U.

(4

0
\/\

" mé,q_ic; 2 - -4

Optimal Eigenvalue Computation
on Distributed-Memory MIMD Multiprocessors

S.Crivelli and E.R. Jessup
. Department of Computer Science
University of Colorado, Boulder 80309-0430

CU-CS-617-92 October 1992

&

University of Colorado at Boulder

Technical Report CU-CS-617-92
Department of Computer Science
Univeraty of Colorad
niversity of Colora
Boulder, d’olorado §0389

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or &ny apency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Optimal Eigenvalue Computation
on Distributed-Memory MIMD Multiprocessors

S. Crivelli and E.R. Jessup®
Department of Computer Science
University of Colorado
Boulder, Colorado 80309

October 1992

Abstract

In [13], Simon proves that bisection is not the optimal method for computing an eigen-
value on a single vector processor. In this paper, we show that his analysis does not extend
in a straightforward way to the computation of an eigenvalue on a distributed-memory
MIMD multiprocessor. In particular, we show how the optimal number of sections (and
processors) to use for multisection depends on variables such as the matrix size and certain
parameters inherent to the machine. We also show that parallel multisection outperforms
the variant of parallel bisection proposed by Swarztrauber in [15] for this problem on a
distributed-memory MIMD multiprocessor. We present the results of experiments on the
64-processor Intel iPSC/2 hypercube and the 512-processor Intel Touchstone Delta mesh
multiprocessor.

1 Introduction

Bisection and multisection are simple and effective techniques for accurately solving the real
symmetric tridiagonal eigenvalue problem. When one eigenvalue is needed, bisection begins
with an interval known to contain that eigenvalue. The interval is halved and then replaced
with the interval half found to contain the eigenvalue. The process repeats recursively until
the length of the interval is less than a given threshold. The midpoint of the final interval is
accepted as the computed eigenvalue [14]. Multisection is a generalization of bisection that
splits the initial interval into p + 1 2 2 subintervals [10].

The bisection procedure, first described by Givens [5], uses the sequence of the determinants
of the principal minors of a matrix to locate its eigenvalues. Let T = [n;,(j,nj+1) be a real,
symmetric. tridiagonal n x n matrix, with diagonal elements (;, for 7 = 1,...,n, and off-
diagonal elements n; # 0, for j = 1,...,n — 1. Let d; ; denote the characteristic polynomials of
the submatrices of 7 consisting of rows and columns i through 7, then

dl.O(’\) = 1

*Department of Computer Science, University of Colorado, Boulder, CO 80309-0430 (crivells@cs.colorado.edu
and jessup@cs.colorado.edu). Both authors were funded by DOE contract DE-FG02-92ER25122 and by NSF
grant CCR-9109785. Part of this work was compieted when the second author was in residence at Oak Ridge
National Laboratory and funded by DOE contract DE-AC05-840R21400.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED ﬂ}ﬂ

dya1(A)
dij(A)

G = A
(G = Mdij-1(A) = mioidij—2(A) 2<4,5<n. (1)

In particular, the sequence of leading principal minors of the matrix 7 — A is obtained by setting
¢ = 1 in equation (1). The number of eigenvalues of 7 smaller than A is cqual to the number
of sign agreements of the consecutive terms in the Sturm sequence {d, ;(A)} [5].

Because the linear recurrence (1) may cause overflow or underflow problems, it is preferable
to use the Sturm sequence {f;(A)} defined as

f(A) = (-2

n?
HO) = G=A- 2
J() 1 fj—l(A)

where f;j(A) = d1,j(A)/d1,j-1(A). In this case, the number of eigenvalues of 7 smaller than A
is equal to the number of negative terms o(A) in the sequence {f;(A)} [2], and the number of
eigenvalues in the interval [A_;, Ag) is the difference o(Ag) — o(A_1). (Although it is generally
more robust than sequence (1), Kahan shows that sequence (2) may sometimes overflow as well
[91)

It is possible to achieve parallelism either by using the recurrence formula (2) or by directly
computing the principal minors of 7 — A and their characteristic polyrnomials. In the first case,
parallelism can be attained either by simultaneously evaluating the Sturm sequence at p interior
points of the search interval, one evaluation per processor, or by computing different eigenvalues
in parallel {7, 8]. In the second case, parallelism can be attained by using the associative property
of matrix multiplication which allows splitting the evaluation of the minors among the different
processors [15].

