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Abstract

Staggered fermions are constructed for the transverse lattice regularization scheme.
The weak perturbation theory of transverse lattice non-compact QED is developed in light-
cone gauge, and we argue that for fixed lattice spacing this theory is ultraviolet finite, order
by order in perturbation theory. However, by calculating the anomalous scaling dimension
of the link fields, we find that the interaction Hamiltonian becomes non-renormalizable for
g%(a) > 4x, where g(a) is the bare (lattice) QED coupling constant. We conjecture that
this is the critical point of the chiral symmetry bresking phase transition in QED. Non-
perturbative chiral symmetry breaking is then studied in the strong coupling limit. The
discrete remnant of chiral symmetry that remains on the lattice is spontaneously broken,
and the ground state to lowest order in the strong coupling expansion corresponds to the
classical ground state of the two-dimensional spin one-half Heisenberg antiferromagnet.
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1. Introduction

Staggered fermions|1)] for latticc gauge theory [2][3] have the desirable property of
preserving a discrete remnant of chiral symmetry, and are therefore useful for studying the
non-perturbative chiral symmetry breaking in gauge theories. Staggered fermions have
been constructed for the four diinensional Euclidean formulation of lattice gauge theory,
and for the Hamiltonian formulation of lattice gauge theory, based on a three dimensional
spatial lattice and one continuum time variable. In sections 2 and 3, we construct staggered
fermions for the transverse lattice formalism of Bardeen et. al.[4][5], which is based on & two-
dimensional spatial lattice and two continuum space-time coordinates. Wilson fermions
jor the transverse lattice were constructed in ref. [4].

The transverse lattice construction is & minimalist’s non-perturbative regularization
‘scheme for gauge fields[4]. After choosing an axial gauge and imposing the Gauss con-
straint, the degrees of freedom of the gauge field are reduced to two spatial components,
and these can be regulated by mapping them to link fields on a two-dimensional lattice.
The link fieids are non-perturbative excitations of the gauge fields, and are scalars with
respect to the two continuous space-time coordinates perpendicular to the lattice, 8o their
ultraviolet (UV) behavior is softened.

The basic disadvantage of the transverse lattice construction is the breaking of 3+1
dimensional Lorentz invariance down to 141 dimensional Lorentz invariance plus discrete
2-D lattice translations and rotations. This means, for example, that pure 3+1 dimensional
gauge theory has three bare coupling constants when regulated this way, as dictated by
141 Lorentz invariance[5]. One assumes that the full 3+1 Lorentz invariant theory is
recovered in the scaling region of the lattice theory for a line of tricritical points of the
coupling constants. The tricritical points are determined by examining 341 relativistic
dispersion relations. ’

Weak coupling perturbation theory of transverse lattice non-compact QED (TLQED)
is discussed in section 4. After gauge fixing in light-cone gauge, the UV properties of
the theory are studied. We argue that the usual diagrammatic UV divergences are cut
off by the finite transverse lattice spacing. The transverse lattice construction converts a
four-dimensional field theory into a two-dimensional field theory with a finite (for finite
sites on the lattice) number of “favors® which is then UV finite, diagram by diagram, for
fixed lattice spacing.

In section 5 we calculate the anomalous scaling dimension of the link fields on the
lattice, 2ad find that the interaction Hamiltonian becomes a non-renormalizable interaction
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for g*(a) > 4=, where g(a) is the bare QED coupling constant. The anomalous scaling
dimension is calculated by normal ordering the link fields and is non-perturbative because
the link fields are exponentials of the gauge fields.

The relationship between this phase transition and the phase transition of the sine-
Gordon model, the quenched ladder approximation of QED, and quenched non-compact
lattice QED is discussed. Based on these analogies, we conjecture that this critical point
corresponds to the non-perturbative chiral symmetry breaking phase transition in QED.

Recent interest in chiral symmetry breaking in QED was generated by Miransky|6)
who used the ladder approximation of the Schwinger-Dyson equation to argue for the
existence of & non-trivial UV renormalization group fixed point of the QED coupling con-
stant. This phenomenon is closely related to the collapse of the Dirac wavefunction iu
supercritical (Z > 137, for which a = Ze?/4r > 1) Coulomb fields[6]. The fixed point is
the boundary of the chirally symmetric ladder QED phase and its strong coupling phase
which has spontaneous chiral symmetry breaking(7). That the strong coupling phase of
QED breaks chiral symmetry spontaneously is understood analytically via the strong cou-
pling expansion of lattice gauge theory [1)[8][9], and via lattice gauge theory Monte-Carlo
simulations{10][11}[12]. It is not clear however, that lattice gauge theory data supports
the existence of a non-trivial UV fixed point for full QED. It may be the case that the
renormalized charge of the continuum theory vanishes at the critical point{13].

In section 6, we study the strong coupling limit of TLQED by calculating the energy
shift of the infinite coupling vacuum states to lowest order in the inverse coupling 1/g. We
find that the discrete remnant of chiral symmetry on the transverse lattice is spontaneously
broken and that the chiral condensate (y) is non-vanishing for the lowest energy state.
We discuss our results further in section 7.

2. Staggered fermions for the transverse lattice

In this section, we construct staggered fermions for the transverse lattice, and in the
process, introduce notation for the transverse lattice construction that will be used in later
sections.

The basic strategy is to write the Dirac equation (iy#8, — m)y = 0 in appropriate
component form, and find a fermion equation on the transverse lattice which reproduces
these equations in the continuum limit. We use the chiral representation of gamma matrices

o (0 -1 i (0 o (1 0
Y '—(_1 0) 7= (-"0" 0) ’}'5"'(0 __1) y (2-1)
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and define the fermion 4 components

my (1)
Y= (S;) = (“z(z)) X = (;ﬁ(z)) ’ - (2.2)
In light-cone coordin Jtes

z* = (x + %) 04 =? (6o £ 65) , (2.3)

Sl

the component equations are

V2 0_x® =imp™ + [y — i85]x*)
V2 04X =imp® + [0y +id] XV,
VZ 840 =imx® — [8 - idy] ¥,
V2 8- =imx® - [8; + i8] o'V .

(2.4)

Now consider a complex one-component fermion field on a discrete square lattice of
points £, = a(nz,ny), with lattice spacing a and basis vectors & = (a,0) or (0,a). In this
section, the lattice is taken to be infinite. The fermion field ¢ is a continuous function of

the light-cone coordinates z*, and satisfies the equation

B¢ = Py(£.)0:¢ + Pr(£L) 010 + Po(Z1)D2¢ (2.5)

where P;, P, and P; are unknowns to be determined by matching to the continuum
equations (2.4) with zero mass, (adding a mass term is more complicated and will be
considered in the next section), and A, is the symmetric lattice derivative

Aaf(Z1) [f (ZL+ &) - f(£L.-4)] . (2.6)

The fermion has the mode expansion
¢= / d*k . Bk, 1) kT e k7= gitana (2.7)
-
and in momentum space, the equation of motion is
K¢ = K Pyé + Py (sm t’) $+ By (“‘“ ‘2) é. (2.8)

In the continuum limit, as a — 0, finite energy states are located about £y ~ ¢, or £o ~ T—€.

