
ORNL/TM-12347

Engineering Physics and Mathematics Division

Mathematical Sciences Section

THE FOURIER ANALYSIS TECHNIQUE AND
EPSILON-PSEUDO-EIGENVALUES

June M. Donato

Mathematical Sciences Section
Oak Ridge National Laboratory

P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

Date Published: July 1993

Research waz supported by the Applied Mathematical Sci-
ences Research Program of the Omce of Energy Research,
U.S. Department of Energy.

Prepared by the
Oak Pddge National Laboratory

Oak Ridge, Tennessee 37831
managed by

. Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENEXGY
" under Contract No. DE, AC-05-840R21400

DISTRIBUTIONOFTHISOOCUMENTIS UNLIMIT_



THE FOURIER ANALYSIS TECHNIQUE AND
EPSILON-PSEUDC;-EIGENVALUES

w

June M. Donato

Abstract

The spectral radii of iteration matrices and the spectra and condition numbers
of preconditioned systems are important in forecasting the convergence rates for
iterative methods. Unfortunately, the spectra of iteration matrices or precondi-
tioned systems is rarely easily available. The Fourier analysis technique has been
shown to be a useful tool in studying the effectiveness of iterative methods by
determining approximate expressions for the eigenvalues or condition numbers of
matrix systems.

For non-symmetric matrices the eigenvalues may be highly sensitive to pertur-
bations. The spectral radii of nonsymmetri: iteration matrices may not give a
numerically realistic indication of the convergence of _he iterative method. Tre-
fethen and others have presented a theory on the use of c-pseudo-eigenvalues in
the study of matrix equations.

- For Toeplitz matrices, we show that the theory of _-pseudo-eigenvalues includes
the Fourier analysis technique as a limiting case. For non-Toeplitz matrices, the
relationship is not clear. We shall examine this relationship for non-Toeplitz ma-
trices that arise when studying preconditioned systems for methods applied to a
two-dimensional discretized elliptic differential equation.



1. Introduction

The spectral radii of iteration matrices and the spectra and condition numbers of
preconditioned systems are important in forecasting the convergence rates of iterative

- methods. A variety of methods axe used in the analysis of such matrices [1,12,13,19].
It is not always possible to determine analytic formulas describing the eigenvalues

of a given matrix. Similarly, it is not always possible to determine reasonable analytic
bounds on the extremal eigenvalues or the condition number of a matrix. In many
cases where bounds have been determined, the analysis has been difficult or tedious

[2,9].
When exact eigenvalue analysis is used to obtain extremal eigenvalue bounds, we

must be aware that for non-normal matrices that these eigenvalues can be highly sen-
sitive to perturbations. Hence, the exact spectral radius or condition number of a

non-normal iteration matrix may not give a realistic indication of the usefulness of the
iterative method or preconditioner.

Motivated by the sensitivity of the eigenvalues to perturbations in the matrix, Tre-
fethen and others have utilized a theory on e-pseudo-eigenvalues iu the study of matrix
equations. The e-pseudo-eigenvalues of non-normal matrices may portray radically
different qualities than the exact eigenvalues for the matrix, See references [15] and
[18].

Alternately, _ heuristic technique based on Fourier analysis can be used to easily ob-
tain eigenvalue approximations. The technique has been shown to be a useful heuristic

. when studying the effectiveness of iterative methods and preconditioners [3,5,6,7,8,10].
As yet no rigorous explanation of why this technique works so well for non-periodic

non-constant diagonal matrices has been established. For symmetric Toeplitz matrices,
- the technique yields the true eigenvalue expressions, but it is does not always yield a

good approximation for general matrices.
Herein, it is shown that for Toeplitz matrices the theory of e-pseudo-eigenvalues in-

cludes the Fourier analysis technique as a limiting case. Hence, the Fourier approximate

eigenvalues serve as an approximation to the e-pseudo-eigenvalues.
For non-Toeplitz matrices, the relationship is not clear. Here, we consider non-

Toeplitz matrices that arise when studying preconditioned systems for methods ap-

plied to a two-dimensional discretized elliptic differential equation. We examine the
relationship between the Fourier approximate eigenvalues and the e-pseudo-eigenvalues
for these matrices.

