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Wavelet-based acoustic recognition of aircraft

W. B. Dress and S. W. Kercel

Instrumentation and Controls Division
Oak Ridge Natio_i Laboratory

P. O. Box 2008
Oak Ridge, Tennessee 3783l

ABSTRACT

We describe a wavelet-based technique for identifying aircraft from acoustic emissions during take-off and landing. Tests show
that the sensor can be a single, inexpensive hearing-aid microphone placed close to the ground. The paper describes data
collection, analysis by various techniques, methods of event classification, and extraction of certain physical parameters from
wavelet subspace projections. The primary goal of this paper is to show that wavelet analysis can be used as a divide-and-
conquer first step in signal processing, providing both simplification and noise filtering. The idea is to project the original signal
onto the orthogonal wavelet subspaces, both details and approximations. Subsequent analysis, such as system identification,
nonlinear systems analysis, and feature extraction, is then carried out on the various signal subspaces.

1. INTRODUCTION

Identifying aircraft types from acoustic emissions has been a long-standing problem. Earlier methods, based on the fast-Fourier
transform and a distance measure between correlation matrices, had only limited success and did not lead to deployable
instrumentation. System identification by autoregressive, moving average (ARMA) models was likewise unsuccessful due to
the non-stationary nature of the acoustic event. Most of the published work in aircraft acoustic emission has been concerned
with classifying the sound levels and types for purposes of noise abatement rather than aircraft identification, i,2 Few, if any, of
the previous attempts at classification have been published in the open literature.

-

- As a time-frequency approach seemed most likely to succeed, we examined several time-frequency methods for extracting
identifying information from acoustic signatures. The method of wavelet analysis was found to be the most promising from a
practical standpoint due to the ease and effectiveness of implemcntation as a t'mite-impulse response (FIR) filter bank.

- In addition to using wavelets to extract relevant features of the acoustic event, we explored several methods of feature
classification. Fuzzy set classifiers and neural networks are among the most promising for this particular problem. Thus, we
have overcome earlier problems by a combination of wavelet analysis and pattern recognition. The resulting algoritlun is
suitable for use in a small instrumentation package due to its efficiency, speed, and accuracy.

Section 2 describes the data-collection effort, including the recording equipment and physical configuration. Data analysis and
the particular use of wavelets is presented in Section 3, while Section 4 is a discussion of classification techniques that gave
satisfactory results. Section 5 continues the wavelet analysis in more detail, showing how other signal-processing naethodsmay

- be combined with wavelets to extract physical parameters of an event. The results are summarized and conclusions are
presented in Section 6.

2. DATA COLLECTION

After exploring the availability and quality of existing aircraft acoustic-data sets, we decided that first-hand measurements of
acoustic signatures would be necessary for a comprehensive and accurate analysis. The Metrol:"_litan Knoxville Airport

- Authority (Knoxville, Tennessee) very graciously cooperated with our effort, allowing us to set up our recording
instrumentation at the end of several of their major runways.

On four occasions, we were able to obtain acoustic-signature data of aircraft operations on three different runways at McGhee-
_ Tyson Lirport, near Knoxville. Data were recorded for a total of 162aircraft events, spanning a wide variety of aircraft types
_ and actions. In total, approximately 30 aircraft types were recorded; they fall in three main classes: largejets, twin-engine turbo

props, and single or double piston-engine aircraft. We attempted to record statistically significant samples of both take-off and
landing events for each aircraft type, but due to the restricted sampling methods imposed by time constraints, this goal was not
always achieved. Additional events occasionally recorded included preflight throttle tests, wherein the sound source was

- stationary but intense preceding a takeoff, and echoes from the large jets reflected off nearby buildings, ariving some tens of
_ seconds after the aircraft passed by the sensors.



The primary sensor was a laboratory quality, B&K 4133 condenser microphone having a frequency range from 17 Hz to 39
kHz, flat to within +_2dB. The acoustic events were recordedby a Honeywell Model 101 FM multichannel magnetic tape
recorder.The recordingswere made (on different occasions) at 7.5 ips and 15 ips; therecorderbandwidthat the formerspeed is
25 ldlz, +1, -2 dB. Each event was voice-annotated by the operator; this annotation was recordedon another channel of the
same one-inch wide tape. For the airport recordings,the microphone was mountedon a foam-paddedplywood square, 18 inches
on a side, and approximately two inches above the foam. The microphone was pointed upward at about 30 degrees. The axis of
the microphone's directional patternwas normal to the runway.The microphone itselfwas locatedabout 300 feet from the take-
off end of the runway, some 12feet from the paved edge. This restrictedthe recordings to the last segments of rake-offs anddthe
first segments of landings, as the aircraftwas typically airborneas it passed the microphone.