Therefore, there ave four continuum fermion components for one transverse lattice fermion.
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This is just the standard fermion doubling problem, which works to our advantage in this
case because four continuum components are desired. Equivalently, in lattice coordinate
space, different linear combinations of four adjacent sites will correspond to four different
fields in the continuum. |

To be more specific, introduce a lattice parity Pr[Z,] = (—1)*=+™. If Pr|¥ ] is +1
(=1), then £ is an even (odd) site. For the moment, consider the fermion at even or odd
sites to be different continuum fields, labeled @even and ¢oaq4. Making the ansatz Py = Py,
the equation of motion (2.5) becomes

V2 6_¢even =P1A1¢odd + PaAzdoda

(2.9)
V2 8, ¢oda =P1A1beven + P2A2deven »

If we select P, = 1 and P = -iPr, then equations (2.9) are just the massless continuum
equations for the Dirac fermion components x of eqn. (2.4). This is not complete result,
however, because we know that there should be four continuum components. The full
result is ubtained by breaking up the lattice further into a sub-lattices graded by (—1)"v.
The full result is that with the Py, P,, P; selected above,

XD =3 [8(8.) + $(EL+ )] , 2. even,
X® =2 ($(Z0) + H(EL+5)] , 1 0dd,
o) =2 [$(21) - $(Z1 + D) (-1)™ , £ 0dd,

) =2 [B(21) = $(EL +8) (~1)™ , Zy even,

(2.10)

where &= a(1,1). One can easily check that these fields obey the massless version of the
equations (2.4).

Each field is associated with the face of the lattice with center £, + %5‘. Label each
point on the lattice by ((—1)"=,(~1)"v), so that there are four types of points with re-
spect to this grading. Then x(*), ¢(?) are associated with type A faces, and x(?), o)) are
associated with type B faces, where the faces are labeled in figure 1.

Consider the symmetries of the Lagrangian

L=i3 a* ¢ [Bg = (~1)™ "85 - Asg +i(-1)" ™ Az9) (211)
£y

of the Dirac fermion on the transverse lattice. In addition to 1 + 1 dimensional Lorentz

invariance, it has lattice translational invariance £; -+ 2@&; as in regular lattice gauge
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(1 |'1) ("1 -'1)

B A B

(1,1) (-1,1)
A B A

Fig. 1. [Each point on the lattice is labeled by ((-1)"s, (=1)"v). The fields x(, o) are
associated with type A faces, and x(¥,¢()) are associated with type B faces.

theory, translations are shifts by an even number of sites. It also has the shift symmetry,
#, — &, +3, which is interpreted as a discrete chiral rotation on the fields, since under this
transformation, x — - and ¢ -+ ¢, as is seen by examining eqns. (2.10)!. This is also
similar to the discrete chiral symmetry found for staggered fermions on higher dimension
lattices. The exchange symmeiry of the Hamiltonian version of staggered fermions(1][3]
is broken in the transverse lattice case by the unequal treatment of the three spatial
coordinates. We are left with a discrete rotation symmetry, a rotation by 7 about the z3
axis, Ny — —na, and a single global gauge symmetry, ¢ — €%¢.

A mass term for the Lagrangian should have terms of the form W11 and ROV
According to the analysis which is summarized in fig. 1, the bilinear couplings will have to
be nearest neighbor, because x(!) and ¢(? live on type A faces, and x(? and ¢V live on
type B faces. The mass term for the Lagrangian is

Ly =-mY_a® ¢Y(Z.L)(Z1 + PLZL]D) (2.12)
Z,

It explicitly breaks the discrete chiral symmetry Z, — &1 + §, and leads to the correct

continuum mass terms in the equations(2.4). The nearest neighbor coupling in eqn. (2.12)

1 his is denoted as & chiral rotation, although it really is a combination of the gauge trans-
formation ¢ — iy and x — iy, followed by the chiral rotation ¢ — ~iyp and x — $Xx.
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breaks the global U(1) gauge symmetry at each site. For each pair of sites £ and ¥, +
Pr|Z.]7, the U(1) x U(1) symmetry is broken to the diagonal U(1). It is possible to gauge
the remaining diagonal U(1) symmetries, and this is discussed in ref. [14]. The construction
is awkward, and we will avoid it by adding a second flavor of lattice fermion. Then there

will exist a mass term which preserves all of the U(1) symmetry.

3. Gauging transverse lattice staggered fermions

In this section we introduce gauge fields in an attempt to make the Lagrangian
eqn. (2.11) locally gauge invariant. This however, will fail because of the 2-D gauge anom-
aly, and a second set of fermion fields will have to be introduced, leading to a fermion
doubling problem in the continuum limit. |

To promote §gp = iA¢ to a local gauge symmetry, introduce the 2-D vector gauge
fields A; and 2-D scalar fields Ao with transformation laws

SgAi(ZL, %) =0A(ZL,2%), i=0,3,

(3.1)
6GA (x-L, ) "'A+A(x.l..’ ) y @=I,Y .
The forward lattice derivative
- 1., - o
AYf(ZL) = S f(EL+a) - f(Z0)] (3.2)
obeys the integration by parts ruls Ei'; fAtg=-%; (A3 f)g , where
ALf(EL) =~ [f(-’c.L f(EL-a) . (3.3)
The Lagrangian for the gauge fields is
1
Lgsuge = Ea [ — (F;;)° o 2 (Fa)+ i (Faa)2] : (34)

where g3, g2, and g3 will be fixed by requiring 3 4+ 1 Lorentz invariance in the continuum
limit. The field strengths F,, are

Fij = 0iA; = 0;A;, Fop= AIAﬁ - A;Aa y Fia =06;Aq ~ A:A,' . (3.5)
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For the fermion fields, we dress the derivatives in the Lagrangian eqn. (2.11) via the
minimal coupling procedure,

8ip — Di¢ =(8; —iAi)¢,
Bap = Dad ={9(ZL +@)e4=(32) — 4(z, ~ G)e2A=(F1=D} J2q .

However, this construction does not yield a gauge invariant theory. The 2-D kinetic terms
for the fermions are,

(3.6)

L=ivV2¢t(8.. —iA)p+... £, even ,

=iV2¢H 0y —iAL )P4 ... £, odd .