The remainder of this paper is organized as follows. In Sections 2 and 3 we very

briefly overview the Fourier analysis technique and concepts from the theory of e-

pseudo-eigenvalues, respectively. For greater detail and a wide range of examples and

applications see the references, especially [6,15,18]. In Section 4 we present the theorem
linking the Fourier analysis technique and e-pseudo-eigenvalues for Toeplitz matrices.

In Section 5 the spectra, Fourier approximate eigenvalues, and the e-pseudo-eigenvalues
are graphically presented for a variety of Toeplitz matrices. In Section 6 we examine

the relationship between the Fourier analysis technique and e-pseudo-eigenvalues by
- comparing results for preconditioned systems for a discretized two-dimensional elliptic

partial differential equation. In Section 7 results and observations are summarized.
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Derivations of the Fourier approximate eigenvalues expressions are given in an xp-

pendix. .

2. Fourier Analysis

Fourier analysis is a pervasive subject in all of mathematics. Here we are interested in
how it can be used to determine eigenvalues or approximate eigenvalues of a given

matrix. Consider a one-dimensional constant coefficient elliptic partial differential

equation (PDE) with periodic boundary conditions discretized on a uniform grid with
N internal grid points. Let Au = b denote the resulting matrix system where A is an

(N + 1) x (,aC+ 1) matrix.
Let u(') be a column vector of length N+I composed of the one-dimensional Fourier

exponential modes. 1 The jth component of u(s) is given by

2_'s

u_')=e i_6° where6s- N+I' J =0'I'''''N' s=0,1,...,N.

The N + 1 vectors {u(_) : s = 0, 1,..., N}, called the Fourier vectors, are eigenvectors
of such a circulant matrix A. The fact that we know a basis for such a matrix makes

it quite easy to determine an analytic formula for its eigenvalues.
Although elliptic PDEs rarely yield circulant matrices when discretized, Fourier

analysis is often used [5,6,7,8] in the same way that von Neumann analysis is used for

time-dependent systems [16], and local mode analysis is used for multigrid methods [4].
The steps of the Fourier analysis technique as given by [6] for an elliptic partial

differential equation are summarized as follows:

(a) Treat the matrices involved as if they came from periodic problems. This may

involve ignoring the original boundary conditions of the problem and/or extending
the original matrix.

(b) Force the matrices to have constant diagonal entries. This may entail using an

asymptotic value for the diagonal entries, as in the case for the ILU precondi-
tioner.

(c) From concepts developed in [6] use the relation hp = 2hd to relate the periodic
mesh size to the Dirichlet mesh size.

After performing the above steps, we would have a circulant matrix whose eigenvectors
are the Fourier vectors of the appropriate dimension. We are then able to use exact
Fourier analysis on the altered matrix to determine approximations of its minimum or
maximum eigenvalues or to observe the general shape of its spectrum. This is done
simply by computing

_u(') = A_uI'),

1SimilaHy, for a constant coefficient matrix with Dirichlet or Neumann boundary conditions we

would use the Fourier sine or cosine modes, respectively, as eigenv_ctor components. "
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where 4 represents the modified matrix and As denotes the s th eigenvalue of A. Since

. 4 is constant diagonal, this computation can be done easily using component or stencil

form. The eigenvalue, As, is a function of 0_p) = 2rshp = 21rs/(np + 1) where np=

. 2hd + 1 and s E {1,...,np}. Thus, 0 (p) E (0,27r).
The Fourier approximate eigenvalues of A, A, are then given by the eigenvalues of

4:
Ao = A.(A)= A,.

The degenerate eigenvalue, Aa = 0, is ignored when doing analysis for a problem with
Dirichlet boundary conditions.

