
+_, _+ _'_ rx Information and Image <_/_/,

___ _'_,_ Avenue,Suite 1 Management

+? __ Ass°ciati°n f°l_ O0Wayne 100 _/% _++'__

Silver Spring, Maryland20910 1///_/" A " _ ./'/./_o ' _ _ _'+> +>++>

Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mrn

1 2 3 4 5

IIIIL'++Inches ++o
,+IIImIIIli_

' IILIl_

Realizing Parallel Reduction Operations in Sisal 1.2

Scott M. Denton, John T. Feo and Patrick J. Miller

Computer Research Group
Lawrence Livermore National La bora tory

IAvermore, CA 94550

Abstract: Often the tasks of a parallel lob compute sets of values that are reduced to a
single value or gathered to build an aggregate structure. Since reductions may
introduce dependencies, most languages separate computation and reduction. For ex-
ample, Fortran 90 and HPF provide a rich set of predefined reduction functions but

only for extant arrays. Sisal 1.2 is unique in that it supports seven reductioni

operations as a natural consequence of loop expressions. These reductions are
limited and cannot express the variety of reduction operations found in parallel
programs. In this paper, we present compilation techniques that recognize pairs of
computation-reduction expressions in Sisal 1.2 and fuse them into single parallel
loops. This optimization overlaps computation and reduction, reduces runtime

overhead, and reduces storage requirements. We describe an implementation and we
present performance numbers that demonstrate the utility of our techniques.

1.0 Introduction

Often the tasks of a parallel job compute values in two phases. First, the

computation expression computes a set of values, and then the reduction expression

reduces the set of values to a scalar value or gathers the values to build an aggregate

structure. An array sum reduction adds together the elements of an array and

returns a scalar value. A histogram is a transformational reduction that counts the

number of occurrences of a value in one array and stores the count in another. A

recurring theme in particle physics codes is the calculation of bond forces. The

forces between particles are calculated, and then the force incident on each particle.

Since the forces are symmetric, an efficient program calculates each force only once

and then adds together the forces incident on each particle. Since reduction

operations occur .frequently in application programs, they are good targets for

' optimization. The efficient expression and implementation of reduction operations

can reduce the cost of parallel programming.

" V ASIER
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

A reduction operator is a function of a set of values such as an array or list. If we

execute the computation and reduction concurrently, then the memory used to store

the result of the reduction expression is shared by the tasks computing the set of

values. Since reductions may introduce dependencies, most languages separate the ,'

computation and reduction tasks. For example, Fortran 90 [1] and HPF [2] provide a

rich set of predefined reduction functions but only for extant arrays. _'

C find the minimum value in z_array

z_min = MINVAL (z_array)

C return the first location of the minimum value in z_array

z_min_loc = MINLOC (z_array)

Despite the lack of explicit memory, functional languages also support reduction

operations. Haskell [3] provides reduction and accumulation operations on extant

lists or list expressions.

-- compute the sum of the integers l through i0

sum[l.,i0]

-- return a table of the number of occurrences of each value

-- within bounds in list z

accumArray (+) 0 bounds [i := 1 [i <- z, (inRange bounds i)]

Sisal 1.2 [4] is unique in that it supports seven reduction operations as a natural

consequence of loop expression. The reduction operation appears as a keyword in

the returns clause of the for or for initial expression.

% find the minimum value in z_array

for z in z_array

returns value of least z

end for

% inner product of arrays of length i0

for i in i, i0

c := A[i] * B[i]

returns value of sum c

end for

Since a for expression includes both computation and reduction, the Sisal compiler

can overlap the operations, implementing both tasks to take best advantage of the

underlying architecture.

A shortcoming of all languages is that they support only a few predefined

v reduction opera_ions. The HPF Journal of Development [2] has suggested additional

language featur,._s be added for user-defined reduction functions, and in the final

section of this paper we discuss syntax for user-defined reductions in Sisal 90. With-

out special language features, a user must use extant loop forms to express the

computation and reduction operations, and rely on the compiler to generate efficient

code. For example, the Fortran D compiler [6] seeks to recognize reductions for

optimization in traditional imperative code.

In this paper we present compiler techniques to identify pairs of computation-

reduction expressions in Sisal 1.2. We describe how we manipulate the code's

intermediate form to construct a single parallel loop similar to the loops constructed

for the seven intrinsic reduction operations. Our techniques require no changes to

the language definition or intermediate form. Section two presents the form of

computation-reduction expressions we recognize and the constraints that the

expressions must satisfy. Section three illustrates the rewiring of the intermediate

form and discusses implementation issues. Section four presents performance

numbers demonstrating the utility of our techniques. In section five, we discuss the

syntax for user-defined reductions in Sisal 90, the analysis required to insure

determinancy, and the possible implementations of different classes of reduction

operations.