There is only a single left or right-handéd fermion for each local U(1) gauge symmetry, and

therefore, the local U(1) symmetries are anomalous. The anomaly breaks the U(1) x U(1)

symmetry of pairs of sites (say £, and £, + Pr[#.]7) to the diagonal U(1). The mass

term eqn. (2.12) also produced this pattern of symmetry breaking. In principle, one can

construct transverse lattice QED with the remaining U(1) symmetry[14]. However in

practice, it will be easier to add a second flavor of lattice fermions to cancel the anomalies
and preserve the full set of U(1) symmetries. The fermion action takes the form

2
Lr=iy, Za’¢}{ [Do + (—1)™*"+/ D3] ¢y
f=1%, (3.8)

~ [De +i(=1)™*+™*D, ] w} |

(3.7)

where k is a hopping parameter that will be fixed by requiring 3+1 Lorentz invariance.
While £ = 1 in the classical continuum limit, it will receive quantum corrections and in
fact will have to be renormalized. With two flavors on the lattice, there will be two Dirac
fermions in the continuum limit. Their components ¢ and x are constructed from different
flavors of the lattice fermions, i.e. ¢; and ¢, contribute to each of the two continuum Dirac
fermions. The components of the continuum fermions

:“*(‘g) , i=1,2 (3.9)
are o
i =3 [61(E1) + 61(EL +3)] , Z. even,
1 - v -
X(xz) ==[{01(FL)+d1(£L+3)), ZLodd,
% (3.10)
i =3 [2(FL) = $2(ZL + 8)] (1), Z, even,
1 - " n =
w&” =3 [¢2(ZL) = ¢2(Z1 + 8)] (-1)"*, ZL o0dd,
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and
X =1 [¢z(=ﬂ.x.) +¢a(EL+8), Fiedd,

x5 =1 [¢2(-’3J.) + ¢2(ZL+5)] , Fieven,

(3.11)
o) =3 5 [61(Z1) - hEL+ (=)™, odd ,
‘sz) ='2‘ [@1(ZL) = 1 (EL + 8] (-1)", £y even.
The mass term ¥z, a®> % 30, ¥,;¥, is given by
Za {—-—( -1 t¢’¢z + ¢2¢1]} , (3.12)

and it preserves the U(1) symmetries for all the sites.

The mass term explicitly breaks the discrete chiral symmetry generated by £, —
£, + 5. As discussed in the previous section, this takes x; — —X; and ¢; — ;. This
corresponds to a discrete Z; subgroup of the 4-D anomalous U(1) chiral symmetry.

The 2-D gauge theory for each site on the lattice also 4as an anomalous chiral trans-
formation,

894(21) = iM-1)T*¢s(21) . (3.13)
This (global in the 2-D sense) symmetry is broken at one-loop in perturbation theory. It
corresponds in the 4-D continuum limit to a broken axial-vector flavor symmetry, under
which the continuum’ components transform as

6T =idoyys T, ¥ = (‘;;) , (3.14)

where o3 acts in flavor space.

The only non-anomalous continuum symmetry of thie .nodel is the gauged U(1) ‘total
lepton number’ symmetry. There are no global flavor symmetries for this transverse lattice
model. This is in contrast to the naive (Wilson) and staggered (Susskind) formulations
of QED on 4-D euclidean lattices[15][16]. The action for a single 4-D naive massless
fermion on the 4-D lattice has U(4) vector and axial-vector flavor symmetries, which 15
a subgroup of the full U(16) flavor symmetries of the 16 continuum Dirac fermions of
this model. The minimal staggered massless fermion action on the 4-D lattice has U(1)
vector and axial-vector flavor symmetries on the lattice, which is a subgroup of the U(4)
flavor symmetries of the 4 continuum Dirac fermions for this model. The transverse lattice
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model constructed in this section has no continuum flavor symmetries, and has only two
continuum Dirac fermions in the continuum limit. For the fermions on the 4-D lattices, the
axial-vector flavor symmetries which exist in the lattice action are spontaneously broken
in the strong coupling limit. The non-vanishing of the order operator ¥ - ¥, which signals
the breakixig of the axial-vector flavor symmetries of the lattice models, is confirmed, by
Monte Carlo simulations, for the scaling region of the theory[17][18]. This order operator
breaks all of the continuum axial flavor symmetries, and one expects the full multiplet of
Goldstone bosons associated with the full set of broken axial symmetries in the scaling
regime. In section 6, we will show that the discrete chiral symmetry of the transverse
lattice model is spontaneously broken in the strong coupling limit by the non-vanishing
vacuum expectation value of ¥ - 0.

The parameter » is included in egqn. (3.8) because 3+1 Lorentz invariance is broken
down to 141 Lorentz invariance by the transverse lattice construction. One may ask
whether two new parameters should really occur in the Lagrangian, one for the D, term
and one for the D,, term, since these are two separate 2-D mass terms. The answer is no,
because there exists field redefinition that transposes the z and y terms in the Lagrangian.
It is expressed as ¢y — asdys, where ay is defined recursively,

ag(Fr) =i(=1)"*™+ag(Z - 7) ,
ap(81) = = i(=1) ™t oz, — ), (3.15)
as(0) =1

This is a spin transformation; these transformations are typically applied to staggered
fermior systems to diagonalize v matrices in the fermion action[19]. Applying this partic-
ular spin transformation to eqns. (3.8) and (3.12) interchanges the labels z and y.

This concludes the construction of non-compact transverse lattice QED with staggered
fermions. The goal of the remaining sections is to extract non-perturbative information
about QED from this construction.

4. Ultraviolet finiteness of perturbation theory

In this section, the weak coupling perturbation expansion will be developed for the
transverse lattice theory with Lagrangians given by eqns. (3.4) and (3.8). It will be argued
that the transverse lattice regulates all the UV divergences for each diagram in perturbation
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theory. We will use this formalism in the next section to calculate the non-perturbative
scaling dimension of the interaction Hamiltonian.

Axial gauges minimize the mixing of longitudinal and transverse degrees of freedom
and are therefore particularly useful in the context of the transverse lattice construction.
Space-like axial gauges are problematic for weak coupling because of difficulties imple-
menting Gauss’s law([20], so the light-cone gauge A = 0 will be used. In light-cone gauge,
if the field theory is quantized on the nuil-plane z+ = 0, then A, is a constrained field.
So in this section, we use the light-cone quantization scheme — light-cone gauge with the
null-plane Cauchy surface.

Only half of the fermion fields ¢(/) satisfy dynamical equations on the null plane.
With the definitions,

x=¢s, (=1t =1,
Y=¢s, (=1t =41,

one finds that only the ¢ are dynamical fields. The constraint equations in light-cone

(4.1)

gauge for the fields A, and x are

2
824, =J. = (%) 6_AZAq - VI, (42)
and )
0-x= 51Dy = iDi]. (4.3)

Using $|z~ — y~| = 1/82, which satisfies 82 |z~ — y~| = &(z~ ~ y~), the constraint
equation (4.2) is integrated:

A=} / dy~le= =y~ |-+ Fz~ +G . (4.4)

The constant G(zt, £, ) is set to zero as a gauge fixing constraint; it fixes z* dependent
(and =~ independent) infinitesimal gauge transformations. The F(z*,Z )z~ term corre-
sponds to the theta angle of the Schwinger model[21]. In the continuum limit, the physical
3 + 1 Lorentz covariant vacuum should correspond to F' = 0, so it can be set to zero
identically.

