
,,. ° A..oo,.,,o.,or,.,orm.,,o...d,m.0o....0ome.,. ...:;_'__<; @.

0___! HnNUFnCTUREO TO nIIH STnNDnROS ,o g_ _

BY nPPLIED IHn@E, INC. _ _

UCRL-JC-ll6015
PREPRINT

i

Realizing ParallelReduction
Op_ations in Sisal 1.2

Scott M. Denton,
JohnT. Fco,

and
PatrickJ. Miller

Thispaperwas preparedfor submittal
to the WorkingConference on Parallel

Architecturesand CompilationTechniques
(PACT'94)

August24-26, 1994, MontrealCanada

February 1994

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

MASTE

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Recy_ed
Hecyclable

DISCLAIMER

This docummt was prepm-ed m m account of work sponsored by m agency methe
United States Government. Neither the United States Government nor the University
of California nor any of their empioyees, makes any warTmty, express or implied, or

assumes any legal liability or reslmmibility for the accuracy, completeness, or usefulness
ofany infomation, spperatm, preduct, or process disclesed, or represents that its use
would not infringe priv ately owned rights. Reference herein to any specific commercial
products, process, or service by trade mane, trademark, manufacturer, or otherwise,
does not necessarily constitut_ or imply its endorsement, reconunendafien, or favoring
by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily gate or reflect those of the
United States Government or the University of California, and shall net he used for
advertising er product endorsement purposes.

Realizing Parallel Reduction Operations in Sisal 1.2

ScottM. Denton,John T. FeoandPatrickJ.Miller_

" Computer Research Group
Lawrence Livermore National Laboratory

Livermore, CA 94550
,,g

Abstract: A parallel job consists of sets of concurrent and sequential tasks. Often the tasks compute

sets of values that are reduced to a single value or gathered to build an aggregate structure. Since re-

ductions may introduce dependencies, most languages separate computation and reduction. For ex-

ample, Fortran 90 and HPF provide a rich set of predefined reduction functions, but only for extant

arrays. Sisal 1.2 is unique in that reduction is a natural consequence of loop expressions. Unfortu-

nately, the language supports only seven reduction operations. In this paper, we present compilation

techniques that recognize pairs of for expressions in Sisal 1.2 as computation.reduction expressions.

Our techniques work without any language or intermediate form extensions; however, we recognize

only certain forms. We describe how we implement pairs of computation-reduction expressions as

single parallel loops, and we present performance numbers that demonstrate the utility of our tech-

niques.

1.0 Introduction

Reductionoperationsarean importantand essentialcomponentofparallelprogramming.Often

thetasksofa paralleljobcomputesetsofvaluesthatarereducedtoa singlevalueor gatheredto

buildan aggregatestructure.For example,a setoftasksmay compute the temperatureateach

pointinthestatespace,and thenaveragethetemperatures.Alternatively,thetemperaturescould

be gatheredintoan array,orgraphed.A recurringthemeinparticlecodesisthecalculationofforces

betweenparticles.Sincetheforcesaresymmetric,we want tocalculateeachforceonlyonceand

thenaccumulatetheforceson theaffectedparticles.Becausereductionoperationsoccurfrequently

inapplicationprograms,theyaregoodtargetsforoptimization.The efficientexpressionand imple-

mentationofreductionoperationscanreducethecostofparallelprogramming.

Reductionoperatorsarefunctionsofsetsofvalues(arrays,lists,etc.).The memory usedtostore

theresultissharedby thetaskscomputingtheindividualvalues.Sincereductionsmay introduce

#

MA.S'I'EI
L;iSTRIBUTION OF THIS DocuMENT IS UNLIMITED

I

dependencies, most languages separate the computation and reduction tasks. For example, Fortran

90 [1] and HPF [2] provide a rich set ofpredefined reduction functions, but only for extant arrays.