2.0 Computation-reduction expressions
ii

The Sisal 1.2 language definition supports seven reduction operations: sum,

product, least, greatest, array, stream, and catenate. The reductions r_ay appear in

the re,drns clause of for or for AnitAal expressions. While useful, the reductions are

inadequate. For example, finding the first location of the minimum value of an array
I

cannot be expressed efficiently in Sisal 1.2. A programmer must either write two for

expressions,

min_value := for x in A returns

value of least x end for;

min_index := for x in A at i returns

value of least i when x = min_value end for;

orone foriniUa/expression

min_index := for initial

i := i;

min_value, min_index := A[I], 1

while i < array_size(A) repeat

i := old i + I;

min_va lue,

min_index := if A[i] < old min_value then A[i], i

else old min_value, old min_index

end if

returns value of min_index

end for

The first solution doubles the computation's overhead, and the second solution

eliminates all parallelism.

The situation is more dire if we want to generate a set of values, and then count or

accumulate the values. A common pair of computation-reduction expressions occurs

when computing the forces between a set of particles. Consider a set of n particles

and m bonds in a bond_Hst. Each bond represents a force between two particles. We

want to calculate the force of each bond and then accumulate the force incident on

each particle,

Force_update := for bond in i, m

index_l, index_2 := end_points (bond) ;

Force_record := energy (index_l, index_2, Positions)

returns array of Force_record

end for ;

Force_out := for initial

i := 0;

Forces := array_fill(l, n, 0.0) °

while i < array_size(Force_update) repeat

i := old i + I;

index_l := Force_update [i] .ii ;

index_2 := Force_update [i].jj ;

bond_energy := Force_update [i].bond_energy;

Forces := old Forces[

index_l: old Forces [index_l + bond_energy;

index_2 : old Forces [index_2 - bond_energy

]

returns value of Forces

end for

The firstexpressionisa for expression. The second and thirdlinesconstitutethe

loop body. An instance of the body is computed for each bond, and defines a

force_record. The record has three fields:the indices of the two particles

participating in the bond (index_l and index_2) and the bond's energy. The

expression returns the array of force records. The second expression isa for initial

expression. Itreturns the array Forces,where Porces_] is the incidentforce on the

j-th particle.The second and thirdlinesinitializethe counter iand the Forces array.

The loop body, linesfive through ten,reads the i-th force record and updates the

Forcesarray accordingly.

On highly parallelcomputer systems, the presence of the for initialexpression

curtailsthe code's efficiency--aneffectof Amdmhl's Law. Notice that the sizeof the

sequentialcode grows linearlywith problem size. On medium or small systems,there

may be insufficientmemory to store the intermediate array of force records. The

extra storage may increase the number of page faults and secondary memory

accessesdiminishing performance. We have extended the Sisalcompiler to recognize

pairs of computation-reduction expressionsand to fuse each pair of expressionsinto

a singleparallelloop. The compiler _Ippliesthe optimizationto pairsof for and for

iniUalexpressionsthatsatisfythe followingfivecriteria:

I. the for initialexpression depends directlyon the for expression,and

does not depend on any descendant of the forexpression,

2. the initializationclause of the for initialexpression is independent of

the array ofvaluesconsumed,

3. the for initialexpression consumes every value of the produced array,

once and inorder,

4. the for initial expression has no loop carried dependencies other than

an index value and the shared accumulator, and

5. the for initial expression depends on the for expression for only an

array of values.

The shared accumulator refers to the scalar value or aggregate structure returned f

by the 1br initial expression--the array Forces in the example above. If the first

criterion is false, then we can not execute the for initial computation until the

descendent terminates preventing us from fusing the for and for initial expression.

The second criterion permits us to move the initialization of the for initial expression

before the for expression. The third and fourth criteria guarantee that we may fuse

the bodies of the for and for initial expressions, eliminate the index value, and place

only the accumulator in a critical section. The fifth criterion is solely a limitation of

the current compiler. Currently, we do not prove that the reduction function is

commutative; consequently, the user may introduce non-determinism. Some Sisal

aficionados argue that the introduction of non-determinism in such a tightly

controlled manner is good because it expands the domain of Sisal programming;

others disagree. In the final section, we discuss ideas regarding analysis and

implementation techniques to guarantee determinancy.