To remove the coupling constant dependence from the canonical commutation rela-

tions, we let
Aa - 92Aa . (4.5)
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The current J_ and covariant derivative D, must be changed accordingly. With this field
redefinition, the light-cone momentum P+ = (P + P%)/ v2 and the light-cone energy
~ = (P° - P%)/V?2 are

P+ = / dM {a—Aaa—Aa + 1‘/§1p1'¢} L]

1 2 1 (4‘6)
/dM{ F12F12 J.. 32 J.. \/5(55.5 - iéap)'!/JtDafé-: [Dp”&b] } ’
where the constraint equations have been applied, and the measure is
dM =" aldz™ . (4.7)
£,
The light-cone Hamiltonian P~ can be divided into free and interacting parts:
_ - 9 , & 1
= /dM {clAaAﬁ AgAa + c2(Aada)’ + ﬁ¢1A°A°5:¢} (4.8)
where |
¢ =- l(gz)' Cz=l(ﬁ"1) (4.9)
*\gs/ 2\ef 4/’
and ‘
g1 2
P = /dM{ - ﬁ (;‘2') AZA 05 [‘/’W’] - gn/:*w ["/’1‘”
(4.10)

\FW [(606 ’Eaﬁ Da N [D[i'd’] Ag 5-. [Aa'w]] }

We define the beta functions By (7) = a8v/0a for each coupling constant 7 =
91,92, 93, 5. The coupling constants g; and g3 will are fixed with respect to go for each
value of lattice spacing a by requiring that the photons obey a covariant dispersion relation.
The appropriate renormalization scheme for covariant dispersion relations is

a=-3, c=0. (4.11)

At tree level, this implies gy = g2 = g3. This relation will receive corrections in perturba-
tion theory; the beta functions

Bu(g1) = Bu(gz) + O(g2) ,
Ba(gs) = Bulgz) + O(g2) »
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are determxned by the renormalization condxtxous eqns. (4.11).
The quantum theory is defined on a square, doubly periodic, txa.nsveme Inttice with
N 2 sites, N even. A real scalar field o(%,) = (£, + N&) has the mode expansion

o(#L) =3 w"a(t) + cc, | (4.13)
‘ . |
where w is the phase factor e?™/¥ the £, are integer inoment,a which take walues from
~N/2 to N/2 — 1, and the inner product . n is shorthand for Y., Lata. With these
definitions, the mude expansions for the fields are o
‘ d” J -m: tn Lhina™ -»tn 'I
Aa _m_ﬁu / )L au’(ﬂ"’?)'i'a alfs 7))}
d" c-ivyz" 4n +ine”  ~&n gt ‘ '

7 mz / W b(L,n) 4T W d (l,n)}_, (4.14)

Yl = L j -@» {ue"""’"-w"" 2, 9) + et w=tn bt (L 7) } .

szN a5 Jo Vi

- The canonical (anti-)commutation relations for the creation and annihilation operators are -

[aa ”P),ap(t',fl )} =8¢0 Gap ’76(” ),
{b(l, "7), bt (l',’fl )} %63‘,(0 6&5 ’76(’7 -1 ) y (4'15)
{d(¢,n),d"(¢',')} =6e,e bapmb(n—17).

The modes a,b,d annihilate the light-cone vacvwum, and the normal ordered expressions
for the fermion charge @r = v/2 [ %!y, momentum P*, and free Hamilitonian Py~ are

F=§‘ IE: {b*(e,n o) = denatt }

Pt =¥ [anfatenoattn) +8tempten) + e maten |
[ 4

- SIE 2 (ATA™ )a!

=% {1 aramialmaen)

+HRE(83;) [P (& mb(tyn) + 41 (£, m)d(2, )] } ,

(4.16)

where

[ ]

S , \ 2 ’ P 2
ka(A"*A";l)z}:(m) . ki(aYt }:(“‘“#) . (4.17)
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b,
Bw

vRM !

]

The photon states at(£,7)|0) satisfy the free-field equation
[P*Py = Lki(ata™)]d'l0) =0. (4.18)

As the lattice size becomes large, k3 (A*A™) — k} + k3, where k, = 27{,/Na. Hence
eqn. (4.18) is the 3 + 1 Lorentz covariant free photon dispersion relation for finite lattice
size. A similar relation holds for the fermion states.

We now argue that light-cone perturbation theory([22](23](24] is finite, diagram by
diagram. The S matrix is (f|T exp(~i [ dz* P;])|i), where T' denotes time ordering with
respect to z+, and P/ is the normal ordered interaction light-cone Hamiltonian (4.10) in
the interaction picture. Dingrammatic perturbation theory is generated by expanding the
time ordered exponential and inserting complete sets of intermediate states. In general,
the S-matrix will have an overall energy conservation factor -27ri6(Po""f - Po”:,-,), and each
intermediate state will have the factor 1/(Fy , — Fy” +i¢). Matrix elements of the interaction
Hamiltonian with intermediate or final states will always include the factor 6(3 0, ny -
Y. M), where the ny are outgoing momenta and the 7; are incoming momenta, because
a1l vertices conserve light-cone momentum %. The light-cone momentum is bounded from
below by zero for all states.

One delicate aspect of light-cone perturbation theory is the limit # — 0 in intermediat:
loops. Certain connected one-loop diagrams are ill defined for zero 7 in continuum QED
and QCD (see refs. [25] and [26]), and need to be regularized. The regulator can be
removed when calculating gauge invariant combinations of one-loop diagrams, i.e. the p = 0
region does not contribute to gauge invariant processes at one-loop. These divergences
are particular to canonical Hamilitonian perturbation theory and do not correspond to
the UV divergences of covariant perturbation theory. Also, they are not infrared (IR)
divergences since the parity operaicr P, where Py(z~,z%)P~! = ¢(z%,z™), acts on the
modes as Pbt(¢,n)P~1 o bt(£, k% (¢)/2n), and interchanges the large and small 7 regions.
Two popular regularization schemes for the n = 0 region are, a sharp 7 cutoft[25](26],

‘and the discrete light-cone approach [27][28][29]. However, these cutoffs may not be good

regulators to higher order in perturbation theory because the n = 0 region can contribute
to connected diagraras in light-cone field theory(30]. One signature of this problem would
be the loss of gauge or Lorentz symmetries; counterterms would have to be added to restore
the symmetries order by order in perturbation theory.

