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• ABSTRACT

Detection Of "Single.Leg Separated" Heart

Valves Using Statistical Pattern Recognition

With The Nearest Neighbor Classifier

The goal of this work was to detect "single-leg separated" Bj/Srk-Shiley Convexo-

Concave heart valves which had been implanted in sheep. A "single-leg separated" heart

valve contains a fracture in the outlet strut resulting in an increased risk of mechanical

failure. The approach presented in this report detects such fractures by applying statistical

pattern recognition with the nearest neighbor classifier to the acoustic signatures of the

valve opening. This approach is discussed and results of applying it to real data are given.
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1. Introduction

Artificial heart valves have long been a godsend for many patients. With an artificial

. valve replacing a diseased or damaged one, a patient may live a long and productive life.

Unfortunately, mechanical failure of such valves can be fatal if not detected early [1, 2].

One such valve which has demonstrated an increased risk of failure is the Bj_irk-Shiley

Convexo-Concave heart valve. Between 1979 and November 1986, this valve had been

implanted in about 86,000 patients worldwide. Of these patients, nearly 300 have died as a

result of mechanical failure [1]. Concern about these failures has lead to the research

described here and elsewhere. Our overall goal is to develop techniques for non-invasive

detection of single-leg separated heart valves. While other organizations are using a variety

of other techniques, including the use of x-ray images, our work is focused on analyzing

acoustic temporal waveforrn signatures.

A diagram illustrating the operation of the BjSrk-Shiley Convexo-Concave heart valve is

shown in Fig. 1.1.

Disk rest between
inlet and outlet struts

inlet /
strut

outlet
single-leg

strut separation

OpenValve Closed Valve BrokenValve

Figure 1.1. BjOrk-Shiley Convexo-Concave heart valve

Mechanical failure of these valves typically begins with a fracture, or a "single-leg

separation" (SLS), which develops at the base of the outlet strut. After this condition
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develops, there is an increased risk of complete detachment of the strut resulting in valve

failure. Unfortunately, it is believed that the probability of death during replacement

surgery is greater than the probability of mechanical failure. Therefore, patients with these

valves have been advised not to have them replaced unless there is reason to believe their

valve is "single-leg separated". If techniques are developed which can detect these

fractures, suspect valves can be replaced and patients' lives ultimately saved.

The goal of this work was to develop a statistical pattern recognition technique which

could successfully detect "single-leg separated" Bjtirk-Shiley Convexo-Concave heart

valves which had been implanted in sheep. Sheep were used for this study because their

heart and chest cavities closely resemble those of humans. This approach classified valves

based upon features which were generated from the acoustic responses of the heart valve

opening. Only openings were analyzed because during an opening the disk directly

impacts the top of the outlet strut. Therefore, the acoustic response of the opening should

be closely coupled to the condition of this strut.

The remainder of this report is divided into two sections. Section two describes the

statistical pattern recognition process and section three presents the results of applying this

process to real heartbeat data.

2. Statistieal Pattern Reeognition Proeess

The process involved in the heart valve classification is shown in Fig. 2.1. The input

into this process consists of heartbeats for the sheep whose valve condition is to be

determined (test sheep), heartbeats for sheep with known intact valves, and heartbeats for

sheep with know SLS valves. The output is a determination as to the condition of the valve

implanted in the test sheep. The reader is referred to [3] for additional information about "

the measurements and signal pre-processing methods. Fig. 2.1 shows this process applied
Q

to three bandwidths of data as will be described below.



The first step performed on ali the data was pre-processing. The goal of this step was

to extract a manageable number of filtered opening responses which had relatively high

signal-to-noise ratios. For this study, one-hundred responses were extracted for each of

three frequency bands. Three bands were analyzed because the power spectrum of the

• responses was not uniformly distributed. Therefore, '_norder to study important parts of

the spectrum effectively, the openings were filtered into bands, and each band was

analyzed separately. In Fig. 2.1, the opening responses for each band are represented by

an arrow
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out of the appropriate pre-processing block. After pre-processing was completed, feature

extraction was performed. The goal of this step was to generate a vector of features for

each olJening response. These features were used to represent various characteristics of

these ",esponses. Each feature extraction box, shown in Fig. 2.1, computed one-hundred

• feature vectors from one-hundred opening responses. After feature extraction had been

performed for ali sheep, the last step was to make a decision as to the condition of the valve

which was implanted in the test sheep. This decision was based upon the comparison of

the one-hundred feature vectors which had been generated for this sheep with the feature

vectors which had been generated for the training sheep (sheep with known valves

implanted).

Each of the three main operations presented above and shown in Fig. 2.1, pre-

processing, feature extraction, and classification are described in more detail below.

2.1. Pre-Processing

The raw data files consisted of heartbeats, which in turn consisted of acoustic

signatures of the valve closing and opening. The goal of this step was to process these

files to create new files which contained a manageable number of filtered opening

responses with relatively high signal-to-noise ratios. The steps involved in this process are

shown in Fig. 2.2. Each of these steps is summarized in sections 2.1.1 to 2.1.6. For a

more detailed description refer to [3].

2.1.1. Event Detection

The purpose of this step was to detect the temporal location and the maximum

° magnitude of events which represented possible closings and openings of the valve. This

was accomplished in a series of steps. First, the raw heartbeats were bandpass filtered.
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This operation smoothed the data and suppressed noise so the beats were better conditioned

for the detection process. Then, from the tiltered raw data, a signal which consisted of the

I I

H ] 100 low frequency '

[ event bad event I l- opening responses

[ detection rejection ! (I kHz - 5kHz)

raw I event filter and I
heartbeats ] extraction resample 100 mid frequency

opening responses
for sheep ] I (3 khz- 7kHz)

I opening opening I

[ response response [ 100 high frequencyextraction normalization
[ [ opening responses

(7 kHz - 24 kHz)
[ pre-processing ]

Figure 2.2. Pre-processing block diagram

ratio 7 of the sliding short term average to the sliding long term average was computed.