For higher dimensional problems, the same steps as given above would be followed to
generate the approximating matrix ft,. However, the appropriate dimensioned Fourier

modes would form the components of the eigenvectors of A. For example, suppose we
have a two-dimensional problem discretized on a uniform grid with N internal grid
points in each direction. Then the Fourier (j, k) th component of the (s, t) th eigenvector
would be given by

u(s,t) = eijO, eikCtj,k , 0 <_ 8, t <_ n,

where Os = 2tsh, Ct = 2rth, h = 1/(n + 1). As above, we would then determine As,t
from

ftu (''_) = Rs,tu("O.

As in the one-dimensional case, the singular cases with s = 0 or t = 0 are, 2gnored in

- the analysis of problems with Dirichlet boundary conditions.

3. e-pseudo-eigenvalues

For non-hermitian matrices, the eigenvalues of the matrix may be highly sensitive to
perturbations. Hence, when analyzing a matrix to determine its behavior as an iteration

matrix or as a preconditioner, the true eigenvalues of the matrix may be misleading.

In fact, we are more interested in the behavior of the eigenvalues when the matrix A
is perturbed.

This is the connection to the theory of e-pseudo-eigenvalues as presented in refer-

ences [15,17,18]. There are several theoretically equivalent definitio,_s for e-pseudo-

eigenvalues. We will use the following definition from [18].

DEFINITION" Given ¢ > 0, A E C is an e-pseudo-eigenvalue of the N × N

rnatrix A if A isan eigenvalueof A+E for some E E C Nx/v with IIEI[< E. The
set of ali (_-pseudo-eigenvaluesof A, called the (;-pseudo-spectrum,is denoted
Ac(A) or simply A_.

" Rather than examine the exact eigenvalues ,of a non-normal matrix A we want to

examine Ac. However, computing AC(A) using the definition is not always desirable

. or feasible for large N. But, Reichel and Trefethen [15] have observed a relationship
between the e-pseudo-spectrum and the union of three sets for Toeplitz matrices. The
following is an overview of one of their results.
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Consider the matrix problem Au = b where A is a Toeplitz matrix

/ / "
ao al •. • aN

_-1 ao "•
A - . (1) .

• ". -. a 1

a-N ... a-1 ao

A matrix of this form could have arisen from a finite-difference or finite-element dis-

cr,etization of a one-dimensional self-adjoint PDE. The symbol [15] of this matrix is

given by f(z) = __,N=_ N akz k. The fundamental observation of [15] is that for large N
and small e, Ac looks approximately like the union of three sets"

Ac -_ ftr V _R U (A + Ac), (2)

where

ft,. - (z e C " I(f(S,.),z) > 0}

mR = {z e c.I(f(sR),z) < 0}
S_ = circle of radius r, r = (e/c) 1IN

Sn = circle of radius R, R = (e/C) -1IN

I(f,z) = winding number of f about z

A = the eigenvalues of the matrix A

A + Ac = union of e-balls about the eigenvalues of the matrix A

The values c and C [15] are generally taken to be 1.

The images of S_ and SR, f(S,.) and f(SR), are easily computed. Typically _

and fir provide a good envelope for Ac(A). Hence, by computing the regions enclosed
S can aby f(S,.) and f(R), we get general idea of the behavior of the matrix with-

out the computationaUy expensive task of computing A or Ac(A). This is certainly

advantageous in the analysis of iterative methods and preconditioners.

4. The link between the Fourier technique and e-pseudo-eigenvalues

In this section it is shown that the Fourier analysis technique yields a limiting expression
for the boundaries of the regions fl_ and R R.

THEOREM" For the general one-dimensionalToeplitz matrix the boundary defined by the
Fourier approximateeigenvalueexpression,_(A), is a limiting caseof the boundariesof _
and _tR as r, R--* 1.
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Proof Consider again the Toeplitz matrix (1). We have already noted that the

. symbol of this matrix is given by

N

. f(z)--- _ akz k. (3)
k---N

From (2) we are interested in the boundaries of the regions f_ and f_R which are

determined by the images of S_ and SR via the symbol f(z). The image of S_ is given
by

f(S_) = {z = f(rei°) • 0 E [0,2_r]},

where

N N

f(rei0) -- _ ak(rei°) k- _ rkak(ei°) k (4)
k---N k--N

with r = ell N, and similarly for f(SR) using R = e-1IN instead of r. As N ---, c_, we
have r ---, 1, R ---) 1 since e << 1.

