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1. Introduction _

.Staggered fermions[1] for lattice gauge theory .[2][3] have the desirable property of

preserving a discrete remnant of chiral symmetry, and are therefore useful for studying the

non-perturbative chiral symmetry breaking in gauge theories. Staggered fermions have

been constructed for the four dimensional Euclidean formulation of lattice gauge theory,

and for the Hamiltonian formulation of lattice gauge theory, based on a three dimensional

spatial Lattice and one continuum time variable. In sections 2 and 3, we construct staggered

fermions for the transverse lattice formalism of Bardeen et. al.[4][5], which is based on a two-

_enaional spatial lattice and two continuum space-time coordinates. Wilson fermions

ior the transverse lattice were constructed in ref. [4].

The transverse lattice construction is a minimalist's non-perturbative regularization

scheme for gauge fields[4]. After choosing an axial gauge and imposing the Gauss con-

straint, the degrees of freedom of the gauge field are reduced to two spatial components,

and these can be regulated by mapping them to link fields on a two-dimensional lattice.

The link fields are non-perturbative excitations of the gauge fields, and are scalars with

respect to the two continuous space-time coordinates perpendicular to the lattice, so their

ultraviolet (UV) behavior is softened.

The basic disadvantage of the transverse lattice construction is the breaking of 3+1

: dimensional Lorentz invariance down to 1+ 1 dimensional Lorentz invariauce plus discrete

2-D lattice translations and rotations. This means, for example, that pure 3+1 dimensional

gauge theory has three bare coupling constants when regul&ted this way, as dictated by

1+1 Lorentz invariance [5]o One assumes that the full 3+1 Lorentz invariant theory is

recovered in the scaling region of the lattice theory for a line of tricritical points of the

coupling constants. The tricritical points are determined by examining 3+1 relativistic

dispersion relations.

Weak coupling perturbation theory of transverse lattice non-compact QED (TLQED)

is discussed in section 4. After gauge fixing in light-cone gauge, the UV properties of

the theory are studied. We argue that the usual diagrammatic UV divergences are cut

off by the finite transverse lattice spacing. The transverse lattice construction converts a

four-dimensional field theory into a two-dimensional field theory with a finite (for finite

site8 on the lattice) number of "flavors" which is then UV finite, diagram by diagram, for

fixed lattice spacing.

In section 5 we calculate the anomalous scaling dimension of the link fields on the

lattice, and find that the interaction Hamiltonian becomes a non-renormalizable interaction

2



4 ' p

for g2(_) > 4_r, where g(a) is the bare QED coupling constant. The anomalous scaling

dimension is calculated by normal ordering the link fields and is non-perturbative because

the link fields are exponentials of the gauge fields.

The relationship between this phase transition and the phase transition of the sine-

Gordon model, the quenched ladder approximation of QED, and quenched non-compact

lattice QED is discussed. Based on these analogies, we conjecture that this critical point

corresponds to the non,.perturbative chiral symmetry breaking phase transition in QED.

Recent interest in chiral symmetry breaking in QED was generated by Mixansky[6]

who used the ladder approximation of the Schwinger-Dyson equation to a_'gue .for the

existence of a non-trivial UV renormalization g_oup fixed point of the QED coupling con-

staut. This phenomenon is closely related to the collapse of the Dirac wavefunction i'-

supercritical (Z > 137, for which <_-- Ze2/4_ > I) Coulomb fields[6]. The fixed point is

the boundary of the chiral]y symmetric ladder QED phase and its strong coupling phase

which has spontaneous chiral symmetry brealdng[7]o That the strong coupling phase of

QED breaks chiral symmetry spontaneously is understood analytically via the strong cou-

pling expansion of lattice gauge theory [1][8][_}],and via lattice gauge theory Monte-Carlo

simulations[10] [l l] [12]. It is not clear however, that lattice gauge theory data supports

the existence of a non-trivial UV fixed point for full QED. It may be the case that the

renonnalized charge of the continuum theory vanishes at the critical point[13].

In section 6, we study the strong coupling limit of TLQED by calculating the energy

shift of the infinite coupling vacuum states to lowest order in the inverse coupling 1/g. We

find that the discrete remnant of chiral symmetry on the transverse lattice is spontaneously

broken and that the chiral condensate (_/is non-vanishing for the lowest energy state.

We discuss our results _urther in section 7.

2. Staggered fermions for the transverse lattice

In this section, we construct staggered fermions for the transverse lattice, and in the

process, introduce notation for the transverse lattice construction that will be used in later

sections.

The basic strategy is to write the Dirac equation (i_a_ - m)_ - 0 in appropriate

component form, and find a fermion equation on the transverse lattice which reproduces

o these equations in the continuum limit. We use the chiral representation of gamma matrices

(0 o,) (, 0)= -1 0 -a _ 0 _5 = 0 -1 '

: 3



t

and define the fermion _ components

_,= _ _= _(2) x = x(2) , (2,2)X

In light-con e coordi,_ _tes

I (xo 4-z3) O± = 1

the component equations are

v_ o_×(_>=im_(_>+ [_ - io2]x(=),

O+X(_) =imco (2>4-[01 4"i_]X (I> , (2.4)
v_o+_(_>:imx (_)- [a_- i_] _(2>,

q_ O__(_>=imx(2)- [ol+ iO_]_o(_).

Now consider a complex one-component fermion fie|d on a diecrete square lattice of

points _ = a(n=, nv), with [attice spacing a and basis vectors _ = (a, 0) or (0, a). In this

section, the lattice is taken to be infinite. The fermion field _ is a continuous function of

the light-cone coordinates z e, mid satisfies the equation

ao_= P3(_.L)_ + P_(_.)_,_ + P_(_._)_, (2.5)

where PI,P_, and Ps are unknowns to be determined by matching to the continuum

equations (2.4) with zero mass, (adding a mass term is more complicated and will be

considered in the next section), and A_ is the symmetric lattice derivative

1

A(nf(_'L) = _a [f(/'.i. + (_) -- fCx_ -- ¢_)] • (2.6)

" The fermion has tl_e mode expansion

/ /:= d_k d_, q_(k±,l_) ei_+_"ei_"=+e_e°"" , (2.7)
_r

and in momentum t_pace, the equation of motion is

k°_ = k_P_ +/_1 (s__----!) _+ ', (_)_. (2.8)

In the continuum limit, as a --, 0, finite energy states are located about t. _- e, or _ _, _r-e.

Therefore, there are four continuum femion components for one transverse lattice fermion.
_
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This is just the standard fermion doubling problem, which works to our advantage in this

case because four continuum components sre desired. Equivalently, in lattice coordinate

space, different linear combinations of four adjacent sites will correspond to four different

fields in the continuum.

