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Abstract

A mobile robot equipped with an array of sonars is required to navigate to a destination
through a planar terrain populated by polygonal obstacles whose locations and shapes are
unknown. A navigation method is proposed based on a trapezoidal decomposition of the
terrain for an abstract formulation, where elementary navigational steps consist of following
the obstacle edges and turning around the corners. The convergence of an abstract version
of the algorithm is first analytically established. Then experimental results on implementing
the algorithm on an experimental mobile robot are reported.

1 Introduction

Navigation and path planning constitute critical tasks in the operation of autonomous mobile
robots. In the past decade, various abstract formulations of this problem have been solved
by several rescarchers (Latombe [4], and Hwang and Ahuja [2]). The navigation problem
deals with computing a collision-free path for a robot from a source position to a destination
position in a terrain populated with obstacles. In a known terrain, a complete model of the
terrain is available, and the path planning can be performed using several techniques such
as retraction, decomposition, etc. (Sharir [10]). In an unknown terrain, the model of the
terrain is not known but a sensor system is emploved for navigational purposes. For the
first part of this paper, we consider an abstract formulation consisting of point-sized mobile
robot equipped with a discrete vision sonsor, which detects all visible (from the present
location) parts of the obstacle boundary in a single scan operation. We then briefly consider
a continuous vision sensor that detects all visible parts of the obstacle boundary as the
robot moves along a path. The abstract formulation allows us to theoretically validate the
algorithm. Then we describe an implementation of a navigation algorithm for a mobile robot
cquipped with an array of sonars.



Figure 1: TRC Labmate with sonar arrays.

A number of sonar-based navigation algorithms have been developed based on different
methods. For example, Elfes [1] describes a method based on occupancy cells, Watanabe and
Pin [11] describe a method based on fuzzy logic, and Mataric [3] describes a reactive method.
These methods are designed for a circular arrangement of sonars and are not specifically
designed to take into account the polygonal nature of the obstacles. Main attractive features
of sonars are their low cost and simplicity of the information returned. On the negative
side, the information returned by them is not very accurate and is prone to errors. A single
sonar returns an estimate of a distance to an obstacle contained within a spatial cone in
a direction. Thus even if the distance estimate is accurate, there are information-based
limitations in “realizing” a scan operation (described above) using sonar arravs. Sonar
readings, however, are fairly reliable and accurate in measuring distances to walls located
within certain operative range. Our method employs an array of sonars to follow walls and
turn around the corners so that the obstacles are kept (to the most extent) in a suitable
range of the sonars.

Abstract (non-heuristic) algorithms for the robot navigation in unknown terrains have
been studied by a number of researchers in the last decade (Rao et al. [9]). A navigational
course is a 1-skeleton embedded in the set of all free-positions of the robot. In the case of
a discrete vision sensor, Rao [7] showed that if the navigation course satisfies the four prop-
erties of finiteness, connectivity, terrain-visibility and local-constructibility, then navigation
problem can be solved by emploving a graph search algorithm. For polygonal terrains. one
can employ navigational structures based on the visibility graphs and the Voronoi diagrams
[7). Generally, visibility graph methods require that the robot navigate along the obsta-
cle walls; thus this method is not practical due to inaccuracies in robot motions. On the
other hand, the retraction based methods keep the robot far way from the obstacles so that
accurate obstacle information is not easy to obtain (for terrain mapping purposes): this is
particularly a problem with a circular sonar arrangements because the sonar resolution de-
creases with the increase of distance from the robot. Furthermore for sonars. the accuracy
of the readings is good when the obstacles are within some proximity of the sensors. In this
paper, we present a method based on a trapezoidal decomposition of free-space: the idea of
this method was first proposed by Kim [3] and analyzed by Rao [8]. In this method. the
robot uses the obstacle edges as guidelines without getting too close to or too far away from
them.

The organization of this paper is as follows. We discuss preliminaries and an abstract
algorithmic framework for the navigation in unknown terrains in Section 2. In Sections
3 and 4, we discuss dual graphs based on trapezoidal decomposition that are suitable for
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Figure 2: Discrete and continuous vision sensors.

navigation using discrete and continuous vision sensors respectively. An implementation on
TRC Labmate mobile robot, shown in Fig. 1, is described in Section 5.

