\Q v, & ‘b/ Association for Information and Image Management
\\\// ‘f;wv;,, \\\/ 1100 Wayne Avenue, Suite 1100

4 [

XA AlIM ///\\

Y %" 4
//, \ &y,

Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

Inches e Wl
10 =zl
e &2
“m VI A =
= &
28 flis fee
Z 3
//// //\
7N L
DN 4 1’//// N //4\\\ //\\ |
C§\/// 24 2 96\\\//// //q\\\ ,« A \
‘\//%";} \\ /// MANUFACTURED TO AIIM STANDARDS /%1\\ «%Z‘@;&

v T
0//// BY APPLIED IMAGE, INC. /4\\ ol

1 of 1

Realizing Parallel Reduction Operations in Sisal 1.2

Scott M. Denton, John T. Feo and Patrick J. Miller

Computer Research Group
Lawrence Livermore National Laboratory
Livermore, CA 94550

Abstract: Often the tasks of a parallel job compute sets of values that are reduced to a
single value or gathered to build an aggregate structure. Since reductions may
introduce dependencies, most languages separate computation and reduction. For ex-
ample, Fortran 90 and HPF provide a rich set of predefined reduction functions but
only for extant arrays. Sisal 1.2 is unique in that it supports seven reduction
operations as a natural consequence of loop expressions. These reductions are
limited and cannot express the variety of reduction operations found in parallel
programs. In this paper, we present compilation techniques that recognize pairs of
computation-reduction expressions in Sisal 1.2 and fuse them into single parallel
loops. This optimization overlaps computation and reduction, reduces runtime
overhead, and reduces storage requirements. We describe an implementation and we
present performance numbers that demonstrate the utility of our techniques.

1.0 Introduction

Often the tasks of a parallel job compute values in two phases. First, the
computation expression computes a set of values, and then the reduction expression
reduces the set of values to a scalar value or gathers the values to build an aggregate
structure. An array sum reduction adds together the elements of an array and
returns a scalar value. A histogram is a transformational reduction that counts the
number of occurrences of a value in one array and stores the count in another. A
recurring theme in particle physics codes is the calculation of bond forces. The
forces between particles are calculated, and then the force incident on each. particle.
Since the forces are symmetric, an efficient program calculates each force only once
and then adds together the forces incident on each particle. Since reduction
operations occur .frequently in application programs, they are good targets for
optimization. The efficient expression and implementation of reduction operations

MASTEK

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITRD

\6}:/

can reduce the cost of parallel programming.

A reduction operator is a function of a set of values such as an array or list. If we

execute the computation and reduction concurrently, then the memory used to store

the result of the reduction expression is shared by the tasks computing the set of

values. Since reductions may introduce dependencies, most languages separate the

computation and reduction tasks. For example, Fortran 90 [1] and HPF [2] provide a

rich set of predefined reduction functions but only for extant arrays.

C find the minimum value in z_array

z_min = MINVAL(z_array)

C return the first location of the minimum value in z_array
z_min_loc = MINLOC(z_array)

Despite the lack of explicit memory, functional languages also support reduction

operations. Haskell [3] provides reduction and accumulation operations on extant

lists or list expressions.

-- compute the sum of the integers 1 through 10
sum([1l..10]

-- return a table of the number of occurrences of each value
-- within bounds in list z

accumArray (+) 0 bounds [i := 1 | 1 <- z, (inRange bounds 1i)]

Sisal 1.2 [4] is unique in that it supports seven reduction operations as a natural

consequence of loop expression. The reduction operation appears as a keyword in

the returns clause of the for or for initial expression.

% find the minimum value in z_array
for z in z_array
returns value of least z

end for

% inner product of arrays of length 10
for 1 in 1, 10
c := A[i] * B[1i]
returns value of sum c
end for

Since a for expression includes both computation and reduction, the Sisal compiler
can overlap the operations, implementing both tasks to take best advantage of the
underlying architecture.

A shortcoming of all languages is that they support only a few predefined
reduction operations. The HPF Journal of Development [2] has suggested additional
language featura=s be added for user-defined reduction functions, and in the final
section of this paper we discuss syntax for user-defined reductions in Sisal 90. With-
out special language features, a user must use extant loop forms to express the
computation and reduction operations, and rely on the compiler to generate efficient
code. For example, the Fortran D compiler [6] seeks to recognize reductions for
optimization in traditional imperative code.

