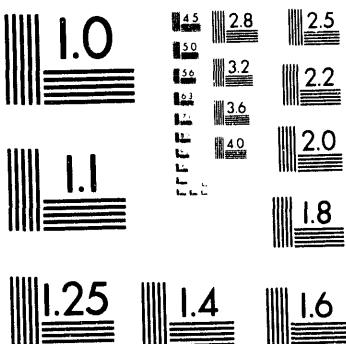


AIIM


Association for Information and Image Management

1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202

Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

1 of 1

DECLASSIFIED

DOCUMENT NO.

HW-71174

SERIES AND COPY NO.

GENERAL ELECTRIC

HANFORD ATOMIC PRODUCTS OPERATION - RICHLAND, WASHINGTON

THIS DOCUMENT CONTAINS RESTRICTED DATA
DECODED IN THE PURSUIT OF ENERGY ACT OF 1954.
TRANSMISSION OR THE DISCLOSURE OF ITS
CONTENTS IN WHATEVER MANNER TO AN UNAUTHORIZED
PERSON IS PROHIBITED.

NPR REACTOR SHIELD CALCULATIONS

OTHER OFFICIAL CLASSIFIED INFORMATION
THIS MATERIAL CONTAINS INFORMATION AFFECTING
THE NATIONAL DEFENSE OF THE UNITED STATES
WITHIN THE MEANING OF THE ESPIONAGE LAWS,
TITLE 18, U. S. C., SECS. 793 AND 794, THE TRANS-
MISSION OR REVELATION OF WHICH IN ANY MANNER
TO AN UNAUTHORIZED PERSON IS PROHIBITED BY
LAW.

AUTHOR

E. G. Peterson

ISSUING FILE

Oct 12, 1968

THIS DOCUMENT MUST BE LEFT UNATTENDED OR WHERE AN UNAUTHORIZED PERSON MAY HAVE ACCESS TO IT. WHEN NOT IN USE, IT MUST BE STORED IN A PROVED LOCKED DRAWER OR CLOSET WITHIN AN APPROVED GUARDED AREA WHILE IT IS YOUR PROPERTY AND UNTIL YOU HAVE RECEIVED A SIGNED RECEIPT. IN CLASSIFIED FILES, IT IS YOUR RESPONSIBILITY TO KEEP IT AND ITS CONTENTS WITHIN THE PREMISES OF THE PROJECT AND FROM ANY UNAUTHORIZED PERSON. IT IS TO BE SUBMITTED TO, AND STORED IN, YOUR PLACE OF RESIDENCE IS PROHIBITED. IT IS NOT TO BE COPIED, TRANSMITTED, OR ALTERED. IF ADDITIONAL COPIES ARE REQUIRED, OBTAIN THEM FROM THE RELATED ISSUING FILE. PERSONS READING THIS DOCUMENT ARE REQUESTED TO SIGN IN THE SPACE PROVIDED BELOW.

DECLASSIFIED

54-3000-342 (3-53) 150.05 5.000 1.000 0.000

(CLASSIFICATION)

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DECLASSIFIED

-1-

HW-71174

This document classified by

JW Finnigan
J. W. Finnigan

This document consists of
13 pages. No. 17 of
25 copies.

DISTRIBUTION

1. FW Albaugh	13. S Goldsmith
2. JM Batch	14. CA Mansius
3. JH Brown	15. R Nilson
4. WL Bunch	16. EG Peterson
5. RG Clark	17. RE Peterson
6. HS Davis	18. JJ Regimbal
7. GT Haugland	19. WL Smalley
8. J DePangher	20. DE Wood
9. RL Dickeman	21. 300 File
10. JW Finnigan	22. Record Center
11. RM Fryar	23-25. Extra
12. GC Fullmer	

NPR REACTOR SHIELD CALCULATIONS

E. G. Peterson

September 27, 1961

Classification Cancelled and Changed To

DECLASSIFIED

By Authority of W A Snyder
CG PR-2 3-22-94

By J E Sainely 3-15-94
Verified By DK Hanson, 3-22-94

This document contains restricted information. Its transmittal
or disclosure to anyone other than an authorized person is prohibited.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DECLASSIFIED

-2-

HW-77174

NPR REACTOR SHIELD CALCULATIONS

INTRODUCTION

At the request of IPD Personnel (1), calculations on neutron and gamma attenuation were made for the NPR shield. The calculations were made using a new shielding computer code developed for the IBM 7090. The calculations show the thermal neutron flux, total neutron dose rate, and gamma dose rate distribution through the entire shield assembly.