To be more specific, introduce s lattice parity PL[z_j.] = (-1)_*,+",. Lf Pz,[£_.] is +1

(-I), then £.± is an even (odd) site. For the momeut, consider the fermion at even or odd

sites to be different continuum fields, labeled Ceve, and todd. Making the ausatz/>3 = PL,

the equation of motion (2.5) becomes

V_ 0-¢ev_. =PIAl¢odd + P2A2_odd ,
(2.9)

0+ _odd = P1A 1_)even"4"/>2 A 2Cevea ,

If we select P1 = 1 and/>2 = -JPL, then equations (2.9) are just the massless continuum

equations for the Dirac fermion components X of eqn. (2.4). This is not complete result,

however, because we know that there should be four continuum components. The full

result is obtained by breaking up the lattice further into a sub-lattices graded by (-1)",.

The full result is that with the Pl, P2, }>3selected above,

1
X (_) =-[¢(£x) + ¢(£'x + s")] i'.t. even,2

X(2) :1 [¢(£a.) + ¢(x.L + _] :rfxodd

_(_) =1 [¢(_'.1.) - ¢(x.l. + s")](-1)"" x.L. odd2 _
1

_¢2) __ [¢(_±) _ ¢(_x + s')] (-1)"" £± even,2

where g- a(1,1). One can easily check that these fields obey the massless version of the

equations (2.4).

Each field is associated with the face of the lattice with center £± + _'. Label each

point on the lattice by ((-1)"', (-1)",), so that there are four types of points with re-

spect to this grading. Then X(1), _(z) are associated with type A faces, and X(2), ¢(1) are

associated with type B faces, where the faces are labeled in figure 1.

Consider the symmetries of the Lagrangian

o ¢, [00¢_ _

of the Dirac fermion on the transverse lattice. In addition to 1 + 1 dimensional Lorentz

: invariance, it has lattice translational invariance £j. --, 2_; a_ in regular lattice gauge
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A B A

(1,-I) (,,I ,-I)

B A B

(1,1) (-1,1)

A B A
Fig. 1. Each point on the lattice is labeled by ((-1)"', (-1)",). The fields X(_),_o(2) are
associated with type A faces, and X (_), _o(]) are associated with type B faces.

theory, translations are shifts by an even number of sites. It also has the shift symmetry,

.L -* E± + g, which is interpreted as a discrete chiral rotation on the fields, since under this

transformation, X -* -X and _ -., _o, as is seen by examining eqns. (2.10) 1. This is also

similar to the discrete chiral symmetry found for staggered fermions on higher dimension

lattices. The exchange symmeny of the Hamiltonian version of staggered fermions[III3]

is broken in the transverse lattice case by the unequal treatment of the three spatial

coordinates. We are left with a discrete rotation symmetry, a rotation by _r about the =3

axis, n_ --* -na, and a single global gauge symmetry, _ -. ei°¢.

A mass term for the Lagrangian should have terms of the form X(1)t_o(1) and _0(1)rX(1).

According to the analysis which is summarized in fig. 1, the bilinear couplings will have to

be nearest neighbor, because X(z) and _o(2) live on type A faces, and X(_) and _o(1) Live on

type B faces. The mass term for the Lagrangian is

= " + eL[  lg) (2.n)

It explicitly breaks the discrete chiral symmetry _j. -, _j. + g, and leads to the correct

continuum mass terms in the equations(2.4). The nearest neighbor coupling in eqn. (2.12)

1 This is denoted as a chiral rotation, although it really is a combination of the gauge trans-

formation _ -, i_ and X -_ ix, followed by the chiral rotation _ -, -i7_ and X "-*iX.
Q
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breaks the global U(1) gauge symmetry at each site. For each pair of sites _± and _± +

PL[$_.]ZT,the U(1)x U(1) symmetry is broken to the diagonal U(1). It is possible to gauge

the remaining diagonal U(1) symmetries, and this is discussed in ref. [14]. The construction

is awkward, and we will avoid it by adding a second flavor of lattice fermion. Then there

will exist a mass term which preserves ali of the U(1) symmetry.

3. Gauging transverse lattice staggered fermions

In this section we introduce gauge fields in an attempt to make the Lagrangian

eqn. (2.11) locally gauge invariant. This however, "_U fail because of the 2-I) gauge anom-

a/y, and a second set of fermion fields will have to be introduced, leading to a fermion

doubling problem in the continuum limit.

To promote 5G_ - iA_b to a loca/gauge symmetry, introduce the 2-D vector gauge

fields A_ and 2-D scalar fields A= with transformation laws

6aA_(£.±,z _) =0_A(_,z ±) , i = 0,3,
(3.1)

±) , a =

: The forward lattice derivative

1

_+f(._..t.) = _, [f(._.L + c_)- f(._.Z.)] , (3.2)

obeys the integration by parts ru!_ _ fang -- -- _ (A;f)g, where

1

A_'f(:_.t.) ----; If(z.t.) -- f(._.t. -- _)] . (3.3)

The Lagrangian for the gauge fields is

_r= _ (F,j + 472 (F,,,) 2 + _ (FoO)' , (3.4)

where gl, g20 and g3 wig be fixed by requiring 3 + 1 Lorentz invariance in the continuum

limit. The field strengths F_v are

F,j = O,Aj - OjA, , F=/j = _,+A/_ - _A= , F,= = O,A_, - _,+A_ . (3.5)
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For the fermion fields, we dress the derivatives in the Lagrangian eqn. (2.11) via the

minimal coupling procedure,

o_ -. D_ = (0_- iA_)_,
(3.6)

However, this construction does not yield a gauge invari,mt theory. The 2-D kinetic terms

for the fermions are,

£ ffi iv_ ot (0_ - iA_)O +... _a. even,
(3.7)

= i_ _t(o+- ia+)_+... _a.odd.
There is only a single left or right-handed fermion for each local U(1) gauge symmetry, and

therefore, the local U(1) symmetries are anomalous. The anomaly brealm the U(1) x U(1)

symmetry of pairs of sites (say £± and £± + PL[_j.]ZT) to the diagonal U(1). The mass

term eqn. (2.12) also produced this pattern of symmetry breaking. In principle, one can

construct transverse lattice QED with the remaining U(1) symmetry[14]. However in

practice, it will be easier to add a second flavor of lattice fermions to cancel the anomalies

and preserve the full set of U(1) symmetries. The fermion action takes the form

z=J,_ (3.8)

-_ [D_+ i(-1)"'+",+_n,i]_I},

%

where _ is a hopping parameter that will be fixed by requiting 3+1 Lorentz invariance.