In this paper we present compiler techniques to identify pairs of computation-
reduction expressions in Sisal 1.2. We describe how we manipulate the code’s
intermediate form to construct a single parallel loop similar to the loops constructed
for the seven intrinsic reduction operations. Our techniques require no changes to
the language definition or intermediate form. Section two presents the form of
computation-reduction expressions we recognize and the constraints that the
expressions must satisfy. Section three illustrates the rewiring of the intermediate
form and discusses implementation issues. Section four presents performance
numbers demonstrating the utility of our techniques. In section five, we discuss the
syntax for user-defined reductions in Sisal 90, the analysis required to insure
determinancy, and the possible implementations of different classes of reduction
operations.

2.0 Computation-reduction expressions

The Sisal 1.2 language definition supports seven reduction operations: sum,
product, least, greatest, array, stream, and catenate. The reductions r.ay appear in
the retarns clause of for or for initial expressions. While useful, the reductions are
inadequate. For example, finding the first location of the minimum value of an array
cannot be expressed efficiently in Sisal 1.2. A programmer must either write two for
expressions,

min_value := for x in A returns
value of least x end for;

min_index for x in A at i returns

H

value of least i1 when x = min_value end for;

or one for initial expression

min_index := for initial
i :=1;
min_value, min_index := A[1l], 1
while i < array_size(A) repeat
i :=0l1ld 1 + 1;
min_value,
min_index := if A[i)} < old min_value then A[i], i
else old min_value, old min_index
end if
returns value of min_index
end for

The first solution doubles the computation’s overhead, and the second solution
eliminates all parallelism.

The situation is more dire if we want to generate a set of values, and then count or
accumulate the values. A common pair of computation-reduction expressions occurs
when computing the forces between a set of particles. Consider a set of n particles
and m bonds in a bond_list. Each bond represents a force between two particles. We
want to calculate the force of each bond and then accumulate the force incident on
each particle,

Force_update := for bond in 1, m

index_1, index_2 := end_points(bond);

Force_record energy (index_1, index_2, Positions)

returns array of Force_record

end for;
Force_out := for initial
i = 0;
Forces = array_£fill(1l, n, 0.0)

while i < array_size(Force_update) repeat

i := old 1 + 1;

index_1 := Force_update{i].ii;

index_2 := Force_update!il}.jj;
bond_energy := Force_update(i].bond_energy;
Forces := 0ld Forces|

index_1: old Forces[index_1 + bond_energy;
index_2: old Forces[index_2 - bond_energy

)
returns value of Forces

end for

The first expression is a for expression. The second and third lines constitute the
loop body. An instance of the body is computed for each bond, and defines a
force_record. The record has three fields: the indices of the two particles
participating in the bond (index_1 and index_2) and the bond’s energy. The
expression returns the array of force records. The second expression is a for initial
expression. It returns the array Forces, where Forces[j] is the incident force on the
j-th particle. The second and third lines initialize the counter i and the Forces array.
The loop body, lines five through ten, reads the i-th force record and updates the
Forces array accordingly.

On highly parallel computer systems, the presence of the for initial expression
curtails the code’s efficiency—an effect of Amdahl’s Law. Notice that the size of the
sequential code grows linearly with problem size. On medium or small systems, there
may be insufficient memory to store the intermediate array of force records. The
extra storage may increase the number of page faults and secondary memory
accesses diminishing performance. We have extended the Sisal compiler to recognize
pairs of computation-reduction expressions and to fuse each pair of expressions into
a single parallel loop. The compiler applies the optimization to pairs of for and for
initial expressions that satisfy the following five criteria:

1. the for initial expression depends directly on the for expression, and
does not depend on any descendant of the for expression,

2. the initialization clause of the for initial expression is independent of
the array of values consumed,

3. the for initial expression consumes every value of the produced array,
once and in order,

4. the for initial expression has no loop carried dependencies other than
an index value and the shared accumulator, and

5. the for initial expression depends on the for expression for only an
array of values.

The shared accumulator refers to the scalar value or aggregate structure returned
by the for initial expression—the array Forces in the example above. If the first
criterion is false, then we can not execute the for initial computation until the
descendent terminates preventing us from fusing the for and for initial expression.
The second criterion permits us to move the initialization of the for initial expression
before the for expression. The third and fourth criteria guarantee that we may fuse
the bodies of the for and forinitial expressions, eliminate the index value, and place
only the accumulator in a critical section. The fifth criterion is solely a limitation of
the current compiler. Currently, we do not prove that the reduction function is
commutative; consequently, the user may introduce non-determinism. Some Sisal
aficionados argue that the introduction of non-determinism in such a tightly
controlled manner is good because it expands the domain of Sisal programming;
others disagree. In the final section, we discuss ideas regarding analysis and
implementation techniques to guarantee determinancy.