C find the minimum value in z array

z_min -- MINVAL (z_array) °

C return the first location of the minimum value in z_array •

z_min_loc = MINLOC (z_array)

Despite the lack of explicit memory, functional languages also support reduction operations.

Haskell [3] provides reduction and accumulation operations on extant lists or list expressions.

-- compute the sum of the integers 1 through i0

sum[l..I0]

-- return a table of the number of occurrences of each value

-- within bounds in list z

accumArray (+) 0 bounds [i := 1 I i <- z, (inRange bounds i)]

Sisal 1.2 [4] is unique in that reduction is a natural consequence of loop expressions. The reduction

operation appears as a keyword in the returns clause of the for or for initial expression.

% find the minimum value in z_array

for z in z_array

returns value of least z

end for

% compute the sum of the integers 1 through 10

for i in 1, 10

returns val_e of sum i

end for

The Sisal compiler can overlap computation and reduction, and implement both tasks to take best

advantage of the underlying architecture.

A short coming of all languages is that they support only a general set of predefined reduction op-

erations. Many applications, however, require very specific reduction operations. The HPF Journal

of Development [2] has suggested additional language features be added for user-defned reduction
°

functions, and in the final section of this paper we discuss syntax for user-defined reductions in Sisal

90. Without speciallanguage features,a usermust use extantloopforms toexpressthe computation

and reductionoperations,and relYon the compilertogenerateefficientcode. For example, the For-

tran D compiler[6]seekstorecognizereductionsforoptimizationintraditionalimperativecode.

In thispaper we presentcompilertechniquestoidentifypairsofcomputation-reductionexpres-

sionsinSisal1.2.We describehow we manipulate the code'sintermediateform to constructa single

parallelloopsimilartothe loopsconstructedforthe seven intrinsicreductionoperations.Our tech-

, niques assume no language or intermediateform extensions;however, we recognizeonly certain

forms. Sectiontwo presentsthe form ofcomputation-reductionexpressionswe recognize,and the

• constraintsthatthe expressionsmust satisfy.Sectionthreeillustratesthe rewiringofthe interme-

diate form, and discussesimplementation issues. Sectionfour presents performance numbers
i

demonstrating the utilityofour techniques.In sectionfive,we discussthe syntax foruser-defined

reductionsin Sisal90,the analysisrequiredtoinsuredeterminancy,and the possibleimplementa-

tionsofdifferentclassesofreductionoperations.

2.0 Computation-reduction expressions

The Sisal 1.2 language definition supports seven reduction operations: sum, product, least,

greatest, array, stream, and catenate. The reductions may appear in the returns clause of for or for

initial expressions. While useful, the reductions are inadequate. For example, finding the first loca-

tion of the minimum value of an array cannot be expressed efficiently in Sisal. A programmer must

either write two for expressions,

min value := for x in A returns

value of least x end for;

min index := for x in A at i returns

value of least i when x = rain value end for;

or one forinitialexpression

m£n index :ffifor £nitial

i := 1;

rain_value, min_in,_ex := A[1], 1

while i < array size,(A) repeat

i :ffiold i + 1;

rain_value,

min index := if A[i] < old min value then A[i], i

else old min value, old min index

end if
m

returns value of min index

end for

J

The first solution doubles the computation's overhead, and the second solution eliminates all paral-

lelism.

The situation is more dire if we want to generate a set of values, and then count or accumulate
#

the values of different types. For example, consider a set ofn particles and m bonds. Each bond rep-

resents a force between two particles. We can calculate the forces in parallel, but must use a for ini-

tial expression to calculate the totalforce on each particle

Total_energy,

Force update := _or bond in 1, m

ii, jj := end_points (bond);

Bond_energy := Energy (bond) ;

Force_record :ffiforce(ii, jj, Positions)

returns value of sum Bond_energy

array of Force_record

end for;

Force out := for initial

i :ffi0;

Forces := array fill(l, n, 0.0)

while i < array_size (Force_update) repeat

i := old i + 1;

ii := Force_update[i].ii;

jj := Force_update[i].jj;

f := Force_update[i] .force;

Forces := old Forces[ii: old Forces[ii] + f;

jj: old Forces[jj] - f]

returns value of Forces

end for

On highly parallel computer systems, the presence of the for initial expression curtails the code's ef-

ficiency-an effect of Amdahrs Law. Notice that the size of the sequential code grows linearly with

problem size. On medium or small systems, there may be insufficient memory to store the interme-

diate array of force records. The extra storage may increase the number of page faults and secondary

memory accesses, diminishing performance.