While g =- 1 in the classical continuum limit, it will receive quantum corrections and in

fact will have to be renormalized. With two flavors on the lattice, therewill be two Dirac

fermions in the continuum limit. Their components _oand X are constructed from different

flavors of the lattice fermions, i.e. _ and _2 contribute to each of the two continuum Dirac

fermions. The components of the continuum fermions

_, = kt'_j×_) , ._= 1,2 (3.9)
are

(Ii,I
x_ =_[_(_)+ _(_ +8")], _ _ve_,

1

X__) :_ [_(£'±) + _a(£a. + g)] , £'± odd, (3._0)1

_o__ _[_=(_._)- _=(_.+_](-I)"., _. _,,e-,
I

_,_=)=_ [_=(_.)- _2(_._.+ _] (-I)"., _.._odd,
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and
l

X_I)--:_[_2(_J.)+ _2(_±+ 8")], _J. odd,

x_2_= [_2(_)+_2(_+ 8")], _ even,
(3.1_)

_o(2I) [_I(_.)- _1(_J.+ 8")](-1)'*", _. odd,

_2>= [_(_)__(_ +_l(-1)".,_ eve_.
d

The mass term Z_ a2_ Zj _'j_#isgivenby

_2(-1)n" [#bl_2+ _I , (3.12)

and itpreservestheU(1) symmetriesforallthesites.

The mass term explicitlybreaksthe discretechiralsymmetry generatedby _j.

•"±+ _'.As discussedin thepredoussection,thistakesX_'_ -X_ and _j _ _j. This

correspondstoa discreteZ2 subgroupofthe4-D anomalousU(1)chiralsymmetry.

The 2-D gaugetheoryforeachsiteon thelatticealsohasan anomalouschiraltrans-

formation,

6¢I(_,±)= iA(-I)I+_I(_'j,). (3.13)

This(globalinthe2-D sense)symmetry isbrokenatone-loopinperturbationtheory,lt

correspondsinthe4-D continuumlimittoa brokenaxial-vectorflavorsymmet_7,under

which thecontinuun_componentstransformas

31,1
where _r3actsin_%vorspace.

The onlynon-anomalouscontinuumsymmetry ofthis_nodelisthegauged U(1)'total

leptonnumber'symmetry.Thereareno glob'alflavorsymmetriesforthistransverselattice

model. Thisisincontrastto the naive(Wilson)and staggered(Susskind)formulations

of QED on 4-D euclideanlattices[15][16].The actionfora single4-D naivemassless

fermionon the 4-D latticehas U(4) vectbrand axial-vectorflavorsymmetries,which

a subgroupofthe fullU(16) flavorsymmetriesofthe 16 continuumDiracfermionsof

thismodel. The minimalstaggeredmasslessfermionactionon the4-D latticehas U(1)

vectorand axial-vectorflavorsymmetrieson thelattice,whichisa subgroupofthe U(4)

flavor_ymmetriesofthe4 continuumDiracfermionsforthismodel.The transverselattice
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model constructed in this section has no continuum flavor symmetries, and has only two

continuum Dirac fermions in the continuum limit. For the fermions on the 4-D lattices, the

axial-vector flavor symmetries which exist in the lattice action are spontaneously broken

in the strong coupling limit. The non-vanishing of the order operator _. _, which signals

the breaking of the axial-vector flavor symmetries of the lattice models, is confirmed, by

Monte Carlo simulations, for the scaling region of the theory[17][18]. This order operator

breaks ali of the continuum axial flavor symmetries, and one expects the full multiplet of

Goldstone bosons associated with the full set of broken axial symmetries in the scaling

regime. In section 6, we will show that the discrete chiral symmetry of the transverse

lattice model is spontaneously broken in the strong coupling limit by the non-vanishing

vacuum expectation value of _. _.

: The parameter _ is included in eqn. (3.8) because 3+1 Lorentz invariance is broken

down to 1+1 Lorentz invariance by the transverse lattice construction. One may ask

whether two new parameters should really occur in the Lagrangian, one for the D= term

and one for the I)_ term, since these are two separate 2-D mass terms. The answer is no,
1

because there exists field redefinition that transposes the z and Z/terms in the Lagrangian.

It is expressed as _! --_ a!_!, where a! is defined recursively,

as( J.) - ,
= - - , (3.15)

=1

This is a spin transformation; these transformations are typically applied to staggered

fermio_ systems to diagonalize -},matrices in the fermion action[19]. Applying this partic-

ular spin transformation to eqns. (3.8) and (3.12) interchanges the labels z and y.

This concludes the construction of non-compact transverse lattice QED with staggered

fermions. The goal of the remaining sections is to extract non-perturbative information

about QED from this construction.

4. Ultraviolet finiteness of perturbation theory

In this section, the weak coupling perturbation expansion will be developed for the

transverse lattice theory with Lagrangians given by eqns. (3.4) and (3.8). It will be argued

that the transverse la_t_ce regulates all the UV divergences for each diagram in perturbation

I0



theory. We will use this formalism in the next section to calculate the non-perturbative

scaling dimension of the interaction Hamiltonian.

Axial gaug_ minimize the mixing of longitudinal and transverse degrees of freedom

and are therefore particularly useful in the context of the transverse lattice construction.

Space-like axial gauges are problematic for weak coupling because of difficulties imple-

menting Gauss's law[20], so the light-cone gauge A.. - 0 will be used. In light-cone gauge,

if the field theory is quantized on the null-plane z + - 0, then A+ is a constrained field.

So in this section, we use the light-cone quantization scheme--- light-cone gauge with the

null-plane Cauchy surface.

Only half of the fermion fields ¢(D satisfy dynamical equations on the null plane.

With the definitions,

(_1)-.+-,+I = _1,
(4.1)

¢ =¢!, (-1) '*'+'*'+! = +1 ,

one finds that only the ¢ are dynamical fields. The constraint equations in light-cone

gauge for the fields A+ and X are

02A+ = j_ = gl O_A;Aa - g_v/'2¢ ?¢, (4.2)

and

1 lD1 - iD2] ¢ (4.3)

Using ½Ix- - y-[ - 1/02_, which satisfies 0 2 ½1=-- - e(=- - y-), the con_tr_nt

equation (4.2) is integrated"

- _ f dy-lz- -y-Ig_ + Fx- + G. (4.4)
A+

The constant G(z+,g.t.) is set to zero as a gauge fixing constraint; it fixes z + dependent

(and z- independent) infinitesimal gauge transformations. The F(x+,_j.)z - term corre-

sponds to the theta angle of the Schwinger model[21]. In the continuum limit, the physical

3 + 1 Lorentz covariaat vacuum should correspond to F = 0, so it can be set to zero

identically.