To apply the Fourier analysis technique to this Toeplitz matrix (1) we follow the
steps outlined earlier. The circulant version of the matrix A is

ao ''' aN-1 aN a-g ... a_l
• . • • ° •

ft = aN "'' ao al a2 ... a-N
a-N ''' a_l ao al ... aN

a-1 "" a-N aN aN-1 ''' ao

where A is an order 2N + 1 matrix.
We calculate the jth component of

,/,u (s) = _su(')

to get

_(,) +. +Uj = ao e'30_p) + al ei(j+l)O_p) .. aN ei(j+N)O_p_

+ a_lei(J-1) °C/)+ ... + a_Nei(j-N) °c,p)

-" _ ake
k'--N

. _ _. (')
Uj •
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The Fourier approximate eigenvalues of A are then given by tile eigenvalues of/i,

N °

L(A) = L = ak(ei° P))k, (5)
k---N

where 0(p) E (0, 27r).
By comparing the Fourier approximate eigenvalues of A in (5) to the images of Sr

and SR via the symbol for A in (4), we see that (5) is a discrete version of (4) where
r = 1. And as already noted, r = 1 and R = 1 axe the limiting values as N --, _. 1

Thus the theory of C-pseudo-eigenvalues includes as a limiting case the Fourier
analysis technique. This result is certainly related to the fact that exact Fourier analysis
leads to samples of the curve f(iz[ = 1) for Toeplitz systems. In Reichel and Trefethen
[15], it is stated that

For small E and large N, the _-pseudospectrum Ac of a Toeplitz matrix is
roughly the same as the spectrumof the associatedToeplitz operator, namely,
a region in the complex plane bounded by the curve f(S), where f(z) is the
symbol of the matrix.

The important and interesting concept here is that the theory of _-pseudo-eigenvalues

may provide the explanation as to why the the approximate Fourier analysis technique
has yielded good approximations even for situations where Fourier analysis does not
strictly apply.

For the non-limiting case, the boundary formed by the Fourier approximate eigen-
values lies between f_r and f_R. And so the Fourier boundary would enclose most (if
not MI) of the E-pseudo-eigenvalues. Empirically, we will see that it seems to include
all of the _-pseudo-eigenvalues.

5. Toeplitz Examples

In this section, some Toeplitz examples are given that demonstrate the relationship be-
tween E-pseudo-eigenvalues regions and the boundary defined via the Fourier approxi-
mate eigenvalues. In these examples, we use N = 100 for the order of the matrix A and

= 10 -4. First, we consider two Toeplitz matrices studied in [15]. After these exam-
pies, we consider Toeplitz matrices arising from the discretization of a one-dimensional
second-order differential equation.

In each of these pictures_ the true eigenvalues, the C-pseudo-eigenvalues using a

set of five randomly generated perturbation matrices, f(Sr), f(SR), and the Fourier
approximate eigenvalues are plotted. See the legend given in Table 1.

In each of these pictures we see that the E-pseudo-eigenvalues are enclosed by _R,
which is surrounded by the Fourier boundary.

In Figure 1, example (3.8) of [15] is plotted along with the Fourier approximate
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eigenvalues. The matrix is

• i /
0 2

. A= 1 ". "'" . (6)
• 2

1 0

In Figure 1, f(Sr) provides the tighter bound on the e-pseudo-eigenvalues. However,

we still have the Fourier boundary between f(S,.) and f(Sl=t).
Figure 2 shows the regions for the Bull's head example [15] for the matrix

0 0 1 .7

2i 0 0 1 .7

0 2i 0 0 1 .7

• • • • • °

A=
0 2i 0 0 1 .7

0 2i 0 0 1

0 2i 0 0

0 2i 0

The regions depicted in Figure 2 are more complex, but it is still easy to see that the
Fourier boundary lies "in-between" _r and _R and that the Fourier boundary encloses

" the _-pseudo-eigen values.

