Om\%. A20¢, |-~ K

UCRL- JC - 112556
PREPRINT

Applying IEEE Storage System
Management Standards at the
National Storage Laboratory

Steven Louis and Susan W. Hyer
Lawrence Livermore National Laboratory
Livermore, CA

This paper was prepared to be submitted to
Twelfth IEEE Symposium on Mass Storage Systems

Monterey, CA
April 25-29,1993
SIRUVES
December 4, 1992 AllG 0 2 57
23

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

MASTER

THIS DOCUMENT IS UNLIMITED

o

\

DISTRIBUTION OF

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use
wouldnotinfringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute orimply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

»

Appl)"ing IEEE Storage System Management Standards
at the National Storage Laboratory

Steven Louis and Susan W. Hyer
Lawrence Livermore National Laboratory
Livermore, California

Abstract

Since its inception in 1990, the IEEE Storage System
Standards Working Group has identified storage-system
management as an area in need of further development.
The pressing need for standards in storage-system
management arises from the requirement to exchange
management information and to provide control in a
consistent, predictable manner between the components
of a storage system. An appropriate set of management
standards will allow multiple vendors to supply storage
management subsystems or applications that are
integral to or compatible with new storage systems
conforming to future IEEE standards.

An early, practical application of IEEE storage-system-
management work is being pursued at the National
Storage Laboratory (NSL), a recently-formed industrial
collaboration at Lawrence Livermore National
Laboratory. The NSL’s purpose is to develop advanced
hardware and software technologies for high-
performance, distributed storage systems. Since storage-
system management is of critical concern, it is being
explored in depth at the NSL. Work was initiated to
define basic management requirements and develop
generalized graphical-user-interface tools using remote-
procedure-call mechanisms to implement the NSL's
conceptual management framework. Several constraints
were imposed on the development of early versions of
this work to maintain compatibility with the NSL's
underlying UniTree-based software architecture and to
provide timely prototypes and proof of concept.

The project leverages the on-going standards work of the
IEEE Storage System Standards Working Group
(SSSWG) and utilizes the ideas of previous, related
efforts, including existing ISO management standards. It
also explores some of the relationships and interactions
between IEEE storage-system management and more
well known management methods for distributed
systems and networks. The early application of storage-
system-management standards has the immediate benefit
of providing basic management capabilities for the
high-performance storage systems under development at
the NSL. It will also have longer-term benefits by
providing “real-life” storage-system-management
requirements to the IEEE SSSWG for validation of
evolving standards,

Introduction

The development of new computing technologies,
driven by the need for continued productivity in
scientific and commercial communities, has resulted in
dramatic increases in data storage requirements.
Advances in massively parallei processors, memory
capacities, distributed computing capabilities over high-
speed networks, and new generations of applications
dictate a re-evaluation of traditional storage
architectures, and a search for innovative, cost-effective
storage solutions. Experts in storage systems are now
describing an emerging paradigm shift from CPU-
centered to network-centered storage-system architectures
[1]. Commercial vendors have started to recognize that
the phenomenon of explosive growth coupied with an
emerging, diverse, distributed application environment
will require consistent, shared, network storage devices
with simplified administration and automated
management [2].

Searching for new network-oriented approaches to
storage was the catalyst in the formation of the National
Storage Laboratory [3]. The NSL is an industry-driven
collaboration organized to investigate new high-
performance storage-system technologies. One of the
key points of the NSL’s architectural configuration is
the ability to distribute the individual components of a
storage system and allow communication between these
components through high-speed switching fabrics. As
new network technology begins to blur the distinction
between local and remote components of a storage
system, effective management becomes crucial.

The need for effective management of distributed
processes and open systems has long been recognized in
the network domain. ISO (the International
Organization for Standardization) has developed a series
of standards for systems management related to their
OSI (Open Systems Interconnection work. These
standards include a management framework and
architecture [4,5], management information services and

- protocols [6,7], a management information mode! [§],

and a guideline for the definition of managed objects [9].
In parallel with the OSI efforts, the Internet developed
and adopted SNMP (Simple Network Management
Protocol) in 1988 [10]. SNMP has now become a
widely-accepted protocol standard for network

management. An enhanced follow-on SNMP protocol,
called the Simple Manage:ent Protocol (SMP) and
developed to address shortcomings of the original
SNMP, .. currently undergoing evaluation by the
Intemnet Engineering Task Force [11].