2 Preliminaries

We consider a finite two-dimensional terrain populated by a finite and non-intersecting set O
of polygons. Two points p and ¢ are wvisible to each other if the line segment joining p and ¢
is not intersected by any obstacle. For the abstract formulation of the problem, the robot R
is point-sized and equipped with a vision sensor. A discrete vision sensoris characterized by
a scan operation: a scan operation performed from a position (point) p returns the visibility
polygon of p, which is the polygonal region consisting of all points in the terrain visible to
p (Fig. 2(a)). A continuous vision sensor when invoked as the robot moves along a path
P returns the generalized polvgonal region such that every point of this polygon is visible
from some point on P (Fig. 2(b)), i.e. the polygon returned in this case is the union of
the visibility polvgons of all points on P. Thus, in general, the operation of a continuous
vision sensor cannot be simulated by a discrete vision sensor if only a finite number of scan
operations by the latter are allowed.

We now descrile dual graphs based on a trapezoidal decomposition. First, we decompose
the free-space into trapezoids by sweeping a line (for example, moving a horizontal line from
top to bottom) such that whenever the line passes through a vertex, we extend a sweep-line
segment from this vertex into free-space until it touches an obstacle boundary or extends to
infinity as shown in Fig. 3. Now free-space is partitioned into trapezoids. For cach sweep-line
segment we have one of the two following cases: (a) if the segment is finite, the dual graph
node corresponds to the mid point of the segment, or (b) if the segment is not finite, the
dual graph node corresponds to a point on the segment at a distance § from the vertex. Two
nodes belonging to the boundary of the same trapezoid are connected by an edge of the dual
graph (see Fig. 3).

An algorithmic framework for solving the navigation and terrain model acquisition prob-
lrms using discrete vision sensors has been proposed by Rao [7]. Here the robot R uses a
one-skeleton (a collection of one-dimensional curves) £(O), called the navigational course:
£(O) can be simply viewed as a combinatorial graph such that each £-vertex specifies a po-
sition for R and each &-edge (u, v) specifies a path from v to ¢. To navigate from s to d, R
performs a “graph search™ on £(O). Initially £(O) is not known to R, but it is incrementally
constructed from the sensor operations. From s, R initially checks to see if d is reachable.
and moves to it if ves. If not, R computes a start £-vertex vy and moves to it, and from vy, R



Figure 3: Dual graph based on trapezoidal decomposition.

keeps visiting new €-vertices until it reaches a £-vertex vy from which d is found reachable. In
the case d is not reachable from s, R visits all £&-vertices and concludes that the destination
is not reachable. The requirement on the graph search algorithm is that it must be capable
of visiting all vertices of a connected component of the £(O) in which it is initiated. e.g.
depth-first search and A* algorithms [6].

We now consider four properties for £(0): (i) finiteness property requires that the number
of &-vertices and edges be finite, (ii) terrain-visibility requires that every point outside the
obstacles is visible from some &-vertex, (iii) connectivity property requires that every pair of
£-vertices be connected by a graph path on £(0), and (iv) local-constructibility requires that
the adjacency list of a £-vertex v be computable from the information obtained by performing
a finite number of sensor operations. Then the following result can be easily shown {7].

Result 2.1 Given a navigational course £(QO), that satisfies the properties of finiteness.
connectivity, terrain-visibility and local-constructibility, a graph search alyorithm can be em-
ployed to solve the navigation problem using a discrete vision sensor.

3 Navigational Structure and Algorithm

In the trapezoidal decomposition, each trapezoid is bounded by at most two (continuous
segments of) obstacle edges and at most two (but at least one ) sweep-line segments: cach
such sweep-line segment contains at least one obstacle vertex. Note that each trapezoid is
convex, and the line segment joining two vertices of a trapezoid does not intersect the interior
of any obstacle.

Theorem 3.1 Consider a terrain such that no two obstacles are co-linear with respect to
the sweep-line. The number of vertices in the dual graph Dy (O), based on the trapezodul
decomposition, is upperbounded by N +2n for a terrain of n polygonal obstucles consisting of
a total of N vertices. Also, Dy(O) satisfies the properties of connectivity, terrain-cisibility
and local-constructibility.