Symbol Item Represented
solid line ftr
dashed line mR

o e-pseudo-eigenvalues
x Fourier approximate eigenvalues
• eigenvalues

Table 1" Legend for/_ and A_ figures
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Figure 1: Regions for matrix A of (6)
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Figure 2: Bull's Head example
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Next we consider the Fourier approximate eigenvalues and the E-pseudo-spectra for

. the following one-dimensional second-order differential equation

-u_+Tu_=f, 7>0,

" u(0) = u(1)= 0,

on _ [0, 1]. The region Sqis divided into n + 1 uniform intervals of mesh size h ="- n+l '

and centered differences for uxx and upwind differencing for 7u_ are used. We get the

matrix equation

Au=b, A e R n×n (7)

where A is an N x N, N = n 2, tridiagonal matrix of the form

C °° •

,4=
°°° b

C a

with a = 2 + "yh, b = -1, and c = -1 - -yh. In stencil form it is given by

[-1-'yh, 2+7h, -1].

The Fourier approximate eigenvalues of A are

. _o(A) = a + bei°" + ce -i°', 0s E (0,2rr),

and the symbol of the matrix is

/(z) = a + bz + cz-1.

In Figures 3-6, we use this nonsymmetric problem (7) to demonstrate the relation
between the true eigenvalues of the problem and the Fourier and e-pseudo-eigenvalues.

The nonsymmetry of the problem is varied by altering the value of the parameter 7.

Again, N = 100 and _ = 10-4.
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Figure 3: Regions for (7) with 7 = 0.
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Figure 4: Regions for (7) with -y= 50.
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Figure 6: Regions for (7) with 7 - 200.
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6. Non-Toeplitz Examples

In the previous section, a relationship was shown to exist between the Fourier approx-
imate eigenvalues and the E-pseudo-eigenvalues for Toeplitz matrices. Unt0rtunately,
the proof relating the Fourier approximate eigenvalues and the E-pseudo-eigenvalues
bounding regions can not be immediately generalized to non-Toeplitz systems.

In this section, we examine pictorially the relationship between the e-pseudo-eigenvalues
: and Fourier approximate eigenvalues of certain non-Toeplitz matrices. These matrices

will arise from the preconditioning of a discretized two-dimensional elliptic partial dif-
ferential equation. We use the Jacobi and SOR(w) splitting matrices and the ILU
preconditioner.

The model two-dimensional parameterized elliptic partial differential equation that
we consider is

-Au+au::+_u_ = f on f_=[O, 1]x[O, 1],

u = 0 on Off,

where f_ is partitioned into an uniform grid with n interior grid points in each direction

having a mesh size of h = k"_'l Centered differences are used for the Laplacian and
upwind differencing is used for the convection terms. The equation for the (j, k) th grid
value of u is given by

auj,k + bUj+l,k -t-cuj,k+l + duj-l,k + £Uj,k-i "- h2 fj,k,

where a = 4 + (a + _)h,b = c = -1,d = -1 - ah,£ = -1 - Eh. Using the rowwise

natural ordering for the components of u, the resulting scaled discretized system is
given by

Au = h2 f,

where A is an N x N matrix, N = n 2, in stencil form given by

,4= d a b = -1-ah 4+(_.B)h -1
• e -1-h •

While this matrix is close to being Toeplitz, it is not because the Dirichlet boundary

conditions introduce zeros entries in the super and sub-diagonals. Nor will the resulting

preconditioned systems be Toeplitz. So, we can no longer directly use the Reichel-
Trefethen observation for Toeplitz matrices, and the regions f_r and fir will not be

plotted• We compute the e-pseudo-eigenvalues via the definition given in Section 3.