Other organizations, including standards bodies
developing portable operating systems and open,
distributed-processing frameworks [12], have addressed
distributed system management concemns. Although
most of these efforts are network or operating systems
oriented approaches to management, a few have touched
upon areas likely to have an impact on storage-systems
management. An example is UNIX International’s
System Management Working Group. This
organization has published several documents describing
storage device management [13] and hierarchical storage
management [14]. They state that effective storage
management is critical because it improves data process-
ing in several areas: performance, availability, space
utilization, device installation, and user productivity.
They conclude that inefficient storage is costly in terms
of machine and human resources and, eventually,
money.

The many developments in network and systems
management have led to a diversity of sometimes
incompatible methods of managing distributed
resources. A highly-visible attempt to address this
problem is the Open Software Foundation’s Distributed
Management Environment (DME) architecture [15].
DME provides functions and services that unify and
support both network and systems management. It will
also provide support for future, distributed storage-
system management. The DME specifies an object-
oriented infrastructure for distributed management
applications and will support Internet and OSI
management protocols. It will also have a unified
management user interface that integrates all types of
management interactions, and will include distributed
notification services.

Still another set of global specifications for common
network management methods is the Network
Management Forum’s Omnipoint. In its first release,
Omnipoint 1 include nearly one hundred specifications
that presents an envelope or wrapper around a number of
existing management standards. It is expected to provide
a common impiementation profile for many of these
standards. A follow-on specification, called Omnipoint
2, will have increased breadth of functionality across
many industry focus groups and sector profiles.

The NSL has begun to investigate some of the specifics
of storage-system management and its vital importance
to the successful utilization of new storage-system
hardware and software technologies. The NSL effort
builds from much of the extant work in network and

systems management, and follows the guidelines of the
evolving IEEE Mass Storage Reference Model [16,17].

Storage-System Management

The availability of adequate storage-system-management
tools is now recognized as an important aspect of the
increasingly complex hierarchical storage systems
developed over the past decade [18]. Simply stated, the
role of storage-system management is to monitor and
control the available resources of a storage system in
ways that conform to the particular management
policies of a given site. A subtle assumption is that site
policies for storage are usually constructed to make
optimal use of resources, but there is no strict
requirement that efficient resource utilization be the
driving force behind such policies. For example, sub-
optimal usage may result when site policies provide to
a particular group of users (e.g., those with the most
money or power) an over-allocation of resources to the
detriment of the general user base and the storage
system as a whole. The IEEE SSSWG takes the
position that the intent of standards for storage-system
management is to provide a generalized framework for
the design of useful management subsystems and
applications, rather than to accommodate or force
specific management facilities or policies.

The basic role of storage-system management within
the IEEE SSSWG model is shown in Figure 1.
Storage-system management communicates with all
servers in the storage system and can communicate with
clients of the storage system as well. Other external
processes may also communicate with the storage-
system-management component of the model to affect
various management operations and behavior within the
storage system. Specific kinds of storage-system-
management services have been described in Version 5
of the IEEE Mass Storage Reference Model. Some of
the functions provided by storage-system management
may be included as part of a server’s standard client
interface. We assume that there will be various levels of
authorization associated with storage-system-
management functions available through a server's
client interface. Without an adequate authentication and
authorization mechanism, potentially dangerous
operations could be performed by an arbitrary client,
leading to detrimental results.

Some management capabilities, such as administrative
configuration control or migration and de-fragmentation,
may not be provided via a server’s general client
interface. These kinds of management operations may
be performed by the external processes of Figure 1 and
may be developed outside the scope of an IEEE storage
system.

| Storage System Clients]
r lr s 8 & Jr
3l %
y Y
o] External
Process
 J S
3 [Physical Volumo Library_e-o{S
| |_Physical Volume Repository =
[JStorageDavioesandNemdcs - *1 Process
Socope of EEE SSSWG
oF

Figure 1. IEEE storage-system management

Storage-system-management operations can be
performed in a variety of ways. The amount of
automation inherent in the performance of an operation
can range from none to completely automated:

* Operations that require a manual decision to
initiate, followed by a manual analysis process,
followed by a manual corrective action, if
necessary. An example is an operator-initiated job
that prints out a list of I/O errors for a specified
group of hardware devices over a particular time.