Several parallel bisection and multisection procedures have been proposed since Huang'’s
work on the ILLIAC IV [6], but little has been proven about their efficiencies. Lo, et.al. [10]
propose a combination algorithm for the Alliant FX/8 in which eigenvalues are first isolated
within disjoint subintervals through parallel multisection and then eztracted to a given pre-
cision by serial bisection. The second step is made parallel by assigning different eigenvalues
to different processors. Their rationale for using multisection in the isolation phase is that
multisection creates more tasks than bisection, thus allowing faster isolation of the eigenvalues
and better processor load balance. Bernstein and Goldstein 3] argue against these reasons,
noting that multisection may create a large number of tasks associated with empty intervals.
They claim that an accelerated bisection technique should lead to better processor utilization
with less overnead when the number of eigenvalues computed is large compared to the number
of processors.

Ipsen and Jessup (7] show that on a distributed-memory multiprocessor (Intel’s iPSC/1
hypercube), interprocessor communication and processor synchronization costs of the multisec-
tion phase make the combined algorithm of [10] slower than the bisection procedure alone. On
the other hand, Simon [13] defends multisection by proving that, for a single vector processor,
bisection is not the optimal method for computing one eigenvalue.

It is known that a single eigenvalue is computed more efficiently by serial bisection than
by serial multisection [10]. In this paper, we develop a fermal analysis of the relative costs of
bisection and multisection on a distributed-memory multiprocessor. We compare the costs of
computing a single eigenvalue by serial bisection, by parallel multisection, and by Swarztrauber’s
parallel bisection [15]. We show how the optimal method for computing one eigenvalue depends

i=1...,n-1 (2)

o

on a number of variables, such as the size of the matrix and certain parameters of the multipro-
cessor used. Our analysis is supported by experiments on a 64-processor Intel iPSC/2 hypercube
multiprocessor and the Intel Touchstone Delta, a distributed-memory MIMD machine whose
512 i860-based nodes are interconnected as a two-dimensional rectangular grid.

The paper is organized as follows. In section 2, we derive an analytical expression for the
arithmetic time required to compute a single eigenvalue by multisection. We also analyze two
communication schemes that are competitive on the hypercube and present the time complexity
for each approach. In section 3, we determine the optimal approach by deriving an approxi-
mation to the optimal number of processors and obtaining an estimate of the error incurred
by using this approximation. Numerical results are presented to illustrate the behavior of the
cost function proposed in this work. The time complexity for multisection on mesh-connected
architectures is investigated in section 4. In section 5, we present some comparisons between
the analysis of multisection costs for the hypercubes and the one obtained by Simon for vector
processors in [13]. In section 6, we derive an analytical expression for the time required to com-
pute a single eigenvalue by Swarztrauber’s parallel bisection and compare it to the multisection
costs obtained in section 2. Finally, we present a brief summary in section 7.

2 Time Complexity Analysis for Multisection

In this section, we develop an analytical expression for the time required to compute a single
eigenvalue by multisection on a hypercube multiprocessor. First, we determine the number of
iterations needed to extract an eigenvalue from an interval of width [when the interval is split
into p+ 1 subintervals at each iteration. If the final interval width turns out to be § = l¢, where
€ is a given threshold, it is necessary to carry out at least k serial multisection steps, until

(p+ 1)k <6

Replacing é with its value le and taking the logarithm gives

kp = [~log(€)/ log(p + 1)].

Note that when p = 1, k; gives the number of bisection steps. This argument is independent
of the base of the logarithm, but throughout this paper, we take log(z) to mean log,(z).

2.1 Computation Cost

At each iteration, p division points are determined and the recurrence in equation (2) is eval-
uated at each point. If the interval endpoints are A_; and Ag, the distance between division
points is A = (Ag — A-1)/(p + 1), and the division points are A; = A_; +id,i=1,...,p.

The cost of computing these points is pwy + wq, where wy is the time for a floating point
addition or subtraction and w, is the time for a floating point multiplication or division. The
Sturm sequence evaluation at each point takes n floating point divisions and 2n floating point
subtractions. In addition, counting the negative terms in the sequence requires n floating
point comparisons. Therefore, the total cost for computing a single eigenvalue by the serial
multisection algorithm is

Thg =kp*[p*(n* (2w +wp +72) +w1) + wal,

where vz is the time for a floating point comparison.

