' [
. \\XL%\Q’%/ /// 0

Q %:f‘(,%é&i? \\\Q//‘b Association for|nform5i|o|r!|d image Management ///\(/\;f%?;i{//\{é’ y
\Q// %, \\ ¢ 1100 Wayne pvrue, Sute 109 ///, \ /® ///9§
\ _b/ 301/587-8202 \9\5‘ oo //Q\\

\\\\// \> \d \/// &®

\\ qu \\\// \\1/// \&9

Cent]ime;er 3 4 5 6 7 8 9 10 11 12 13 14 15mm
1 2 3 4 >
Inches |0 e [l
B T
“w I ;“E% 22
= &
22 it e
sk\/// N\ \\//4"\\\
» 7 N A\
5 P //\\/4\\ //\\\\\ \
S, <z a % \
3G N v D o ///S
%@ﬁ \\ // MANUFACTURED TO AIIM STANDARDS /@\\\ %%«\%

PN
0/ /// BY APPLIED IMAGE. INC. /4\\ £

1 of 1

Cor A4 IY). -

UCRL-JC-116015
PREPRINT

Realizing Parallel Reduction
Operations in Sisal 1.2

Scott M. Denton,
John T. Feo,
and
Patrick J. Miller

This paper was prepared for submittal
to the Working Conference on Parallel
Architectures and Compilation Techniques
(PACT '94)

August 24-26, 1994, Montreal Canada

February 1994

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Rec;ﬁd

Recyclable

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the acruracy, completeness, orusefulness
of any information, apparatus, product, or process disdosed, or represents that its use
wouldnotinfringe privately owned rights. Reference hereintoany specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitut: orimply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

Realizing Parallel Reduction Operations in Sisal 1.2

Scott M. Denton, John T. Feo and Patrick J. Miller !

Computer Research Group
Lawrence Livermore National Laboratory
Livermore, CA 94550

Abstract: A parallel job consists of sets of concurrent and sequential tasks. Often the tasks compute
sets of values that are reduced to a single value or gathered to build an aggregate structure. Since re-
ductions may introduce dependencies, most languages separate computation and reduction. For ex-
ample, Fortran 90 and HPF provide a rich set of predefined reduction functions, but only for extant
arrays. Sisal 1.2 is unique in that reduction is a natural consequence of loop expressions. Unfortu-
nately, the language supports only seven reduction operations. In this paper, we present compilation
techniques that recognize pairs of for expressions in Sisal 1.2 as computation-reduction expressions.
Our techniques work without any language or intermediate form extensions; however, we recognize
only certain forms. We describe how we implement pairs of computation-reduction expressions as
single parallel loops, and we present performance numbers that demonstrate the utility of our tech-
niques.

1.0 Introduction

Reduction operations are an important and essential component of parallel programmir.g. Often
the tasks of a parallel job compute sets of values that are reduced to a single value or gathered to
build an aggregate structure. For example, a set of tasks may compute the temperature at each
point in the state space, and then average the temperatures. Alternatively, the temperatures could
be gathered into an array, or graphed. A recurring theme in particle codes is the calculation of forces
between particles. Since the forces are symmetric, we want to calculate each force only once and
then accumulate the forces on the affected particies. Because reduction operations occur frequently
in application programs, they are good targets for optimization. The efficient expression and imple-

mentation of reduction operations can reduce the cost of parallel programming.

Reduction operators are functions of sets of values (arrays, lists, etc.). The memory used to store

the result. is shared by the tasks computing the individual values. Since reductions may introduce

ON OF THIS DOCUMENT IS UNLIMITED

1

CISTRIBUTI

dependencies, most languages separate the computation and reduction tasks. For example, Fortran

90 [1] and HPF [2] provide a rich set of predefined reduction functions, but only for extant arrays.

C find the minimum value in z_array
z_min = MINVAL(z_array)

C return the first location of the minimum value in z_array
z_min_loc = MINLOC(z_array)

Despite the lack of explicit memory, functional languages also support reduction operations.
Haskell [3] provides reduction and accumulation operations on extant lists or list expressions.

-~ compute the sum of the integers 1 through 10
sum{l..10]

-=- return a table of the number of occurrences of each value
-= within bounds in list z
accumArray (+) 0 bounds [i := 1 | i <- z, (inRange bounds 1i)]

Sisal 1.2 [4] is unique in that reduction is a natural consequence of loop expressions. The reduction

operation appears as a keyword in the returns clause of the for or for initial expression.

% find the minimum value in z_array
for z in z_array

returns value of least z

end for

% compute the sum of the integers 1 through 10
for i in 1, 10

returns valye of sum i

end for

The Sisal compiler can overlap computation and reduction, and implement both tasks to take best

advantage of the underlying architecture.

