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THE FOURIER ANALYSIS TECHNIQUE AND
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June M. Donato

Abstract

The spectral radii of iteration matrices and the spectra and condition numbers
of preconditioned systems are important in forecasting the convergence rates for
iterative methods. Unfortunately, the spectra of iteration matrices or precondi-
tioned systems is rarely easily available. The Fourier analysis technique has been
shown to be a useful tool in studying the effectiveness of iterative methods by
determining approximate expressions for the eigenvalues or condition numbers of
matrix systems.

For non-symmetric matrices the eigenvalues may be highly sensitive to pertur-
bations. The spectral radii of nonsymmetri. iteration matrices may not give a
numerically realistic indication of the convergence of the iterative method. Tre-
fethen and others have presented a theory on the use of e-pseudo-eigenvalues in
the study of matrix equations.

For Toeplitz matrices, we show that the theory of e-pseudo-eigenvalues includes
the Fourier analysis technique as a limiting case. For non-Toeplitz matrices, the
relationship is not clear. We shall examine this relationship for non-Toeplitz ma-
trices that arise when studying preconditioned systems for methods applied to a
two-dimensional discretized elliptic differential equation.



1. Introduction

The spectral radii of iteration matrices and the spectra and condition numbers of
preconditioned systems are important in forecasting the convergence rates of iterative
methods. A variety of methods are used in the analysis of such matrices [1,12,13,19].

It is not always possible to determine analytic formulas describing the eigenvalues
of a given matrix. Similarly, it is not always possible to determine reasonable analytic
bounds on the extremal eigenvalues or the condition number of a matrix. In many
cases where bounds have been determined, the analysis has been difficult or tedious
[2,9].

When exact eigenvalue analysis is used to obtain extremal eigenvalue bounds, we
must be aware that for non-normal matrices that these eigenvalues can be highly sen-
sitive to perturbations. Hence, the exact spectral radius or condition number of a
non-normal iteration matrix may not give a realistic indication of the usefulness of the
iterative method or preconditioner.

Motivated by the sensitivity of the eigenvalues to perturbations in the matrix, Tre-
fethen and others have utilized a theory on ¢-pseudo-eigenvalues in the study of matrix
equations. The e-pseudo-eigenvalues of non-normal matrices may portray radically
different qualities than the exact eigenvalues for the matrix. See references [15] and
[18].

Alternately, a heuristic technique based on Fourier analysis can be used to easily ob-
tain eigenvalue approximations. The technique has been shown to be a useful heuristic
when studying the effectiveness of iterative methods and preconditioners [3,5,6,7,8,10].
As yet no rigorous explanation of why this technique works so well for non-periodic
non-constant diagonal matrices has been established. For symmetric Toeplitz matrices,
the technique yields the true eigenvalue expressions, but it is does not always yield a
good approximation for general matrices.

Herein, it is shown that for Toeplitz matrices the theory of e-pseudo-eigenvalues in-
cludes the Fourier analysis technique as a limiting case. Hence, the Fourier approximate
eigenvalues serve as an approximation to the e-pseudo-eigenvalues.

For non-Toeplitz matrices, the relationship is not clear. Here, we consider non-
Toeplitz matrices that arise when studying preconditioned systems for methods ap-
plied to a two-dimensional discretized elliptic differential equation. We examine the
relationship between the Fourier approximate eigenvalues and the ¢-pseudo-eigenvalues
for these matrices. '

The remainder of this paper is organized as follows. In Sections 2 and 3 we very
briefly overview the Fourier analysis technique and concepts from the theory of e-
pseudo-eigenvalues, respectively. For greater detail and a wide range of examples and
applications see the references, especially [6,15,18]. In Section 4 we present the theorem
linking the Fourier analysis technique and e-pseudo-eigenvalues for Toeplitz matrices.
In Section 5 the spectra, Fourier approximate eigenvalues, and the e-pseudo-eigenvalues
are graphically presented for a variety of Toeplitz matrices. In Section 6 we examine
the relationship between the Fourier analysis technique and e-pseudo-eigenvalues by
comparing results for preconditioned systems for a discretized two-dimensional elliptic
partial differential equation. In Section 7 results and observations are summarized.
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Derivations of the Fourier approximate eigenvalues expressions are given in an ap-

pendix.