When the p Sturm sequences are evaluated in parallel —one per processor— at each mul-
tisection step, processors must communicate to determine the next search interval. Because
communication costs can be quite significant in these parallel algorithms, we examine efficient
communication schemes in the following subsection.

2.2 Communication Cost

On existing hypercube multiprocessors, the cost of data communication is high in comparison
to the cost of floating point computation. In particular, the cost of communicating an m-byte
message from one hypercube processor to a neighboring one is 3+ m r, where the communication
startup latency 3 is generally large in comparison to the transmission time per byte r and to
the time for a floating point operation. On the iPSC/2, 8/r = 973, B/w1 = 59, and B/w, = 56
(4]

These cost ratios lead us to consider only communication schemes that minimize the number
of message startups, i.e., that use a number of message startups proportional to the dimension
d of the hypercube, with p = 2¢ processors [11). We do not, however, attempt to decrease the
impact of communication through redundant computation. Specifically, a processor evaluates
the Sturm sequence at only one division point instead of determining the number of eigenvalues
within an interval by evaluating the Sturm sequence at both endpoints.

There are two basic mechanisms for determining the next search interval from the distributed
Sturm sequence counts in O(d) communication steps. These depend on all-to-one or all-to-all
communication primitives as discussed, for example, in {11].

2.2.1 The Gather-Broadcast Approach (GB)

The first approach is a gather-broadcast routine in which each processor sends its Sturm se-
quence count to a single master processor. That processor then computes the endpoints of the
next search interval and broadcasts them back to all the other processors. Because the hyper-
cube is a connected graph, it is possible to consider it as a spanning tree, which is a sub-tree of
the graph that contains the master as root and all other processors as leaves. When a spanning
tree based gather and broadcast are used, the communication cost is

2d3 4+ (d - 1)(4 + 2 8)r,

for an integer*4 processor number and real*8 endpoints [11].
The total time to compute one eigenvalue using this algorithm is

Tgg = {time for one eigenvalue count

+ time to find a new interval by gather-broadcast}
+number of iterations

{n(2wy + w2 +72) +

240 + (d = 1)207)}[- log ¢/ log(2¢ + 1)].

Il

2.2.2 The Alternate Direction Exchange Approach (ADE)

The second communication option is based on alternate direction exchange (ADE) as described
in [11]. ADE is typically used to accumulate in all p = 2¢ processors a vector of length pk whose

components are initially distributed evenly among them. In each of d communication steps, the
d-cube splits into a different pair of (d — 1)-cubes. In the first step, corresponding processors in
the two cubes exchange their & elements and accumulate a vector of length 2k. In subsequent
steps, the processors exchange and accumulate all previously accumulated data so that in the
last step processors send messages of length 29~k and accumulate the full vector.

In the case of multisection, it is not necessary for all processors to accumulate all Sturm
sequence counts. If eigenvalue m is sought, each processor only needs the division points \;
and A;4; surrounding eigenvalue m. If division point A; is assigned to processor ¢,i=1,...,p,
this information can be computed by any processor from Sturm sequence counts o(z) marked
with the identifiers of the counting processor i. At each step of the ADE for multisection, each
processor retains only the count closest to the eigenvalue index m.

Thus, at each step of the ADE for multisection, two integers (¢ and o(i)) are sent in each
direction between each pair of processors. The processors then determine which identifiers to
retain. Every step then takes

2d(B+ (2 +4)7) + dm1,

where 7, is the time for an integer comparison. If the machine allows simultaneous bidirectional
sends across the same communication channel, the total cost reduces to

d(B + (2* 4)7 + n1),

and the alternate direction scheme involves roughly half the communication latency of the
gather-broadcast scheme. The iPSC/2 supports such sends when the message size is less than
100 bytes [12].

Using the ADE communication scheme, the total cost for computing a single eigenvalue by
parallel multisection becomes

{time for one eigenvalue count

+ time to find a new interval by ADE}
*number of iterations

{n(2in+wr +12)+wr +wr +

d(B + 87 + 1)} * [~log(€)/log(2* + 1)].

When d = 0, multisection reduces to serial bisection.

Therefore, the ADE approach performs better than GB for parallel multisection because it
requires half the number of communication startups.

TaipE

]

3 The Optimal Approach

In this section, we use paralle] multisection based on an ADE in order to determine the op-
timal number of sections and processors to use. However, it is important to note that the
same conclusions can be derived by using any other communication scheme that involves O(d)
startups.