SUMMARY

The calculations show that the side and top primary shield design is adequate to reduce the radiation level below design tolerances. The radiation leakage through the front shield was higher than the design tolerances. Two alternate biological shield materials were studied for use on the front face. These two materials were iron serpentine concrete mixtures with densities of 245 lb/ft³ and 265 lb/ft³ (designated by I-S-245-P and I-S-265-P respectively). Both of these concretes reduced the radiation below design tolerances. It is recommended that the present front face biological shield be changed from I-S-220-P to I-S-245-P. With this change the NPR shield is adequate according to these calculations. The calculations reported here do not include leakage through penetration in the shield.

DISCUSSION

Methods of Calculation

The graphite reflector is treated as part of the shield so that the inner boundary conditions for the whole shield assembly are applied at the core graphite interface. The method used to calculate the thermal flux and neutron dose rate will not be fully discussed here other than to state briefly the basic concepts. A full report on the program can be found in Ref. (2). The distribution of high energy neutrons is determined by integrating over the fission sources in the reactor core using a point source kernel of the form

$$\frac{e^{-\Sigma_r(E) \cdot r}}{4\pi r^2}$$

where $\Sigma_r(E)$ is an energy dependent removal cross-section, defined for energies in the fission spectrum (1 to 18 Mev) by the formula

$$\Sigma_r(E) = \Sigma_{tot}(E) - \bar{U}(E) \Sigma_{sc}(E)$$

where $\Sigma_{sc}(E)$ is the elastic scattering cross-section, and $\Sigma_{tot}(E)$ is the total cross section, and $\bar{U}(E)$ is the mean cosine of the elastic scattering in the lab system. Once the distribution of penetrating neutrons is found, it is used to generate a source term for conventional multi-group diffusion theory. To illustrate the accuracy of the program, Figure V is included. The experimental results shown in figure V were obtained in the DR shield facility. The calculated results are not normalized and boundary conditions are applied at the core-

DECLASSIFIED

graphite interface. The gamma dose rate was calculated using plain geometry and Taylor buildup factors. The program considers gammas generated in the core as well as those from (n, γ) reactions in the shield. Both thermal and epithermal captures are considered.

These calculations do not include radiation leakage through penetrations in the shield.

Given Conditions

The neutron fluxes incident on the NPR shield, shield thicknesses, and shield compositions were specified by W. L. Bunch and H. S. Davis. The neutron fluxes incident on the NPR shield assembly are given in Table I

TABLE I

Neutron Fluxes at the Boundary Between The Core and Graphite Reflector

<u>Flux</u>	<u>Energy</u>	<u>n/cm²/sec</u>
Fast	(E > 0.24 Mev)	2.8×10^{13}
Resonance	(0.15 ev < E < 0.24 Mev)	5.1×10^{13}
Thermal	(E < 0.15 ev)	2.8×10^{13}

The composition of the core and shield assembly along with shield thicknesses are given in Tables II and III.

TABLE II

Elemental Composition of the Shield Materials

DECLASSIFIED

-4-

HW-77174

TABLE III

Shield Assemblies for NPR

	<u>Materials</u>	<u>Thickness</u> (Inches)	<u>Density</u> (g/cm ³)
<u>Front</u>			
Reflector	Graphite	20	1.7
Thermal	Iron	7-7/8	7.20
Biological		40	
Case I	Concrete (I-S-220-P)		3.38
Case II	Concrete (I-S-245-P)		3.78
Case III	Concrete (I-S-265-P)		4.15
<u>Side</u>			
Reflector	Graphite	60	1.7
Thermal	Boron-steel	1-1/8	7.77
Biological	Concrete (H-I-217-C)	43	3.55
<u>Top</u>			
Reflector	Graphite	46-3/4	1.7
Thermal	Boron steel	1-1/8	7.77
Biological	Concrete (H-I-217-C)	43	3.55

The top biological shield assembly as given here is somewhat different from the actual conditions. The biological shield is actually 66 inches thick and has a density of about 3.0 g/cm³. The exact composition will be determined later to utilize the existing stocks of heavy aggregate. The actual biological shield will make a better shield than the case stated above and the results obtained using the above conditions will be conservative.