The short term average was computed over 50 samples, which represented 1.042

milliseconds (sampling period = 0.02083 milliseconds), and the long term average was

computed over 500 samples, which represented 10.417 milliseconds• The resulting ratio 7

was used to detect the location of events in the raw data. In order to do this, a threshold

and a window size for 7 were specified. The threshold specified the minimum ratio which

was necessary for a sample point to be considered within an event, and the window size

specified the maximum distance by which two sample points whose corresponding ratios

exceeded the threshold could be separated and still be considered to be contained within the

same event. Based upon experience with the data and engineering judgment, we chose to

use a threshold of 3.0 and a window size of 2800 points. From these specifications, the

beginning and ending locations, or sample points, of each event were determined. Next,

the raw data files were used along with these locations to determine the maximum absolute

signal value within each event. These values were eventually used to label the events as o

closings or openings. In order to do this, a threshold was automatically determined which



maximized the toggling between closings and openings. Using this threshold, ali the

events were labeled. Next, a beat time check which relied on the regularity of the beats was

performed. The average time between similar events was calculated and a check was made

for each event to determine whether it was within a twenty percent deviation from that

• average. When an 9ut of range event was detected, it was marked as a "bad" event.

Lastly, sequences consisting of at least five "good" (not "bad") events were written to a

file. This file contained the beginning location of each event, the ending location c f each

event, the maximum absolute signal value within each event, and the type of each event

(closing or opening). This information was written in the order in which the events

occurred. The next step, bad event rejection, used this information to reject events which

do not meet our criteria for useful signals, as defined next.

2.1.2. Bad Event Rejection

This step performed two operations on the file described above. First, the event

ordering was checked to ensure a "open-close-open-close-open-etc" sequence. If more

than one type of event was found in sequence, ali events after the first were rejected. For

example, if the sequence ordering was "close-open-open", the second opening was

rejected. Next, the mean and standard deviation of the maximum absolute values for

openings were computed. Ali close-open sequences were rejected if their maximum

opening absolute value lay outside the interval defined by the mean + n(standard deviation).

If there were at least one-hundred beats (close-open sequence) detected in a file, n = 0.5,

otherwise, n = 1.0. After this step, a file was written which contained the beginning

location of each event, the ending location of each event, the maximum absolute signal

value within each event, and the type of each event (closing or opening).
i



2.1.3. Event Extraction

This step used the file described above to extract the closings and openings from the

raw data. It pasted these events into separate data files, one for closings and one for

openings. Each event was centered in a window of 4096 points. Since the sampling
.

period was 0.02083 milliseconds, this corresponded to a length of 85.33 milliseconds.

This size was selected to ensure that the whole event was captured. For the results given in

this report, only the openings were processed. Therefore, from this point on, only

openings will be discussed. The next step was to filter and resample the openings.

2.1.4. Filter and Resample

When the power spectral estimates of the beats were analyzed, it was clear that the

power of the spectrum was not distributed uniformly. The majority of the energy occurred

at high frequencies. In order to effectively analyze important sections of the spectrum

independently, the openings were filtered into three bands. The low band contained

frequencies from 1 kHz to 5 kHz, the middle band contained frequencies from 3 kHz to 7

kHz, and the high band contained frequencies from 7 kHz to 24 kHz. After filtering, the

low and middle band were down sampled to produce openings with fewer points. Hence,

fewer computations were necessary in the feature extraction. For the low bandwidth, the

data was down sampled by a factor of four, resulting in openings with 1024 points at a

sampling period of 0.08333 milliseconds. For the middle bandwidth, the data was down

sampled by a factor of two, resulting in openings with 2048 points at a sampling period of

0.04167 milliseconds. Lastly, for the high bandwidth resampling was not performed.

Therefore, the openings were still 4096 points at a sampling period of 0.02083

milliseconds.



2.1.5. Opening Response Extraction

Each opening often consisted of multiple responses, which were the result of the

. blood flow past the disk causing the disk to hit the outlet strut multiple times. Moreover,

the number of responses per opening was not consistent from beat to beat. This variable

was assumed to be a result of the sheep's biological state, such as the sheep's blood

pressure or pulse rate, and not the condition of the heart valve. Since each of these

responses was caused by the same occurrence (flow of blood), each opening could be

assumed to be a series of impulse responses of the disk hitting the strut. Therefore, for
L

classification purposes, only one response needed to be analyzed at a time. The goal of this

step was to inspect ali the openings for each sheep, and select one-hundred opening

responses of relatively high signal-to-noise ratios for each bandwidth. Because each

response consisted of only a fraction of the opening, fewer points were needed to represent

them. After this extraction, the low bandwidth responses consisted of 256 points, the

middle bandwidth responses consisted of 512 points, and the high bandwidth responses

consisted of 1024 points.

2.1.6. Opening Response Normalization

Before features were extracted, ali the responses were normalized to unit variance.

This step was necessary because the features which were generated are dependent upon the

energy contained in each response.

2.2. Feature Extraction

The goal of this step was to generate a vector of features for each normalized opening

, response. Feature vectors represent in compressed form various characteristics which can

be used to distinguish opening responses caused by SLS valves from opening responses

caused by intact valves. Vectors which were analyzed for this study consisted of



coefficients for parametric models of the responses, power spectral densities, and first-

order features which described the shape of the power spectral densities. After the feature

vectors were generated for ali sheep (testing and training), classification was performed.