Proof: First consider the bound on the vertices of Dy. The obstacle vertices can be classified
into two main categories, those which form an inflection point (a point that supports a local
tangent) in the chosen sweep-line direction and those that do not: vertices of first kind are
called inflection vertices and those of second kind are called non-inflection vertices (see Fig.
4). Without loss of generality we assume that the sweep-line is horvizontal.  An inflection
vertex v is pointing up (pointing down) depending on if the obstacle in the vicinity of ¢ is
below (above) the sweep-line through v. From each non-inflection vertex there will be a
segment of the sweep-line (through it) that contains precisely one node of Dp. In general
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Figure 4: Inflection and non-inflection vertices.

cach inflection vertex generates two vertices of Dy, and thus one can obtain a crude upper
bound of 2N on the number of nodes of Dy. We now tighten this bound to N + 2n nodes.

Consider the terrain with convex polygonal obstacles such that no two vertices have the
same {\'-coordinate. Here each obstacle contains precisely two inflection vertices, each of
which generates two nodes of Dr, and every non-inflection vertex generates a single Dr
node. Thus the total number of nodes of Dr is exactly N + 2n for this case. We now
show that N + 2n is an upper bound for the case containing possibly non-convex polygonal
obstacles. As each obstacle is swept, we have two extreme inflection points corresponding
to the first and the last times the obstacle is encountered: each of these inflection points
account for two nodes of Dr.

We show that for each non-extreme inflection vertex v there corresponds a concave vertex
w that does not generate a node of Dr; w accounts for one of the nodes on the segment
through v. We show this result for pointing up non-extreme inflection points and that for
pointing down non-extreme inflection points is similar. To make the discussion conerete, we
assume that of the two graph nodes generated by v, the one to the left of v is accounted
for by v and the one to the right is accounted by the yet to be described w. Visualize that
we move the sweep-line from top to bottom. As we sweep, extend the sweep from non-
extreme inflection point v to the right until it meets the obstacle that v belongs to at point a
(pretend that the rest of the obstacles are transparent for this construction). Then consider
the polygonal region P, enclosed by the line segment and the boundary of the obstacle from ¢
to z. As the sweep-line moves down from v, we follow the intersection point of the boundary
of P, with the sweep-line until we encounter a concave vertex w of the original obstacle.
Note that no nodes of Dy are generated when the sweep-line meets w, since the sweep-line
lies inside the obstacle around w. It is possible that before w is found another non-extreme
inflection point u on the boundary of P, is met by the sweep-line: if that happens the graph
node to the left of u is accounted by u. The proof is complete by noting that u' alwavs exists
since P, is a polygonal region.

We now consider the connectivity property. Consider two points & and y in free-space
and a shortest path P between them. Then P can be decomposed into line segments such
that each segment is entirely contained in a trapezoid; let the resultant segments be denoted
by TD1,DiP2. - - - Dmo1Pm, Pmy listed in the sequence as we navigate from x to y. We now
navigate along this sequence and generate a path on the dual graph as follows. In the
trapezoid that contains x, note that p; lies on a sweep-line segment; now we slide the py-end
of the segment 777 along the sweep-line until we reach a graph node at point pi. Then in the
next trapezoid, we consider the segment pip,, and we slide the py-end of this segment along




the sweep-line until we meet the node p. This process is continued in the sequence until the
last trapezoid is reached. Note that each slide operation is possible since each trapezoid in
which the sliding operation takes place is convex. The resultant path @, pi.ps, ..., pl . yisa
path on the graph Dy. By restricting 2 and y to the nodes of D, the connectivity property
follows.

In the decomposition, the free-space is decomposed into trapezoidal regions and there
is at least one node of 17 associated with each of the trapezoids. Since each trapezoid is
convex every point in a trapezoid is visible from the corresponding node of Dy, and thus
every point in the free-space is visible from some node of Dr.

When a scan operation is performed from a node v € Dy, the trapezoidal region that
contains v will be contained in the visibility polygon returned by the scan operation. Given
the sweep-line direction, the required trapezoid region can be obtained by computing the
closest vertex to the sweep-line containing v in the required part of the visibility polvgon.
Thus local-constructibility property is satisfied. O

In the navigation problem, the task is to reach a destination position d, while avoiding
obstacles on the way, or to conclude that d is not reachable. R keeps visiting newly computed
vertices until d is reachable. For example, R can employ the depth-first search to visit the
vertices.