The regular UV divergeaces of QED arise from integration over the transverse mo-
mentum k, of the fermions and the gauge fields in the 1/(Py, — P~ 4 i¢) terms of the §
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matrix[31]. These divergences are explicitly cut off by the transverse lattice construction,
since the perpendicular momentum is bounded by 8/a®. There also are IR divergences
for the gauge fields and massless fermions that arise when summing over k; = 0 in the
denominators. These correspond to the IR divergences nf covariant perturbation theory,
and are regulated by introducing small mass terms: k3 — k2 + p2. |

The last source of perturbative UV divergences is the continuum 2-D field theory.
Divergent tadpoles of the perturbation theory are eliminated by normal ordering the light-
cone Hamiltonian. The non-local operator 1/8.. in the interaction Hamiltonian eqn. (4.10)
softens the UV structure of the vertices, as opposed to derivative interactions, which can
violate UV finiteness.[32]. For instance, the four fermion term in eqn. (4.10) is scaling
dimension zero (verses two) because of the non-local 1/82 factor. And by further power
counting arguments, the interaction light-cone Hamiltonian is UV finite, diagram by dia-
gram.

In principle, the 2-D fermions 9 in the light-cone Hamiltonian can be bosonized.
With the bosonization relations ¥ =: expiv4n® : and 9! =: exp ~iv/4v® :, where & is a
cenonical boson, the light-cone Hami/tonian of TLQED is mapped to a bosonic light-cone
Hamiltonian with non-derivative interactions. It is well known that a bosonic theory in
two dimensions with no derivative interactions is UV finite, diagram by diagram(32]. It is
also possible to bosonize the 2-D covariant Lagrangian. Then the bosonization dictionary.
which translates between fermions and bosons will be more complicated|33].

5. The non-perturbative ultraviolet divergence at g = 4r

While the transverse lattice theory of QED is UV finite diagram by diagram, it can
happen that an infinite number of diagrams conspire to generate a new UV divergence.
This phenomenon occurs in the 2-D sine-Gordon model[32][34)[35][36). The basic signature
of this phenomenon in the sine-Gordon model is that the anomalous scaling dimension of
the interaction (a/f?%)cos(f¢) is greater than two for #* > 8, and the interaction is
becomes non-renormalizable. For this region of coupling, the energy density is unbounded
from below [32], and the connected Green’s functions diverge order by order in a, starting
at order o?{34)[35].

For TLQED we will now calculate the leading anomalous scaling dimension of the
interaction light-cone Hamiltonian (4.10). It is obtained by considering the parts of
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eqn. (4.10) that contain non-interacting products of link fields. The prototypical term
of this type is

K% % 1
22yt eapDag- DVl | (5.1

where x? is the bare coupling and a3 is the cutoff of the 2-D continuum theory. This
is a bare expression, since it depends upon a3, and it needs to be renormalized with
respect to an arbitrary mass scale. We will calculate the divergent tadpole contributions
and renormalize this term. In eqn. (5.1), the factor 1/a} accounts for the naive scaling
dimensicu of this interaction, which is %+ 7} —1 = 0, where each % comes from the fermions
and ~1 comes from 1/8_. Since the fermion fields ¢! and ¥ in eqn. (5.1) occur at different
lattice sites and therefore anticominute, and the two link fields commute because of ¢,g,
we only have to normal order each link field to obtain the tadpole contributions. Consider

the exponential
giosada _, giaada , o+ 3(920)°(4 AT] (5.2)

where A* (A™) includes only raising (lowering) operators in the fields mode expansion

(4.14). After applying the commutation relations, we get

At Az 1 " dn 5.3
(A%, a]”mf;‘é: i (5.3)

The small 7 regulator 62‘ and the large 7 regulator A} are related by z; parity, as discussed
in the previous section and in ref. [30]. The relationship is

k2 (AtA-; ¢

In terms of a fixed z3 momentum cutoff A & 1/a3, the large 7 cutoff A} is given by the
2-D relativistically correct expression,

w2 A+ VAR 5
p Aty nl (5.5)

Here, k, plays the role of a mass for each 2-D theory. In the limit A >> k,(¢),

A:' d 2
7 4A 4
,/5*' ;’- = [_k-i:] y (56)

(]
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In eqos. (5.6) and (5.7), the IR divergence at ¢ = 0 is regulated by adding a svaall mass:
ky(£ = 0) — p?. We see that the exponentials have anomalous scaling dimension g3 /4,
i.e. they scale as A-93/ 4 where A is the UV momentum cutoff. The interaction term (5.1)
is multiplicatively renormalized by defining a renormalized coupling k(m) as

K= Zux(m) | Z = 3(2mag? 9 T] (ku ()7 (5.8)
4

where m is an arbitrary mass scale. The renormalized interaction term is then
m*'-f'?/?*n’(m)«pfeapnag- [Dgy] - (5.9)

For g3 < 4, the interaction term has dimension less than two. For this region of coupling
constant, the UV finiteness of each diagram in the theory is sufficient to guarantee finiteness
of the fcll theory. For g3 = 4w the interaction term (5.1) is a warginal operater, and the
theory will be well defined if the renormalization of g; with respect to the 2-D continuum
theory is allowed. This is the situation for the sine-Gordon model at its critical point [6](36].
For g3 > 4x the theory is non-renormalizable, the hopping parameter x« has negative
scaling dimension, and the operator product of the interaction Hamiltonian with itself is
too singular to allow consistent perturbation theory about the free-field vacuum.

Therefore, for TLQED, we find the somewhat surprising result that the weak pertur-
bation theory is valid only for a(a) = g2/4r < 1, independent of a. The coupling gi(a) is
the bare coupling and in the scaling regime of full TLQED it may be quite far from the
renormalized QED coupling constant gre,. Only for very weak coupling is g2(@) = gren in
the full theory. However, recall that in the quenched approximation of lattice QED(10],
chiral symmetry is spontaneously broken beyond a certain critical value a ~ 1. Similarly,
the analytic calculations in the ladder approximation of quenched QED also exhibit a criti-
cal coupling which corresponds to the chiral symmetry breaking phase transition[6]{7]. We
therefore make the conjecture that g3(a) = 4 is in general the chiral symmetry breaking
critical point in TLQED, and that specifically, in the quenched approximation of TLQED,
for which g2(6) = gren, chiral symmetry is broken for a > 1. This is discussed further in
section 7.
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6. Strong coupling limit

Does TLQED realize spontaneous chiral symmetry breaking in the strong coupling
regime? This means that a non-vanishing chiral condensate (¥ - ¥) must appear, or
equivalently in terms of the the lattice fermions,

S (=1)"=(vac|gid: + ¢} lvac) #0, (6.1)
z,

where |vac) is the full interacting vacuum state. Such a non-vanishing condensate would
signal the spontaneous breaking of the discrete chiral symmetry of the lattice theory. Since
it is a discrete symmetry in the strong coupling region, there will be no accompanying Gold-
stone boson in this region, and Coleman’s theorem(37], prohibiting spontaneous breaking
of continuous internal symmetries in two dimensions without anomalies or a Higgs mecha-
nism, will not be violated. The discrete chiral symmetry of the lattice model corresponds
to the 4-D anomalous U(1) chiral symmetry, and we would not expect Goldstone bosons
for this broken symmetry in the scaling regime of the transverse lattice model. However,
non-vanishing of the condensate eqn. (6.1) in the scaling regime would also signal the
breaking of the non-anomalous continuum [/(2) axial flavor symmetries, and we would
expect their accompanying Goldstone bosons in the scaling regime.