In Figure 7, there are three groups of three pictures corresponding to the three
methods applied to the discretized system with parameter values of a =/_ = 0. In each

set of three, we plot (from left to right) the the computed eigenvalues, the E-pseudo-

eigenvalues, and the Fourier approximate eigenvalues for the matrix M -1A.
The first set of three corresponds to M being the diagonal of A (the Jacobi splitting

matrix or preconditioner), the second set is for M corresponding to the splitting matrix

for SOR(w), and the third set for M being the ILU preconditioner.
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This scheme is repeated for parameter values of a - 5,/3 - 1 in Figure 8 and for

. parameter values of _ :=/3 - 5 in Figure 9.
In computing the Fourier approximate eigenvalues for A and its preconditioned

systems, the two-dimensional Fourier exponential modes are used in the Fourier analysis
" technique.

The _-pseudo-eigenvaluesarecomputed accordingto thedefinitiongivenin section

3 by calculatingthe eigenvaluesof A . E forfiverandomly generatedperturbation

matriceswith tIEli_(_.To compare the plotsforthe Fourierapproximateeigenvalues

and the_-pseudo-eigenvalueswe must choosea reasonablevalueof_.For a polynomial
p,(z)we have the relationship[14],

L

<lip.(A)[i<

whereL isthearclengthoftheboundaryof_-pseudo-eigenvalues.Ratherthancompute

thearclength,whichisa non-trivialprocess,we choosethatvalueof_ thatreasonably

scalesthe _-pseudo-eigenvaL|eplot.These valuesaregiveninTable2.

c_=_=O a=5,_=l a=_=5
Jacobi 0.10 0.10 0.I0
SOR 0.10 0.10 0.10
ILU 0.01 0.001 0.01

• Table2: _ valuesusedin theE-pseudo-eigenvalueplots

It isobviousfrom thesepicturesthat the Fourierapproximateeigenvaluesand

the _-pseudo-eigenvaluescan vary quitedrasticallyin appearancewhen compared to

the actualeigenvalues.Yet,the Fourierapproximateeigenvaluesmimic some of the
clusteringbehaviorof the _-pseudo-eigenvaluesand does wellin most instancesto

approximatetheshape and extremalvaluesof the_-pseudo-eigenvalues.
Ifitisindeedmore criticalto examine _-pseudo-eigenvalueswhen analyzingand

designingiterativemethods and preconditioners,then the Fourieranalysistechnique
has severaladvantages.The Fourierapproximateeigenvaluescapturemuch oftheclus-

teringand boundinginformationofthe_-pseudo-eigenvalues,but withsignificantlyless

computationaleffort.To compute the_-pseudo-eigenvalueswe actuallymust compute
the eigenvaluesof A + E forseveralrandomly generatedperturbat,_n matrices.For

eachperturbationmatrixthisisan O(N 3)operationforan N x N matrix.Computing
the FourierapproximateeigenvaluesisO(N2). In addition,the Fourierapproximate

eigenvaluesarecomputed from the Fourierexpression,which can be analyzedindepen-
dently.This allowsa researcherto tune a preconditionerto have a desiredbehavior.
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Figure 7" The computed eigenvalues, e-pseudo-eigenvalues, and Fourier approximate

eigenvalues for M -1A using parameter values c_ = _ = 0.
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Figure 8: The computed eigenvalues, e-pseudo-eigenvalues, and Fourier approximate
eigenvalues for M-lA using parameter values a = 5,/_ = 1.
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7. Summary

The Fourier technique used in the analysis of iterative methods and preconditioners is

only an heuristic for nonnormal matrices, yet it yields estimates of extremal eigenvalues
" and condition numbers that are useful in predicting the behavior of iterative methods

and preconditioners.
For Toeplitz matrices a connection between the Fourier analysis technique and

E-pseudo-eigenvalues regions has been demonstrated. The boundary of the Fourier

approximate eigenvalues is the limiting case of the fl_ and fir boundary regions for

E-pseudo-eigenvalues.
The theory of E-pseudo-eigenvalues of Trefethen not only yields reasons why e-

pseudo-eigenvalues are more crucial than eigenvalues for analysis methods for non-
hermitian matrices, it also lends credence to the usefulness of the Fourier analysis

technique.