¢ Operations that are automatically initiated, but
require a manual analysis process and manual
corrective action, if necessary. An example is an
automatic alert message waming of a high number
of I/O errors for an individual device or group of
devices. The device remains operational until an
administrator decides it should be taken off-line or
put into a less-than-fully-operational mode (e.g.,
read-only).

* Operations that are automatically initiated and
analyzed, but require a manual corrective action, if
necessary. An example is an automatic decision to
change the state of a device because a known
threshold of errors has been reached. It may still
require further manual corrective actions to access
and protect data on the failing device.

¢ Operations that are automatically initiated,
automatically analyzed, and automatically provide
a corrective action, if necessary. Examples are
dynamic device load balancing, volume shuffling
and clustering due to suspect or failing conditions,

and automated reconfiguration of hierarchical data
placement and migration algorithms [19].

Most storage system environments have a
preponderance of management activities at the less
automated end of this scale. A goal of successful
storage-system management is to provide facilities and
services that allow many operations to be at the more
automated end of the scale without necessarily
precluding operations at the manual end. The degree of
management automation or “self-management” should
be considered a matter of site policy and should not be
rigidly dictated. From a practical point of view, the
management of storage systems would be “easier” and
“safer” if most of the management operations were more
automatic. It should not be surprising that an
examination of LLNL’s experience with storage
systems shows a strong correlation between the
complexity of manual operations and the probability of
human error. It is also true that the possibilities for
catastrophic consequences increase dramatically in
complex storage-system environments.

The value of storage-system-management services,
tools, and applications corresponds to the ability of
those services, tools, and applications to facilitate “self-
managed” or automated operations. The goals of
storage-system management can be summarized as
follows:

¢ High fault tolerance

* High recoverability

* High resource utilization

* Balanced workloads

* Conformance to site policy
¢ Automated management

A storage system that meets these goals will be viewed
by both users and administrators as available, reliable,
efficient, effective, simple to manage, and simple to
use.

Management Models

A storage-system-management capability depends upon
the existence of an entity that describes specific aspects
of a physical or logical resource of the system. The
aspects described must be of interest to or needed by
management applications. In most network and systems
management models, these entities are called managed-
object definitions and represent the management view of
the resources of the storage system.

Most of the approaches in use today for modeling dis-
tributed applications and management of distributed
network and system resources are object-oriented. The

use of object-oriented principles was widely accepted
because of its facility in promoting modularity,
extensibility and component reuse.

Management

Process

Managing System
£ i 5
§
(3]

A
-

Agent Process Managed Objects
) Opacations - 0O a a
Managerment < Notifications O n

¥ ° o o

Managed System

Figure 2. OSI Management Model.

The ISO Open Systems Interconnect management
model defines a management interface between a
manager and an agent and is shown in Figure 2.
Applications issuing management requests and receiving
notifications are viewed as managers. The requests are
operations on agent-maintained managed objects and
their attributes. Notifications can be responses to
previous requests or can be asynchronously delivered
descriptions of significant events. This mode! makes a
distinction between a managed object and the physical
resource that it represents by defining an interface to a
managed resource that is independent of the
implementation of the resource. The resource is visible
to management only through this interface, called the

managed-object boundary.

The object model defined by the Object Management
Group specifies the interactions between client applica-
tions and the objects that it can utilize to perform
services [20,21]. A logical entity called an object-
request broker mediates the interaction between clients
and server objects. Servers are always objects. Clients
may be objects, but they may also be application
programs or libraries as well. In the OMG model, the
defined interfaces are the communication procedures
between clients and the object request broker, or
between the object request broker and server objects.