Tolerances

"When the reactor is operating at maximum design power, radiation levels at the outside surface of the primary reactor shield shall be less than 12 rem/hr, including 2 rem/hr of neutrons and 10 r/hr of gamma radiation.

Neutron levels external to the primary shield during reactor operation shall be sufficiently low so that activation acquired by construction materials and piping will be less than 10 mr/hr. (3).

To estimate the activation of construction materials, the following assumptions were made:

1. A thermal neutron flux incident on an infinite slab of stainless steel one cm. thick. (Infinite-slab source)
2. The incident thermal flux is 2×10^7 n/cm²/sec

DECLASSIFIED

HW-77174

The gamma flux at the surface of the plane is given by

$$\phi = \frac{S_v}{2U_s} \left[1 - E_2(b) \right]$$

where:

$$\begin{aligned}\phi &= \text{gamma flux, photons/cm}^2\text{-sec}^2 \\ S_v &= \text{source strength per unit volume} \\ U_s &= \text{attenuation coefficient of steel} \\ X &= \text{thickness of the infinite plane} \\ b &= X U_s \\ E_2 &= \exp(-b) - b E_1(b) \\ E_1 &= \int_b^\infty \frac{e^{-t}}{t} dt\end{aligned}$$

The results of the calculation are given in Table IV.

TABLE IV

ACTIVITIES IN STAINLESS STEEL AS SATURATION
IN A THERMAL NEUTRON FLUX OF 2×10^7 n/cm²/sec

Element	% Disinte- gration	Gamma Energy Mev E	d/sec/cm ³ Sv	$\gamma/cm^2/sec$ ϕ	Mev/cm ² /sec $E \times \phi$	Conv. factors Mr/hr Mev/cm ² /sec	Dose Rate mr/hr	Total Dose Rate mr/hr	Percentage Weight of Element in Steel	Half- life
Iron	50 50	1.1 1.3	1.52×10^3 1.52×10^3	1.07×10^3 1.14×10^3	1.18×10^3 1.48×10^3	$.17 \times 10^{-3}$ $.17 \times 10^{-3}$.20 .25	.45	65.3	46 d
Chromium	3	.32	4.56×10^2	2.23×10^2	7.15×10^1	$.20 \times 10^{-3}$.02	.02	18.0	27.8 d
Nickel	29 43 29	.37 1.12 1.49	1.88×10^3 2.79×10^3 1.88×10^3	1.02×10^3 2.09×10^3 1.49×10^3	3.77×10^2 2.34×10^3 2.22×10^3	$.20 \times 10^{-3}$ $.177 \times 10^{-3}$ $.177 \times 10^{-3}$.75 .41 .39	1.55	14	2.57 hr
Manganese	100 30 20	.822 1.77 2.06	4.52×10^5 1.36×10^5 9.04×10^4	2.99×10^5 1.16×10^5 7.72×10^4	2.46×10^5 2.05×10^5 1.59×10^5	$.20 \times 10^{-3}$ $.177 \times 10^{-3}$ $.177 \times 10^{-3}$	49.2 36.3 28.1	113.6	2	2.58 hr
Cobalt	100 100	1.17 1.33	1.48×10^4 1.48×10^4	1.11×10^4 1.11×10^4	1.29×10^4 1.47×10^4	$.177 \times 10^{-3}$ $.177 \times 10^{-3}$	2.28 2.60	5.88	0.026	5.28 yr

121.5

DECLASSIFIED

-7- **DECLASSIFIED**

HW-71174

By changing the incident thermal neutron flux, the dose rates would change proportionately. Thus using stainless steel as a base, the thermal neutron tolerance is about 2×10^6 n/cm²/sec to generate an activation dose rate of 10 mr/hr.

Front Primary Shield

The thickness of the front primary shield is governed by (1) the amount of neutron attenuation required to prevent activation of the piping on the front face and (2) the front primary shield has to reduce two gamma dose rate below the dose rate generated by gammas in the recirculating water. Figure I shows three different types of biological shields, I-S-220-P, I-S-245-P and I-S-265-P. Table V shows a comparison of the leakage through the different types of shields.

TABLE V

Comparison of Biological Shields on
the Front Face of NPR

Type of Leakage	Design Tolerance	Type of Biological Shield		
		I-S-220-P	I-S-245-P	I-S-265-P
Thermal Flux, n/cm ² /sec	2×10^6	3×10^3	1.3×10^3	8.0×10^2
Gamma Dose Rate, r/hr	10	14	3.5	1.3
Neutron Dose Rate, rem/hr	2	.5	0.4	0.3

The I-S-220-P will not meet the design tolerances and from an economic standpoint there is not too much incentive in going to the I-S-265-P. Thus the change from I-S-220-P to I-S-245-P is recommended on the bases of these calculations.