We will now show that spontaneous chiral symmetry breaking does occur in TLQED
in the infinite coupling g; — oo limit, where ¢ = 1,2,3. (Here we assume g; ~ gz ~ g3.),
by calculating the energy difference between various vacuum configurations defined below
to lowest order in 1/g. As we will see, this calculation is complicated by the fact that the
field theory of rigid rotators is fraught with divergences. In the end however, the vacuum
energy density shift will be a finite quantity.

Unlike the brevious weak coupling analysis, it is convenient to perform the analysis

in the A3 = 0 gauge, and with equal time quantization. The Hamiltonian density is then
7‘[:-1-(-9-2—)25:2 + Ao [A”E +asz] +Hp+0(-]-'-) (6.2)
2\a « (fWaHa 92 ’

where E, is the electric field and momentum conjugate to Aq, and jr =3, #1 N g
the fermion current. Gauss’s law,

G(£L) = AZEq+a%jp(EL) =0, (6.3)
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is obtained by integrating out Ao, and is treated in the quantum theory as the weak
constraint (o) = O for all physical correlation functions. To leading order in g, the
vacuum must satisfy

EL(Z.)|0) =0, V&, . (6.4)

The system will be quantized with respect to this ‘free-field’ vacuum. The condition that
all modes of canonical momentum annihilate the vacuum is reminiscent of the rigid rotator
in quantum mechanics.

To regulate the IR behavior of the system, introduce periodic boundary conditions in
the continuous spatial direction z = z3,

~-L<z<L. (6.5)

The mode expansions for the second quantized fields are

oo
E. __._2,117 {Z [E:e+iwnz/L + E;ne—itnx/L] + Eg} ,
" n= (6.6)
Ao =E: [A:e+iwnz/L+A;ne-—ium=/L] +A?, : ‘
n=1
where E5® (A2®) are the complex conjugates of E} (Aj), and not hermitian conjugates
in the sense of raising and lowering operators of the harmonic oscillator. The canonical

commutation relations in terms of the modes are

[ASEL), EF (§L)] =i6apb™ ™0z, 5,

- L ' (6.7)
[A%(Z1), E3™(§L)] =i6apb™ ™62, 7. »
The free Hamiltonian and momentum for the gauge fields are given by
1 r92\? =
Hgauge ='2"£ ('"a_) Z [ Z E:E;n + %(Eg)z ] ’
Zia L n=l (6.8)

Pouge = 3, 1~ [AEL - AET) .
Z,,an
All E® and E2" are lowering operators and annihilate the free-field vacuum, and the modes
Er Ah ( ES™, A7) are eigenstates of momentum P with eigenvalues n (-n).
Creation operators in the Hilbert space are exponentials of the modes A} with charge
n. For instance, the momentum zero mode state e**4a |0) has energy eigenvalue (g2n)? /4L.
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Each state in the Hilbert space corresponds to & wavefunction in a first quantized theory
where the dimensionless quantity aA? plays the role of a coordinate. This relation can be
used to calculate correlation functions. The correlation function of states is non-vanishing
only if the total charge in the exponentials of the wavefunctions vanish.

More precisely, for the zero mode expectation values, the two point correlator is
, 0 . 0 0 ,
(e=™24a e 4s) = N 18,0 / dze' ™™ = §,sN8(n ~ m) . (6.9)
-00

Note that for the compact /(1) theory, the integration region for z would be [—m, 7], n,m
would be integers, and the correlator eqn. (6.9) would be 6, ,,. In the non-compact case
at hand, the result is a normalized Dirac delta function, which is ill-defined for arbitrary
real n,m; only for “integer” n,m do the non-compact and compact results coincide(38].
In this section, we will evaluate such correlators with non-integer arguments, and regulate
the result by defining the cutoff delta function

\ |
Sa(e) = o [ dkeit (6.10)
A 2‘” A

The normalization is given by N =1 = 6, (0).

This is not the only expression which needs to be regulated in the theory. Consider
the exponential of the field e*34«(*) acting on the vacuum. This expression appears in the
interaction Hamiltonian; it represents a link field carrying flux from £, to £, + & and has
energy eigenvalue

. 2 21 . 2 .
HY,ge €4 (0)]0) = Zg'zi [1 + 2}:] e'o4a(2)0) = %6(0)&“«('”0) (6.11)
n=1

The energy is infinite because the exponential is a product of an infinite number of states.
The exponential receives contributions from all of the ‘standing waves’ A7 and A2" in the
box. To regulate this UV divergence, introduce a cutoff in the number of modes counted
in the delta function
AI
1 -
L —— sxjz/L
5k(2) = o7 }: et/ L (6.12)
j=—A'

Then the energy of the exponential is 5.56,{', (0). The energy is proportional to the number
of links and to the square of the flux carried by each link.
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The next to leading order contribution to the Hamiltonian comes from the fermions
and their interactions with the gauge field. We adopt the equal time anticommutation
relations for the fermions

(8)(2,81), 65(',72) } = =56z = )32, 7,614 - (613)

The free-field Hamiltonian density for the fermions is

HY = =i 3 a1t glo,9, (6.14)
£..f

Because of the minus signs in this expression, the mode expansion for the fermions is

1 —innz/L ixnz/LY 4 plf) netny+f
¢s = 3 (bt Nemtmmall 4 g{eins/L) £ oI | (~1)metmetS = 41,
V2La? oy ( )
- (6.15)
1 —ixnz/L innz/L 1(f) netn,+f
bp = Z b gmimns/l 4 gH(f)ginnz/ + b} J(=1)netretS = 1
VaLa? | ( )
where for each site £, and flavor f,
{bn, by} = Sum {dn,dh} = bnm » {bo,B}} =1. (6.16)
The normal ordered free-field Hamiltonian is given by
B=3 Z’_‘Lﬁ (bgi(f)bg‘f) + d;(f)dg‘f)) , (6.17)
5&!.’"‘
and
(0b}, = (0ld}, = ba|0) = dnl0) =0, n>0, (6.18)
for each fermion flaver. The zero modes appear in the charge operator
Q@) = [dsip=Ho 61+ ... (6.29)
and in the mass operator
M(Z1) = a? f dz (819, + o1s| = 0 + 81 P60 4. (6.20)

The chiral condensate order parameter is proportional to g, (1" M(ZL).
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The vacuum states of the full theory to order O(g°) will be a direct product of the
gauge field vacuum |0) and the highest weight states for the fermion zero modes. To discuss
chiral symmetry breaking in the zero mode sector of the fermion theory, we diagonalize
the charge Q and mass operator M siinultaneously, via the Bogolubov transformation