Events were logged in a notebook as well as on the tape itself. Airportpersonnel identified each event as to aircraft type, take-
off, landing, or flyby prior to the actual event. This gave the recordingcrew ample notification as to when to start recordingthe
event and providedan additional safety factor as well. There were approximately 10events per hour on the selected runways.
Tail numbers of most aircraftwere noted. A small selection of events is shown in Table 1.

Table 1. Selected Aircraft Acoustic Events. The event time-of-day is given along with the
aircraft type, tail ID number, and the perceived action. The column labeled "Index" is an
identifier for the location on the magnetic tape. The "Comments" column contains other
information about the event or the aircraft.

[ Index Time Aircraft Type Tail ID Comments Action
1.9 08:31 PiperPA32 landing
2.1 08:54 Piper PA32 I eng turbo landing
2.2 09:03 JetStream N163PC 2 eng landing
2.3 09:1.6. JetStream N861AE Am Eagle revup
2.3a 90:16 " " " " " take off
2.4 09:10 MD88 landing
2.5 09:34 LearJet N952M mixed w/cessna? landing
2.7 09:47 Single Engine N336EJ 1eng landing
2.9 09:53 Mosquito N2FF 1eng piston take off
2.12 10:21 Saab N344CA 2 eng turbo landing
2.14 10:39 MD80 N983DL cargojet takeoff
3.1 10:56 DC 9 passengerjet landing
3.2 11:04 Saab N275UE 2 eng turbo landing
3.3. 11:06 Cessna N2RG 1eng piston rev up
3.6 11:21 737-300 N917UA passengerjet take off
3.8 11:36 King Air N60SC 2 eng turbo take off
3.9 12:06 Fokker N494US like DC9,MD80 landing
3.10 12:15 Cessna 152 1 eng piston take off
3.11 12:30 King Air Army 2 eng turbo landing

2.1 Acoustic Interference

A common problem in datacollection of this type is interference from ground reflections. At certainfrequencies, depending on
the geometry of the measuring system, acoustic energy reflecting off the pavement or ground will interfere (both constructively
and destructively) with the main signal traveling directly from the aircraft. This effect is most evident in a sonogram display of
the event, wherein the time-frequency plot takes on a layered or "onion skin" appearance. The interference effect is also

described in the literature. 3 As such interference is not indicative of the behavior of the source, we minimized the effect by
appropriate placement and orientation of the microphone. In addition, by suitably averaging the various wavelet transform
levels, and not extracting phase information, the acoustic interference effect does not contribute any confusion to the feature
vectors used in the classification schemes.

2.2 Other Sources

One of the problem areas appearing in previous work was the inability of certain methods to discriminate between aircraft
events and other likely occurrences such as motorized ground traffic and thunderstorms. In addition, the echoes noted above



might well appear to be separate aircraft events to a system having low discrimination capability. To investigate the possibility
of discrinfinating against such "uninteresting" events, we collected data from both ground vehicles and acquired thunderstomls
signatures.

For motorized vehicular events, data was taken with the same recording instrumentation, but located at an overpass on Interstate
40, near Knoxville. 55 highway events (trucks and automobiles) were recorded. Preliminary Fourier atmlysis of a jet take-off
and a highway event of a large tractor-trailer passing by clearly demonstrates file type of problem encountered. Figure 1 shows
a comparison between a binned, Fourier power spectrum of a jet take.off and a truck drive-by.

Frequency Frequency

Figure 1. Aircraft events can be similar to ground-traffic events. The sound intensity shown as a function of
frequency accumulated into third-octave bins spans the range from about 100 to 633 Hz. The aircraft
signature, from an MDS0 "touch-and-go" event, is on the left; the truck highway event is on the right. Both
histograms have been normalized to unity at the most intense bin.

Each of the events shown above are recorded for their entire duration of the take.off or drive-by, defined somewhat arbitrarily
as that period when the average sound intensity was greater than twice the background sound. This period for the aircraft take-
off was about 22 seconds, while the truck drive-by lasted about 3 seconds. The third.octave histograms show very little
difference between the two events. One simple resolution to this dilemma is presented in the next section.

To complete the set of over 200 recordings, 11 "natural" events of recorded thunderstorms were extracted from a commercial
cassette recording. A commonly found feature in acoustic events stemming from natural causes is a l/f behavior in their power
spectral density (PSD). Below, we show that some aircraft events exhibit only a slight departure from the lff behavior noticed
in the thunderstorm data.

3. DATA ANALYSIS

Acoustic sigmtures (a temporal sequence of pressure waves characteristic of certain events) contain information in their
temporal structure as well as the structure of their power spectra. Wavelet analysis is one method of extracting such temporal
behavior in a mathematically consistent and practical manner. Many other techniques have been developed over the past half
century and could be likewise expiored in any complete exposition on signature analysis. For example, there have been several
powerful methods related to the Fourier approach (e.g., the Gabor transform). Other spectral-based methods rely on linear
models and have produced the ARMA method, the related maximum-entropy spectral approximation method, and several other
variations on linear-system modeling. The Wigner transform (based on the Wigner-Ville distribution) is an exceptionally
popular method for analyzing chirp signals and is the basis of the ambiguity transform used in analysis of radar signatures. In
addition, Markov methods provide a convenient means of analyzing structured sequences of acoustic events found in connected
speech.