NPR Primary Shielding

Using the I-245-P for the front biological shield, a summary of the results is shown in Figures II, III and IV and in Table VI.

TABLE VI

Radiation Leakage Through the NPR Shield

Type of Leakage	Design Tolerance	Front	Side	Top
Thermal Flux, n/cm ² /sec	2×10^6	1.3×10^3	1.6×10^1	1.7×10^2
Gamma Dose Rate, r/hr	10	3.5	0.65	1.5
Neutron Dose Rate, rem/hr	2	0.4	0.004	0.04

DECLASSIFIED

-8-

HW-71174

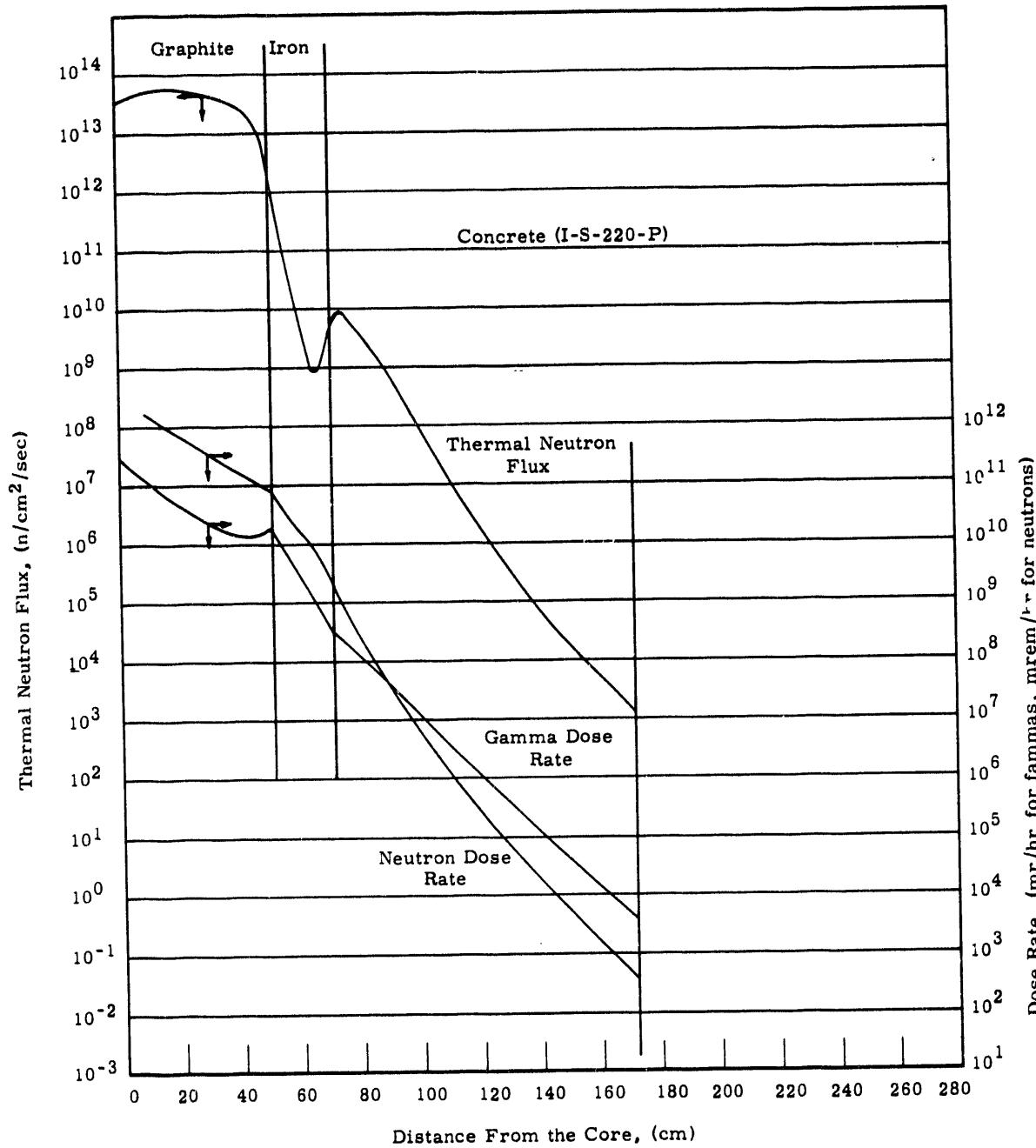
Conclusions

From the results obtained using the new shielding code, the NPR shield meets the design tolerances if the biological shield on the front face is changed from I-S-220-P to I-S-245-P.