The OSI and OMG models have been adapted and refined

by several organizations [22]. The OSF DME and
others reconcile these two models by describing
management solutions as a collection of cooperating
objects that share information and provide application
functions. In this combined approach, the strict
distinction between manager and agent is not
maintained. Objects contain management knowledge in
terms of object state and behavior. Since the objects are
addressable across a distributed network, the knowledge
present in these objects is obtainable by a variety of
application clients. A specialized implementation of the
OMG’s object request broker, called the management
request broker, has been developed and optimized in
OSF's DME for management services. Its relationship
to applications and servers is shown in Figure 3.

AN e———

Management Management Management
Application A tion
Managemem UL .- Management
Request Broker

L\

Figure 3. OSF DME Management Model.

The IEEE SSSWG used the OSI management model as
the starting point for its storage-system-management
work primarily because it represents an accepted set of
intemnational standards in the management area and most
of its concepts have been included in newer vendor-
driven efforts. As new approaches (e.g., OSF DME and
NMF Omnipoint) progress in gaining wider vendor and
user acceptance, the IEEE SSSWG and the NSL will
adapt their work as appropriate.

NSL Requirements

A goal of the storage-system-management component
of the NSL collaborative project is the development of
standards-based management interfaces and protocols
using modular managed-object definitions. A set of
managed objects will be identified and defined together
with the operations, attributes, and notifications
necessary for the development of practical management
capabilities. We expect the results of the storage-
system-management work at the NSL to drive the [EEE
SSSWG effort and influence its eventual direction.

The storage-system-management requirements for the
NSL were generated, in part, by identifying and
generalizing the specific management operations of
storage systems at the two major computer centers at
LLNL. The Livermore Computer Center currently runs
the Livermore Distributed Storage System [23,24], the
precursor of UniTree. The National Energy Research
Supercomputer Center runs the Common File System
developed at the Los Alamos National Laboratory [25].
These systems, along with most other modern storage
systems, meet several management requirements
including (but not limited to) purging, migration, space
reclamation, and backup. It should be noted that since
the storage system under development at the NSL is an
enhanced version of UniTree (referred to as NSL-
UniTree), initial managed-object definitions were
heavily influenced by UniTree-specific requirements and
capabilities.

The NSL requirements identification and managed-object
definition tasks have been divided into two phases. In
Phase One, only those requirements deemed necessary
for the successful day-to-day operation of UniTree are
identified. As stated above, the managed-object
definitions for Phase One have been heavily influenced
by the information readily obtainable from UniTree. In
Phase Two, and subsequent phases, more general
storage-system-management requirements will be
examined, and managed objects will be defined beyond
those provided by the UniTree architecture.

For Phase One NSL storage-system management, we
have defined five different types of management clients,
together with a set of security services to provide
protection against unauthorized requests. The different
client types in approximate order of capability level are:

 Site Manager

¢ Systems Personnel

* Operations Personnel
* Privileged Users

¢ Non-Privileged Users

Management operations performed by systems
personnel may include general storage system
configuration tasks, diagnosis and resolution of error
conditions, and addition or deletion of various physical
and logical components. In situations where it may be
dangerous for multiple systems personnel to
concurrently-initiate similar management operations, an
individual Site Manager may be given sole
responsibility or authority for certain tasks.

Some examples of management tasks for operations
personnel are rote activities that must be performed

from a centralized point, such as starting and stopping
background support utilities like migration and
reclamation procedures, or disabling devices for service
or repair. At LLNL and the NSL, operations personnel
are limited in what they can do, and normally are
allowed to perform only a small subset of the
management operations able to be performed by
systems personnel. These limitations are, of course,
site- and system-dependent policies and may vary
according to the sophistication and technical level of the
operators.

In many environments, a subset of the general user
community is deemed to be “privileged” in that they are
allowed to issue management operations beyond what is
allowed to the general user community. Typically, these
operations include the ability to examine and/or change
attributes of the storage system normally not visible to
a user (e.g., the ability to list or modify another user’s
directory). It should be noted that some of the abilities
of privileged users may not necessarily be available to

operations personnel.