In keeping with a design goal of a small, inexpensive, and deployable instrument, all the signatures obtained in the data-
collection stage were digitized to 8 bits at a rate of 11,000 samples per second and stored on digital magnetic media. This
digitized data set served as the input to the analysis stage.

The objective of the airport study was to determine the feasibility of extracting feature vectors suitable for distinguishing
between classes of aircraft. A key problem in the identification of complex events is to find a set of features that are similar for
different signatures of the same class, but distinctly different for signatures of different classes. Additionally, one would like the
feature-extraction process to be algorithmic for automatic operation. Since other researchers had devoted considerable effort to
this problem using variations on Fourier analysis, we knew that this technique was not suitable. However, Fourier analysis
remains an excellent point of departure for any signal analysis problem.



3.1 Preliminary Fourier analysis

Each of the different event classes was examined with a discrete Fourier transform (DFT) to determine if any outstanding
features were present. Jetaircraft(passenger andcargo planes) exhibitedfew outstanding features in the frequency domain.The
propeller aircraft and turbo-prop aircraft showed some spectral peaks that could easily be identified with the periodic
disturbanceof air displaced by the tips of the propellers. A typical spectral peak (shown below in Section 5) was at 86 Hz in the
case of a four-bladepropeller rotating at the rate specified for take-off.

The Fouriertransform of an acoustic signal taken froma largejet is shown in Figure 2. The most noticeable characteristic is the
approximate l/f behavior of the signal power as a function of frequency. While we can certainly expect to distinguishthis event
froma turbo-proptake-off based on the difference in spectral features (particularlyin the 100 Hz range), there is little here to
suggestthat Fourieranalysis mightproduce unambiguousfeatures for distinguishing this event from othersimilar,but distinct
events--either landings fromrake-offs, or betweendiverse largejet aircraft.

i00.

i0.

I t,Jd

0.001
200 500 i000 2000 5000 10000

Figure 2. Fourier power spectrum of an MD80 take-off event. The power spectrum of an entire take-off event
shows a departure from the l/f characteristic in the range of 1200 to 3000 Hz; otherwise, there are few
outstanding features that might be conducive to classification. The ordinate is in arbitrary units of acoustic
power, the abscissa is in Hz. The recorded signal was digitized ata rateof 22 ld-lz for this analysis.

As most natural acoustic events (e.g., thunderstorms)tend to show a l/f characterin their PSD, the above aircraftevent is barely
distinguishable over its durationfrom such natural phenomena. There is slight departure from l/f behavior at both extremes
(below about 300 Hz and above about 7000 Hz) where the detectedpower seems to drop offor rise slightly. The main departure
from 1/f behavior lies in the range of 1000 to 3000 Hz where we might expect to find the a contribution to distinguishing
features.This region correspondsapproximately to levels 3, 4, and 5 in thewavelet transform describedbelow.

In Section 2, we saw that a third-octave description of an MD80-class jet differed little from that of typical highway noise.
Here, we assert that there will be little qualitative differencebetweenan aircraftevent and certain naturalphenomena likely to
be present. Thus, the problem is to extract a set of features that are sensitive enough to distinguish between aircraftof various
types, but not confound any aircraftclassifications with highway events or thunderstorms.

3.2 Wavelet analysis

The digitized signals were projected onto discretewavelet subspacesby the FIR wavelet method as describedby Mallat.4,5 We
found that certain wavelet bands contained little information, depending on aircraft type, while others were rich in relevant
distinguishing information. This simple observationprovides a preliminaryclassification scheme, and is refined below.

The wavelet transformcoefficients for the FIR filterbank were takenfrom Daubechies, 6 and a 12-level wavelet trar,sform was
computedforeach of the events. A typical transformedevent, in this case another large-jettake-off, is shown in Figure3.



Figure 3. A 12-level wavelet transform of an MDS0 take-off using the D4 discrete wavelet transform. Level 1
(smallest details) is the trace in the upper left; level 2 is shown in the upper right. The next row contains level 3
and level 4, and so on. The units are arbitrary, but chosen so that the entire event, some 20 seconds along the
horizontal axis, is displayed.