References

1. W. L. Bunch, Private Communication
2. E. G. Peterson, Computer Code For Design of Reactor Shields, HW-71173
3. H. S. Davis, Project CAI-816 105-N Design Criteria Primary Reactor Shield and Inlet Barrier Wall, HW-57010 RD

 E.G. Peterson, Physicist


Reactor Technology Development Operation
HANFORD LABORATORIES OPERATION

EG Peterson:mw

DECLASSIFIED

-9-

HW-71174

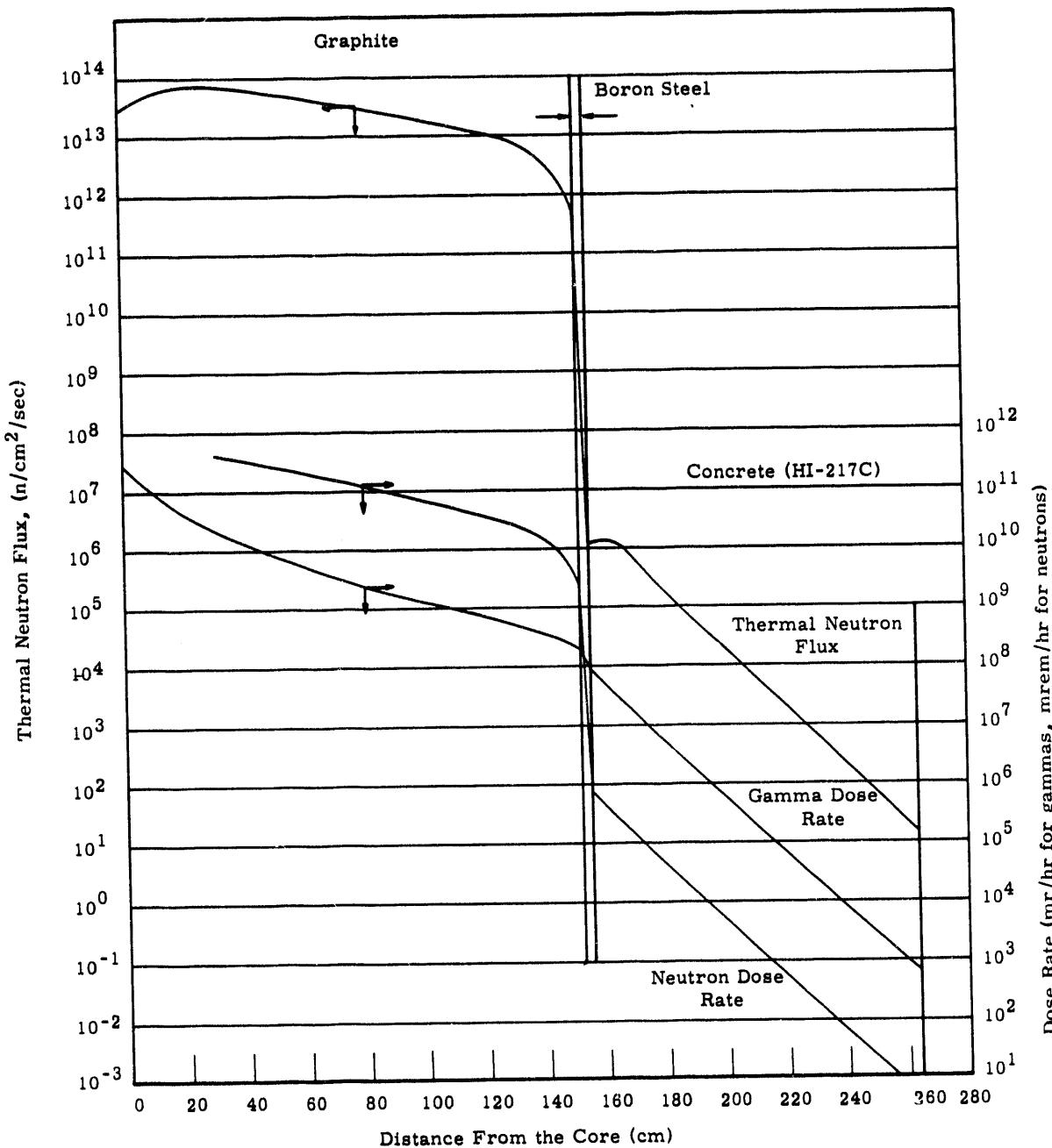


FIGURE 1
NPR Front Shield Calculations

DECLASSIFIED

- 10 -

HW-71174

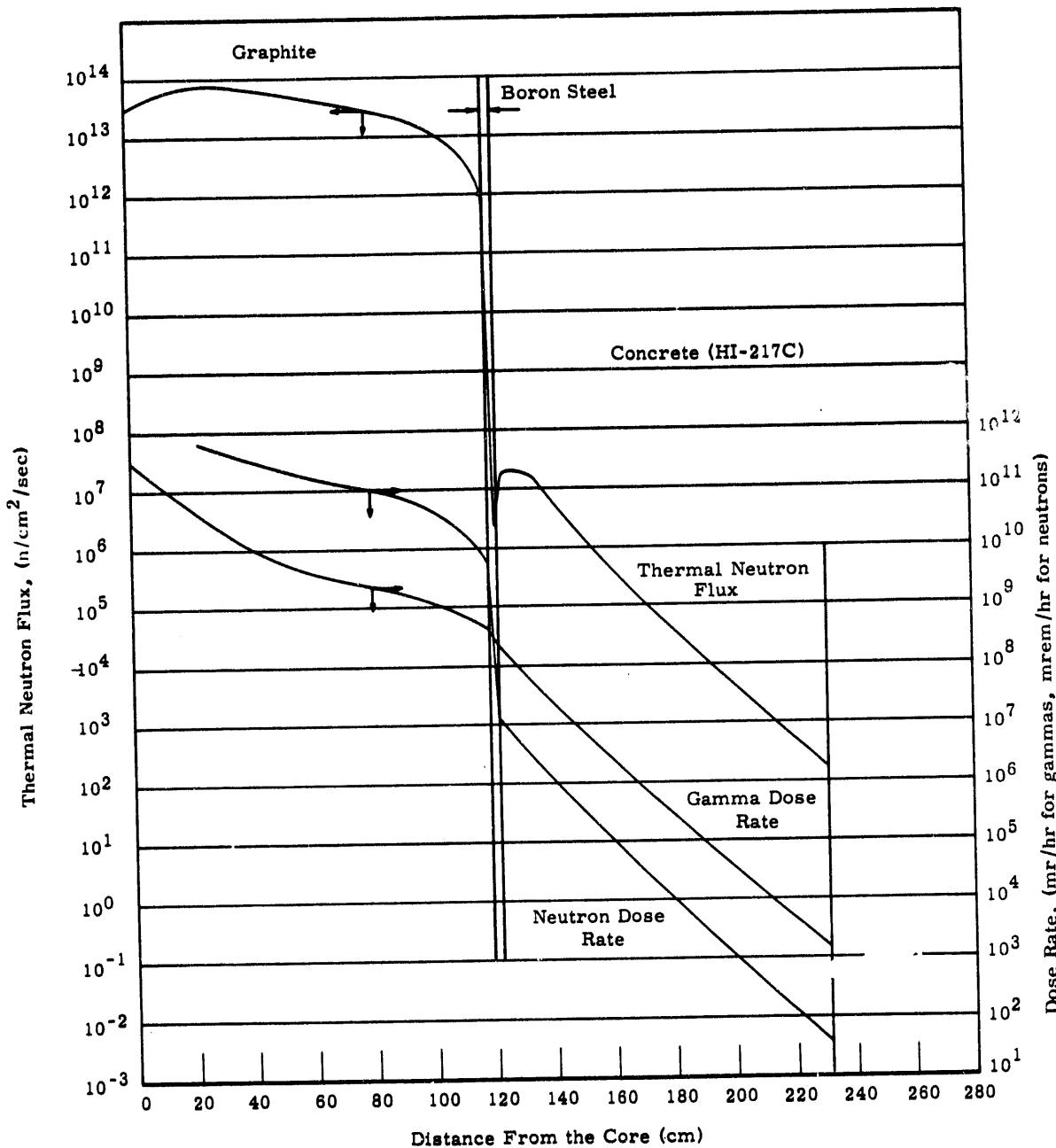


FIGURE 2