Programmers writing in an imperative language do not face this problem. They can write a sin-

gle parallel loop that includes a critical section to control access to the force array,

do ibond = i, m

call end_points(bond, ibond, ii, jj)

f = force(ii, jj, ...)

lock (Force_out)

' Force out(ii) = Force out (ii) + f

Force_out(j j) = Force_array(jj) - f

_ unlock (Force_out)

end do

Since the force calculation is typically much longer than the critical section, the concurrent tasks will

contend for the lock infrequently. The code is parallel, efficient, safe, and minimizes memory use.

We have realized generated code similar to the imperative code, but without explicit locks, by ex-

tending the Sisal compiler to recognize pairs of computation-reduction expressions. The optimiza-

tion is applied to pairs of for and for initial expressions that satisfy the following criteria:

1. the for initial expression does not depend on any descendant of the for expression,

2. the for initial expression depends on the for expression for only an array of values,

3. the for initial expression consumes each value of the array,

4. the initialization clause of the for initial expression is independent of the array of

values, and

5. the for initial expression has no loop carried dependencies other than an index value

and the shared accumulator.

Shared accumulator refers to the scalar value or aggregate structure returned by the for initial ex-

pression. The for and for initial expression presented earlier satisfy the five criteria. Our compiler

merges the two expressions into a single parallel loop as explained in the next section. Currently, we

do not prove that the reduction function is commutative; consequently, the user may introduce non-

determinism. Some Sisal aficionados argue that the introduction of non-determinism in such a

tightly controlled manner is good because it expands the domain of Sisal programming; others dis-

agree. In the final section, we discuss our ideas regarding analysis and implementation techniques

to guarantee determinancy. Our Sisal 90 compiler will provide this analysis.

3.0 Rewiring the graphs
J

Consider the expressions for Force_update and Force_out given in the previous section. Fig-

ure I is a logical view of the IF1 graphs [5] of the two expressions. The top node is a parallel for

computation. It has three subgraphs: generator, body, and returns. The generator defines a set of

index values. An instance of the body is executed for each value, and each body computes two values,

Bond_energy and Force_record. These values are passed to the returns subgraph that sums the

bond energies and gathers the force records into an array. The bottom node is a sequential for com-

putation. It has four subgraphs: initial, test, body, and returns. The initial subgraph initializes the

index value i and the shared accumulator Forces. The body is executed once for each force record.

The body updates two elements of Forces and passes the new array to returns subgraph. The re-

turns subgraph selects the final value of Forces and passes it out from the compound node. We re-

fer to this implementation as unoptimized.

Since the two expressions met the five criteria listed in the previous section, our compiler trans-

forms the graph shown in Figure I into the graph shown in Figure 2. The first node initializes the

shared accumulator Forces and passes it to the second node. The second node is a parallel for com-

putation. Its generator is identical to the generator of the original for compound node. Its body and

returns subgraphs are compositions of the body and returns subgraphs, respectively, of the original

compound nodes. Since Forces is a shared resource, we place a lock about any read and write ac-

cesses to insure mutual exclusion. Notice that we have eliminated the test subgraph in the original

graph, and that we no longer build the array of force records. We refer to this implementation as op-

timized.

Therearea varietyofways tobuildthenew graphand controlaccesstothesharedaccumulator.