For further analysis, we neglect the contributions of data transfer r and integer com-
parison 7; because the startup time 3 is much larger than either (8 >» 7,71) and write
a = (arithmetic costs)/f. The cost function for multisection then becomes

T. = 3(d + a)[- log ¢/ log(2? + 1)]. (3)

o1 T ~—

time (soconds)

Figure 1: Functions T, T, and T.

The location of the minimum of T, defines the optimal number of division points to use in
bisection or multisection. In this section, we determine how the location of that minimum
depends on the parameters a, 3 and .

Because the straightforward analysis of the ceiling function in T is unwieldy, we first study
the auxiliary functions T~ and T4

T-

-1
Bla+ d)——-—-—log(QSiGU (4)

T, = T-+p8(a+d).

Figure 1 depicts the functions T, T_, and T,. plotted against the continuous variable d for
a = 4.6, § = 390 and —log(e) = 54. This choice of variables corresponds to computing an
eigenvalue of an order 100 matrix on an iPSC/2 to precision €¢/2 =~ 1016,

3.1 Estimating the Location of the Minimum of T,

As d increases, the cost function T, zigzags between T_ and T4, with its local maxima lying on
T, and its local minima on T, until the point where it grows linearly as the function 8(a + d).
Function T has one global maximum then decreases monotonically, converging asymptotically
to the constant function —Floge. Function T, increases then, depending on the value of a,
may fall to one local minimum; T} ultimately rises asymptotically to the function T,. In Figure
1, T+ has a local minimum for a value of d > 0.

Because T, does not have a global minimum, we need to study the behavior of the function
in the interval of processors available to us in order to find a local minimum. Let D = [0, dmap)
denote that interval, where dmgp is the maximum number of available processors. The location
dmin Of the minimum value of T, in D determines the number ppmin = 2% of division points
(and processors) to use for most efficient bisection or multisection.

Because the minima of T¢ lie on the smooth curve T, we employ T to estimate the global
minimum of T; in D. Because T has exactly one maximum located at d,4z, its minimum in
D lies at an endpoint of that interval. We will locate this global minimum of T_ in D relative
to the position of the global maximum of T-.

Now, if dmez < 0, T~ decreases monotonically in the interval D and takes its minimum
value at d = dmap. Let us assume for the moment that T, and T are somewhere coincident in
D after reaching their maximum values. In particular, if Te(dmap) = T-(dmap), the minimum
of T also occurs at d = dmin = dmap. However, because T, is not smooth, its minimum may
actually lie to the left of d = dmap. In fact, the minimum of T, lies at the largest d < dmap
such that T¢(d) = T_(d). In this case, dmin > 0, and multisection with p = 2%min is the most
efficient method.

If dmaz > 0, the minimum value of T_ is attained at one of the endpoints of D. Hence, the
minimum of T, is attained either at d = 0 or at some 0 < d < dmgap- (As above, dm;n can equal
dmap only if Te(dmap) = T=(dmap)-) There are then two possibilities:

1. If dmin = 0, increasing the number of division points increases the run time. Therefore,
bisection is optimal.

2. If dmin > 0, multisection into p + 1 = 29min + 1 intervals is optimal.

Because the sign of dmgz is so important we now investigate dpmyz. The maximum of T-
lies where 0T_/0d = 0. Although the zero of this derivative cannot be determined analytically,
we can determine the problem size at which the maximum lies at dpmaz = 0. Manipulation of
9T./0d = 0 leads to

(2%4maz + 1) log(29me= + 1)
2dma:

~ dmaz = Q.

When dmez = 0, @ = 2. For problems with a > 2, dner < 0, and multisection is always the
most efficient option.
It remains to determine when multisection should be applied if @ < 2, which corresponds

to the case d;,q; > 0 discussed above. Note that bisection and multisection take the same time -

to compute the eigenvalue when Tc(0) = T.(dmap), that is, when

—loge = loge
o = oo e 7y /(o8 - [)

On the iPSC/2 the maximum number of available processors corresponds to a cube dimension
dmap = 6. Thus, assuming — log(€) = 54, the crossover point between multisection into pmin + 1
intervals and bisection occurs at a = 1.2. Now, since 3 = 390 microseconds and o =~ 0.046n,
this crossover point corresponds to a matrix of order n = 27.

To find the minimum of 7 we assumed that T, and 7. were coincident in at least one point
of interval D. To prove it, we need the following lemma.