A short coming of all languages is that they support only a general set of predefined reduction op-
erations. Many applications, however, require very specific reduction operations. The HPF Journal
of Development [2] has suggested additional language features be added for user-defined reduction
functions, and in the final section of this paper we discuss syntax for user-defined reductions in Sisal
90. Without special language features, a user must use extant loop forms to express the computation
and reduction operations, and rely on the compiler to generate efficient code. For example, the For-

tran D compiler [6] seeks to recognize reductions for optimization in traditional imperative code.

In this paper we present compiler techniques to identify pairs of computation—reduction expres-
sions in Sisal 1.2. We describe how we manipulate the code’s intermediate form to construct a single
parallel loop similar to the loops constructed for the seven intrinsic reduction operations. Our tech-
niques assume no language or intermediate form extensions; however, we recognize only certain
forms. Section two presents the form of computation—-reduction expressions we recognize, and the
constraints that the expressions must satisfy. Section three illustrates the rewiring of the interme-
diate form, and discusses implementation issues. Section four presents performance numbers
demonstrating the utility of our techniques. In section five, we discuss the syntax for user-defined
reductions in Sisal 90, the analysis required to insure determinancy, and the possible implementa-

tions of different classes of reduction operations.

2.0 Computation-reduction expressions

The Sisal 1.2 language definition supports seven reduction operations: sum, product, least,
greatest, array, stream, and catenate. The reductions may appear in the returns clause of for or for
initial expressions. While useful, the reductions are inadequate. For example, finding the first loca-
tion of the minimum value of an array cannot be expressed efficiently in Sisal. A programmer must

either write two for expressions,

- min_value := for x in A returns
value of least x end for;
min_index := for x in A at i returns
value of least i when x = min_value end for;

or one for initial expression

min_index := for initial
i:=1;
min_value, min_index := A[l}], 1
while i < array size (A) repeat
i:=o0ldi + 1;
min_value,

min_index := if A[i] < old min value then A[i], i
else old min_value, old min_index
end if

returns value of min_index
end for

The first solution doubles the computation’s overhead, and the second solution eliminates all paral-
lelism.

The situation is more dire if we want to generate a set of values, and then count or accumulate
the values of different types. For example, consider a set of n particles and m bonds. Each bond rep-
resents a force between two particles. We can calculate the forces in parallel, but must use a for ini-

tial expression to calculate the total force on each particle

Total_energy,
Force_update := for bond in 1, m
ii, JjJj := end points (bond):;
Bond_energy := Energy(bond);
Force_record := force(ii, jj, Positions)
returns value of sum Bond_energy
array of Force_record
end for;

Force_out := for initial
i = 0;
Forces := array_ fill(li, n, 0.0)
wvhile i < array size(Force_update) repeat

old i + 1;

i

ii := Force_update([i).ii;

j3j := Force_update(i].jj;

f := Force_updatel[i).force;

Forces := old Forces[ii: old Forces{ii] + £;

jj: old Forces[jjl - £]
returns value of Forces
end for

On highly parallel computer systems, the presence of the for initial expression curtails the code’s ef-
ficiency—an effect of Amdahl’s Law. Notice that the size of the sequential code grows linearly with
problem size. On medium or small systems, there may be insufficient memory to store the interme-
diate array of force records. The extra storage may increase the number of page faults and secondary
memory accesses, diminishing performance.

Programmers writing in an imperative language do not face this problem. They can write a sin-
gle parallel loop that includes a critical section to control access to the force array,

do ibond = 1, m
call end_points(bond, ibond, ii, 3jj)
f = force(ii, 33, ...)
lock (Force_out)
Force_out (ii) = Force_out(ii) + £
Force_out (j3j) = Force_array(jj) - £
unlock (Force_out)
end do

Since the force calculation is typically much longer than the critical section, the concurrent tasks will

contend for the lock infrequently. The code is parallel, efficient, safe, and minimizes memory use.

We have realized generated code similar to the imperative code, but without explicit locks, by ex-
tending the Sisal compiler to recognize pairs of computation-reduction expressions. The optimiza-
tion is applied to pairs of for and for initial expressions that satisfy the following criteria:

1. the for initial expression does not depend on any descendant of the for expression,
2. the for initial expression depends on the for expression for only an array of values,
3. the for initial expression consumes each value of the array,

4. the initialization clause of the for initial expression is independent of the array of
values, and

5. the for initial expression has no loop carried dependencies other than an index value

and the shared accumulator.