3.0 Rewiring the graphs

Consider the expressions for Force_update and Force_out given in the previous
section. Figure 1 is a logical view of the IF1 graphs [5] of the two expressions. The
top node is the graph of the for expression. It has three subgraphs: generator, body,
and returns. The generator defines a set of index values. An instance of the body is
executed for each value, and each body constructs a Force_record. The records are
passed to the returns subgraph that gathers them into an array. The bottom node is
the graph of the for initial expression. It has four subgraphs: initial, test, body, and
returns. The initial subgraph initializes the index value i and the shared
accumulator Forces. The body is executed once for each force record. The body
updates two elements of Forces and passes the new array to the returns subgraph.
The returns subgraph selects the final value of Forces and passes it out from the
compound node. We refer to this implementation as unoptimized.

+ m * Positions

& ™)

for bond in 1, m

bond Positions

index_1, index_2 := end_points({bond):
Force_record := energy(index_1, index_2, Positions)

Force_record

returns array of Force_record

_ v)

‘ Force_update

for initial

i:=1;
Forces := array_fill(l, n, 0.0)
i + Force_update + Forces
i
while i < array_size(Force_update) repeat =
+ i + Forces
i =o0ld i + 1;
index_1 = Force_update[i].ii;
index_2 = Force_updateli].jj;
bond_energy := Force_update(i].force;
Forces := old Forces|

index_1: old Forces[index_1] + bond_energy;
index_2: old Forces(index_2] - bond_energy

]
j Forces

returns value of Forces

_ Y

* Force_out

Figure 1 — A pair of computation—reduction expressions

‘.

Forces := array_fill{(l, n, 0.0)

* m * Positions Forces

for bond in 1, m

bond
v Positions Forces

index_1, index_2 := end_points(bond);
Force_record := force(index_1l, index_2, Positions);
bond_energy := Force_record.bond_energy;
LOCK (Forces)
Forces := old Forces|
index_1: old Forces({index_1] + bond_energy;
index_2: o0ld Forces[index_2] - bond_energy:

UNLOCK {Forces)

* Forces
returns value of Forces
+ Force_out

Figure 2 — A parallel computation-reduction graph

Since the two expressions met the five criteria listed in the previous section, our
compiler transforms the graph shown in Figure 1 into the graph shown in Figure 2.
The first node initializes the shared accumulator Forces and passes it to the second
node. The second node is a parallel for computation. Its generator is identical to the
generator of the original for compound node. Its body and returns subgraphs are
compositions of the body and returns subgraphs of the original compound nodes.
Since Forces is a shared resource, we place a lock about any read and write accesses to
insure mutual exclusion. Notice that we have eliminated the test subgraph in the
original graph, and that we no longer build the array of force records. We refer to
this implementation as optimized.

ra

There are a variety of ways to build the new graph and control access to the
shared accumulator. Instead of locking all of Forces, we could lock individual
elements or sections of the array. Maintaining a lock per element would be
expensive unless the memory had presence bits. Since the Sisal runtime system
slices for expressions into sets of iterations, we can eliminate the lock from the body
by having each set of iterations initialize and maintain a local accumulator. As the
sets finish, we could “merge” the local accumulators to derive the final result. Such
an implementation reduces the number of lock operations and contention for the
lock, but uses more memory. Moreover, if the merge operator is different than the
reduction operation, as in the example used in this paper, the compiler would have to
synthesize it automatically.

4.0 Performance

We ran a series of experiments to evaluate the performance of our optimization.
We used a computation and reduction expression from molecular dynamics similar to
the expressions used in the previous section. Table 1 gives the execution times and
space requirements for different problem sizes. Graph 1 shows the graph of the
execution times. Sequential and mixed are the one and four processor execution
times, respectively, of the unoptimized implementation (Figure 1). Parallel is the
four processor execution time of the optimized implementation (Figure 2). As
expected, the optimized code uses less space than the unoptimized code. It also runs
faster; however, we did not always see appreciable performance gains.