2. Fourier Analysis

Fourier analysis is a pervasive subject in all of mathematics. Here we are interested in
how it can be used to determine eigenvalues or approximate eigenvalues of a given
matrix. Consider a one-dimensional constant coefficient elliptic partial differential
equation (PDE) with periodic boundary conditions discretized on a uniform grid with
N internal grid points. Let Au = b denote the resulting matrix system where A4 is an
(N +1)x (N + 1) matrix.

Let u(®) be a column vector of length N +1 composed of the one-dimensional Fourier
exponential modes.! The jth component of u(®) is given by

2rs
N+1’

u&’)ze"je’ where 8, = j=0,1,...,N, s=0,1,...,N.

The N + 1 vectors {u(®) : s = 0,1,..., N}, called the Fourier vectors, are eigenvectors
of such a circulant matrix A. The fact that we know a basis for such a matrix makes
it quite easy to determine an analytic formula for its eigenvalues.

Although elliptic PDEs rarely yield circulant matrices when discretized, Fourier
analysis is often used [5,6,7,8] in the same way that von Neumann analysis is used for
time-dependent systems [16], and local mode analysis is used for multigrid methods [4].

The steps of the Fourier analysis technique as given by [6] for an elliptic partial
differential equation are summarized as follows:

(a) Treat the matrices involved as if they came from periodic problems. This may
involve ignoring the original boundary conditions of the problem and/or extending
the original matrix.

(b) Force the matrices to have constant diagonal entries. This may entail using an
asymptotic value for the diagonal entries, as in the case for the ILU precondi-
tioner.

(c) From concepts developed in [6] use the relation h, = 2hq to relate the periodic
mesh size to the Dirichlet mesh size.

After performing the above steps, we would have a circulant matrix whose eigenvectors
are the Fourier vectors of the appropriate dimension. We are then able to use exact
Fourier analysis on the altered matrix to determine approximations of its minimum or
maximum eigenvalues or to observe the general shape of its spectrum. This is done
simply by computing

Aul®) = ;\su(s)’

}Similarly, for a constant coefficient matrix with Dirichlet or Neumann boundary conditions we
would use the Fourier sine or cosine modes, respectively, as eigenvzctor components.
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where A represents the modified matrix and A, denotes the st* eigenvalue of A. Since
A is constant diagonal, this computation can be done easily using component or stencil
form. The eigenvalue, },, is a function of 02” ) = 2nshy, = 27s/(ny, + 1) where n, =
2ng+ 1 and s € {1,...,n,}. Thus, 6" € (0, 2r).

The Fourier approzimate eigenvalues of A, A, are then given by the eigenvalues of
A:

e = A,(4) = A,
The degenerate eigenvalue, A, = 0, is ignored when doing analysis for a problem with
Dirichlet boundary conditions.

For higher dimensional problems, the same steps as given above would be followed to
generate the approximating matrix A. However, the appropriate dimensioned Fourier
modes would form the components of the eigenvectors of A. For example, suppose we
have a two-dimensional problem discretized on a uniform grid with N internal grid
points in each direction. Then the Fourier (j, k)t* component of the (s, t)"l eigenvector
would be given by

ug'.slét) = etk 0 <5t < m,

where 8, = 27sh, ¢, = 2wth,h = 1/(n + 1). As above, we would then determine :\,,t
from
Aul®t) = X ulsd),

As in the one-dimensional case, the singular cases with s = 0 or ¢t = 0 are !gnored in
the analysis of problems with Dirichlet boundary conditions.

3. e-pseudo-eigenvalues

For non-hermitian matrices, the eigenvalues of the matrix may be highly sensitive to
perturbations. Hence, when analyzing a matrix to determine its l,ehavior as an iteration
matrix or as a preconditioner, the true eigenvalues of the matrix may be misleading.
In fact, we are more interested in the behavior of the eigenvalues when the matrix A
is perturbed.

This is the connection to the theory of ¢-pseudo-eigenvalues as presented in refer-
ences [15,17,18]. There are several theoretically equivalent definitions for e-pseudo-
eigenvalues. We will use the following definition from [18].

DEFINITION: Given € > 0, A € C is an e-pseudo-eigenvalue of the N x N
matrix A if A is an eigenvalue of A+ E for some E € CV*N with ||E|| < €. The
set of all e-pseudo-eigenvalues of A, called the e-pseudo-spectrum, is denoted
A(A) or simply A..

