 1-skein'ton is

finite. Given such a navigation course, if the robot has navigated along the entire navigation

course, then entire free-space will be visible. Thus a robot can navigate along tl_t navigatior_

course until it the destination is reachable, or entire navigation course has been traversed.

An3' such algorithm can be seen to solve the navigation problem. By Theorem 3.1, tlle dllal

graph DT,(O) based on the trapezoidal decomposition satisfies the reclUired iu'optrties.

5 Implementation

The implementation has been carried out on TRC Labmate mobil(, l)iatibrlll whicll t_as I_(,(,rl

augmented with a sensory system of 16 ultrasonic sensors (Fig. 1) l)llilt by _ls. A sc,t_('_ati¢'

of the coverage of the side sensors is shown in Fig. 5. Both the _nol)ile platfor_ a_d _t_'

sensor system are controlled from SPARC workstation though a RS232 radio link. tl_ro_gt_
an interface developed by us.

An approach for using sonar arrays is to emulate the basic navigational strattgi_,s of las_
section. However, there are two critical aspects to this approach. First, the dista[lc¢,s in

discrete directions provided by sonars can only approximate the scan infol'n_ation re¢l_ire¢t

by the vision-based algorithms. Second, the algorithm must be rol_ust ¢,nCu_gh to l_a_¢tl¢.

the errors in sensor data and in the robot motions. The navigation aigorilt_n_ lmsed or_
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Figure 5: Top-view of tile robot and sonar cones.

trapezoidal decomposition call be conceptualized in terms of moving fi'om one tralwzoid to

tile other as per tile search strategy. Except for tile trapezoids that extend fro1_ infinity
to infinity, each trapezoid consists of an obstacle edge, which can be followed by a mobile

robot using a sonar array. The robot follows an obstacle edge until it moves into new

trapezoid, and can switch to a new edge (if required) as exemplified in Fig. 6. At present, the

application is for navigating in corridors with sufficient clearances. The navigation algorithm
consists of navigation along the edges and turning around the corners if necessary. The edge-

following algorithm is implemented ,as a simple control algorithm, where tile robot attempts
to maintain within interval of a prescribed distance from the wall. The distance from all

the four side sensors facing the wall are averaged, and the robot is given a corxection in its

heading based on the difference of the reading and a specified value. This task is achieved
by a simple discrete-time control algorithm. Tile corners are detected by an abrupt change

in tile sensor distances. Notice that (i) we obtain reasonable distance estimates by keeping

tile robot within a suitable proximity of ttle obstacles, and (ii) tile task of following the

straight-line edges can be _chieved reasonably well in tile presence of sonar and motion
errors.

At present, we tested the navigation algorithm around thin walls and convex obstacles.
The corners tested are all convex with included angle of at least 90 degrees. The illlI_lt_-

mentation is presently ongoing to extend present version to handle concave obstacle.s and
cluttered environments.

.....;2;22;22-2;-: i25_iiilllll

..... uII_"

iii .........
Figure 6: Navigation using trapezoidal decomposition.



6 Conclusions

Tile navigation problem deals with moving a point robot R through an unknown terrain from

a source position s to a destination position d. A navigation algorithm that uses al)stract
vision sensors is presented based on a dual graph defined oil tile trat)ezoidal det:omposition

of tile free-space. This algorithm is well suited for a mobile robot e(luit)I)ed with an array
of sonars since the elementary navigation steps involve following walls and turning around
the corners. Some experimental results are presented based on implementation on TRC

Labrnate mobile platform equipped with an array of sonars. Tile propos(;d at)stract algorithIIl

can be extended to the case where some of tile obstacle edges are circular arcs [8]. In. the

implementation using sonar arrays, however, the present wall-following algorithm has to be.
enhanced since tile present version can accurately follow only straight line walls: this is a

topic of our ongoing research.
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