1y .
by = 7 (ef —ic}) ,
6.21
B =X (@—ic) B = 2 (ah+ic), o
V2 V2

where {a},a0} = {c}, o} = 1. Then the mass and charge operators in the zero mode sector
for each site are

M = }la},a0) - }lchoco), Q= }a},a0) + }[cd o] - (6.22)

The operators ag, ag and ca, co act on two level systems. The a operators are raising and
lowering operators for the states | 1), and | |},

gl =11 aDa=0, aolf,=l. 0oll),=0. (6.23)

The vacuum states in the fermion sector are direct products of the two level states in the
a and c systems,

[+)=1Tal lc » =) =11)al Ne - (6.24)

They satisfy Q|+) = 0 (Gauss’s law) and M|+) = %|+). The vacuum for each site on the
lattice is therefore doubly degenerate at O(g%). Note that fermion zero mode expectation

values vanish: (bgf )Y = 0 and (b(',(f )} = 0. The non-vanishing two point functions are
(O0) =4 (PR =, g= 1, -
By == (PR = 40, 121,

‘We now show that the degeneracy of the vacuum state is broken in perturbation theory
by the interaction Hamiltonian

Hyg =ix Yy d* / dz¢} [D; - (-1)™=*™*/D,] ¢, , (6.26)
i.I.qf

which is a gauge invariant operator since [G(Z,), Hist] = 0. In the context of the 4-D
transverse lattice theory, the constant x is dimensionless, since the fermions are dimension
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3/2 and the lattice derivatives go like 1/a and are dimension 1. When power counting for
the continuous 2-I* theory however, the fermions are dimension 1/2 and the derivative is
dimension 0. Therefore x is dimension 1 in the context of the 2-D field theory: x ~ a/aj,
where a3 is the UV cutoff of the 2-D theory at each eite. To regulate the energy of states,
we have introduced a cutoff in the number of modes, §f,(0). The UV cutoff a; is given by
a3 ~ 1/6%,(0), so that

k= k'ab%(0), (6.27)

where x’ is a scale independent constant.
The first order shift (Hiy) in the vacuum energy vanishes because the expectation
value of a single link field vanishes. The second order shift is given by

W E O'Hmtln ’n.legIO) . (628)

where W, = f%&fp(()) + Wh, F is the energy eigenvalue of link states |n), and W, r is the
fermion sector contribution. We will calculate the shift in the vacuum energy due to the
assignment of the fermion vacuum to the zero mode states |+) at each site on the lattice,
which will be denoted as 6W,.

To calculate the second order emergy shift of the vacuum, we need the correlation
function

/ dzf(z) / d7'g(2') (e=i90Aa()gid'aAa(x')y (6.29)

This correlator occurs when summing over intermediate states in eqn. (6.28). Integrating
out the zero modes A? in the exponentials yields the factor 6,36(q— g')/6A(0). From the

next lowest mode i(A} — A2!), there is the factor

6a(2sin{zw/L) — 2sin(2'w/L))/64(0)
(6.30)

L
= [Ba(z = 2') + ©(2")op(2 + 2" = L) + O(—2')6A(z + 2’ + L)] /5A(0) .
The only term on the r.h.s. of eqn. (6.30) that contributes to the correlator is 65 (2—~2). The
other two terms will lead to vanishing contributions because there is no overlap with these
delta functions and the delta functions that appear when integrating out the cosine terms;
for instance, integrating out (A} +A2!) yields a term 65 (2 cos(zw/L)—2cos(z'n/L)) which

has no overlap with the second two terms in eqn. (6.30). In the presence of the first term
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of eqn. (6.30), all the other modes in the correlator cor’sibute factors of unity. Therefore,
the correlator eqn. (6.29) is given by

bap 2] [ df(algt) (6:31)

The parameter A is an ultraviolet reguis’or. If the z direction were discretized, then
the sin(nz#/L) and cos(mzw/L) terms wsux.h appear as arguments in the delta functions
of the correlation function (6.29) would take on discrete values (n,m would be bounded
by ~ [27/a3], where a3 is the lattice spacing in the discretized z direction). For integer
charges g,¢’, which is all that we will have to consider in this section, all of the correlation
functions would then be normalizable. The discrete version of the normalized delta function
8a(2)/6A(0) would be (a3)~16;,/(a3)!. Hence 64(0) =~ 1/a3

While eqn. (6.28) is a complicated sum over four point correlation functions of the
fermion modes, the only the terms which contribuie to the shift in vacuum energy §W,
are products of four fermion zero maodes. The non-trivial part of this observation is that a
typical two zero mode contribution (bf,f RS ')bg(f ’)) is proportional to (bsf )bf)(f '))64' r
and this by the first of eqns. (6.25) is independent of the choice |+) or |-) for the vacuum
state at that site. Using the link field two point correlation function (6.29) given by
eqn. (6.31) and the fermion zero mode two point correlators eqns. (6.25), the shift in the
energy density is

&m

bu = iy |- W] SMEME+D - MEAT] . 6

This is minimized for M(Z )M (Z, + £) = —1 and M(Z,)M(Z, + J) = +1. There are
two fermion vacuum configurations, related by an overall sign change, that obey these
conditions and the symmetry of these ground states is made clear by figure 2. Both
configurations break the discrete U (1) axial chiral symmetry since the order parameter
3.z, (—1)™M(Z,.) is non-vanishing for these vacuum configurations. If the order param-
eter is non vanishing in the scaling regime, then the full set of non-anomalous continuum
axial flavor symmetries will be broken.

There is a simple way of approaching the continuum limit of this leading order result
in the strong coupling regime such that eqn. (6.32) remains finite, i.e. let the longitudinal
IR regulator L — oo and the transverse UV regular a —+ 0 such that La remains finite.
So although the energy and correlators of link fields require UV regulators, the shift in
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Fig. 2. The plus and minus signs for each site refer to the fermion zero mode states
|+) and |~). Up to an overall change in sign, this configuration minimizes the order 1/g*
correction to the vacuum energy density in the strong coupling limit.

the vacuum energy density is finite in the continuum limit. We briefly list the sources of
the regulated divergences that contribute to eqn. (6.32). The product of four zero modes
contributes 1/L%a*, the energy in the denominator of (6.28) contributes 1/5% (0) ~ a3,
from the integral over intermediate states we get 1/6,(0) ~ a3, from the x? coupling
constant there is a factor of n?/a3, examination of eqn. (6.26) shows that H2, contributes
a factor of a?, ard we multiply by 1/a? to make (6.28) into a density. The result is the
net factor of 1/(La)2.