Rather than examine the exact eigenvalues of a non-normal matrix A we want to
examine A.. However, computing A.(A) using the definition is not always desirable
or feasible for large N. But, Reichel and Trefethen [15] have observed a relationship
between the e-pseudo-spectrum and the union of three sets for Toeplitz matrices. The
following is an overview of one of their results.
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Consider the matrix problem Au = b where A is a Toeplitz matrix

Qg a ‘e an
a. a,
A=| @1 (1)
. a
a.N -+ a1 Qo

A mairix of this form could have arisen from a finite-difference or finite-element dis-
cretization of a one-dimensional self-adjoint PDE. The symbol [15] of this matrix is
given by f(z) = TN _n arz*. The fundamental observation of [15) is that for large N
and small ¢, A, looks approximately like the union of three sets:

Ac~QUQRUA+ A, (2)
where

Q, = {z2€C:I(f(5),2)> 0}
Qft = {ze C:I(f(Sr),2)< 0}

S, = circle of radius r, r = (¢/c)!/N
Sr = circle of radius R, R = (¢/C)~ YN
I{f,z) = winding number of f about =
A = the eigenvalues of the matrix A
A+ A = nunion of e-balls about the eigenvaiues of the matrix A

The values ¢ and C [15] are generally taken to be 1.

The images of S, and Sg, f(S,) and f(Sgr), are easily computed. Typically Q.
and QF provide a good envelope for A(A). Hence, by computing the regions enclosed
by f(S-) and f(Sr), we can get a general idea of the behavior of the matrix with-
out the computationally expensive task of computing A or A.,(A). This is certainly
advantageous in the analysis of iterative methods and preconditioners.

4. The link between the Fourier technique and ¢-pseudo-eigenvalues

In this section it is shown that the Fourier analysis technique yields a limiting expression
for the boundaries of the regions 2, and QR.

THEOREM: For the general one-dimensional Toeplitz matrix the boundary defined by the
Fourier approximate eigenvalue expression, A(A), is a limiting case of the boundaries of (2,
and QR as r, R — 1.
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Proof. Consider again the Toeplitz matrix (1). We have already noted that the
symbol of this matrix is given by

N
f(z)= Y apk. (3)
k=-N

From (2) we are interested in the boundaries of the regions €, and QF, which are
determined by the images of S, and Sg via the symbol f(z). The image of S, is given
by

£(8:) = {z = f(re®) : 8 € [0,27]},

where

16\ u t0\k _ al k 10\ k
f(re®)y = 3 ap(re®) = Y rkay(e®) (4)

k=-N k=-N

with 7 = €!/N, and similarly for f(Sg) using R = ¢~1/V instead of r. As N — 0o, we
haver — 1, R — 1 since ¢ < 1.

To apply the Fourier analysis technique to this Toeplitz matrix (1) we follow the
steps outlined earlier. The circulant version of the matrix 4 is

(G -+ an-1 6N aN ccr Aoy )
A__ aN o ao a] az LI a__N
a.N ‘- Q-1 ag ai cee AN

\ a’—l v a—N aN a’N—l RIS ao /

where A4 is an order 2N + 1 matrix.
We calculate the j** component of

Aul®) = X u®)
to get
fiug-s) = aoeije(’p) + ale‘(j“*l)g(’p) +ot aNei(j+N)9(’p)

+ a_le‘(j’l)e(-p) 4ot a_Nei(j~N)a(,”)

N 2.q(P)
Z ake:ko, ug‘)
k=~N

e
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The Fourier approximate eigenvalues of A are then given by the eigenvalues of A,

N :0(P)
;\.s(A) = :\.s = Z ak(ete'p )kv (5)
k=~N

where 6% € (0, 27).

By comparing the Fourier approximate eigenvalues of 4 in (5) to the images of S,
and Sg via the symbol for A in (4), we see that (5) is a discrete version of (4) where
r = 1. And as already noted, r = 1 and R = 1 are the limiting values as N — oco. 1

Thus the theory of e-pseudo-eigenvalues includes as a limiting case the Fourier
analysis technique. This result is certainly related to the fact that exact Fourier analysis
leads to samples of the curve f(|z| = 1) for Toeplitz systems. In Reichel and Trefethen
[15], it is stated that

For small ¢ and large N, the e-pseudospectrum A, of a Toeplitz matrix is
roughly the same as the spectrum of the associated Toeplitz operator, namely,
a region in the complex plane bounded by the curve f(S), where f(z) is the
symbol of the matrix.