NPR Side Shield Calculations

DECLASSIFIED

-11-

HW-71174

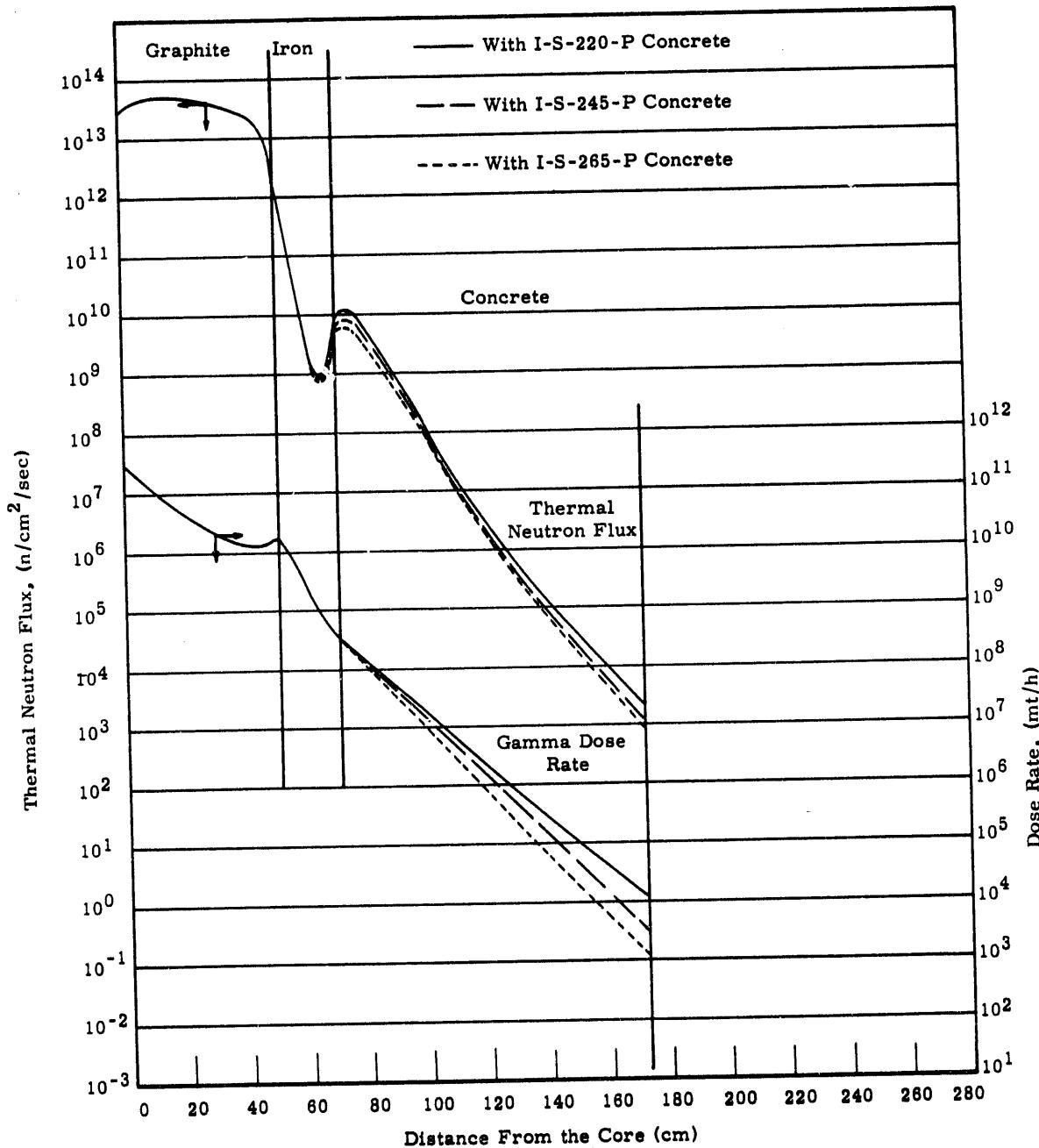


FIGURE 3
NPR Top Shield Calculations

DECLASSIFIED

-12-

HW-71174

FIGURE 4
NPR Front Shield Calculations Using Various Types of Concretes

UNCLASSIFIED

ARCC 88 RICHARD WASH.