To remove the coupling constant dependence from the canonical commutation rela-

tions, we let

Ao, -* g2A_, . (4.5)
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The current J_ and covariaut derivative D_ must, be changed accordingly. With this field

redefinition, the light-cone momentum P+ - (po + p3)/v_ and the light-cone energy

p- = (po_ p3)/_ are

P+ / dM {O-AaO-AQ + iV_¢'¢} ,
(4.6)

/
{g_ _ -1J 1 +i_'(6a_-iea_)¢tDa'__[D_] }

p-
., dM 2g--.T_:_,._g___J_ _ ,

where the constraint equations have been applied, and the measure is

__M- T-_2a=- (4.7)

The light-cone Hamfltonism P- can be divided into free sad interacting parts:

d

where

(/'c_=-½ _ ' _ =½k_- ' c4.9)
and

(4.10)

i_' ' [(Sa_ - ie_'_)D" 1 [D_¢] - 1 }

We define the beta functions _t_('7) -'- aS"7/Oa for each coupling constant "y =

gl,g_,gs,_. The coupling constants gl and gs will are fixed with respect to g2 for each

value of lattice spacing a by requiring that the photons obey a covariant dispersion relation.

The appropriate renormalization scheme for cova_iant dispersion relations is

c1=-i, c2=0. (4.11)

At tree level, this implies gl =. g2 = g3. Thb relation will receive corrections in perturba-

tion theory; the beta functions

_(g,) =_t,Cg2)+ o(.q2),
(4.12)

_,_(g3)=Z_(g2)+ o(g2),

12



determined by the renormMiz_tion conditions eqns. (4.11).

The quantum theory is deigned on & equs_e, doubly pez_odic, trJ_nsvenm l_\ttice with
'0N 2 si_es,N even.A realscal_rfielda(_.) : (_j.+ Nc_)hasthemode expaam n

_(_)=_ _t'_Ct)+_.c, (4.13)
t

where _ _ the pha_e f_ctore2w_/z_,theta areintegermoment_ which t_kevaluesfrom

....N/2 to N/2- 1,and the innerproductt.n isshorthandfor_a lan,_,.With these

definitions,th_m,Jdeexpansionsforthefieldsaxe

1..., f_ • -

_ =__Na _/_ e-"_ffi'wt"_b(l,_7)+ e+'sffi-w-t'nd_(t,17), (4.14)

_' =,/i_r___ f0_ _d_(..,,r_t,. ;(t,_)+_+,,.-_,._ b,(t,_) }t

The canonic_ (aati-)commut&tion relations for the creation and Lnnihilxtion operators sre

[_(t,,),_ (t',,')l=_t.r_o_,6(,-,'),
{b(z,,),b'(z',,')}=6t._.,_o_,_(,- ,'), (4.z._)

{_(_,_),d'(t',v')}=_t.e_ __(_-_').

'Themodes a,b,d annihilatethelight-coneva_um, and the normalorderedexpressions

forthefermionchaxgeQ.__=_ f @t,_,momentum P+, and freeHamilitonianPo- _re

QF =:_/_ {bt(t, rt)b(_, r/)- dr(t, r/)d(t, _/)) ,

- p+= _ fd_{_(t,_)a=(l,_)+bt(t,_)b(_,_)+ dr(l, rl)d(1, _)} ,
(4._)

where

. Z , _:_.(A2;t)- (4.1.7)

13



The photon states at(t, _)lO) _tisfy the free-field equation

[P.P_" - ½k_(_+A-) ] atl0) = 0. (4.18)

As the lattice size becomes large, k_(A'_'A-) -. k_ + k_, where k= _ 2_£a/Na. Hence

eqn. (4.18) is the 3 + 1 Lorentz covariant free photon dispersion relation for finite lattice

size. A similar relation holds for the fermion states.

We now argue that light-cone perturbation theory[22][23][24] is finite, diagram by

diagram. The ,5'matrix is (.fit exp(-i f dz + PiCk)Ii), where T denotes time ordering with

respec.t to x + and P:t is the normal ordered inter_tion light-cone Hamiltonian (4.10) in

the interaction picture. Diagrammatic perturbation theory is generated by expanding the

time ordered exponential and inserting complete sets of intermediate states. In general,
t

the S-matrix will ha_e an o,_eraU energy conservation factor -2_i6(P_.! P0:_), and each

intermediate state will have the factor 1/ (P_,! - P_"+le). Matrix elements of the interaction

Hamiltonian with intermediate or final states will always include the factor _(_! r/! -

]_ _), where the _! are outgoing momenta and the TT_are incoming moments, because

a_l vertices conserve light-cone momentum _. The light-cone momentum is bounded from

b_]9w by zero for all states.

One delicate aspect of light-cone perturbation theory is the limit _ -. 0 in intermediat_

loops. Ce_ain connected one-loop diagrams are iii defined for zero _ in continuum QED

and QCD (see refs. [25] and [26]), and need to be regularized. The regulator can be

removed when calculating gauge invariaut combinations of one-loop diagrams, i.e. the r/--- 0

region does not contribute to gauge invariant processes at one-loop. These divergences

are particular to canonical Hami]itonian perturbation theory:and do not correspond to

the UV divergences of covariant perturbation theory. Also, they are not infrared (IR)

divergences since the parity opera_,r P, where P_(z-, z +)P-1 ffi _(x+ x-), acts on the

modes as Pbt(l,_)P -1 c_ bt(t,k_(l)/2_), and interchanges the large and small 77regions.

Two popular regularization schemes for the ,7 - 0 region are, a sharp '7 cutoif[25][26],

: and the discrete light-cone approach [27][28][29]. However_,these cutofl_s may not be good

regulators to higher order in perturbation theo17 because the r/ffi 0 region can contribute

to connected diagrams in light-cone field theory[30]. One signature of this problem would

be the loss of gauge or Lorentz symmetries; counterterms would have to be added to restore

t"the symme rzes order by order in perturbation theory.

The regular UV divergences of QED arise from integration over the transverse mo-

, mentum k_. of the fermions and the gauge fields in the 1/(P0, ! - P- + le) terms of the ,q

14
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matrix[31]. These divergences are explicitly cut off"by the transverse lattice construction,

since the perpendicular momentum is bounded by 8/a _. There also are lB. divergences

for the gauge fields and massless fermions that arise when summing over k.L _ 0 in the

denominators. These correspond to the IR divergences nf covaziant perturbation theory,

and _re regulated by introducing small mass terms: k]. -, k_. + _2.

The last source of perturbative UV divergences is the continuum 2-D field theory.