The important and interesting concept here is that the theory of e-pseudo-eigenvalues
may provide the explanation as to why the the approximate Fourier analysis technique
has yielded good approximations even for situations where Fourier analysis does not
strictly apply. v

For the non-limiting case, the boundary formed by the Fourier approximate eigen-
values lies between 2, and 2. And so the Fourier boundary would enclose most (if
not all) of the e-pseudo-eigenvalues. Empirically, we will see that it seems to include
all of the e-pseudo-eigenvalues.

5. Toeplitz Examples

In this section, some Toeplitz examples are given that demonstrate the relationship be-
tween e-pseudo-eigenvalues regions and the boundary defined via the Fourier approxi-
mate eigenvalues. In these examples, we use N = 100 for the order of the matrix A and
€ = 10~*. First, we consider two Toeplitz matrices studied in [15). After these exam-
ples, we consider Toeplitz matrices arising from the discretization of a one-dimensional
second-order differential equation.

In each of these pictures, the true eigenvalues, the e-pseudo-eigenvalues using a
set of five randomly generated perturbation matrices, f(S,), f(Sr), and the Fourier
approximate eigenvalues are plotted. See the legend given in Table 1.

In each of these pictures we see that the e-pseudo-eigenvalues are enclosed by QFR,
which is surrounded by the Fourier boundary.

In Figure 1, example (3.8) of [15] is plotted along with the Fourier approximate



eigenvalues. The matrix is

o
1 0
In Figure 1, f(S;) provides the tighter bound on the e-pseudo-eigenvalues. However,

we still have the Fourier boundary between f(S,) and f(Sg).
Figure 2 shows the regions for the Bull’s head example [15] for the matrix

[0 0 1 .7 \
20 0 0 1 .7
0 2 0 0 1 .7

Ao . ..
0 2 0 0 1 .7
0 2 0 0 1
0 2 0 0

\ 0 2 0 )

The regions depicted in Figure 2 are more complex, but it is still easy to see that the
Fourier boundary lies “in-between” 2, and QF and that the Fourier boundary encloses
the e-pseudo-eigenvalues.

Symbol Item Represented

solid line Q,

dashed line QF

o e-pseudo-eigenvalues

X Fourier approximate eigenvalues
* eigenvalues

Table 1: Legend for A and A, figures
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Figure 1: Regions for matrix A of (6)

Figure 2: Bull’s Head example
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Next we consider the Fourier approximate eigenvalues and the e-pseudo-spectra for
the following one-dimensional second-order differential equation

—ua:x+'7u.1:=fa "/>0,
u(?) =u(l) =0,

on Q = [0, 1]. The region Q is divided into n+1 uniform intervals of mesh size h = n—1+—1-,
and centered differences for u, and upwind differencing for yu, are used. We get the
matrix equation

Au=b, AeR™" (7)

where A is an N x N, N = n?, tridiagonal matrix of the form

with @ = 2+ vh, b= -1, and ¢ = —1 — yh. In stencil form it is given by
[-1—9h, 2+49h, -1].
The Fourier approximate eigenvalues of A are
Ao(A) = a + be' + ce~ %, @, € (0,2m),
and the symbol of the matrix is
f(z2)=a+bz+cz'.

In Figures 3-6, we use this nonsymmetric problem (7) to demonstrate the relation
between the true eigenvalues of the problem and the Fourier and ¢-pseudo-eigenvalues.
The nonsymmetry of the problem is varied by altering the value of the parameter 7.
Again, N = 100 and ¢ = 1074.
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Figure 3: Regions for (7) with v = 0.
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Figure 4: Regions for (7) with v = 50.
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Figure 5: Regions for (7) with v = 150.

Figure 6: Regions for (7) with v = 200.
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6. Non-Toeplitz Examples

In the previous section, a relationship was shown to exist between the Fourier approx-
imate eigenvalues and the e-pseudo-eigenvalues for Toeplitz matrices. Untortunately,
the proof relating the Fourier approximate eigenvalues and the e-pseudo-eigenvalues
bounding regions can not be immediately generalized to non-Toeplitz systems.

In this section, we examine pictorially the relationship between the e-pseudo-eigenvalues

and Fourier approximate eigenvalues of certain non-Toeplitz matrices. These matrices
will arise from the preconditioning of a discretized two-dimensional elliptic partial dif-
ferential equation. We use the Jacobi and SOR(w) splitting matrices and the ILU
preconditioner.