The approximations to the signal at each level were discarded as we are only concerned with the details over several of the
levels. Since there are of the order of a hundred thousand samples for a typical event and the transformed signals were averaged
in time to obtain reasonably sized signatures, the particular wavelet transform used was relatively unimportant. For shorter
signals with no averaging, the particular choice of analyzing wavelet can make substantial differences in the descriptor sets.
One effect of analyzing the signal on wavelet subspaces is that the temporal character is not lost; the time axis is merely
compressed by a factor of two for each transform level. If we now bin the square of the intensities of the transformed signal
according to a given temporal epoch during an event, we obtain a density plot as shown in Figure 4.
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Figure 4. Wavelet transforms for the aircraft and highway events shown in Fig. 1. A temporal average (into
40 ms bins) has been carried out on each of the 8 most significant wavelet levels. Time increases to the right,
and scale from top-to-bottom,with the finer scale (higher frequencies) at the bottom.

In this view (still greatly compressed compared to the original signals), there is an observably great difference between the
aircraft and highway events introduced in Section 2. Even if we attempt to correlate 'a,_truck event (fight) with a portion of the
aircraft event, we obtain a poor match in all instances.

Fig. 4 graphically illustrates a possible method of classification. Here, we have a simple function of two dimensions (temporal
bins and wavelet levels). Defining the onset of an event in relation to the most intense region or maximum of the function, we
can now compare events. This high level of discrimination was found to be unnecessary for successful classification of the
aircraft, but remains a possibility for future applications to higher-discrimination needs, such as intra-class discrimination.



4. EVENT CLASSIFICATION

Subsequent analysis extracted information for feature vectors from these various subspaces. Some of the methods employed
were higher.order zero..cmssings7, ARMA modeling, Fourier transforms of the subspace signals, and additional wavelet
analysis. In this section, we employ Fouriertransformsof the subspace signals to obtain compactyet descriptive featurevectors.

4.1 Feature extraction

The wavelet transformprovidedus with 12 subspacesignals foreachaircraft event. As mentionedabove, in mostcases only the
details of levels five through eight are sufficient to characterize the event. However for some of the "big-jet" events, a
significant portion of the energy resides in levels one through four, this provides a way to distinguish these events from the
turbo-propevents. A feature vector can be defined for each of the events as a normalized vector obtained by partitioninga
Fourier power spectrumon each of the four wavelet subspacesinto third-octavebins. This results in a vectorconsisting of eight
componentson each wavelet subspace, or 32 componentsin total. Thesevectors were normalizedby dividing each component
by the largestcomponent in each vector. Thus, we have compressed tie acoustic informationnecessary for classificationby
nearlyfour ordersof magnitudefrom thatof the digitized time-domainsignal.

4.2 Fuzzy set membership

A fuzzy set8 approachprovides a simple methodfor creatingevent clusters. It has a certain robustnessthat allows reasonable
identifications to be made on small-event sets. A fuzzy set describinga particular event is simply the normalizedfeaturevector
described above.

Once a fuzzy set is computed for each event, the standard methods of fuzzy set theory as discussed in Ref. 8, can be used to
group events into classes and compute class membership possibilities for a test event belonging to an unknown class. The
operations of fuzzy union, intersection, and membership degree are all the machinery required for a fuzzy-event classification
system. The Figure 5 shows the results of comparing a selection of events with the fuzzy union of all the Saab events. The Saab
is a twin-engine turbo-prop aircraft, in all we recorded 6 Saab events (both take-offs and landing) for 3 different models.
Accordingly, the "Saab" class is sparse from statistical considerations (we would like to have about 30 events of each type).
The height of each bar represents the possibility that the event is a "typical" Saab event. The bars at locations l, 2, 26, 30_";2,
and 44 show the response of the Saab cluster to the Saab events (of course, they each show 100%"Saabpossibility"). The other
events showing high Saab possibility are of interest; these are events 13, 20, 29, and 41. Each of these events was a aircraft of
similar type to the Saab. The events with low Saab possibility, such as those labeled 10 and 40, stem from jet liners, and not
small turbo-props.

_-_...I .-_- __== _= = -I.,
0 I0 20 30 40

Figure 5. Graphical illustration of fuzzy set membership in the "Saab" class. The abscissa indicates the event
type by index number and the ordinate is the fuzzy possibility, ranging from 0 to 100%.

The fuzzy-set approach presented here resulted in better than 90%correct identification of event type from the universe of the
200 recorded events. This confidence measure was obtained by a cross-correlation of all the pair-wise fuzzy-set membership
possibilities and then selecting the higher possibilities (i. e., those above 95%) as defining class membership.

4.3 Neural network classification

For certain data sets, the method of functional approximation9 knownas artificial neural networks (ANN) is more efficient than
either the usual multivariate approaches or fuzzy-set classification. The normalized feature vectors extracted above are ideal
candidates for inputs to any of several ANN modelsmmost notably the multilayer perceptron network (MPN) model and the



radialbasis function (RBF) model. The primary difference between these two approaches lies in their particular basis functions
aM methodsof parameter estimation. The MPN uses basis functions consisting of non-orthogonal "sigmoidal" functions such
as the inverse hyperbolic tangent, and commonly employs a form of gradient descent to locate a local optimum in paranleter
space. (The model parameters are referred to as "weights" in the ANN vocabulary--this usage is to be distinguished from that
in regression analysis.) On the other hand, the RBF uses a radially symmetric basis function set, again not necessarily
orthogonal, usually based on, but not restrictedto, the Euclidean distance between multidimensional data points and cluster(or
node) centers. The method of parameter estimation is either gradientdescent in weight space for the MPN or, in case of simple
networkarchitectures, a direct least-squares fit using the matrixpseudo-inverse is quite effective.