A subset of management operations usually exists that
are innocuous enough to be issued by anyone. These
might include receiving dynamic status information or
summarized statistical infortnation about the storage
system. Sometimes this information is available
directly from the storage-system servers as part of the
server’s general client interface (see Figure 1).

For this work, we define three basic types of
management processes;

¢ Monitoring Functions

¢ Control Functions

* Alarm Notifications

This is an oversimplification of the full range of man-
agement operations that will eventually be present in
the NSL and it is likely that these types will later be
expanded and more fully defined.

Monitoring functions are management operations that
provide the capability to a management client to receive
management information about the storage system. A
typical example is information about the state of
physical and logical storage devices and volumes.
Displays, or other mechanisms for information
communication, are needed for major storage-system
component and servers and should be capable of
providing basic summary information for known
activity within the server. Displays are used at the NSL
primarily because the NSL’s storage-system-
management implementation is based on a graphical
user interface (GUI) environment. Mechanisms are also
needed to monitor resource utilization, general
configuration, and specific policies relevant for each
server.

Management operations that allow a management client
to change the state or other characteristic of some
component in the storage system are classified as
control functions. Typical examples include changing
the administrative or operational state of storage devices
and volumes, and setting threshold levels for internal
counters that may trigger an internal process to start.
Interactive displays or other mechanisms are needed to
allow authorized management clients to easily perform
these control operations.

Alarm notifications (usually asynchronous) are the
result of significant events occurring within the storage
system and are differentiated here from other kinds of
asynchronous events that convey simple monitoring
information. Aiarm notifications, while not necessarily
due to fault conditions, are intended to convey important
events affecting the operational health of the system.
An alarm usually indicates that some immediate or
eventual management action needs to be initiated. Some
typical examples are error conditions on file transfers,
security violations, inconsistent directory information,
and the exceeding of pre-defined thresholds. A
communication mechanism is needed to display and/or
record the alarms, alerting appropriate personnel.
Additional information is usually provided with the
alarm concerning alarm type, the probable cause, the
severity level, and possible actions that might be taken.

Implementation

The initial NSL storage-system-management
implementation is based on the Sammi Graphical User
Environment., Sammi is a UNIX-based system from
Kinesix that connects with management applications
and can control or be controlled by those applications. It
was chosen as the top layer in the NSL storage-system-
management architecture primarily for its ability to
provide straightforward, fast prototyping and an easy-to-
use GUI environment. Sammi is also compatible with
the IBM RISC 6000 workstations in use at the NSL
and is able to act as a well-behaved X-client, using X-
Windows and Motif Widgets. The overall NSL storage-
system-management architecture is shown in Figure 4.

The top portion of Figure 4, which contains the
displays, runtime environment, and application
programming interface, is actually the Kinesix Sammi
Graphical User Environment and can be conceptually
viewed as equivalent to one of the External Process
boxes in Figure 1. Windowed displays are developed
using a special Sammi Format Editor that produces
format files interpreted by the runtime environment at
display time. User access to displays can be controlled
by system administration security policies. The bottom
portion of Figure 4 is part of the NSL-UniTree storage-
system-management development work and corresponds

to what is contained within the shaded outline box of
Figure 1. The Data Server Process is a mechanism to
allow the Sammi environment to act as a client to the
Storage System Manager. Other (non-Sammi) clients
have the ability to interact with the Storage System
Manager through varying types of application
processes. In the current NSL implementation,
however, only a Sammi-specific Data Server Process is
used and the Sammi runtime environment interacts with
a single NSL-UniTree storage system. The NSL-
UniTree environment is not precluded from interacting
with multiple external management processes.

In the NSL implementation, the ability for the separate
components to efficiently communicate comes from a
common knowledge of NSL-UniTree managed-object
definitions. Communication between the Sammi
Runtime Environment and its peer application (the Data
Server) is through industry-standard Remote Procedure
Calls (RPCs). The Storage System Manager also
communicates with the Data Server and with the
UniTree management interface routines through RPCs.