Divergent tadpoles of the perturbation theory are eliminated by normal ordering the light.

cone Hamiltonian. The non-local operator I/0_ in the interaction Hamiltonian eqn. (4.10)

softens the UV structure of the vertices, as oppose_ to derivative interactions, which can

violate UV finiteness.J32]. For instances the four fermion term in eqn. (4.10) is scaling

dimeD_ion zero (verses two) because of the non-local 1/02_ factor. And by further power

counting arguments, the interaction light-cone Hamiltonian is UV finite, diagram by dia-

gram.

In principle, the 2-D fermions _ in the light-cone Hamiltonian can be bosonized.

With the bosonization relations _ -: expiv/_ : and _t _.: exp--iv_:_ :, where _is a

cr_uonical boson, the light-cone Hami_tonian of TLQED is mapped to a bosonic !,_ght-cone

Hamiltonian with non-derivative interactions. It is well known that a bosonic theory in

two dimensions with no derivative interactions is UV finite, diagram by diagram[32]. It is

also possible to bosonize the 2-D covariant Lagrangian. Then the bosonization dictionary

which translates between fermions and bosons will be more complicated[33].

5. The non-perturbative ultraviolet divergence at g_ = 4_r

While the transwrse lattice theory of QED is I._" finite diagram by diagram, it can

happen that an infinite number of diagrams conspire to generate a new UV divergence.

This phenomenon occurs in the 2-D sine-Gordon mode][32][34][35][36]. The basic signature

of this phenomenon in the sine-Gordon model is that the anomalous scaling dimension of

the interaction (a/_2)cos(_) is greater than two for _2 :> 8_r, and the interaction is

becomes non-renormalizable. For this region of coupling, the energy density is unbounded

from below [32], and the connectec/Green's functions diverge order by order in _, starting

at order _2134] [35].

For TLQED we will now calculate the leading anomalous scaUng dimension of the

interaction light-cone Hamiltonian (4.10). lt is obtained by considering the parts of

15



eqn. (4.10) that contain non-interacting products of link fields. The prototypical term

of this type is
2

_0 f
_]¢ _°oD°_[Doel, (5.1)

where _ is the bare coupling and a3 is the cutoff of the 2-D continuum theory. This

is a bare expression, since it depends upon a3, and it needs to be renormalized with

respect to an arbitrary mass scale. We will calculate the divergent tadpole contributions

and renormal]ze this term. In eqn. (5.1), the factor I/'a_ accounts for the naive scaling

dimension of this interaction, which is ½+ ½- I - 0, where each ½comes from the fermions

and -I comes from 1/0_. Since the _¢ermionfields ¢_ and ¢ in eqm (5.1) occur at different

lattice sites and therefore anticommute, and the two link fields commute because oi"ea_,

we only have to normal order each link field to obtain the tadpole contributions. Consider

the exponential

e_'''A" =: e_a'_A" :e+½ (g2a)2[A+'A=] , (5.2)

where A + (A-) includes only raising (lowering) operators in the fields mode expansion

(4.14). After applying the commutation relations, we get

1 d,,  5.31[A+,A_ '] = 4_(Na)_" j6+ -_-"

The small T?regulator 6+ and the large _ regulator A+ are related by xs parity, as discussed

in the previous section and in ref. [30]. The relationship is

.....2A_+ . (5.4)

In terms of a fixed z3 momentum cutoff A _, 1la3, the large y cutoff A+ is given by the

2-D relativistically correct expression,

^+_ (5.5)At= _ .

Here, k± plays the role of a mass for each 2-D theory. In the limit A >> k.L(1),

f_+̂ t+ d_.__ In r4A2]/'_'T',' (5.6)
b .A,.



and

e_O2Ao _: e_oo2Ao : I [l'Itk_(t)]llN2 )g_ia'r
.......4^2...... • (5.7)

In eq,s. (5.6) and (5.7), the IR diverKence at t -- 0 is regulated by adding a _,uall mass:

k±(l - 0) --, #2. We see that the exponentials have anomalous scaling dimension g_/41r,

i.e. they scale as A-o_ld,,, where A is the UV momentum cutoff. The interaction term (5.1)

is multiplic_tively renormalized by defining a renormalized coupling lc(m) as

1 (2ma3)2-g_12w'4 = , z,, = rI , (s.8)
l

where m is an arbitrary mass scale. The renormalized interaction term is then

cauDal_ [D_] . (5.9)
W.t2'-g_ /2x K2 (ro)Ct

For 922< 4_r, the interaction term has dimension less than two. For this region of coupling

constant, the UV finiteness of each diagram in the theory is sufficient to guarantee finiteness

of the f"_ theory. For g_ = 4= the interaction term (5.1) is a x_argina] operator, and the

theory will be well defined if the renormalization of g2 with respect to the 2-D cox,_inuum

theory is allowed. This is the situation for the sine-Gordon mode] at its critical point[6][36].

For g_ > 4_r the theory is non-renormalizable, the hopping parameter _ has negative

scaling dimension, and the operator product of the interaction Hamiltonian with itself is

too singular to allow consistent perturbation theo_y about the free-field vacuum.

Therefore, for TLQED, we find the somewhat surprising result that the weak pertur-

bation theory is valid only for a(a) = g_/47r < 1, independent of a. The coupling g_(a) is

the bare coupling and in the scaling regime of full TLQED it may be quite far from the

renormalized QED coupling constant gte=. Only for very weak coupling is g2(a) ,_ gr_ in

the full theory. However, recall that in the quenched approximation of lattice QED[10],

chiral symmetry is spontaneously broken beyond a certain critical value a _ 1. Similarly,

the analytic calculations in the ladder approximation of quenched QED also exhibit a criti-

cal coupling which corresponds to the chiral symmetry breaking phase transition[6][?]. We

therefore make the conjecture that g_(a) = 4_r is in general the chiral symmetry breaking

critical point in TLQED, and that specifically, in the quenched approximation of TLQED,

for which g2(a) = gr,,, chiral symmetry is broken for a > I. This is discussed further in

section 7.
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6. Strong coupling limit

Does TLQED realize spontaneous chiral symmetry breaking in the strong coupling

regime? This means that a non-vanishing chiral condensate (_. _Ie) must appear, or

equivalently in terms of the the lattice fermions,

+ #o, (6.1)
_".t.

where Ivac) is the full interacting vacuum state. Such a non-vanishing condensate would

signal the spontaneous breaking of the discrete chiral symmetry of the lattice theory. Since

it is a discrete symmetry in the strong coupling region, there will be no accompanying Gold-

stone boson in this region, and Coleman's theorem[37], prohibiting spontaneous breaking

of continuous internal symmetries in two dimensions without anomalies or a Higgs mecha-

nism, will not be vio|atedo The discrete chiral symmetry of the lattice model corresponds

to the 4-D anomalous U(1) chiral symmetry, and we would not expect Goldstone bosons

for this broken symmetry in the scaling regime of the transverse lattice model. However,

non-vanishing of the condensate eqn. (6.1) in the scaling regime would also signal the

breaking of the non-anomalous continuum U(2) axial flavor symmetries, and we would

expect their accompanying Goldstone bosons in the scaling regime.