The model two-dimensional parameterized elliptic partial differential equation that
we consider is

-Dutou,+Puy, = f on Q=[0,1]x][0,1],
u = 0 on 989,

where (0 is partitioned into an uniform grid with n interior grid points in each direction
having a mesh size of h = ;‘% Centered differences are used for the Laplacian and
upwind differencing is used for the convection terms. The equation for the (j, k)t* grid
value of u is given by

aUjk + bujyrk + Cujksr + dujo i + Lujky = B2 fik,

where ¢ = 4 + (o + f)h,b=c = ~1,d = =1 — ah,{ = —1 — Bh. Using the rowwise
natural ordering for the components of u, the resulting scaled discretized system is
given by

Au = h?f,

where A is an N X N matrix, N = %2, in stencil form given by

.o . . -1 .
A=1d a b|=]| ~1—ah 44+ (a+p)h -1
- L. -1-06h

While this matrix is close to being Toeplitz, it is not because the Dirichlet boundary
conditions introduce zeros entries in the super and sub-diagonals. Nor will the resulting
preconditioned systems be Toeplitz. So, we can no longer directly use the Reichel-
Trefethen observation for Toeplitz matrices, and the regions §2, and QR will not be
plotted. We compute the e-pseudo-eigenvalues via the definition given in Section 3.

In Figure 7, there are three groups of three pictures corresponding to the three
methods applied to the discretized system with parameter values of o = 8 = 0. In each
set of three, we plot (from left to right) the the computed eigenvalues, the ¢-pseudo-
eigenvalues, and the Fourier approximate eigenvalues for the matrix M~1A.

The first set of three corresponds to M being the diagonal of A (the Jacobi splitting
matrix or preconditioner), the second set is for M corresponding to the splitting matrix
for SOR(w), and the third set for M being the ILU preconditioner.
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This scheme is repeated for parameter values of a = 5,8 = 1 in Figure 8 and for
parameter values of @ = 8 = 5 in Figure 9.

In computing the Fourier approximate eigenvalues for A and its preconditioned
systems, the two-dimensional Fourier exponential modes are used in the Fourier analysis
technique.

The e-pseudo-eigenvalues are computed according to the definition given in section
3 by calculating the eigenvalues of A + E for five randomly generated perturbation
matrices with ||E|| < ¢. To compare the plots for the Fourier approximate eigenvalues
and the e-pseudo-eigenvalues we must choose a reasonable value of ¢. For a polynomial
pn(z) we have the relationship [14],

L
lipa(2)lla < 1lpn(A)] < 5—lIPn(2)l]a.

where L is the arc length of the boundary of e-pseudo-eigenvalues. Rather than compute
the arc length, which is a ncn-trivial process, we choose that value of € that reasonably
scales the e-pseudo-eigenvaliie plot. These values are given in Table 2.

a=f=0}a=5,=1|a=p8=5
Jacobi 0.10 0.10 0.10
SOR 0.10 0.10 0.10
ILU 0.01 0.001 0.01

Table 2: ¢ values used in the e-pseudo-eigenvalue plots

It is obvious from these pictures that the Fourier approximate eigenvalues and
the e-pseudo-eigenvalues can vary quite drastically in appearance when compared to
the actual eigenvalues. Yet, the Fourier approximate eigenvalues mimic some of the
clustering behavior of the e-pseudo-eigenvalues and does well in most instances to
approximate the shape and extremal values of the ¢-pseudo-eigenvalues.

If it is indeed more critical to examine e¢-pseudo-eigenvalues when analyzing and
designing iterative methods and preconditioners, then the Fourier analysis technique
has several advantages. The Fourier approximate eigenvalues capture much of the clus-
tering and bounding information of the ¢-pseudo-eigenvalues, but with significantly less
computational effort. To compute the ¢-pseudo-eigenvalues we actually must compute
the eigenvalues of A + E for several randomly generated perturbav.n matrices. For
each perturbation matrix this is an O(N3) operation for an N x N matrix. Computing
the Fourier approximate eigenvalues is O(/N?2). In addition, the Fourier approximate
eigenvalues are computed from the Fourier expression, which can be analyzed indepen-
dently. This allows a researcher to tune a preconditioner to have a desired behavior.
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- 7. Summary

The Fourier technique used in the analysis of iterative methods and preconditioners is
only an heuristic for nonnormal matrices, yet it yields estimates of extremal eigenvalues
and condition numbers that are useful in predicting the behavior of iterative methods
and preconditioners.