Shared accumulator refers to the scalar value or aggregate structure returned by the for initial ex-
pression. The for and for initial expression presented earlier satisfy the five criteria. Our compiler
merges the two expressions into a single parallel loop as explained in the next section. Currently, we
do not prove that the reduction function is commutaﬁve; consequently, the user may introduce non-
determinism. Some Sisal aficionados argue that the introduction of non-determinism in such a
tightly controlled manner is good because it expands the domain of Sisal programming; others dis-
agree. In the final section, we discuss our ideas regarding analysis and implementation techniques

to guarantee determinancy. Our Sisal 90 compiler will provide this analysis.

3.0 Rewiring the graphs

Consider the expressions for Force_update and Force_out given in the previous section. Fig-
ure 1 is a logical view of the IF1 graphs [5] of the two expressions. The top node is a parallel for

computation. It has three subgraphs: generator, body, and returns. The generator defines a set of
index values. An instance of the body is executed for each value, and each body computes two values,
Bond_energy and Force_record. These values are passed to the returns subgraph that sums the
bond energies and gathers the force records into an array. The bottom node is a sequential for com-
putation. It has four subgraphs: initial, test, body, and returns. The initial subgraph initializes the
index value i and the shared accumulator Forces. The body is executed once for each force record.
The body updates two elements of Forces and passes the new array to returns subgraph. The re-
turns subgraph selects the final value of Forces and passes it out from the compound node. We re-

fer to this implementation as unoptimized.

Since the two expressions met the five criteria listed in the previous section, our compiler transv-
forms the graph shown in Figure 1 into the graph shown in Figure 2. The first node initializes the
shared accumulator Forces and passes it to the second node. The second node is a parallel for com-
putation. Its generator is identical to the generator of the original for compound node. Its body and
returns subgraphs are compositions of the body and returns subgraphs, respectively, of the original
compound nodes. Since Forces is a shared resource, we place a lock about any read and write ac-
cesses to insure mutual exclusion. Notice that we have eliminated the test subgraph in the original
graph, and that we no longer build the array of force records. We refer to this implementation as op-
timized.

There are a variety of ways to build the new graph and control access to the shared accumulator.
Instead of locking all of Forces, we could lock individual elements or sections of the array. Main-
taining a lock per element would be expensive unless the memory had presence bits. Since the Sisal
runtime system slices for expressions into sets of iterations, we can eliminate the lock from the body
by having each set of iterations initialize and maintain a local accumulator. As the sets finish, we
“merge” the local accumulators to derive the final result. Such an implementation reduces the num-
ber of lock operations and contention for the lock, but uses more memory. Moreover, if the merge op-
erator is different than the reduction operation, as in the example used in this paper, the compiler
would have to synthesize it automatically.

m

+ Positions

v
]

for bond in 1, m

bond

+ Positions

ii, 3jj := end_points(bond);
Bond_energy := Energy(bond);
Force_record := force(ii, jj, Positions)

i Bond_energy

* Force_record

returns

value of sum Bond enerqy array of Force_record

_Y

Y)

+ Total_energy

Force_update n

(

for initial
i = 1;
Forces := array_ fill(l, n, 0.0)

+ Force_update ; Forces

i
while i < array_size(Force_update) repea
i + Forces
i t=old i + 1;
ii := Force_ update[i].ii;
33 := Force_update([i].3j]:;
f := Force_update([i].force;

Forces :=

old Forces(ii: old Forces([ii] + f:
j3: old Forces{jj] - £] =

; Forces

returns value of Forces

N

Y y

* Fcrce_out

- Figure 1-A pair of computation-reduction expressions

i

Forces := array_fill(l, n, 0.0)

} m + Positions ‘ Forces
for bond in 1, m

* bond + Positions + Forces

ii, jj := end_points(bond);

Bond_energy := Energy(bond);
Force_record := force(ii, jj, Positions)
ii Force_record.ii;

s

.
nn

33 Force_record.jj;

_f := Force_record. force;
LOCK(Forces)

Forces := Forces([_ii: Forces[_ii] + _¢£;

-jJj: Forces[_jjl - _£f;]
UNLOCK (Forces)

+ Bond_energy ; Forces

returns
value of sum Bond_energy value of Forces

Y Y Y,

+ Total_energy : ; Force_out

Figure 2 ~ A parallel computation—reduction graph

4.0 Performance

We ran a series of experiments to evaluate the performance of our optimization. We used a com-
putation and reduction expression from molecular dynamics similar to the expressions used in the
previous section. Table 1 gives the execution times and space requirements for different problem
sizes. Graph 1 shows the graph of the execution times. Sequential and mixed are the one and four
processor execution times, respectively, of the unoptimized implementation (Figure 1). Parallel is
the four processor execution time of the optimized implementation (Figure 2). As expected, the

80.00 .
o 70.00 pd
3 |
g 60.00 — - "
= sequentia
S 50.00 1>
a 40.00 // —a&——mixed-4
€ 30.00 .
8 ——O——parallel-4
2 20.00-
& L]
10.00
0.00 4

100000 200000 300000 400000 500000

problem size (number of bonds)

Graph 1 — Execution times of computation—reduction expressions

2). As expected, the optimized code uses less space than the unoptimized code. It also runs faster;

however, we did not always see appreciable performance gains.