We will now show that spontaneous chiral symmetry breaking does occur in TLQED

in the infinite coupling g_ --. oo limit, where i = 1,2,3. (Here we assume gl "_ gs _ g3.),

by calculating the energy difference between various vacuum configurations defined below

to lowest order in 1/g. As we will see, this calculation is complicated by the fact that the

field theory of rigid rotators is fraught with divergences. In the end however, the vacuum

energy density shift will be a finite quantity.
I

Unlike the previous weak coupling analysis, it is convenient to perform the analysis

in the A3 = 0 gauge, and with equal time quantization. The Hamiltonian density is then

where Ea is the electric field and momentum conjugate to An, and j_ = _1 ¢t(I)¢(I)is

the fermion current. Gauss's law,

g(£±) = A_Ec, -4-a2jf(5:'±) = O, (6.3)
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is obtained by integrating out Ao, and is treated in the quantum theory as the weak

constraint (_a) - 0 for ali physical correlation functions. To leading order in g, the

vacuum must satisfy

Eo(_'.)I0)= o, v_j.. (6.4)

The system will be quantized with respect to this 'free-field' vacuum. The condition that

ali modes of canonical momentum annihilate the vacuum is reminiscent of the rigid rotator

in quantum mechanics.

To regulate the IR behavior of the system, introduce periodic boundary conditions in

the continuous spatial direction z - z3,

-L < z_<L. (6.5)

The mode expansions for the second quantized fields are

"=_' C6.6)
A°_E[ ,...,,+.,r.-,.°.,,].

n._. l

where E_" (A_") are the complex conjugates of E_ (A_), and not hermitian conjugates

in the sense of raising and lowering operators of the harmonic oscillator. The canonical

commutation relations in terms of the modes are

.,,o_ .,,E;(f_)] =i6,,_"+"6_,..g_., (6._')
[A,_(_j.),S;" (_)] =i6,,__"+" __,..,7,.,

The free Hamiltonian and momentum for the gauge fields are given by

1 1,7, F,:E':+½(E°)' ,
_. j. ,oL .= 1 (6.8)

i n_r [A'"R" -- A" F,,*"IP"" = -L-"'"-" "'_-" ' "

Ali E_ and E_" are lowering operators and annihilate the free-field vacuum, and the modes

E_,A:" (E_",A_) are eigenstates of momentum P with eigenvalues n (-n).

Creation operators in the Hilbert space are exponentials of the modes A_ with charge

: n. For instance, the momentum zero mode state e_"aA° I0) has energy eigenvalue (g_n) 2/4L.
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Each state in the Hilbert space corresponds to a wavefunction in a first quantized theory

where the dimensionless quantity aAna plays the role of a coordinate. This relation can be

used to calculate correlation functions. The correlation function of states is non-vanishing

only if the total charge in the exponentials of the wavefunctions vanish.

More precisely, for the zero mode expectation values, the two point correlator is

/:(e -i'_aA°. einA_) F-.A/'-l_a0 dxe _(n-m)z = _._A/'-16(n - m) . (6.9)

Note that for the compact U(1) theory, the integration region for z would be [-Tr, mr],n, ,n

would be integers, and the correlator eqn. (6.9) would be _.,._. In the non-compact case

at hand, the result is a normalized Dirac delta function, which is ill-defined for arbitrary

real n, rrt; only for "integer" n, m do the non-compact and compact results coincide[38].

In this section, we will evaluate such correlators with non-integer arguments, and regulate

the result by defining the cutoff delta function

1 /_ dke_k=6^(x)= 2"7^ (6.10)

The normalization is given by ./V"-1 = 6^ (0).

This is not the only expression which needs to be regulated in the theory. Consider

the exponential of the field e_QA_(_)acting on the vacuum. This expression appears in the

interaction Hamiltonian; it represents a link field carrying flux from _j. to _._ + _ and has

energy eigenvalue

O e_oAo(z) 9_ [ _] e,aA. (.) .0226(0)e_aA.(.).O, (6.11)H_,,.g. Io>= -- 1+2 lo>= T" 4L n=2

The energy is infinite because the exponential is a product of an infinite number of states.

The exponential receives contributions from all of the 'standing waves' A_ and A_ n in the

box. To regulate this UV divergence, introduce a cutoff in the number of modes counted

in the delta function
A e

1

,_,(z)= 2-__ _,,,j,,/,r.. (,_.12)
:y=.-^'

Then the energy of the exponential is _6_, (0). The energy is proportional to the number

of links and to the square of the flux carried by each link.
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The next to leading order contribution to the Hamiltonian comes from the fermions

and their interactions with the gauge field. We adopt the equal time anticommutation

relations for the fermions

16(_- _')_,g_ (6.13)

The free-,field Hamiltonian density for the fermions is

_ =-i _ a2C-1)".+",+'_,a.,_,. (6.14)
• - ,.f

Because of the minus signs in this expression, the mode expansion for the fermions is

(6.15)

' where for each site £a. and flavor f,

{b,_,b_} = _,_,,.,,, {d_,,d_} = 6,,,,n, {bo, bto}= 1. (6.16)

The normal ordered free-field Hamiltonian is given by

Ho = _ n___(b_(Y)b7)+ d_(Y)d(y)) (6.17)L
_. ,f,n

and

(0[b_= <01di= b_10)= d_10)= 0, n > 0, (6.18)

for each fermion flavor. The zero modes appear in the charge operator

QCz_)= f d_j_= _'_'(') b_f)] ...,2L_,o , + (6.19)

and in the mass operator

= The chirMcondensate order parameter is proportional to _x (-1)"" M(£x).
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The vacuum states of the full theory to order O(g °) will be a direct product of the

gauge field vacuum ]0) and the highest weight states for the fermion zero modes. To discuss

chiral symmetry breaking in the zero mode sector of the fermion theory, we diagonalize

the charge Q and mass operator M simultaneously, via the Bogolubov transformation

(6.2t)
1 bto(,) 1 (ato+ ic_)¢o (ao- = ,

where {at, ao } - {4, co} -- 1. Then the mass and charge operators in the zero mode sector

for each site are

M = ½[a_, ao] -2to,lrctcol , Q = _[ato,ao] + ½[4, col . (6.22)

The operators at0,ao and c_, co act on two level systems. The a operators are raising and

lowering operators for the states [ T)a and [ l)a,

ato[ ,I.)a = I T)a, aotl T)a = O, aol T)a = [ ,I.),_, ao[ .1.), = O. (6.23)