As we wished to classify each event into a predetermined set, such as "largejet laming," these a priori classes were identified
with output nodes (or units) of the network. We selected a totalof six classifications for testing the ANN: take-.offsand landings
for each of the three categories of big jets, twin-engine turbo-props, and single- or twin-engine piston aircraft. There were 32
input nodes, corresponding to each of the 32 components in the canonical feature vector. These nodes actually do nothing but
serve as notational and conceptual convenience in the ANN vocabul,'u'y.The intermediate layer in the network, the "hidden"
layer in ANN parlance, consisted typically of 20 to 60 nodes where each basis function was applied to the sum of the inputs
over all 32 components of the feature vector. For the MPN, each of the input vector components is scaled by a parameter or
weight that can be different for each input component and each hidden node. For the RBF case, the distance between the input
vector and each node centerwas computed before applying thebasis function; weight multiplication was done after the function
application in contrast to the MPN method. In passing from the hidden layer to the classification layer (network output), each
hidden node's output was scaled by another parameter before summation at theclassification nodes. There were approximately
2400 degrees of freedom in the 60-node MPN network. The RBF network was considerably smaller due to the fewer hidden
nodes required; 20 nodes were sufficient, resulting in 886 degrees of freedom.

Both network models gave approximately the same degree of correct classifications. At the 86% level, this was not significantly
different than the fuzzy-set method discussed above. The main difference between the two classification schemes was in the
number of classes able to be supported. Due to the sparseness of the data set, the ANN approach could only functionwith six or
fewer clusters. The fuzzy-set method operates quite well with two or three times the number of clusters. Thus, we could easily
detect differencesbetween types of turbo-props using the latter method.

4.4 Non'inear analysis

We now wish to exploit the simplifying aspect of the wavelet projection operators. For orthogonalwavelet bases, the original
signal is projectedontonon-overlappingsubspaces.Eachof these spaces is somehow "simpler" than the original signal space as
certaindetails have been removed in the case of the approximationsand certainlow-frequencybehavior has been discardedin
the case of the details. For some types of signals and certainwavelet functions, this reduction in complexity can translateto

"cleaner" attractors,if not simplerones. This is analogous to the digital filtering methods used by Lawkins,et at,10 but goes
beyondtheir approachin assumingpossible decompositionof high-dimensionalattractorsto simplergeometricalstructuresby
meansof wavelet projections.

This is obviously correct in the case of the Saab 340 take-off analyzed below. The attractoron approximation levels that
preservethe fundamentalfrequencyof rotationfor the propellertips areeasily seen to be limit cycles (compact ellipses in an
embeddingdimension of two), whereas the attractorfor the original time series is not quite so easily interpreted.Additional
analysisof the dynamicson the details subspaceswill be carriedout at a latertime.

5. PHYSICAL PARAMETER ESTIMATION

The estimationof physical parametersfroma one-dir_ensionaltime-domain signal is a model.dependentproblem, with at least
as manysolutions as there are models available. In me case of a turbo-propaircraftevent, the models arerestrictedby known
aircrafttypes (numberof engines, numberof blades on each propeller,andnominaltake-off and landingengine-power levels).
There is some informationto be gainedfrom a Fourieranalysisof the digitized time-domain signal. When Fouriermethods or
other approaches are applied to the projections of the signal on wavelet subspaces (now the approximationsignals are
considered as well as the details), both the accuracy and the amount of extracted information increases. For the analysis
presentedin this section, we consider the central,intenseportionof a Saab 340 duringtake off. The portionwhere a physical
model is extractablecovers aboutsix secondswhen the aircraftwasclosest to the microphone.

Figure 6 shows a 1/4-see segmentof the digitized acoustic signatureduring the first partof the six-second interval when the
aircraftwas approachingthe microphone,approximatelyone secondbefore opposition. Note thepresence of a numberof other
signals at higher frequencies that are modulatedby the fuMamental. The intensity, as measuredby peak-to-peak distances is
also increasing(the aircraftis approachingthe microphone).
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Figure6.Time-dommn signalfromaportionofaSaab340 take-offevent.The recordingwas digitizedat22
kHz, so the length of this portion is about 250 ms. The strong pressure pulses due to the turbo-prop tip
passage are clearly visible.

We now proceed to analyze this event using standard DFT methods and conclude with a wavelet analysis followed by a
nonlinear fit to a Doppler model.