There are many factors that influence the execution time of the optimized code versus the execu-
tion time of the unoptimized code: the time to set and release locks, the time to write and read a
record, lock contention, size of the computation expression, size of the reduction expression, number
of processors, etc. If the size of the computation expression is at least p (number of processors) times
greater than the size of the reduction expression, then there is little lock contention. Essentially, the
concurrent tasks contend for the lock the first time, and then become staggered arriving at the criti-
cal section at different times. In the molecular dynamics code, all computétion expressions are much
larger than the reduction expressions. However, small reduction expressions minimize the effect of
parallelizing the reduction operation. On large systems, Amdahl's Law may magnify the effect, but
then the large number of processors increases lock contention. Overall, the optimized code may run
five to twenty percent faster than the unoptimized code, but the real savings is in memory costs. The
largest force computation in the molecular dynamics code for a simulation of 20,000 atoms, if unop-

timized, generates approximately a 64MB array! That's a lot of memory.

. 11.6 MB 23.2 MB 34.8 MB 46.4 MB 58.0 MB
Sequential
Reduction 9.37 sec | 18.97 sec | 28.25 sec | 38.18 sec | 49.76 sec
parallel 8.4 MB 16.8 MB 25.2 MB 33.6 MB 42.0 MB
Reduction 7.73 sec | 15.60 sec | 23.83 sec | 31.47 sec | 39.02 sec
Prs°ibzl:m 100000 200000 300000 400000 500000

Table 1 - Time and memory usage of computation-reduction graphs

5.0 Future work

We plan to include specific syntax in Sisal 90 to support user defined reduction. A possible form

for the computation expression is:

for bond in 1, m

ii, 3j := end_points(bond);
Bond_energy := Energy (bond):
F = Force(ii, 3jj, Positions)

returns sum of Bond energy
Force_histo(n) of ii, jj, F
end for

The reduction function might be written as:

reduction Force_reduction(n, ii, Jjj: integer; F: real
returns array(real])
for initial
Forces := array fill(l, n, 0.0)
repeat
new Forces := Forces[ii: Forces[ii] + F;
jj: Forces[jj] - F }
returns new Forces ‘
end for

end reduction % Force_reduction

The names enclosed in parentheses prior to the keyword of at the reduction call site are values re-
quired to initialize the reduction; i.e., consumed in the initialization clause of the reduction function.

The names listed to the right of the keyword of are the set values computed by each instance of the

body of the computation expression and reduced by the reduction. The reduction function is a for ini-
tial expression. In Sisal 90, we use the keyword new in place of the keyword old. The for initial ex-
pression has an implied test: the body executes once for each set of reduction values computed by the

computation expression.

To insure determinate results, we are developing analysis to classify reductions according to
their commutativity. Deciding the commutativity of an arbitrary function is difficult, and few func-
tion are commutative in general. However, most reductions are either comparative or accumulative.
These types of functions are easier to analyze and a greater number are commutative. Preliminary
studies seem to indicate that reductions divide into classes with variable degrees of commutativity.
For each class, there exists a set of implementations of the member functions that insure determi-
nate results. For example, we can insure that a non-commutative reduction return determinate re-
sults by enforcing sequential exeuction. We hope to report shortly on our analysis, implementation

procedures, and performance of those implementations.

Acknowledgments

This work was supported by Lawrence Livermore National Laboratory under DOE contract W—
7405-Eng-48.

References

1. J.C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener. Fortran 90 Hand-
book: Complete ANSI/ISO Reference, chapter 13. Intertext/McGraw-Hill, 1992.

2. High Performance Fortran Forum. High Performance Fortran Language Specification, Version
1.0. Rice University, Houston, TX, May 1993.

3. P. Hudak and J. H. Fasel. A Gentle Introduction to Haskell. ACM SIGPLAN Notices, 27(5):T1-
T53, May 1992.

4, J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham, B. Noyce, and R.
Thomas. SISAL: Streams and Iteration in a Single Assignment Language: Reference Manual

Version 1.2. Manual M-146, Rev. 1, Lawrence Livermore National Laboratory, Livermore, CA,
March 1985. :

5. S. Skedzielewski and J. Glauert. IF1: An Intermediate Form for Applicative Languages.
Manual M-170, Lawrence Livermore National Laboratory, Livermore, CA, July 1985.

6. C. Tseng and J. H. Saltz. Compilation and runtime support for massively parallel processors.
Supercomputing '93, Tutorial F3, November 1993.

DATE
FILMED
10/ 17/9Y