InsteadoflockingallofForces, we couldlockindividualelementsor sectionsofthearray.Main-

taininga lockperelementwouldbe expensiveunlessthememory had presencebits.SincetheSisal

runtimesystemslicesforexpressionsintosetsofiterations,we can eliminatethelockfrom thebody

by havingeach setofiterstionsinitializeand maintaina localaccumulator.As the setsfinish,we

"merge"thelocalaccumulatorstoderivethefinalresult.Such an implementationreducesthenum-

berofloclroperationsand contentionforthelock,butusesmore memory. Moreover,ifthemerge op-

eratorisdifferentthanthereductionoperation,asintheexampleused inthispaper,thecompiler

wouldhave tosynthesizeitautomatically.

m Positions

for bond in 1, m

bond Positions

, _ i

ii, jj :- end points (bond);

Bond_energy :- Energy(bond) ;

Force_record :- force(ii, Jj, Positions)

Bond_energy Force_record

I "_"* o_ ,_ Bond_energyarray of Force_record I

i ,11 |111

£o_ initial

i := 1;

Forces :-array fi11(1, n, 0.0)
, i

_ i _ F°rce--update _ F°rces . i

I while i < array_size(Force_update) repea

i :- old i + i ;

ii :- Force_update[i] .ii;

j j :- Force_update [i] .Jj;

f :- Force_update [i] .force;
Forces :- old Forces[ii: old Forces[ii] + f;

jj: old Forces[Jj] - f] --
,,, m,

I Forces

, T

I =.t.=...I..,o_Forces I
I

F(rce_out

FigureI-A pair01_m_ati0m_u_i0n expressi0ns
III IIIII II mll

,| ,,,,,,,, ,,

I F°rces := array-fill (1' n' 0"0)il,lL i,,, ,,ii

Imr _
%

I for bond in i, m

bond _ Positions , _ Forces

ii, jj := end_points(bond);

Bon_energy := Ener_(bond);

Force_record := force(ii, jj, Positions)

I _ii := Force_record. ii;_jj := Force_record.jj;

I _f := Force_record.force;

I L_K(Forces)
Forces := Forces[_ii: Forces[_ii] + _f;

_jj: Forces[_jj]- _f;]

UNLOCK(Forces)

Bond_energy Forces

I returns

value of sum Bond_energy value of Forces
i ,,i ii i

"II'Total_energy Force_out

Figure2 - A parallelcomputation-reductiongraph
I I Ill I II I I I I

4.0 Performance

We ran a series of experiments to evaluate the performance of our optimization. We used a com-

putation and reduction expression from molecular dynamics similar to the expressions used in the

previous section. Table 1 gives the execution times and space requirements for different problem

sizes. Graph 1 shows the graph of the execution times. Sequential and mixed are the one and four

processor execution times, respectively, of the unoptimized implementation (Figure 1). Parallel is

the four processor execution time of the optimized implementation (Figure 2). As expected, the

80.00 - - /7
/¢= 70.00

60.00 ' "/ -

• _" 50.00 .7= !3 40.00 -'- mixed-4

' _ 30.00 _ .__o__. parallel.4

.10.00 _

0.00

100000 200000 300000 400000 500000

problemsize (numberof bonds)

Graph 1 - Executiontimesof computation-reductionexpressions _
iiiii III I ii iiiiii

2). As expected, the optimized code uses less space than the unoptimized code. It also runs faster;

however, we did not always see appreciable performance gains.

There are many factors that influence the execution time of the optimized code versus the execu-

tion time of the unoptimized code: the time to set and release locks, the time to write and read a

record, lock contention, size of the computation expression, size of the reduction expression, number

of processors, etc. If the size of the computation expression is at least p (number of processors) times

greater than the size of the reduction expression, then there is little lock contention. Essentially, the

concurrent tasks contend for the lock the first time, and then become staggered arriving at the criti-

cal section at different times. In the molecular dynamics code, all computation expressions are much

larger than the reduction expressions. However, small reduction expressions minimize the effect of

paralleliz_ng the reduction operation. On large systems, Amdahl's Law may magnify the effect, but

then the large number of processors increases lock contention. Overall, the optimized code may run

five to twenty percent faster than the unoptimized code, but the real savings is in memory costs. The

largest force computation in the molecular dynamics code for a simulation of 20,000 atoms, if unop-

timized, generates approximately a 64MB array! That's a lot of memory.