1

The vacuum states in the fermion sector are direct products of the two level states in the

a and c systems,
J

I+)= IT)oi_)=, !-) = I_),,IT)o. (6.24)

They satisfy qf±) - 0 (Gauss'slaw)andMl±) = ±l±). The vacuum for each site on the

lattice is therefore doubly degenerate at 0(90). Note that fermion zero mode expectation

values vanish: (b(oy)) = 0 and (bio(1)) = 0. The non-vanishing two point functions are

(bto(Y)b(y')) = + (b(1)b*o(I')) = ½, f --f', (6.25)
( ht(1)h(,f') h(f)ht(f') f, ._o _o )=-(-o _o )=½M, f¢

We now show that the degeneracy of the vacuum state is broken in perturbation theory

by the interaction Hamiltonian

/'Ii,, = ix_ E a2 f dz@t/ lD= - (-1)n'+"'+'fD,] 4rf, (6.26)_'a.,I

which is a gauge invariant operator since [_(_±),Hiut] = O. In the context of the 4-D

transverse lattice theory, the constant _ is dimensionless, since the fermions are dimension
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3/2 and the lattice derivatives go like 1/a and are dimension 1. When power counting for

the continuous 2-[" theory however, the fermions are dimension 1/2 and the derivative is

dimension 0. Therefore _ is dimension 1 in the contemptof the 2-D field theory: _ ,_ a/a3,

where a3 is the UV cutoff of the 2-D theory at each site. To regulate the energy of states,

we have introduced a cutoff in the number of modes, _,(0). The UV cutoff a3 is given by

a3 ,_ 1/_,(0), so that

-- _'a6_,(0) , (6.27)

where _' is a scale independent constant.

The first order shift (Hint) in the vacuum energy vanishes because the expectation

value of a single link field vanishes. The second order shift is given by

W2 = _-- 0-W. '
(8.2S)

Tt

where W. - _-6 -r,4r. ^ (0) + W.,F is the energy eigenvalue of link states In), and W.,F is the

fermion sector contribution. We will calculate the shift in the vazuum energy due to the

assignment of the fermion vacuum to the zero mode states !.-t:)at each site on the lattice,

which will be denoted as 6W2.

To calculate the second order energy shift of the vacuum, we need the correlation

function

/ dzf(z) / dz'g(f) (e-'qaA°(")e+'q'_'A'("')). (6.29)

This correlator occurs when summing over intermediate states in eqn. (6.28). Integrating

out the zero modes A° in the exponentials yields the factor 6,_6^(q-q')/6^ (0). From the

next lowest mode i(A_ - A 2), there is the factor

° 6^(2sin(z_r/L)- 2sin(z%/L))/6A(O)

L (6.30)
- + +z'- L)+e(-z'),5^(z+z'+

The only term on the r.h.s, of eqn. (6.30) that contributes to the correlator is 6A(z--z'). The

other two terms will lead to vanishing contributions because there is no overlap with these

delta functions and the delta functions that appear when integrating out the cosine terms;

for instance, integrating out (A_ + A_ 1) yields a term 6^ ( 2 cos(zlr/L)- 2 cos(z'_r/L) ) which

has no overlap with the second two terms in eqn. (6.30). In the presence of the first term
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ofeqn. (6.30), ali the other modes in the correlator cov%-ibute factors of unity. Therefore,

the corre]ator eqn. (6.29) is given by

6^(q-q _) f

5=_ 6_(0) J dzf(z)g(z) (6.31)

The parameter A is an ultraviolet regu_:,_tor. If the z direction were discretized, then

the sin(nz_r/L) and cos(razorL) teHu_ _i_l!:tiChappear as arguments in the delta functions

of the correlation function (6.29) would take on discrete values (n, m would be bounded

by ,,, [2_r/a3], where a3 is the lattice spacing in the discretized z direction). For integer

charges q, q_, which is ali that we will have to consider in this section, all of the correlatiov

functions would then be normalizable. The discrete version of the normalized delta function

6a(z)/_^(0) would be (a3)-zSz,/(a3) -z. Hence 6^(0) _ 1/a3

While eqn. (6.28) is a complicated sum over four point correlation functions of the

fermion modes, the only the terms which contrih,u_e to the shift in vacuum energy _W2

sre products of four fermion zero m_des. The non-trivial part of this observation is that a

typical two zero mode contribution/b('f)b (f)_t(f')_,t(l')\\0 n _,_ _0 / is proportional to (b(oY)b?o(f))SYf,

and this by the first of eqns. (6.25) is independent of the choice I-t') or ]-) for the vacuum

state at that site° Using the link field two point correlation function (6.29) given by

eqn. (6.31) and the fermion zero mode two point correlators eqns. (6.25), the shift in the

energy density is

_"[1]

This is minimized for M(_.±)M(_j. + _) = -1 and M(_j.)M(_± + _ = +1. There are

two fermion vacuum configurations, related by an overall sign change, that obey these

conditions and the symmetry of these ground states is made clear by figure 2. Both
| • •

configuratzons break the discrete U(1) axial c_hiralsymmetry since the order parameter

_¢_(-1)",M(_±) is non-vanishing for these vacuum configurations. If the order param-

eter is non vanishing in the scaling regime, then the full set of non-anomalous continuum

= axial flavor symmetries will be broken.

There is a simple way of approaching the continuum limit of this leading order result

in the strong coupling regime such that eqn. (6.32) remains finite, i.e. let the longitudinal.

IB. regulator L --, oo and the transverse UV regular a -, 0 such that La remains finite.

So although the energy and correlators of link fields require UV regulators, the shift in
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Fig. 2. The plus and minus signs for each site refer to the fermion zero mode states
I+) and I-/. Up to an overall change in sign, this configuration minimizes the order 1/g 2
correction to the vacuum energy density in the strong coupling limit.

the vacuum energy density is finite in the continuum limit. We briefly list the sources of

the regnlated divergences that contribute to eqn. (6.32). The product of four zero modes

contributes 1/L2a 4, the energy in the denominator of (6.28) contributes !/6_,(0) _ as,

from the integral over intermediate states we get 1/_^(0) _ a3, from the s_ coupling

constant there is a factor of a2/a], examination of eqn. (6.26)showsthat H_nt contributes

a factor of a2, a_d we multiply by 1la 2 to make (6.28) into a density. The result is the

net factor of 1/ (La) 2.