2.3. Classification

The goal of this step was to make a decision as to the condition of the valve for the

sheep which was being tested. This decision was based upon the comparison of the one-

hundred feature vectors which had been generated for this sheep with the feature vectors

which had been generated for the training sheep (sheep with known valves implanted).

This classification was accomplished in two steps, as shown in Fig. 2.3.

First, each feature vector was classified as intact or SLS. A variety of classifiers

could have been implemented. Some commonly used classifiers are the nearest neighbor

classifier and neural networks. The nearest neighbor classifier was implemented because it

is relatively simple, and there is no need to adjust parameters as may be the case for other

classifiers including neural networks. This method computes the Euclidean distances

among the feature vector which is to be classified and the training feature vectors. The

feature vector is assumed to belong to the same class as the vector which produced the

smallest distance [4].

The probablistic neural network (PNN) is generally preferred because it is Bayes

optimal and generally outperforms the nearest neighbor algorithm which is not [6]. The

disadvantage of the PNN is that it requires choosing an optimal or acceptable value of a

tuning parameter [6]. This has two important implications. First, a costly set of iterations

must be performed with the data to choose (find) the optimal tuning paramater. Second,

since we have a limited data set which is not large enough to give statistically significant

results, we use the "hold one out method" of training and testing the classifier (see Section

3 of this report). This requires that we train the PNN M times for a given data set, where

10



M is the number of data samples, and each training requires iterations to choose the tuning

parameter. We decided that this procedure is too costly when the "hold one out" method is

required, so we avoided the cost by simply using the nearest neighbor algorithm. The

nearest neighbor algorithm is suboptimal, but its simplicity offsets this disadvantage and

. the algorithm gives us good, useful results.

Once ali one-hundred feature vectors had been classified for one of the bandwidths of

opening responses, the condition of the valve was inferred based upon the percentage of

feature vectors which had been classified as SLS. This specified percentage will be

referred to as the "minimum percent SLS threshold". If the percentage of feature vectors

classified as SLS is greater than or equal to this threshold, the valve is classified as SLS,

otherwise the valve is classified as intact.

The next section describes results of applying the steps discussed in sections 2.1 to

2.3 to real data.

._sequence I _-----_ I I compute /
vectorsto be through _.! _ classifier _ percent of

classified vectors I! 7 J ISLS vectors

intact training _
vectors

SLS training
vectors

es valve is
"minimum percent _ SLS

SLS threshold"

"!" no _ valve isintact

Figure 2.3. Classification block diagram

3. Results

• In order to analyze the effectiveness of this statistical pattern recognition approach in

, detecting SLS heart valves, a known data base had to be created. This data base, which

was provided by Shiley, was created by implanting twelve sheep with intact valves and

11



seven sheep with SLS valves. Each of these sheep will be referred to by a number or in a

few cases by letters preceeding numbers. These sheep along with their valve conditions are

given below.

Sheep with intact valves: 40, 74, 75, 95, 129, 209, 414, 4337, 4380, bfl, bfl2,
t520

Sheep wilh SLS valves: 68, 103, 105, 110, 411,412, 422

Because the data base consisted of only nineteen sheep, the "hold one out" technique

was used to test the effectiveness of this approach. This technique trains the classifier with

data from ali sheep except the sheep which was being tested. Therefore, when the testing

sheep had an intact valve, the classifier was trained with 1100 feature vectors from the

eleven other sheep with intact valves, and 700 feature vectors from the sheep with SLS

valves. Likewise, when the testing ,_heep had a SLS valve, the classifier was trained with

1200 feature vectors from the sheep with intact valves, and 600 feature vectors from the six

other sheep with SLS valves. Because three bandwidths of opening responses were tested,

57 classifiers (19 sheep • 3 bandwidths) were trained for each feature vector which was

analyzed. Due to this large number, the nearest neighbor classifier was implemented as

discussed in section 2.3. Other classifiers, such as neural networks, would require vast

amounts of time to "tune" and train as discussed in the last section.

Several different feature vectors were analyzed for this study. These vectors are

given below. For a more detailed description of these features refer to appendix A or [5].

• autoregressive (AR) coefficients

• AR power spectral densities

° autoregressive, moving-average (ARMA) coefficients

• ARMA power spectral densities
t

• reflection coefficients

i2



• first-order statistics describing the shape of the ARMA power spectral densities

• first-order statistics describing the shape of the AR power spectral densities

Previous results indicated that the feature vectors which provided the best results were the

AR power spectral estimates, the ARMA power spectral estimates, and the reflection

coefficients. Therefore, these were the feature vectors which were extracted for the results

presented below.

The AR model coefficients, which are used to construct the AR spectral density were

computed using the Levinson-Durbin algorithm [5]. For the low bandwidth, fifteenth

order models were used. For the middle bandwidth, twenty-fifth order models were used.

Lastly, for the high bandwidth fiftieth order models were used. The orders for ali these

models were selected based on previous results.

The ARMA model coefficients, which are used to construct the ARMA spectral

density, were computed using the recursive least-squares algorithm [5]. For the low

bandwidth, sixth order AR and fourth order MA models were used. For the middle

bandwidth, twelfth order AR and eighth order MA models were used. Lastly, for the high

bandwidth, eighteenth order AiR and twelfth order MA models were used. The orders for

ali these models were selected based on previous results.

The reflection coefficients were computed using Burg's algorithm [5]. For all

bandwidths, fiftieth order models were computed. Again, this order was selected based on

previous results.

One last point should be mentioned regarding the feature vectors. As a statistical rule

of thumb for achieving statistically significant detection results, the maximum number of

features per vector should be one-fifth of the minimum number of vectors (samples)

' available for a given class which are used to train the classifier. Since the minimum

number of samples per class was 600 (when an SLS sheep is being tested), the maximum

!3



number of features per vector should be 120 (600/5). Therefore, when the power spectral

densities were extracted as features, they were represented as 120 frequency bins equally

spaced between the bandwidth cut-off frequencies.