To interpret this result further, consider the spin transformation bgz) - ab&z), where

a(£L) = (—1)™. Following the analysis of Semenoff{9], define the vector
by
V= (b(z)) , (6.33)
0

and the currents S; = y!o;1 where o; are Pauli matrices. Then the Hamiltonian density
in the zero mode sector that has expectation value given by eqn. (6.32) can be written as

K’ 1 3 Sie 4o\ o &= L
beg = 16752 [(La)z] ; S(Z£.)- [S(x;, +Z)+ S(ZL + y)] + const. . (6.34)

This is the Hamiltonian density for the quantum spin % Heisenberg antiferromagnet, and
the configuration given by fig. 2 is just the classical ground state of the system|[39]. It has
Néel order, i.e. the expectation value of eqn. {6.32) is non-vanishing and the global flavor
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SU(2) of the Hamiltonian (6.34) is spontaneously broken. We can consider eqn. (6.34) to
be Hamiltonian in the fermion sector to leading order in the strong coupling expansion.

To study chiral symmetry breaking to bigher order in the strong coupling expansion,
we need to treat the quantum fluctuations of the spin % Heisenberg antiferromagnet in the
zero mode sector, and include the effect of non-zero modes on the vacuum state. There
is no exact solution of the ground state of the quantum d=2 quantum spin % Heisenberg
antiferromagnet{40], and no proof that Néel order persists in the full quantum theory.
However, numerical simulations indicate that this may be the case(41]. For a similar
analysis of regular Hamiltonian lattice gauge theory the situation is better, because Néel
~ order has been proven to exist in three dimensious[9)[40].

7. Discussion

The transverse lattice regulation of QED that has been studied in this paper is a
‘minimal’ way of regulating the diagrammatic divergences of the perturbation theory, and
it exhibits a phase transition at a critical value of the lattice QED coupling constant, and
chiral symmetry br=aking in the strong coupling regime?.

In section 5, we took advantage of the UV ﬁnitegess of each diagram in weak pertur-
bation theory to find a non-perturbative UV divergence at g2(a) = 4n. The transveise
lattice regulates the usual UV divergences of four dimensional QED, but the ‘finite’ two-
dimensional field theories for each site conspire to generate a non-renormalizable interac-
tion. The signature of the non-renormalizability is the anomalous scaling dimension of the
interaction Hamiltonian. If the dimension of any part of the interaction Hamiltonian is
greater than two, then the perturbation theory about the free-field vacuum will be ill de-
fined. One can calculate the anomalous dimension of the interaction Hamiltonian because
the coupling constant g;(a) is not renormalized in the 2-D continuum perturbation theory
for g2 < 4m. Note that there is no plaquette term in the interaction Hamiltonian, since we
have studied non-compact QED, which would have a higher scaling dimension than the
term we considered®.

2 If one formulates QED with one lattice and three continuum dimensions, then the diagram-
matic divergences will not be regulated by the lattice, and chiral symmetry breaking will not
appear in the strong coupling expansion of the lattice theory. This is shown by choosing a gauge
where the lattice gauge field is set to zero.

3 Plaquette terms are presumably generated perturbatively but are suppressed by powers of
the cutoff.
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Th# 2-D sine-Gordon model bas the same properties with respect to the coupling con-
stant 3: it is pei’turbatively finite for all 8 but its free-field perturbation theory is unstable,
without additicnal coupling constant renormalizations, for % > 8x. The sine-Gordon field
theory is equivalent to the grand cé.nonical sum of a Coulomb plasma, and the sine-Gordon
phase transition has a nice physical interpretation in terms of the Coulomb gas picture|34). |
As f increases, the free ions of the Coulomb gas, represented by vertex opemtora exp(x5¢)
in‘ the sine-Gordon model, collapse to form dipoles and a new gas of interacting dipoles
is formed. This can be interpreted in the sine-Gordon model as the appearance of a new
dimension 2 renormalizable operator at this fixed point; One can consider the sine-Gordon
model for values of f2? > 8n as long as the additional renormalization for the new operator
is taken into account[36].

In TLQED, ‘free ions’ are given by fermion charges separated by one link and con-
nected by a flux tube: y!exp(gA)y. The ‘Coulomb gas’ in TLQED is then a gas of e*
e™ pairs, where the charges, separated by a single link, interact via Coulomb interactions.
The ‘dipoles’ of the strong coupling phase are pairs of e* e~ flux tubes, with strongly
- interacting photon fields.

The conjecture is that the non-perturbative gg(a) 47 critical point of TLQED,
where this phase transition occurs, is the critical point of spontaneous chiral symmetry
breaking, where the 4 order parameter gets a vacuum expectation value. The bare cou-
pling constant g2(a) is the ‘quenched’ coupling constant of TLQED, because fermion loop
corrections are obviously not included in the bare Hamiltonian, Both the quenched lattice
simulations and the quenched planar approximation exhibit chiral symmetry breaking for
apare ~ 1. The phase¢ transition in the quenched planar approximation has been previ-
ously compared to the phase transition of the sine-Gordon model by Miransky(6], who
interpreted the phase transition of each model as a collapse phenomenon. At the criti-
cal point in the quenched planar approximation, the anomalous scaling dimension of the
fermion is 1, and the four-fermion term becomes a renormalizable operator{7]. It is tempt-
ing to mm:mte the ‘«!hpoles of the strong coupling phase of TLQED with renormalizable
four-fermton operator of the quenched planar approximation. We used the strong coupling
expansion of TLQEL in section 6 to calculate explicitly the spontaneous chiral symmetry
breaking in the infinite coupling limif,

Recent lattice gauge theory simulations indicate that the UV fixed point of chiral syin-
metry breaking in the quenched theory may be trivial in the full unquenched theory[12][13].
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Some of the results of this paper can immediately be applied to more realistic trans-
verse lattice models. In particular, the construction of staggered fermions and the analysis
of chiral symmetry breaking via the strong coupliug expansion can be easily generalized
to non-abelian gauge theories.

‘We now briefly mention two formal areas of the theory that would be interesting to
pursue. In section 4, we noted that TLQED can be coﬁaria.ntly (in the 2-D sense) bosonized.
Bosonization plays a central role in explaining why the Schwinger model is exactly soluble.
It would be interesting to understand the continuum limit of this bosonized version of
TLQED. It would also be interesting, to work in the ‘opposite’ direction — to c¢ovariantly
bosonize transverse lattice fermions, and then put the two continuous coordinates on a
lattice. Naively, this would generate a 4-D lattice theory where the fermions are interpreted
as bosonic solitons, and the functional integral over fermions is ‘gaussian’ and easier to
simulate*. Secondly, TLQED is an interacting 2-D field theory in the form of a combined
Schwinger and sine-Gordon model. It might be possible to solve the sine-Gordon ‘part’ by
using inverse scattering/Bethe ansatz methods. Then the non-integrable Schwinger terms
would have to be treated as perturbations in the space of Bethe-ansatz states.

Acknowledgements; I am indebted to W. Bardeen for clarifying and stimulating discus-
sions.

* An ides pointed ont to me by W. Bardeen.
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulncss of any information, apparatus, product, or

. process disclosed, or represents that its use would not infringe privately owned rights. Refer-

~ ence herein to any specific commercial product, prooess, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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