For non-Toeplitz matrices the connection between the e-pseudo-eigenvalues and the
Fourier approximate eigenvalues is not clear. For the preconditioned systems examined

herein, we see that the Fourier approximate eigenvalues do not form an envelop around
the E-pseudo-eigenvalues. They do, however, capture some of the clustering behavior

of the the E-pseudo-eigenvalues along with estimates of extremal bounds.
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9. Appendix

In this appendix we derive the Fourier approximate eigenvalue expressions for the
matrices used in the section on non-Toeplitz exaznples. Fortunately, the stencil for

" each of these matrices is a form of seven-point stencil. This allows us to apply the
• Fourier technique to each of the preconditioned systems using a general form.

We denote the seven-point stencil operator by

f c •
Mr= d a b .

• _ g

The Fourier approximate eigenvalues for this seven-point operator are given by

As,t(M7) = a + bei°-"+ ce i¢* + de -iO" + ee -i¢' + fe -i(°'-¢t) + ge i(O'-¢').

The Fourier approximate eigenvalues for the matrix M-lA is computed via

_,,t(M_IA) = As,t(A)
As,t(M)"

This follows because the underlying premise of the Fourier technique is that we have
circulant matrices, which would both have the Fourier vectors as their eigenvectors.

, Let us write the matrix A in terms of its stencil form:

l [ 1- A= d a b = -1-ah 4+(a+_)h -1
e • • -1-3h

The Fourier approximate eigenvalues for A are then given by:

A,,t(A) = 4+(a+B)h-e i°'-e i¢'-(l+ah)e -i°'-(l+tSh)e -i¢'
es Ct

= 4(sin 2 -_- + sin 2 --_) + (a + Z)h - ahe -i°" - Zhe -i¢'

Let us write the matrix A as A = D + L + U where D is a diagonal matrix, L
is the strictly lower triangular part of A, and U is the strictly upper triangular part

of A. The Jacobi and SOR matrices can be easily written in terms of these matrices

submatrices of A. For background on splittings and preconditioners see [11].

Jacobi splitting matrix or preconditioner:

[ ]M=D= 4+(a+_)h • ,

As,t(M) = 4 + (a +/_)h.
i
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SOR(w) splitting matrix:

[ .M=D+wL= -w(l+ ah) 4 + (_ +/J) ,

• -w(1 +/_h) •

is,_(M) : 4+ (_ +/_)h- w(1 + ah)e -i°" - w(1 + Zh)e -i¢''.

For the incomplete factorization preconditioner (ILU), the goal is to approximately
factor the matrix into the product of a lower (L) and upper (U) triangular matrices

where the triangular matrices have the same sparsity pattern as the original matrix.

Let M --- LU represent the ILU preconditioner. We also require that the corresponding
entries of M and A are equal whenever the entry in A is non-zero.

The ILU preconditioner for the five-point stencil is then given by

M = LU = d otjk • 1 o_-f_b
£

mj-l,k+l c • ]

: d mj,k b ] ." _. mj+l ,k-1

The entries mj-l,k+l = cd/aj_l,k and mj+l,k-1 = b£/aj,k_l are called fillins be-
cause they occur in locations corresponding to places where the original matrix A had
zero entries. For the center element of M we have the recurrence

mj,k = O_jk+ bd/aj_l,k + C_./OLj,k_ 1. "

Following the steps in [6], we use an asymptotic value a for the aj,k values. This is
necessary since we need the entries along a given diagonal to be a constant value to
use the Fourier technique.

For ILU, mjk - a and the asymptotic value for the aj,k is a -- a -- bd - c£. The

asymptotic values for the fiUins are then given by mj_l,k+ 1 "- cd/a and mj+l,k-1 -"

b£/a. Hence, for analysis purposes, we use the asymptotic version of the matrix M :

M= d a b = dab + • . ,
£ b£/a • £ • • b£/_

1 (cde_i(o,_¢,) b£ei(Oo_¢,)_.,t(M) = _,,,(A) + _ + ).
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