The next three sections present the results of applying the statistical pattern

recognition process using the nearest neighbor classifier to the feature vectors for the low,

middle, and high bandwidth responses.

3.1. Low Bandwidth (1 kHz to 5 kHz) Opening Responses

The results obtained with the low bandwidth opening responses are given in Table

3.1. This table indicates the percentage of feature vectors for each sheep which were

classified as SLS. These percentages are based upon the one-hundred opening responses

which were extracted per sheep. Instances where at least one-half of the feature vectors

were classified as SLS are indicated in bold.

For the sheep with intact valves, the percentage of feature vectors classified as SLS

are generally low. In fact, when the AR power spectral density was used as the feature

vector, not one sheep had at least one-half of its vectors incorrectly classified as SLS.

When the ARMA power spectral density was used as the feature vector, only one sheep

(bfl2) had at least one-half of its vectors incorrectly classified as SLS. Lastly, when the

reflection coefficients are used as the feature vector, only two sheep (75 and 4337) had at

least one-half of their vectors incorrectly classified as SLS.

For the sheep with SLS valves, the percentage of feature vectors classified as SLS

are generally higher than for the sheep with intact valves. When both power spectral

14



Feature Vector

" Condition AR power ARMA power Reflection
of spectral density spectral density coefficients

Sheep Valve (120 features) (120 features) (50 features)
- (%) (%) (%)

40 intact 16.00 15.00 22.00
iii

74 intact 14.00 20.00 29.00

75 intact 47.00 42.00 68.00
J

95 intact 8.00 22.00 20.00

129 intact 12.00 14.00 19.00
i,

209 intact 16.00 13.00 18.00

414 intact 5.00 14.00 15.00

4337 intact 33.00 25.00 68.00

4380 intact 6.00 5.00 38.00
i

bfl intact 0.00 1.00 0.00

bfl2 intact 32.00 51.00 23.00

t520 intact 10.00 7.00 17.00

68 SLS 96.00 71.00 89.00
i

103 SLS 79.00 72.00 86.00

105 SLS 16.00 49.00 36.00

110 SLS 92.00 83.00 92.00

411 SLS 14.00 11.00 30.00

412 SLS 98.00 87.00 98.00

• 422 SLS 24.00 38°00 60.00

' Table 3.1. Percentage of features vectors which were classified as SLS for
low band opening responses
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densities were used as feature vectors, four sheep (68, 103, 110, and 412) had at least one-

half of their vectors correctly classified as SLS. When the reflection coefficients were

used as the feature vectors, five sheep (68, 103, 110, 412, and 422) had at least one-half of

their vectors correctly classified as SLS.

In order to classify the valves, one more step must be taken. This step is to specify ¢

percentage which must be exceeded for a valve to be classified as SLS, as shown in Fig.

2.3. This threshold, which is referred to as the "minimum percent SLS threshold",

provides a "knob" by which the "probability of detection" and the "probability of false

alarm" can be varied. The "probability of detection" is defined _s the percentage of SLS

valves which were classified correctly as SLS, and the "probability of false alarm" is

defined as the percentage of intact valves which were incorrectly classified as SLS.

Therefore, if the "minimum percent SLS threshold" is very small, the "probability of

detection" will be high, but the "probability of false alarm" will also be high. Likewise, if

the "minimum percent SLS threshold" is very large, the "probability of false alarm" will be

low, but the "probability of detection" will also be low. Ideally, it is desirable to have a

high "probability of detection" and a small "probability of false alarm". The trade-offs

which exist by varying this threshold are shown in Fig's• 3.1 to 3.3. Fig. 3.1 illustrates

the probabilities which can be achieved by using the AR power spectral density as the

feature vector, Fig. 3.2 illustrates the probabilities which can be achieved by using the

ARMA power spectral density as the feature vector, and Fig. 3.3 illustrates the probabilities

which can be achieved by using the reflection coefficients as the feature vector. The top

graph in each of these figures displays the "probability of detection" as a function of the

"minimum percent SLS threshold", and the bottom graph displays the "probability of false

alarm" as a function of the "minimum percent SLS threshold".

Table 3.2 presents the best range of operating points from the graphs which result in

"probabilities of detection" of at least 71.43% and "probabilities of false alarm" of at most

16
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ARMA power spectral density for low band openings
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I
Minimum [ Probability ProbabilityFeature Percent SLS of ofVector
Threshold Detection False Alarm

i i ii

AR power 17.00- 24.00 71.43 25.00
spectral density _517_ (3112) •
ARMA power

spectral density 26.00 - 38.00 85.71 16.67(6,/7) (2/12)

ARMA power
spectral density 43.00 - 49.00 71.43 8.33(sn) (1/12)|llllll i

reflection
coefficients 30.00 100.00 25.00

,, /7/7) (3/12)

reflection
coefficients 39.00 - 60.00 71.43 16.67

(517) (2112)

Table 3.2. "Probabilities of detection" and "probabilities of false alarm" which
can be achieved from the low band opening responses

25.00%. From this table, it appears that the ARMA power spectral density and the

reflection coefficients .,eem to provide higher "probabilities of detection" and lower

"probabilities of false alarm" than does the AR power spectral density. The decision as to

which feature vector and which "minimum percent SLS threshold" give the best results

depends on the specifications whicb are desired. From the data which were used in this

study, it was possible to achieve a "probability ef detection" of 100% with a "probability

of false alarm" of 25% by using the reflection coefficients with a threshold of 30%. If a

lower false alarm rate is desired, this can be achieved by using the ARMA power spectral

density with a threshold from 26% to 38%. For this case, the "probability of detection" is

85.71% and the "probability of false alarm" is 16.67%. If it is desirable to have an even

lower false alarm rate, the ARMA power spectral density can be used with a threshold from

43% to 49%. For this case, the "probability of detection" is 71.43% and the "probability

of false alarm" is 8.33%.
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3.2. Middle Bandwidth (3 kHz to 7 kHz) Opening Responses

The results obtained with the middle bandwidth opening responses are given in Table

• 3.3. This table indicates the percentage of feature vectors for each sheep which were

classified as SLS. These percentages are based upon the one-hundred opening responses

which were extracted per sheep. Instances where at least one-half of the feature vectors

were classified as SLS are indicated in bold.