Finally, some other decompositions such as triangulation, convex polvgonal decomposi-
tion, etc., can be used to generate suitable navigational courses. Also, even in the case of
trapezoidal decomposition, there could be other ways of defining a dual graph. For example,
each dual node could correspond to the centroid of a trapezoid, and a dual edge joins two
nodes whose trapezoids share a sweep-line segment.

4 Continuous Vision Sensors

In terms of the general paradigm, we only require that the navigation course used by a
continuous vision sensor is a 1-skeleton that satisfies the two following properties: (a) con-
nectedness, which requires that there is a path on the navigation course between any two
points of the navigation course, and (b) terrain-visibility, which requires that every point in
the free-space is visible from some point on the navigation course. We also require that the
navigation course to be a 1-skeleton in plane such that the total length of the 1-skeleton is
finite. Given such a navigation course, if the robot has navigated along the entire navigation
course, then entire free-space will be visible. Thus a robot can navigate along the navigation
course until it the destination is reachable, or entire navigation course has been traversed.
Any such algorithm can be seen to solve the navigation problem. By Theorem 3.1, the dual
graph D7(O) based on the trapezoidal decomposition satisfies the required properties.

5 Implementation

The implementation has been carried out on TRC Labmate mobile platforni which has been
augmented with a sensory system of 16 ultrasonic sensors (Fig. 1) built by us. A schematic
of the coverage of the side sensors is shown in Fig. 5. Both the mobile platform and the
sensor system are controlled from SPARC workstation though a RS232 radio link. through
an interface developed by us.

An approach for using sonar arrays is to emulate the basic navigational strategies of last
section. However, there are two critical aspects te this approach. First, the distances in
discrete directions provided by sonars can only approximate the scan information required
by the vision-based algorithms. Second, the algorithm must be robust enough to handle
the errors in sensor data and in the robot motions. The navigation algorithm based on
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Figure 5: Top-view of the robot and sonar cones.

trapezoidal decomposition can be conceptualized in terms of moving from one trapezoid to
the other as per the search strategy. Except for the trapezoids that extend from infinity
to infinity, each trapezoid consists of an obstacle edge, which can be followed by a mobile
robot using a sonar array. The robot follows an obstacle edge until it moves into new
trapezoid, and can switch to a new edge (if required) as exemplified in Fig. 6. At present, the
application is for navigating in corridors with sufficient clearances. The navigation algorithm
consists of navigation along the edges and turning around the corners if necessary. The edge-
following algorithm is implemented as a simple control algorithm, where the robot attempts
to maintain within interval of a prescribed distance from the wall. The distance from all
the four side sensors facing the wall are averaged, and the robot is given a correction in its
heading based on the difference of the reading and a specified value. This task is achieved
by a simple discrete-time control algorithm. The corners are detected by an abrupt change
in the sensor distances. Notice that (i) we obtain reasonable distance estimates by keeping
the robot within a suitable proximity of the obstacles, and (ii) the task of following the
straight-line edges can be achieved reasonably well in the presence of sonar and motion
errors.

At present, we tested the navigation algorithm around thin walls and convex obstacles.
The corners tested are all convex with included angle of at least 90 degrees. The imple-
mentation is presently ongoing to extend present version to handle concave obstacles and
cluttered environments.

Figure 6: Navigation using trapezoidal decomposition.



6 Conclusions

The navigation problem deals with moving a point robot R through an unknown terrain from
a source position s to a destination position d. A navigation algorithm that uses abstract
vision sensors is presented based on a dual graph defined on the trapezoidal decomposition
of the free-space. This algorithm is well suited for a mobile robot equipped with an array
of sonars since the elementary navigation steps involve following walls and turning around
the corners. Some experimental results are presented based on implementation on TRC
Labmate mobile platform equipped with an array of sonars. The proposed abstract algorithm
can be extended to the case where some of the obstacle edges are circular arcs [8]. In.the
implementation using sonar arrays, however, the present wall-following algorithm has to be
enhanced since the present version can accurately follow only straight line walls: this is a
topic of our ongoing research.
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