3.0 Rewiring the graphs

Consider the expressions for Force_update and Force_out given in the previous

section. Figure 1 is a logical view of the IF1 graphs [5] of the two expressions. The

top node is the graph of the for expression. It has three subgraphs: generator, body,

and returns. The generator defines a set of index values. An instance of the body is

executed for each value, and each body constructs a Force_record. The records are

passed to the returns subgraph that gathers them into an array. The bottom node is

the graph of the for initial expression. It has four subgraphs: initial, test, body, and

returns. The initial subgraph initializes the index value i and the shared

accumulator Forces. The body is executed once for each force record. The body

updates two elements of Forces and passes the new array to the returns subgraph.

The returns subgraph selects the final value of Forces and passes it out from the

compound node. We refer to this implementation as unoptimized.

m _ Positions

i bond in I, m I
I

ly bond _I Positions !

index_l, index_2 := end_points (bond) : i
Force record := energy(index_l, index_2, Positions)

i
, , ,,, , I

Forcerecord

Iv
returns array of Force_record i

II Force update I' n

.., ,., , ,

for initial

i := i;

Forces := array_fill(l, n, 0.0)

IV i _I Force-update _I Forces

while i < array_size(Force_update) repeat _,
...........

i := old i + i;

index_l := Force_update[i].ii;

index_2 := Force_update_i].jj;

bond energy := Force_update[i].force;

Forces := old Forces[

index_l: old Forces[index_l] + bond_energy; ---

index_2: old Forces[index_2] - bond_energy

]

Forces

1 returns value °f F°rces I

I

J _ Force_out

FigureI -A pairof computation-reductionexpressions
I 111111 I

n

J Forces := array_fill(l, n, 0.0)I

_ m _ Positions _ Forces

!
.... i , H,,

I for bond in i,

m

d I P°siti°ns

index_l, index 2 := end_points (bond) ;

Force_record '= force(index_l, index 2, Position ;

bond_energy := Force_record. bond_energy;
J

LOCK (Forces)

Forces := old Forces[

index_l: old Forces[index_l] + bond energy;

index_2 : old Forces [index_2] - bond_en jy;

UNLOCK (Forces)

i, ,,,

IrForces
i

returns value of Forces

.....

,k. '

Force_out

Figure2 - Aparallelcomputation-reductiongraph
I II

Since the two expressions met the five criteria listed in the previous section, our

compiler transforms the graph shown in Figure 1 into the graph shown in Figure 2.

The first node initializes the shared accumulator Forces and passes it to the second

node. The second node is a parallel for computation. Its generator is identical to the

generator of the original for compound node. Its body and returns subgraphs are

compositions of the body and returns subgraphs of the original compound nodes.

Since Forces is a shared resource, we place a lock about any read and write accesses to

insure mutual exclusion. Notice that we have eliminated the test subgraph in the

original graph, and that we no longer build the array of force records. We refer to

this implementation as optimized.

There are a variety of ways to build the new graph and control access to the

shared accumulator. Instead of locking all of Forces, we could lock individual

elements or sections of the array. Maintaining a lock per element would be

, expensive unless the memory had presence bits. Since the Sisal runtime system

slices t'or expressions into sets of iterations, we can eliminate the lock from the body

by having each set of iterations initialize and maintain a local accumulator. As the

sets finish, we could "merge" the local accumulators to derive the final result. Such

an implementation reduces the number of lock operations and contention for the

lock, but uses more memory. Moreover, if the merge operator is different than the

reduction operation, as in the example used in this paper, the compiler would have to

synthesize it automatically.

4.0 Performance

We ran a series of experiments to evaluate the performance of our optimization.

We used a computation and reduction expression from molecular dynamics similar to

the expressions used in the previous section. Table 1 gives the execution times and

space requirements for different problem sizes. Graph 1 shows the graph of the

execution times. Sequential and mixed are the one and four processor execution

times, respectively, of the unoptimized implementation (Figure 1). Parallel is the

four processor execution time of the optimized implementation (Figure 2). As

expected, the optimized code uses less space than the unoptimized code. It also runs

faster; however, we did not always see appreciable performance gains.