For the sheep with intact valves, the percentage of feature vectors classified as SLS

are again generally low. When the AR power spectral density was used as the feature

vector, only two sheep (75 and 414) had at least one-half of their vectors incorrectly

classified as SLS. When the ARMA power spectral density was used as the feature vector,

again only two sheep (414 and bfl2) had at least one-half of their vectors incorrectly

classified as SLS. Lastly, when the reflection coefficients are used as the feature vector,

three sheep (95, bfl, and t520) had at least one-half of their vectors incorrectly classified as

SLS.

ForthesheepwithSLS valves,thepercentageoffeaturevectorsclassifiedasSLS are

generallyhigherthanforthesheepwithintactvalves.When theAR powerspectraldensity

was usedasthefeaturevector,fivesheep(68,103,105,110,and422)hadatleastone-

halfoftheirvectorscorrectlyclassifiedasSLS. When theARMA powerspectraldensity

was usedasthefeaturevector,foursheep(103,105,110,and422)hadatleastone-halfof

: their vectors correctly classified as SLS. Lastly, when the reflection coefficients were used

as the feature vector, six sheep (ali except 68) had at least one-half of their vectors correctly

classified as SLS.

• Fig's. 3.4 to 3.6 illustrate the "probabilities of detection" and the "probabilities of

false alam l" which are achievable by varying the "minimum percent SLS threshold". Fig.
!

3.4 illustrates achievable probabilities using the AR power spectral density as the feature
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Feature Vector
i

e

Condition AR power ARMA power Reflection
of spectral density spectral density coefficients

Sheep Valve (120 features) (120 features) (50 features)
(%) (%) (%)

40 intact 21.00 18.00 18.00
i

74 intact 5.00 6.00 16.00

75 intact 52.00 34.00 33.00

95 intact 22.00 26.00 56.00
i i

129 intact 35.00 37.00 14.00

209 intact 5.00 33.00 24.00

414 intact 53.00 54.00 39.00

4337 intact 12.00 18.00 2.00

4380 intact 36.00 36.00 24.00

bfl intact 18.00 41.00 60.00

bfl2 intact 48.00 60.00 17.00

t520 intact 35.00 33.00 95.00

68 SLS 55.00 29.00 26.00

103 SLS 58.00 50.00 67.00

105 SLS 59.00 58.00 68.00

110 SLS 83.00 77.00 53.00

411 SLS 34.00 49.00 68.00

412 SLS 40.00 36.00 53.00
i ii

422 SLS 67.00 57.00 72.00

Table 3.3. Percentage of features vectors which were classified as SLS for
middle band opening responses
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vector, Fig. 3.5 illustrates achievable probabilities using the ARMA power spectral density

as the feature vector, and Fig. 3.6 illustrates achievable probabilities using the reflection

coefficients as the feature vector.

Table 3.4 present the best operating points from the graphs which result in

"probabilities of detection" of at least 71.43% and "probabilities of false alarm" of at most

25.00%. The decision as to which feature and which threshold provide the best results

again depends on the specifications which are desired. If a high "probability of detection"

is desired, then the reflection coefficients with a threshold from 40% to 53% could be used,

or the AR power spectral density with a threshold from 37% to 40% could be used. For

these case, the "probability of detection" is 85.71% and the "probability of false alarm" is

25.00%. If a lower false alarm rate is desired, the AR power spectral density could be

used with a threshold of 54% to 55%. For this case, the "probability of detection" is

71.43% and the "probability of false alarm" is 0.00%.

Minimum Probability ProbabilityFeature Percent SLS of of
Vector Threshold Detection False Alarm

AR power 37.00 - 40.00 85.71 25.00
spectral density (6n) (3/12

i

AR power 54.00 - 55.00 71.43 0.00 2:spectral density (sn) (o/1

ARMA power
spectral density 42.00 - 49.00 71.43 16.67(sn) (2/12',

reflection 40.00 - 53.00 85.71 25.00
coefficients (6n) (3112:

Table 3.4. "Probabilities of detection" and "probabilities of false alarm" which
can be achieved from the middle band opening responses
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3.3. High Bandwidth (7 kHz to 24 kHz) Opening Responses

The results obtained with the high bandwidth opening responses are given in Table

• 3.5. This table indicates the percentage of feature vectors for each sheep which were

classified as SLS. These percentages are based upon the one-hundred opening responses

which were extracted per sheep. Instances where at least one-half of the feature vectors

were classified as SLS are indicated in bold.

For the sheep with intact valves, the percentage of feature vectors classified as SLS
4"

are again generally low. When the AR power spectral density was used as the feature

vector, two sheep (75 and I520) had at least one-half of its vectors incorrectly classified as

SLS. When the ARMA power spectral density was used as the feature vector only one

sheep (75) had at least one-half of its vectors incorrectly classified as SLS. Lastly, when

the reflection coefficients are used as the feature vector, only two sheep (414 and 1520) had

at least one-half of their vectors incorrecdy classified as SLS.