5.1 Fourier parameter estimation

Figure 7 shows the DFT of the above segment. The strong fundamental located at bin 20 corresponds to about 88 Hz. A second
harmonic is just visible at bin 40.

50 100 150 200 250
Figure 7. Low-frequency portion of the Fourier transform of the time-domain signal presented in Fig. 6. At
the scale shown, there is almost no information beyond bin 250 (1100 Hz). The abscissa has units of
frequency bins, where each bin spans 4.4 Hz. The ordinate is in arbitrary units of power.

The resolution of the measurementis +1 bin or _+4.4Hz and the weaker harmonics may, in general, be unidentifiable at this
resolution due to the ratio of the power in the peak to the power in the noise over such a wide frequency range (8.8 Hz).

The standard way of increasing the resolution of a DFT is to include more samples in the transform. Tiffs has the disadvantage
of increasing the time required for the calculation; there are other disadvantages as well. If accurate measurements are required
(for, e.g., Doppler effect determination), including ,**ore samples hides the very information sought since the frequency is
changing significantly over a time scale of 250 ms for a typical small.craft take-off. Including more samples would merely give
an average over that extended time. Figure 8 shows the results of an alternate method: padding a 100 ms segment of the original
signal with zeros to increase the (apparent) resolution.

• , .
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Figure 8. Low-frequency portion of the DFT of a 100 ms segment of the time series of Fig. 6 embedded in
32000 zero samples. Here, an abscissa bin corresponds to 0.69 Hz, and the peak is located at bin 130.

Again, we can locate the peak to within +1 bin (without employing sophisticated peak-fitting methods), and obtain a central
frequency of 89.4_+0.7 Hz--much better resolution than before. The peak shown above owes its pleasant symmetry to the set of



non-zero samples set within a much larger span of zeros, reflecting more the appearance of a Fourier transform of a square
pulse than the actual data samples from the aircraft signal.

Once tic fundamental has been identified, the other peaks arc usually not too difficult to locate as long as tic signal-to-noise
ratio is favorable. TIC harmonics can be found by a modified ARMA method wherein the fundamental is part of the model, or
by a DFT by searching for peaks at proper locations above tic fundamental.

5.1.1 Prop-Blade Harmonies

Identification of the fundhmcntal frequency due to tic propeller is a straight-forward measurement using either the DFT or
ARMA methods. The effect of "noise," defined as interfering or masking signals present in the signal being analyzed, can
reduce tic accuracy of either method to the point of failure. These effects can be minimized by appropriate wavelet filtering
prior to spectral analysis. The DFT or ARMA method is then applied to a scaled version of the original signal, resulting in a
much more robust result.

Another approach is to project the signal onto a set of wavelet subspaces and identify the harmonics as the principal component
on each of these subspaces. This seems to work for both the second and tlurd harmonics, depending on the aircraft and event
type.

Once the original signal has been projected onto the discrete approximation and detail subspaces, further analysis on these
subspaces can enrich the understanding of the physical system producing the one-dimcnsic, n,'_ time series.

5.2 Signal processing on wavelet subspaces

One of the more valuable benefits of carrying out a wavelet analysis is the multiresolution character of tic analyzed signal on a
set of nested, orthogonal subspaces. The original signal is split into independent subsignals by projecting it onto these wavelet
subspaces. As an example of how the combined wavelet-spectral-analysis method might be used to obtain some of the
underlying physical parameters of the event from those subspaces, consider the wavelet transform of a 100 ms segment (2200
samples) of tic above data set. For the subsequent analysis, we will want to examine smoothed versions of the scaled original
signal, so we choose a wavelet transform that ensures smooth approximations, such as D8 with 16 coefficients (see Ref. 6, p.
195). TIC result of applying this particulartransform is shown in Figure 9.
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Figure 9. Wavelet transform of a portion of the time-domain signal shown in Fig. 6. The approximations arc
on the left and the details on the right. Level 1 results are at the top, and level 6 at the bottom. Note that the
fundamental oscillatory nature of the signal is preserved at least through level 6.



If we use the approximation dataof level 5 (fifth plot fromthe top on the left in Fig. 9) as input to the an ARMA model for
speclralestimation,we find a very sharppeakat 89.32 Hz (with an errorof about0.81 Hz given by the fwhm, or +0.4 Hz).The
Fouriertransform,above, gave the fundamcntalas 88+4.4 Hz. The spectraldensityobtainedby plotting the frequencyresponse
of the ARMA model is shown in Figure 10, where the sharpnessof the spectralpeak is stems fromthe filtering actionof the
wavelet transform in producingthe level 5 subspacesignal.
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Figure 10.Frequencyspectrumof a portionof thetime seriesshowin Fig. 6. Theoriginal digitizedsignalhas
fist beenprojectedontothefifth levelof theapproximationsubspace,a portionofwhichis shownin Fig.9. The
plotted function was obtained by a least-squares fit to a 12th order ARMA model. The abscissa represents
normalizedfrequency,and the ordinatearbitrarypowerunits.