i
i

11.6 MB 23.2 MB 34.8 MB 46.4 MB 58.0 MB
Sequential

Reduction 9.37 sec 18.97 sec 28.25 sec 38.18 sec 49.76 sec

@

8.4 MB 16.8 MB 25.2 MB 33.6 MB 42.0 MB
Parallel

Reduction 7.73 sec 15.60 sec 23.83 sec 31.47 sec 39.02 sec

Problem
100000 200000 300000 400000 500000

Size

Table I - Time andmemoryusageof computation-reductiongraphs
I I II I I

5.0 Future work

We plan to include specific syntax in Sisal 90 to support user defined reduction. A possible form

for the computation expression is:

for bond in i, m

ii, 9J :ffiend_points(bond);

Bond_energy := Energy (bond) ;

F :-- Force(ii, jj, Positions)

returns sum of Bond_energy

Force histo(n) of ii, jj, F

end for

The reduction function might be written as:

reduction Force_reduction(n, ii, jj : integer; F: real

returns array [real])

for initial

Forces := array_fill(l, n, 0.0)

repeat

new Forces := Forces[ii: Forces[ii] + F;

jj: Forces[jj] -F]

returns new Forces

end for

end reduction % Force reduction

The names enclosedinparenthesesp6or totheke_ord of atthereductioncallsitearevaluesre-

quiredto initialize the reduction; i.e., consumed in the initialization clause of the reduction function.

The names listed to the right of the keyword of are the set values computed by each instance of the

body of the computation expression and reduced by the reduction. The reduction function is a for ini-

tial expression. In Sisal 90, we use the keyword new in place of the keyword old. The for initial ex-

pression has an implied test: the body executes once for each set of reduction values computed by the

computation expression.

To insure determinate results, we are developing analysis to classify reductions according to

their commutativity. Deciding the commutativity of an arbitrary function is difficult, and few func-

tion are commutative in general. However, most reductions are either comparative or accumulative.

These types of functions are easier to analyze and a greater number are commutative. Preliminary

studies seem to indicate that reductions divide into classes with variable degrees of commutativity.

For each class, there exists a set of implementations of the member functions that insure determi-

nate results. For example, we can insure that a non-commutative reduction return determinate re-

sults by enforcing sequential exeuction. We hope to report shortly on our analysis, implementation

procedures, and performance of those implementations.

Acknowledgments

This work was supported by Lawrence Livermore National Laboratory under DOE contract W-

7405--Eng-48.

References

1. J.C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener. Fortran 90 Hand-
book: Complete ANSI / ISO Reference, chapter 13. Intertext]McGraw-Hill, 1992.

2. High Performance Fortran Forum. High Performance Fortran Language Specification, Version
1.0. Rice University, Houston, TX, May 1993.

3. P. Hudak and J. H. Fasel. A Gentle Introduction to Haskell. ACM SIGPLAN Notices, 27(5):TI-
T53, May 1992.

4. J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham, B. Noyce, and R.
Thomas. SISAL: Streams and Iteration in a Single Assignment Language: Reference Manual
Version 1.2. Manual M-146, Rev. 1, Lawrence Livermore National Laboratory, Livermore, CA,
March 1985.

° 5. S. Skedzielewski and J. Glauert. IF1: An Intermediate Form for Applicative Languages.
Manual M-170, Lawrence Livermore National Laboratory, Livermore, CA, July 1985.

6. C. Tseng and J. H. Saltz. Compilation and runtime support for massively parallel processors.
Supercomputing '93, Tutorial F3, November 1993.

..

I I 0