There are many factors that influence the execution time of the optimized code
versus the execution time of the unoptimized code: the time to set and release locks,
the time to write and read a record, lock contention, size of the computation
expression, size of the reduction expression, number of processors, etc. If the size of
the computation expression is at least p (number of processors) times greater than
the size of the reduction expression, then there is little lock contention. Essentially,
the concurrent tasks contend for the lock the- first time, and then become staggered
arriving at the critical section at different times. In the molecular dynamics code, all
computation expressions are much larger than the reduction expressions. However,
small reduction expressions minimize the effect of parallelizing the reduction
operation. On large systems, Amdahl’s Law may magnify the effect, but then the
large number of processors increases lock contention. Overall, the optimized code

80.00 .

o 70.00 /
§ 60.00 A-/
= ' .____ .
S 50.00 7/ sequential
=t |]
3 40.00 // —A— mixed-4
& 30.00 .
g /l —O——parallel-4
2 20.00 +>
o]
10.00
0.00 +

100000 200000 300000 400000 500000

problem size (number of bonds)

Graph 1 — Execution times of computation-reduction expressions

may run five to twenty percent faster than the unoptimized code, but the real
savings is in memory costs. An average three-dimensional force computation in a
molecular dynamics simulation code, if unoptimized, can generate a 64MB array!

. 11.6 MB 23.2 MB 34.8 MB 46.4 MB 58.0 MB
Sequential
Reduction 9.37 sec | 18.97 sec | 28.25 sec | 38.18 sec | 49.76 sec
8.4 MB 16.8 MB 25.2 MB 33.6 MB 42.0 MB
Parallel
Reduction 7.73 sec | 15.60 sec | 23.83 sec | 31.47 sec | 39.02 sec
Pi;iifm 100000 200000 300000 400000 500000

Table 1 — Time and memory usage of computation—reduction graphs

5.0 Future work

We plan to include specific syntax in Sisal 90 to support user defined reduction. A
possible form for the computation expression is:

for bond in 1, m

index_1, index_2 end_points (bond) ;

u

bond_energy Force(index_1, index_2, Positions)

i

returns Force_histo(n) of index_1l, index_2, bond_energy
end for

The reduction function might be written as:

reduction Force_reduction(n: integer

repeat 1ii, jj: integer; bond_energy: real
, returns array(reall)

for initial

Forces := array_fill(l, n, 0.0)
repeat
Forces := 0ld Forces{index_1: old Forces[index_1] + bond_energy;

index_2: old Forces[index_2] - bond_energy]
returns value of Forces
end for

end reduction % Force_reduction

The names enclosed in parentheses prior to the keyword of at the reduction call site
are values required to initialize the reduction; i.e., consumed in the initialization
clause of the reduction function. The names listed to the right of the keyword of are
the set values computed by each instance of the body of the computation expression
and reduced by the reduction. The reduction function is a for initial expression. The
for initial expression has an implied test: the body executes once for each set of
reduction values computed by the computation expression.

To insure determinate results, we are developing analysis to classify reductions
and to choose automatically a parallel implementation of the computation-reduction
operation that returns the same results as the sequential implementation. Although
few function are commutative in general, most reductions are either comparative or
accumulative in nature. These types of functions are easier to analyze and a greater
number are commutative, permitting an implementation with some degree of
parallelism. Preliminary studies seem to indicate that reductions divide into classes
that support different parallel implementations. For example, the class of non-
commutative reductions supports no parallelism and requires a sequential
implementation. Some reductions require a single shared accumulator, while others
permit each processor to maintain a local accumulator that are merged at the end.

P e

We hope to report soon on our analysis techniques, implementation, and
performance of user-defined reductions in Sisal 90.

Acknowledgments

This work was supported by Lawrence Livermore National Laboratory under DOE

contract W-7405-Eng-48.

References

1.

J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener. Fortran 90
Handbook: Complete ANSI/ISO Reference, chapter 13. Intertext/McGraw-Hill,
1992.

High Performance Fortran Forum. High Performance Fortran larguage
Specification, Version 1.0. Rice University, Houston, TX, May 1993.

P. Hudak and J. H. Fasel. A Gentle Introduction to Haskell. ACM SIGPLAN Notices,
27(5):T1-T53, May 1992.

J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham, B.
Noyce, and R. Thomas. SISAL: Streams and Iteration in a Single Assignment
Language: Reference Manual Version 1.2. Manual M-146, Rev. 1, Lawrence
Livermore National Laboratory, Livermore, CA, March 1985.

S. Skedzielewski and J. Glauert. IF1: An Intermediate Form for Applicative
Languages. Manual M-170, Lawrence Livermore National Laboratory,
Livermore, CA, July 1985.

C. Tseng and J. H. Saltz. Compilation and runtime support for massively parallel
processors. Supercomputing '93, Tutorial F3, November 1993.

pu—’

DATE
FILMED

10/ 17/9Y