The fundamentaland two harmonics arevisible in this spectralplot. The first harmonicis located at 178.73 Hz, which is twice
the fundamental well within the error. Since the analysis was done on a level-five subspace, the normalized frequency
correspondsto 2-5 x 22000 Hz, or about 686.9 Hz.

5.3 Analyzing a subspace pro[ectioa

Figure 11shows the central portionof the level 7 approximationof the wavelet transformsimilar to that shown in Fig. 9, but
over a much longer time span. As a point of reference, the details in levels seven and eight have by far the largestamountof
"energy," sharingabout 50%of tic totalpower in the signal.
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Figure 11. Centralportion of the seventh approximationlevel of a D8 wavelet transform of the Saab 340 take-
off, sampled at 11000/see. The abscissa represents time, and spans about 1.8 seconds. The ordinate is the
intensity of the subspace signal in arbitraryunits.

There are two obvious features in this subspace projection: (1) the waveformis that of a high-frequency oscillation modulated
by a very low-frequency wave, and (2) the high-frequency part is "at the Nyquist limit" for this discrete signal space. Since this
is a level-seven projection, the Nyquist limit (the concept is still valid fora scale-space signal) correspondsto an oscillation of 2
parts in 27 times the Nyquist limit of the original sample (5500 Hz). Thus, the high-frequency oscillation in Fig. 11 is a direct
consequence of the fundamental 86 Hz secular propeller frequency seen in the Fourierspectrum in Section 5.1 above. This is
not at all surprising due to the octave scaling nature of thewavelet transform.What is a pleasant surprise, however, is that the
appearance of the fundamental when projected onto this wavelet subspace is a simple (and remarkablyclean) modulation of the
underlying 86-Hz component.

The separation into high- and low-frequencyparts becomes quite evident if we take the wavelet transform of the entire level 7
signal. This is shown in Figure 12 where the approximation is on the left and contains about 6%of the total power in level 7.
The bulk of the signal is in the details (on the right), which is now clearly seen as a low-frequency modulation. The high-



frequency information is contained in the specification of the subspace itself, namely that it is a details subspace corresponding
to the eighth octave of the original signal. It has been pushed "beyond" the Nyquist limit and is now present in the geometry of
the nested projections rather in an oscillatory nature of a particular time series.
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Figure i 2. D4 wavelet transform of the level 7 approximation, the central portion of which is shown in Fig.
11. The approximation is on the left and the details on the right. The abscissa spans about 8 seconds, showing
the entire take-off event. The ordinate units are the same as in Fig. 11 and show comparable intensities.

Further analysis is possible on the details (signal shown on the right in Fig. 11) section of this transform. It may well be
possible to infer underlying mechanisms as to the physical cause of the modulation from the above signal or use its
characteristics for identE_'icatir,n purposes. For example, the period of the low-frequency beat is about 0.3 sec, and is consistent
with a slight mismatch in rpm of the two engines, ff such a mismatch occurs at the maximum throttle during take-off in a
consistent manner for similar aircraft, the features of the signal may serve to identify the particular aircraft (at least until the
engines are re-tuned). These ideas await further study before definitive statements can be made.

5.4 Frequency tracking

Matching zero-crossings or peak positions I ! across several wavelet levels can give accurate timings of certai_ dl.s¢onti_mous
events---in this case, the forcing of air currents in the direction of the sensor by the passage of propeller-blade tips. The met]w.,a
described in Ref. 11 is particularly suited for this type of signal as well as to more complicated phenomena such as speech
processing. Although the peak-matching method gave excellent results for our simpler turbo-prop data, here, we employ a
variant of tlw:ARMA method based on recursive least squares to extract the fundamental propeller-tip frequency as a function
of passage time.

The signal is analyzable by this method during the period when the aircraft is less than about 100 m away from the microphone,
with closest approach of about 50 m. A small amount of amplification could extend this range by perhaps twice. As we are
building the ARMA model on a low-scale approximation subspace, noise introduced by amplification should not be a problem.

i00 ..... , ...... , .... , .... , ......... , .... ,

95

t_ • • • •
:x:: •
'---' 90 °°o
:N °Co
0 • •

•
• •

• •
85 •

° • o
1,4 • •
[,4 • e o

• •

80 • • •

0 5 I0 15 20 25 30 35

Figure 13. Frequencies obtained by a recursive, least-squaresARMA model tracking the
fundamental frequencyof thedynamicaircraft system.The abscissais in unitsof 51 ms (see text).



Figure 13 shows that measured frequency drops off from about 93 Hz to about 80 Hz during the event. The units along the time
axis are 51 ms due to the avc.,"agingmethod used (each frequency point was computed from a 50% overlapping, 100 ms-long
moving window), so the chart spans about 1.8 sec. The dispersion of the points at each end of the region is due to the low level
of the acoustic signal when the aircraft is beyond about 100 m from the sensor.