There are many factors that influence the execution time of the optimized code

versus the execution time of the unoptimized code: the time to set and release locks,

the time to write and read a record, lock contention, size of the computation

expression, size of the reduction expression, number of processors, etc. If the size of

the computation expression is at least p (number of processors) times greater than

the size of the reduction expression, then there is little lock contention. Essentially,

the concurrent tasks contend for the lock the first time, and then become staggered

, arriving at the critical section at different times. In the molecular dynamics code, all

computation expressions are much larger than the reduction expressions. However,

I small reduction expressions minimize the effect of parallelizing the reduction

operation. On large systems, Amdahl's Law may magnify the effect, but then the

large number of processors increases lock contention. Overall, the optimized code

80.00

m 70.00
x

60.00
-------=----'-- sequential ,o

= 50.00
m,

B 40.00 ,_ mixed-4
f

(/)

mo 30.00 -'--o--'-" parallel-4O
" 20.00
(/)

10.00

0.00

100000 200000 300000 400000 500000

problem size (number of bonds)

I

Graph 1 - Execution times of computation-reduction expressions
IIIII I I I iiii

may run five to twenty percent faster than the unoptimized code, but the real

savings is in memory costs. An average three-dimensional force computation in a

molecular dynamics simulation code, if unoptimized, can generate a 64MB array!

ii.6 MB 23.2 MB 34.8 MB 46.4 MB 58.0 MB
Sequential

Reduction 9.37 sec 18.97 sec 28.25 sec 38.18 sec 49.76 sec

8.4 MB 16.8 MB 25.2 MB 33.6 MB 42.0 MB
Parallel

Reduction 7.73 sec 15.60 sec 23.83 sec 31.47 sec 39.02 sec

Problem
i00000 200000 300000 400000 500000

Size
..... ,

Table 1 - Time and memory usageof computation-reductiongraphs
I

5.0 Future work

We plan to include specific syntax in Sisal 90 to support user defined reduction A

possible form for the computation expression is:

for bond in I, m

index_l, index_2 := end_points (bond) ;

bond_energy := Force(index_l, index_2, Positions)

returns Force_histo(n) of index_l, index_2, bond_energy

" end for

, The reduction function might be written as:

reduction Force_reduction(n: integer

]:epeat ii, jj: integer; bond_energy: real

returns array [real])

for initial

Forces := array_fill(l, n, 0.0)

repeat

Forces := old Forces [index_l : old Forces [index_l] + bond_energy;

index_2 : old Forces [index_2] - bond_energy]

returns value of Forces

end for

end reduction % Force reduction

The names enclosed in parentheses prior to the keyword of at the reduction call site

are values required to initialize the reduction; i.e., consumed in the initialization

clause of the reduction function. The names listed to the right of the keyword of are

the set values computed by each instance of the body of the computation expression

and reduced by the reduction. The reduction function is a for initial expression. The

for initial expression has an implied test: the body executes once for each set of

reduction values computed by the computation expression.

To insure determinate results, we are developing analysis to classify reductions

and to choose automatically a parallel implementation of the computation-reduction

operation that returns the same results as the sequential implementation. Although

few function are commutative in general, most reductions are either comparative or

accumulative in nature. These types of functions are easier to analyze and a greater

number are commutative, permitting an implementation with some degree of

parallelism. Preliminary studies seem to indicate that reductions divide into classes

, that support different parallel implementations. For example, the class of non-

commutative reductions supports no parallelism and requires a sequential

t implementation. Some reductions require a single shared accumulator, while others

permit each processor to maintain a local accumulator that are merged at the end.

We hope to report soon on our analysis techniques, implementation, and

performance of user-defined reductions in Sisal 90.

Acknowledgments

This work was supported by Lawrence Livermore National Laboratory under DOE

contract W-7405-Eng-48.

References

1. J.C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener. Fortran 90
Handbook: Complete ANSI/ISO Reference, chapter 13. Intertext/McGraw-Hill,
1992.

2. High Performance Fortran Forum. High Performance Fortran Lavguage
Specification, Version 1.0. Rice University, Houston, TX, May 1993.

3. P. Hudak and J. H. Fasel. A Gentle Introduction to Haskell. ACM SIGPLAN Notices,
27(5):T1-T53, May 1992.

4. J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham, B.
Noyce, and R. Thomas. SISAL: Streams and Iteration in a Single Assignment
Language: Reference Manual Version 1.2. Manual M-146, Rev. 1, Lawrence
Livermore National Laboratory, Livermore, CA, March 1985.

5. S. Skedzielewski and J. Glauert. IF1: An Intermediate Form for Applicative
Languages. Manual M-170, Lawrence Livermore National Laboratory,
Livermore, CA, July 1985.

6. C. Tseng and J. H. Saltz. Compilation and runtime support for massively parallel
processors. Supercomputing '93, Tutorial F3, November 1993.

1017