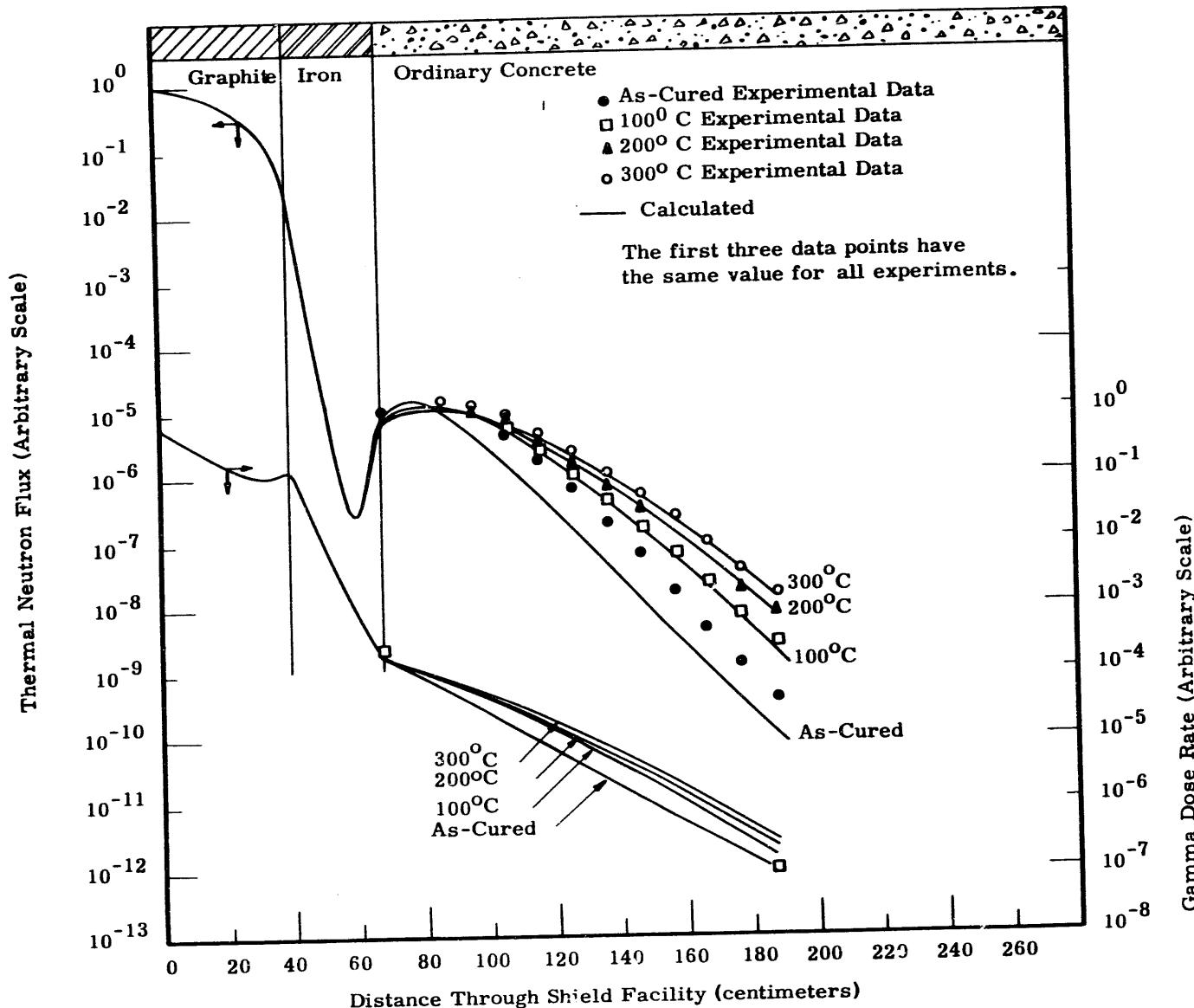


FIGURE 5

HW-71174

-13-

UNCLASSIFIED

A vertical stack of four abstract black and white shapes. The top shape is a rectangle divided into two vertical halves. The second shape is a horizontal rectangle with a diagonal cut from the bottom-left to the top-right. The third shape is a large, irregular black shape with a white, rounded rectangular cutout in the center. The bottom shape is a large, solid black U-shaped block.

DATA
TIME
TODAY