5.4.1 Doppler model: extracting the physics of the event

The frequency observed at the microphone due to a moving signal source is given by Equation 1. Here, f(t) represents the
frequency at time t in the stationary (microphone) frame and f0 is the constant frequency as measured in the moving frame

(actual signal frequency). The velocity of the signal source is v 0, measured in Mach units; the distance of closest approach of
the source to the microphone is d, measured in seconds per Mach unit. Linear motion is assumed.

f(t) = f0

1 +

If we now fit the above data set to a model of the Doppler shift as expressed in Eq. I using nonlinear methods, we obtain the
results summarized in Figure 14.
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Figure 14. Fit of a Doppler model (Eq. l) to the data shown in Fig. 13. Vs is the speed of sound at the runway.
Abscissa units are the same as in Fig. 13.

The parameters of the fit are tO= 18.7 t-units (aircraft opposite microphone), transverse frequency or f0 = 86.2 Hz, which is

very close to the mean of the data set (86.4 Hz), d = 2.955 t-units, and v0= 0.126 Mach units. The t-units are about 51 ms (see

above) and the speed of sound (standard atmosphere at 100 m altitude) is about 340 nVs. Thus, the two essential parameters of
the motion of the aircraft arc (assuming constant velocity, which is borne out by the symmetry and quality of the fit):

speed of aircraft = 42.8 m/s
distance to sensor = 51.9 m.

While the analysis can be extended along similar lines to obtain additional information about the event, the parameters derived
above are the easiest to obtain and should be available in real time given an adequate hardware platform and appropriate
algorithms. A simple error-propagation analysis can be applied to assign confidence limits to these results and aircraft
acceleration could be included in the model without much additional computation.



6. DISCUSSION

This paperpresenteda set of signal-processing methodsbased on wavelet analysis that has been successful in high-reliability
identificationof aircrafttype from acoustic measurcmcnts.In addition,we demonstrateda method for discriminatingbetween
aircra_ sounds madeby other technological sources as well as those generated in the natural environment. Moreover, extraction
of physical parameters related to both the aircraft type and event was shown to be a straight-forward task. While there are
severalvariations possible for each particular methodsdeveloped--for example that of Ref. 11 is more efficient at followingthe
Doppler shift than the recursive ARMA method discussed above, the essential idea of projecting the original signal onto
multiplewavelet subspaces prior to feature extraction and system-identification allows for a more comprehensive analysis with
higher quality results and less overall computation.

6.1 Results of wavelet analysis

Wavelet f'flter-bankanalysis of the digitized acoustic aircraftsignatures is a computationally inexpensive step in the general
problemof signal processing for recognition and identification.We showed how to use characteristics of the projectedsubspace
signals for extracting features suitable for event classification and frequency tracking. The latter provided the input for a
Doppler model thatgave accurate indication of distance to the single microphone as well as transverse aircraft speed. No doubt,
additional physical parameters remain to be extracted from the data sets. Some possibilities are wing vibrations that could
modulatethe fundamental oscillatoryexcitations and, perhaps, an estimate of turbine parameters is feasible for the largejets.

6.2 Results of classification

Both neural networks and fuzzy-set clustering were explored as classification schemes. A co_tstraintmaintained throughout the
project was computational efficiency since a deployable instrument package remains a goal. This eliminated several good
classification schemes and reduced the choice to fuzzy-set classifiers and radial-basis function networks. The former showed
that a signature can be numerically characterized by its degree of membership in a fuzzy set, while the latter indicated that
certain ANN models provide efficient event classification.

Both classification methods demonstrated a reasonable degree of success in recognizing complex signals in spite of sparse data
set. At this time, neither is offered as the ultimate classification scheme for the signal types exqaloredin this work.

6.3 Conclusions

Althoughthe data collected for this project were analyzed with a computerworkstation,we have written similar code for a
digital-signalprocessingplatformwhere thecomputationtakes place in real-time.In addition, the problemof usinga smalland
inexpensive microphone has been explored by preprocessingthe raw digitized data with a filter whose response function
approximatesone of the small and inexpensive commerciallyavailabledevices. No degradationin classification capabilitywas
noted. Itseems feasible to package a suitable analysis system in a small, inexpensive andportabledevice forboth surveillance
andadditionaldata-acquisitionendeavors.

The work on classification should be extended to include a more extensive analysis, using much largerdatasets, both for the
fuzzy-set method and the ANN approach. Additionally, invariants extracted from each of the wavelet subspaces by the
techniquesof nonlinear time-series analysis should provideadditional discriminating features as well as serve as a point of
departurefor more extensive system-modeling efforts.

In spite of the preliminary nature of work described, the methodshows great promise for classification of complex, time-
varyingsignalsand as an aid in system modeling andide_:.ification.
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