For the sheep with SLS valves, the percentage of feature vectors classified as SLS are

again generally higher than for the sheep with intact valves. When the AR power spectral
t

density were used as the feature vector, five sheep (68, 103, 105,412, and 422) had at

least one-half of their vectors classified correctly as SLS. When the ARMA power spectral

density was used as the feature vector, the percent of vectors classified correctly was not as

high as those in Tables 3.1 and 3.3. For this case, only three sheep (68, 105, and 422)

had at least one-half of their vectors classified correctly as SLS. Lastly, when the reflection

coefficients were used, ali seven sheep had at least one-half of their vectors classified

correctly as SLS.

• Fig's. 3.7 to 3.9 illustrate the "probabilities of detection" and the "probabilities of

false alarm" which are achievable by varying the "minimum percent SLS threshold". Fig.

3.7 illustrates achievable probabilities using the AR power spectral density as the feature
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Feature Vector

Condition AR power ARMA power Reflection
of spectral density spectral density coefficients

Sheep Valve (120features) (120 features) (50 features)
(%) (%) (%) •

40 intact 22.00 7.00 5.00

74 intact 26.00 35.00 0.00

75 intact 50.00 59.00 36.00
i

95 intact 1.00 2.00 15.00

129 intact 14.00 8.00 37.00

209 intact 10.00 11.00 16.00

414 intact 36.00 32.00 75.00

4337 intact 42.00 35.00 34.00

4380 intact 11.00 9.00 33.00
i

bfl intact 29.00 46.00 31.00

bfl 2 intact 29.00 14.00 18.00

t520 intact 80.00 18.00 54.00

68 SLS 80.00 51.00 83.00

103 SLS 58.00 44.00 55.00

105 SLS 60.00 53.00 65.00

110 SLS 31.00 41.00 68.00

411 SLS 34.00 27.00 57.00
li

412 SLS 63.00 23.00 91.00

422 SLS 50.00 50.00 80.00

t

Table 3.5. Percentage of features vectors which were classified as SLS for
high band opening responses
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Minimum Probability Probability
Feature Percent SLS of of
Vector Threshold Detection False Alarm

AR power 43.00 - 50.00 71.43 (sn) _2/12_spectral estimate 16.67

ARMA power

spectral estimate 36.00 - 41.00 71.43 (sn) 16.67 _2n2/

reflection 55.00 100.00 8.33
coefficients (7n) (1/12)

Table 3.6. "Probabilities of detection" and "probabilities of false alarm" which
can be achieved from the high band opening responses

vector, Fig. 3.8 illustrates achievable probabilities using the ARMA power spectral density

as the feature vector, and Fig. 3.9 illustrates achievable probabilities using the reflection

coefficients as the feature vector.

Table 3.6 present the best operating points from the graphs which result in

"probabilities of detection" of at least 71.43% and "probabilities of false alarm" of at most

25%. From this table, it is apparent that the reflection coefficients with a threshold of 55%

provided the best results. For this case, the "probability of detection" was 100.00% and

the "probability of false alarm" was 8.33%.

4. Conclusions

Several conclusions can be drawn based on the results of this work. These are given

below.

• "Single-leg separated" heart valves can be detected with "probabilities of

detection" of at least 71.43% and corresponding "probabilities of false alarm" of

at most 25.00% using any of the three bandwidths (1 kHz to 5 kHz, 3 kHz to 7

kHz, and 7 kHz to 24 kHz) of opening responses.
i
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The probabilities which were achieved for ali three bandwidths are shown in Tables

3.2, 3.4, and 3.6. When these tables are compared with each other, it is apparent that ali

bandwidths result in similar "probabilities of detection" and "probabilities of false alarm".
a

These results were surprising because the signal-to-noise ratio of the responses in the high

, band were much greater than in the low and middle bands. Therefore, it was expected that

the high band would provide better results. However, this was not the case. This may be

due to the fact that the features which were extracted were ali based on parametric models

of the responses, and therefore the effect of noise may have been minimized. In any event,

these results indicate that ali bandwidths contain information which is useful in the

detection process.

• "Single-leg separated" heart valves can be detected with "probabilities of

detection" of at least 71.43% and corresponding "probabilities of false alarm" of

at most 25.00% using features which represent the AR power spectral estimate,

the ARMA power spectral estimate, and the reflection coefficients.

The probabilities which were achieved for ali three feature vectors are shown in

Tables 3.2, 3.4, and 3.6. When the results using these feature vectors are compared, it is

apparent that they ali yield similar results. The fact that the AR power spectral density and

the reflection coefficients provide similar results was not surprising since both feature

vectors as based upon Ml-pole models of the responses. The conversion from the nth order

AR coefficients and the nth order reflection coefficients can be easily accomplished. On the

other hand, the ARMA spectral density is based upon a pole-zero model of the response.

Therefore, it was expected that it may produce slightly different results than the other two

feature vectors. However, since the AR power spectral densities and the ARMA power

spectral densities appeared similar and produce similar results, it appears as if the effects of

the zeros in the model are insignificant. In any event, these results indicate that ali the

' feature vectors contain information which is useful in the detection process.
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• If o_.e bandwidth and one fe'-.ture vector had to be chosen based on the results of

this work, the high bandwidth opening response with the reflection coefficients

should used with the nearest neighbor classifier.

For this case, a "probability of detection" of 100.00% and a "probability of false

alarm" of 8.33% was achieved with a "minimum percent threshold" of 55.00%.
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A. Feature Vector Description

This appendixdescribes the features which were analyzed for the study presented in

' this report. Theses featuresaregiven below.