For Toeplitz matrices a connection between the Fourier analysis technique and
e-pseudo-eigenvalues regions has been demonstrated. The boundary of the Fourier
approximate eigenvalues is the limiting case of the 0, and Q® boundary regions for
e-pseudo-eigenvalues.

The theory of e-pseudo-eigenvalues of Trefethen not only yields reasons why e-
pseudo-eigenvalues are more crucial than eigenvalues for analysis methods for non-
hermitian matrices, it also lends credence to the usefulness of the Fourier analysis
technique.

For non-Toeplitz matrices the connection between the e-pseudo-eigenvalues and the
Fourier approximate eigenvalues is not clear. For the preconditioned systems examined
herein, we see that the Fourier approximate eigenvalues do not form an envelop around
the e-pseudo-eigenvalues. They do, however, capture some of the clustering behavior
of the the e-pseudo-eigenvalues along with estimates of extremal bounds.
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9. Appendix

In this appendix we derive the Fourier approximate eigenvalue expressions for the
matrices used in the section on non-Toeplitz examples. Fortunately, the stencil for
each of these matrices is a form of seven-point stencil. This allows us to apply the
Fourier technique to each of the preconditioned systems using a general form.

We denote the seven-point stencil operator by

f c
M;=|d a b
. £ g
The Fourier approximate eigenvalues for this seven-point operator are given by
Ast(M7) = a + be'®s + ce¥t + de s 4 fe=i9t 4 femi(fa=00) 4 geilfe—en),

The Fourier approximate eigenvalues for the matrix M~14 is computed via

;\s,t(A)

A M™TA) = 2202
( ) R o)

This follows because the underlying premise of the Fourier technique is that we have
circulant matrices, which would both have the Fourier vectors as their eigenvectors.
Let us write the matrix A in terms of its stencil form:

. c - . —~1 .
A=|d a b|=] -1-ah 44+ (a+P)h -1
.. . -1-ph

The Fourier approximate eigenvalues for A are then given by:

Aet(A) = 4+ (a+B)h— e — e — (14 ah)e™™ — (1+ Bh)e™"*

2 ¢t

= 4(sin? 23- + sin 3—) + (o + B)h — ahe™'? — Bhe~t¢

2
Let us write the matrix A as A = D 4+ L + U where D is a diagonal matrix, L
is the strictly lower triangular part of A, and U is the strictly upper triangular part
of A. The Jacobi and SOR matrices can be easily written in terms of these matrices
submatrices of A. For background on splittings and preconditioners see [11].
Jacobi splitting matrix or preconditioner:

M=D=|. 44(a+B)h - |,

Soa(M) = 4+ (a+ Hh.



- 20 -

SOR(w) splitting matrix:

M=D+wL=| —-w(l+ah) 4+ (a+8) - |,
. —w(1 + Bh)

Aet(M) =4+ (a+ B)h — w{l + ah)e™ — w(1+ Bh)e~**.

For the incomplete factorization preconditioner (ILU), the goal is to approximately
factor the matrix into the product of a lower (L) and upper (U) triangular matrices
where the triangular matrices have the same sparsity pattern as the original matrix.
Let M = LU represent the ILU preconditioner. We also require that the corresponding
entries of M and A are equal whenever the entry in A is non-zero.

The ILU preconditioner for the five-point stencil is then given by
F .. . aj‘klc
M=LU = d aj; - . 1 a;klb
| - J4 . .
mMji-1,k+1 c
= d mj k b
4 Mj41,k-1

L

The entries m;_; k41 = cd/aj_; % and m 4y k-1 = bl/aj k-1 are called fillins be-
cause they occur in locations corresponding to places where the original matrix A had
zero entries. For the center element of M we have the recurrence

Mk = ajk + bd/a;_ 1k + cb/ojky.

Following the steps in [6], we use an asymptotic value a for the o values. This is
necessary since we need the entries along a given diagonal to be a constant value to
use the Fourier technique.

For ILU, mj;x = a and the asymptotic value for the a; is @ = a — bd — ¢f. The
asymptotic values for the fillins are then given by m;_; x4+1 = c¢d/a and mjy 141 =
b¢/a. Hence, for analysis purposes, we use the asymptotic version of the matrix M :

cdfa ¢ - ¢ cd/a
M = d a b =|d a b |+ . . ,
L b/a ¢ bl/a

Mox(M) = Ay i(A) + % (cde-i(ﬁ.—dn) + beeilt=90)
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