I
1

Sammi Displays

.e

‘
¢

Sammi Runtime
Environment

5

Kinesix AP!
Data Server Process

RPC I
Management
Storage System Manager |<e——| nformation

Base
- I
-

NSL UniTree SSM Mods

NSL UniTree Server

Figure 4. NSL management configuration

For each Sammi display, which may in turn contain
several individual smaller displays of managed-object
attribute values, a structured request is sent from the
Sammi Runtime Environment through the Data Server
to the Storage System Manager. The request acts a
get/set data operation or as a registration process to
receive data at regular intervals or as asynchronous
events. If the Sammi display is subsequently terminated

because it is no longer needed, a corresponding de-
registration process occurs for the information that was
being received. In between the registration and de-
registration, the Storage System Manager and
management interface modifications in NSL-UniTree are
responsible for keeping information about active
attribute groups or other information types.

The Storage System Manager is able to intercept and
restructure management requests sent to it by the Data
Server if it can determine that those requests do not need
or should not go to the NSL-UniTree management
interface routines. A request may not need to be sent to
UniTree because the Storage System Manager has the
ability or the responsibility to formulate the response.
Some management information may not be available
directly from UniTree but may instead be contained in
the Storage System Manager's Management
Information Base (MIB). For example, if an attribute for
a managed object does not have a direct counterpart in
UniTree, but its value can be determined by the Storage
System Manager by making multiple requests to

UniTree over time, that attribute value can be -

summarized or calculated in the MIB. In a similar
manner, the MIB may contain information previously
retrieved from UniTree and kept current by the Storage
System Manager through periodic updates from
UniTree. The MIB shown in Figure 4 is an abstraction
that represents a holding place or repository for current,
saved, summarized, and calculated data. In Phase One its
actual implementation is as a Storage System Manager
data structure in memory, but could just as easily be
implemented as a local storage device.

In the Phase One NSL implementation, UniTree-
managed object definitions have been constructed so the
need to intercept requests and form responses in the
Storage System Manager is minimized. Most monitor
and control information will flow directly to and from
UniTree. This simplifies the communication
interactions between the architectural components. The
Phase One managed objects define only the attributes
directly retrievable from NSL-UniTree. The number of
managed objects for Phase One was kept small because
of the decision to model only those management
concerns necessary for successful day-to-day operations.
Formal inheritance and containment hierarchy
definitions for managed-object classes were not
attempted for Phase One. Subsequent phases will allow
more complex managed-object definitions. Valid Phase
One directives include getting and setting attribute
values, registering and de-registering to receive
asynchronous events or data at regular intervals, and
performing specific operations such as initiation of a
full or partial backup. Some typical attributes for an
object describing resource utilization in a UniTree disk
or tape server for Phase One are total headers, number of
used headers, total data space, and free data space. Both

the disk and tape servers have alarms for resource
exhaustion. A strong effort was made to develop the
UniTree storage-system-management interface
modifications in a modular fashion to allow
extensibility for Phase Two and later phases.

Conclusions

The extensive work already accomplished and work in
progress for network and systems management signifi-
cantly overshadows efforts in storage-system
management. Many of the ideas concerning
management of widely-distributed processes have been
well explored and it is becoming more apparent that the
computing industry is moving toward consensus for
common management frameworks that cover many
disjoint areas, including storage systems. With that in
mind, we have taken some initial steps within the NSL
to investigate how to manage storage systems modeled
after the IEEE Mass Storage System Reference Model.
The fluidity and speed of progress inherent in evolving
distributed management environments strongly suggest
that we be guided in future enhancements by the above
mentioned consensus developing within both industry
and standards organizations. We also encourage these
industry and standards organizations to look toward
efforts such as the NSL and the IEEE SSSWG to help
guide them in developing effective management tools
for storage systems.

Acknowledgments

We wish to acknowledge the contributions of Tracy
Tran and Jobn Nguyen of IBM Federal Systems
Company in Houston for their work on the Sammi
graphical user environment, Data Server Process and
Storage System Manager. We also thank Gregg
Hommes of NERSC for his contributions to the NSL-
UniTree storage system management modifications.
This paper describes work performed under auspices of
the U.S. Department of Energy by Lawrence Livermore
Naticnal Laboratory under Contract W-7405-Eng-48.