To interpret this result further, consider the spin transformation b(2) --, ab(o2), where

a(g'.L) = (-1) n'. Following the analysis of Semenof_9], define the vector

and the currents Sj - _taj_ where oj are Pauli matrices. Then the Hamiltonian density

in the zero mode sector that has expectation value given by eqn. (6.32) can be written as

+[,] -.
This is the Hamiltonian density for the quantum spin ½ Heisenberg antiferromagnet, and

the configuration given by fig. 2 is just the classical ground state of the system[39]. It has

N_I order, i.e. the expectation value of eqn. (6_32) is non-vanishing and the global flavor

25



SU(2) of the Hamiltonian (_1.34) is spontaneously broken. We can consider eqn. (6.34) to

be Hamiltonian in the fermion sector to leading order in the strong coupling expansion.

To study chiral symmetry breaking to higher order in the strong coupling expansion,

we need to treat the quantum fluctuations of the spin ½ Heisenberg antiferromagnet in the

zero mode sector, and include the effect of non-zero modes on the vacuum state. There

is no exact solution of the ground state of the quantum d=2 quantum spin 21Heisenberg

antiferromagnet[40], and no proof that Ndel order persists in the full quantum theory.

However, numerical simulations indicate that this may be the case[41]_ For a similar

analysis of regular Hamiltonian lattice gauge theory the situation is better, because N_el

order has been proven to exist in three dimensions[9][40].

7. Discussion

The transverse lattice regulation of QED that has been studied in this paper is a

'minimal' way of regulating the diagrammatic divergences of the perturbation theory, and

it exhibits a phase transition at a critical value of the lattice QED coupling constant, and

chiral symmetry br_.aking in the strong coupling regime 2.

In section 5, we took advantage of the UV finiteness of each diagram in weak pertur-

bation theory to find a non-perturbative UV divergence at g2(a) - 4_r. The transv_;_e

lattice regulates the usual UV divergences of four dimensional QED, but the 'finite' two-

dimensional field theories for each site conspire to generate a non-renormalizable interac-

tion. The signature of the non-renormalizability is the anomalous scaling dimension of the

interaction Hamiltonian. If the dimension of any part of the interaction Hamiltonian is

greater than two, then the perturbation theory about the free-field vacuum will be ill de-

fined. One can calculate the anomalous dimension of the interaction Hamiltonian because

the coupling constant g2(a) is not renormalized in the 2-D continuum perturbation theory

for g22_ 4z'. Note that there is no plaquette term in the interaction Hamiltonian, since we

have studied non-compact QED, which would have a higher scaling dimension than the

term we considered 3.

2 If one formulates QED with one lattice and three continuum dimensions, then the diagram-

matic divergences will not be regulated by the lattice, and chiral symmetry breaking will not

appearinthestrongcouplingexpansionofthelatticetheory.Thisisshownby choosinga gauge

wherethelatticegaugefieldissettozero.

3 Plaquettetermsarepresumablygeneratedperturbativelybutaresuppressedby powersof
the cutoff.
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The 2-D sine-Gordon mo.del has the same properties with respect to the coupling con-

stant ft: it k perturbatively finite for all fl butits _ee-fleld perturbation theory is unstable,

without additional coupling constant renormaUzations, for ft2> 8z'. The Sin_-Gordon field

theory is equivalent the grand canonical sum of a Coulomb plasma, and the 'sine-Gordon

phase transition has a nice physical interpretation in terms of the Coulomb gas picture[34].

As fl increases, the free ions of the Coulomb gas, represented by vertex operators exp(±fl_)

in the a_ue-Gordon model, collapse to form dipoles and a new gas of interacting dipoles

is formed. This can be interpreted in the sine-Gordon model M the appearance of a new

dimension 2 renorma_zable operator at this fixed point. One can consider the sine-Gordon

model for values of fl'_> 8_ras long as the additional renormalization for the new operator

is taken into account[36].

Iu TLQED, 'free ions' are Wen by fermion charges separated by one link and con-

nected by a fllzx tube: _t exp(gA)_. The 'Coulomb gas' in TLQED is then a gas of e+

e- pairs, where the charges, separated by a single link, interact via Coulomb interactions.

The 'dipoles' of the s_;rongcoupling phase are pairs of e+ e-flux tubes, with strongly
i

interacting photon fields.

The conjecture is that the non-perturbative g_(a) = 4_ critical point; of TLQED,

tra_itlon occurs, is the critical point of spontaneous chiral symmetrywhere this phue '

breaking, where the _.,_ order parameter gets a vacuum expectation value. :['he bare cou-

pling constant g2(a) is the _quenched' coupling constant of TLQED, because fermion loop

corrections are obviomdy not included in the bare Hamiltonian, Both the quenched lattice

.simulations Lud the qlaenched planer approximation exhibit chiral symmetry breakhig for

_b_ '_ 1. The phase tra:_sition in the quenched planar approximation has been previ-

ously compared to the phase transition of the sine-Gordon model by Miransky[6], who

interpreted the phase traasition of each model as a collapse phenomenon,, At the criti-

cal point _ the quenched planer approximation, the anomalous scaling dimension of the

fermion is I,._nd the l_our-fermionterm becomes a renormalizable operator[7], lt is tempt-

ing to as_3ate the 'dipoles' of the strong coupling phase of 'TLQED with renormaliz_ble
i

four-fermion operator of the quenched planar approximation. We used the strong coupling

expansion of TLQED in section 6 to calculate explicitly the spontaneous c_iral symmetry

breaking in the inflni;tecoupling _i_.

ttecen_ lattice gl_ugetheory simulations indicate _hat the UV fixed point of chiral sym-

metry breaking in th,e quenched theory may be trivial,in the full unquenched theory[12I[I3].
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Some of the results of this paper can immediately be applied to more realistic trans-

verse lattice models. In particular, the construction of staggered fermions and the analysis

of chiral symmetry breaking via the strong coupling expansion can be easily generalized

to non-abeUan gauge theories.

We now briefly mention two formal areas of the theory that would be interesting to

pursue. In _ection 4, we noted that TLQED can be covariantly (in the 2-D sense) bosonized.

Bosonization plays a central role in explaining why the Schwinger model is exactly soluble.

It would be interesting to understand the continuum limit of this bosonized version of

TLQED. It would also be interesting, to work in the 'opposite' direction - to covariantly

bosonize transverse lattice fermions, and then put the two continuous coordinates on a

lattice. Naively, this would generate a 4oD lattice theory where the fermions are interpreted

as bosonic solitons, and the functional integral over fermions is 'gaussian' and easier to

simulate 4. Secondly, TLQED is an interacting 2-D field theory in the form of a combined

Schwinger and sine-Gordon model. It might be possible to solve the sine-Gordon 'part' by

using inverse scattering/Bethe ansatz methods. Then the non_integrable Schwinger terms

would have to be treated as perturbations in the space of Bethe_ansatz states.

Acknowledgements: I am indebted to W. Bardeen for clarifying and stimulating discus-
sions.

I

4 An idea pointed out to me by W. Bard_n.
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