• autoregressive(AR) coefficients

• autoregressive(AR) powerspectraldensities

• auto-regressive,moving-average(ARMA)coefficients

• auto-regressive,moving-average(ARMA) powerspectraldensities

• reflectioncoefficients

• first-orderstatisticsdescribingthe shapeof the ARMA power spectraldensities

• first-orderstatisticsdescribingthe shapeof the AR powerspectral densities

Each one of these features represented one feature vector which was analyzed. These

featuresarebriefly describedin sections A.1 to A.6. For a more thoroughdiscussion refer

to [5].

A.I. Autoregressive (AR) Coefficients

The autoregressivemodel is used to predict the responses of a signal based solely on

past responses. Moreover, these estimates arerepresented as linear summations of the

weighted past responses, where the weights are referred to as the autoregressive

coefficients. This is representedmathematically as

Na

_(t) = _ a_y(t- i) (A.1)
i-1

. In this equation, _(t) is the estimate of the signal at time "t", ai is the ith autoregressive

coefficient, and y(t - i) is the signal which is being modeled at time "t - i". The orderof the
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model is the number of past responses which arc used. In Eqn. (A.1), the order is Na.

The ability of this model to represent the signal is determined by the prediction error. This

error,which is the difference between the estimated and actual signal, is given by

Na

Z 'e(t) = y(t) - _(t) = a, y(t- i) , where a o = 1. (A.2)i=0

An algorithm exists which determines the autoregressive coefficients in such a way so

as to minimize the variance of the prediction error, which is defined as

R_ = E{e2(t)}. (A.3)

This algorithm, which is referred to a the Levinson-Durbin algorithm, also computes this

minimized error variance. Because the Lcvinson-Durbin algorithm computes these values

based upon the optimization (minimization) of Eqn. (A.3), it is known as an optimal

estimator. Optimal estimators which perform correctly have the important property of

producing prediction error sequences which are zero-mean and white. These properties of

the error will become important when the power spectral _lensity is derived from the

autorcgressive model, as discussed in the next section.

A.2. Autoregressive (AR) Power Spectral Density

The autoregressive power spectral density is derived from the autoregrcssive model

of a signal. However, before this is done, it will be helpful to first define the power

spectral density. The power spectral density of a signal y(t) represented in the z-domain is

given by
s

Syy(Z) = E{Y(z)Y*(z)}, (A.4) !
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where Y*(z) is the complex conjugate of Y(z). The first step in the derivation of this

quantity is to define Y(z) in terms of the autoregressive model. This is accomplished by

, first taking the z-transform of Eqn. (A.2). The expanded result of this is

, = zNa Y(z). (A.5)E(z) aoY(z)+ aIz"IY(z)+ a2z"2Y(Z)+ ...+ aNa

SolvingforY(z)andsubstitutingao= Iyields

E(z) _
Y(z)--I +a Iz"l+ a2z "2+... +aNaz "Ni - A(z). (A.6)

Substituting Eqn. (A.6) into Eqn. (A.4) results in

1 E{E(z)E*(z)} (A.7)
Syy(Z)= E{Y(z)Y*(z)} - E{A(z)A*(z)}

This can be simplified to

Syx(Z)=[ 1 [2 See(Z)" (A.8)

Sincetheerrorsequenceiszero-meanandwhim,

See(Z)= Ree, (A.9)

Upon substitutionofEqn.(A.9)intoEqn.(A.8),thepowerspectraldensityofy(t)isgiven

as

s.(-) ={ ' 12 (A.10)

This result can be expressed in the frequency domain by evaluating z on the unit circle.

This is accomplished by substituting z = eia into Eqn. (A.10). Since the errorvariance and

• theautoregressivecoefficientsareknown fromtheLevinson-Durbinalgorithm,thepower

spectraldensityofy(t)canbecomputedusingEqn.(A.10).
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One last point should bc made regarding the autorcgressive model. From Eqn. (A.6),

it is evident that the signal y(t) can be modeled as the output of a system driven by white

noise. This is represented in the z-domain below. ,

J .I Y(z)

E(z) -[ A(z)

Figure A. 1. Autoregressive model of a signal using z-wansforms

Becausethissystemonlyconsistsofapolynomialinthedenominator,itissolelydefined

by thelocationofitspoles.Therefore,theautorcgressivemodel of a signalisoften

referredtoasanall-polemodel.

A.3. Autoregressive, Moving-Average (ARMA) Coefficients

The autoregressive, moving-average model of a signal is used to predict the response

of a signal based on past responses and past prediction errors. These estimates are

represented as a linear summation of the past responses and the past prediction errors. The

weights on the past responses are referred to as the autoregressive coefficients, and the

weights on the past prediction errors are referred to as the moving-average coefficients.

This is represented mathematically as

N a Ne

_(t)=Z a,y(t-i) + Z c je(t-j) (A.11)
i=1 j=_

In this equation _(t) is the estimate of the signal at time "t", ai is the i th autoregressive

coefficient, y(t - i) if the signal which is being modeled at time "t - i", cj is the jth moving-

average coefficient, and e(t - j) is the estimation error at time "t - j". The autoregressive
,#

order is the number of past responses which are used, and the moving-average order is the
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number of past prediction errors which are used. In Eqn. (A.11), the autoregressive order

is Na, and the moving-average order is Nc. The error given in Eqn. (A.11) is defined as

e(t) = y(t) - _(t). (A.12)

1

Substituting Eqn. (A.11) into Eqn. (A.12) results in an equation consisting only of the

signal which is being modeled, the prediction errors, and the coefficients. This is given

below

Na Nc

e(t) fy(t)-_(t)= _ a,y(t-i) + _ c se(t-j) ,wherea0 =1. (A.13)
i=o j=l

The ability of this model to represent the signal is determined by the prediction error. One

technique which determines the autoregressive and the moving-average coefficients in such

as way so as to minimize this error variance is the recursive least-squares method [5]. This

algorithm also computes the resulting error variance. Because these quantities are

computed based upon the optimization (minimization) of Eqn. (A.3), this technique is an

optimal estimator. Therefore, as discussed in section A. 1, the prediction error sequence is

zero-mean and white. These properties of the error will become important when the power

spectral density is derived from the autoregressive, moving-average model, as discussed in

the next section.