References

1. Coleman, S. and R. W. Watson, “The Emerging
Paradigm Shift in Storage System Architectures”,
to be published in the Proceedings of the IEEE,
April 1993,

2. Kondoff, A. and T. M. Ravi, HP Distributed
Information Storage Architecture, Hewlett-Packard
Information Architecture Group, October 1991.

3. Coyne, R. A, H. Hulen and R. W. Watson,
“Storage Systems for National Information
Assets”, Supercomputing ‘92 Proceedings,
Minneapolis, MN, November 1992,

10.

11.

12.

13.

14.

15.

16.

ISO/EC 74984, Information Processing Systems
— Open Systems Interconnection — Basic
Reference Model — Part 4: Management
Framework, 1989.

ISO/IEC 10040, Information Technology — Open
Systems Interconnection — Systems Management
Overview, 1991.

ISO/MEC 9595, Information Technology—{)pen
Systems Interconnection — Common Management
Information Service Definition, 1991.

ISOMEC 9596-1, Information Technology—Open
Systems Interconnection — Common Management
Information Protocol Specification, 1991.

ISONEC 10165-1, Information Technology—Open
Systems Interconnection — Structure of
Management Information Part 1: Management
Information Model, 1991.

ISO/MEC 10165-4, Information Technology—Open
Systems Interconnection — Structure of
Management Information Part 4: Guidelines for the
Definition of Managed Objects, 1991.

Case, J., M. Fedor, M. Schoffstall and C. Davin,
“Simple Network Management Protocol (SNMP)”,
Internet RFC 1157, May 1990.

Case, J., K. McCloghrie, M. Rose and S.
Waldbusser, “Introduction to the Simple
Management Protocol (SMP) Framework”, Internet
Engineering Task Force Draft Document, October
1992,

ISO/MEC 10746-1, Basic Reference Model of Open
Distributed Processing Part 1: Overview and Guide
to Use, Working Draft, 1992,

UNIX Intemnational, Storage Device Management,
Ul System Management Working Group, June
1992,

UNIX Intemnational, Requirements for Hierarchical
Storage Management, Ul System Management
Working Group, June 1992.

Open Software Foundation, OSF Distributed
Management Environment (DME) Architecture,
May 1992,

Coleman, S. and S. Miller, Mass Storage
Reference Model Version 4, 1IEEE Technical
Committee on Mass Storage Systems and
Technology, May 1990.

17,

18.

19.

20.

21.

22,

23.

24,

25.

Coleman S. and D. Isaac, Mass Storage System
Reference Model Version 5, IEEE Storage System
Standards Working Group, April 1993,

Collins, M. W. and T. McLarty, “Mass Storage
System Reference Model System Management”,
Digest of Papers, Ninth IEEE Symposium on
Mass Storage Systems, IEEE Computer Society
Press, October 1988.

Buck, A. L. and R. A. Coyne, “Dynamic
Hierarchies and Optimization in Distributed Storage
Systems”, Digest of Papers, Eleventh IEEE
Symposium on Mass Storage Systems, IEEE
Computer Society Press, October 1991,

Object Management Group, The Common Object
Request Broker: Architecture and Specification,
Draft OMG Document Number 91.8.1, August
1991.

Object Management Group, The Object Model,
Draft OMG Document Number 91.9.1, September
1991.

Quinn, P. and G. Preoteasa, “Reconciling Object
Models for Systems and Network Management”,
UniForum, 1991.

Hogan, C., et al., “The Livermore Distributed
Storage System: Requirements and Overview”,
Digest of Papers, Tenth IEEE Symposium on
Mass Storage Systems, IEEE Computer Society
Press, May 1990.

Foglesong, J., et al., “The Livermore Distributed
Storage System: Implementation and Experiences”,
Digest of Papers, Tenth IEEE Symposium on
Mass Storage Systems, IEEE Computer Society
Press, May 1990.

Collins, M. W.and C. W. Mexal, “The Los
Alamos Common File System”, Tutorial Notes,
Ninth IEEE Symposium on Mass Storage
Systems, IEEE Computer Society Press, October
1988.

~ DATE
 FILMED
930/