A.4. Autoregressive, Moving.Average (ARMA) Power Spectral Density

The autoregressive, moving-average power spectral density is derived from the

autoregressive, moving-average model of a signal. The power spectral density of a signal

y(t) is given by Eqn. (A.4). As done in section A.2, the Vn'ststep is to define Y(z) in terms

' of the autoregressive model, moving-average model. This is accomplished by first taking

the z-transform ofEqn. (A.13). This results in

-
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E(z) = aoY(z) + al zl Y(z) + a2 z"2Y(Z) + ... + aNaz'N_Y(z) -

clE(z) + c2 zl E(z) + c3z'2 E(Z) + ... +CNczNc E(z) • (A.14)

4

Solving for Y(z) and substituting ao= 1 yields
1

. Z"Nc1 +c lz "1 +c2z 2+ ..+cNo C(z)

Y(z)= 1 + a I z"1 + a2 z "2 + ... + aNaz'Na = A(z----_E(z). (A.15)

SubstitutingEqn.(A.15)intoEqn.(A.4)resultsin

E{C(z)C*(z)}

Syy(z)= E{Y(z)Y*(z)}-'-E{A(z)A*(z)}E{E(z)E*(z)}. (A.16)

Thiscan be simplifiedto

=lc(z)[2Se_(z) " (A.17)

Since the error sequence is zero-mean and white, it power spectral density is given by Eqn.

(A.9). Upon substitution of Eqn. (A.9) into Eqn. (A.17), the power spectral density of

y(t) is given as

Syy(Z)= [C(z)2A---'_[ Ree. (A.18)

This result can be expressed in the frequency domain by evaluating z on the unit circle.

This is accomplished by substituting z = ein into Eqn. (A.18). Since the error variance, the

autoregressive coefficients, and the moving-average coefficients are known from the

recursive least-squares algorithm, the power spectral density of y(t) can be computed using

Eqn. (A.18).

One last point should be made regarding the autoregressive, moving-average model. o

From Eqn. (A.15), it is evident that the signal y(t) can be modeled as the output of a system

driven by white noise. This is represented in the z-domain below.
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B(z)

,,mnmmam

E(z) _ A(z) -"-- Y(z)
,,

d'

Figure A.2. Autoregressivc, moving-average model of a signal using z-u'ansforms
r

Because this system consists of polynomials in the denominator and the numerator, it is

defined by poles and zeros. Therefore, the autoregressive, moving-average model of a

signal is often referred to as a pole-zero model.

A.$. Reflection Coefficients

The reflection coefficients are used in conjunction with a lattice filter as a means of

modeling a signal. The feed-forward, all-zero lattice structure is shown below.

..ef . .ef( t)
uttJ ..... _ ' * > k_-_

.--.- I •

eb (t,0)L--" +_'e b(t,1)"--"

Figure A.3. F_d-forward lattice (all-zero) filter

The lattice model derives its physical origins from the fact that it mathematically represents

a model of waves propagating through a layered medium. For instance, lattice models are

employed to characterize seismic waves propagating through a tube in speech synthesis, or

an elecu'omagnedc wave propagating in a transmission line [5].

, The lattice model is comprised of a number of stages. There are two inputs into each

stage, which are referred to as the forward and backward prediction errors. The forward
%

prediction error into stage 'T' is represented by ef(t,i- I), and the backward prediction error

into stage "i" is represented by eb(t,i-I). The outputs of stage 'T' are also forward and
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backward prediction errors which are represented by ef(t,i) and eb(t,i). The relationship

between the input and output prediction errors for this stage are given by

,b

el(t, i) = el(t, i-l) - kieb(t-1, i-l) (A.19)

eb(t, i) = eb(t-1, i-l) - kieb(t, i-l),

where k i is the reflection coefficient for the stage. The order of the lattice model is

represented by the number of stages. For the model in Fig. A.3, the order is N.

An algorithm exists which determines the reflection coefficients. This algorithm

which is known as Burg's algorithm, assumes the signal which is to be modeled is input

into the structure shown in Fig. A.3. The reflection coefficients are then computed so as to

minimize the sum of the forward and backward errorvariance at each stage. This variance

is given by

Error variance = E{ef2(t) + %2(0} . (A.20)

Therefore, once the coefficients are determined, they can be used to characterize the signal.

A.6. First-Order Statistics Which Describe the Shape of the Power

Spectral Densities

First-order statistics am often used to describe the shape of probability distributions.

Therefore, it was thought that these statistics could be useful in characterizing the shape of

a power spectrum. However, before these statistics could be computed, the power spectral

density had to be normalized in such a way so that the sum of the densities for all spectral

bins was one. This is shown by

N

X Syy(fi ) 1 (A.21)
i=l
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where N is the number of frequency bins. This result reflects the relative distribution of

energy in the power spectral density. Once this normalization was accomplished, the first-

order features could be computed. These features are given below.t.

N

mean = li = ___ fiS_(f i) (A.22)
r

i=l

N 0_5

standard deviation = ti = [ _ (fi- It) 2S yy (li) ] (A.23)
i=1

N
1

skewness = a----5 _ (fi-li)3Syy(fi) (A.24)
i=l

N

kurtosis= [--_ _ (fi-li)4Syy(fi)]-3 (A.25)
i=l

N 2

energy = _ [Syy(fi)] (A.26)
i=1

N

entropy =- _ Syy(fi)log2 Is yy (fi)] (A.27)
i--1
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