Lemma 3.1 Let S be the step function defined as:
S(d) = [-log ¢/ log(2¢ + 1)]
and S_ the continuous function defined as:

S_(d) = —loge/log(2% + 1).

-3

Then the distance A between two consecutive peaks of the function T, is such that

-1
A< 55 78a

Proof: The distance between two consecutive peaks of the function T, is determined by the
width of the steps of the function S. If A is the width of the step where S(d) lies, the following
holds:

S_(d+A)-5-(d) < -1. (5)
Because S- is monotonically decreasing, for any increment in d, éd, we get
%ad < S_(d+6d) - S_(d). (6)

where the derivative 5_/0d is evaluated at d. In particular, taking 6d = A and applying (5)
to (6) we get:
-1
A< ——rr.
— 95_/0d
n

According to the lemma, at d = 0, A < 2/-loge. Consequently, to have at least one
coincident point in D = [0, dmgp], we need A < dpmgp which is accomplished for those values of
¢ such that ¢ < 2~ %/dman, Using dmqap = 6 we get € < 0.7937, which in general can be easily
satisfied for ¢ = length final interval/length initial interval. Recall that, in our example on the
iPSC/2, we consider ¢/2 = 1076 which means that we can expect coincidence between T_. and
T, in the interval D.

3.2 The Error Incurred by Using T_ to Model T,

We have determined that the optimal number of processors is given by p = 29min where dpnin
is the minimum of T, in D. Because we cannot determine d.,;n analytically, we decided to use
the minimum of 7T_ in D which occurs either at d = 0, meaning that bisection is optimal, or
dmap, Meaning that multisection is optimal. Next, we determine the error introduced by using
the minimum of 7_ in place of the minimum of 7. when multisection is optimal. Because T,
zigzags between T_ and Ty, the maximum error made by taking dmap in place of dmin is given
by T4 (dmap) — T-(dmap) = B(a + dmap)-

Although we choose dmqp as an approximation for the minimum of T, it is important to
note that there are some cases where it really is the optimal choice. In fact, there are some
values of a for which the function T_ is so steep at dmqp that

|T-(dmap) — T-(dmap = 1)| > T4(dmap) — T=(dmap) = B(@ + dmap)-

That is, the change in T_ for d varying from dmgp — 1 t0 dpngp is larger than the error incurred
by considering dmap as the minimum. That error is bounded by the difference between T, and
T_ at dmap-

In our example on the iPSC/2, we get o > 8.73. This means that when the size of the
matrix is larger than 189, dpnqp is @ good approximation, and we can choose multisection with
p = 24mer as the optimal method.

0.11 v \

0.1+ p
alpha =3

0.09+ 4
0.08 d

0.07 p

005 dpba=17 %]
. L
0.05 - “W’M]

0.04 - N

0.03} /W/\/\—/\/\/‘
alpha = 0.4 -
0.02} /

0.01 i " A 4. A

time (seconds)

Figure 2: The cost function T, for different values of a (computed and measured).

Figure 2 depicts the function T, plotted against the continuous variable d for several values of
a (solid lines as marked). Also shown are times measured on the iPSC/2 (circles) for hypercubes
of dimension d = 0,1,...,6. On a cube of dimension d, p = 2¢ division points are used. The
figure shows good agreement between the model and actual timings in the range of available
processors. Table 1 shows experimental results on the iPSC/2 using dpmqp = 6.

We have seen that the maximum error made by taking the minimum of T- instead of the
minimum of T is bounded by the difference between T (dms,) and T—(dmqp). Because this
difference increases as d increases, it is necessary to analyze the benefits of adding more and
more processors versus the magnitude of the error incurred. Furthermore, the functicn T.
becomes a straight line after some point, after which it is no longer beneficial to add processors.

To facilitate the analysis, we define two important values of d: d; # 0 is the point at which T,
attains its local minimum (if there is one), and d; is the point at which T, begins to rise linearly.
The point d; is thus the smallest value of d that satisfies the equation [-loge/log(2¢ + 1)} = 1.
These values in turn distinguish three regions:

region 1 begins at d = 0 and ends at the point min(d,, d;). In this region, T. zigzags between
two decreasing functions. Therefore, we can expect better results when we increase the
number of processors.

region 2.a begins at the point min(d,, d;) and ends at d;. Since the cost function jags between
the asymptotically decreasing function T and the now increasing function T, processors
in this region must be added carefully. In fact, while we still can get better results
by adding more processors, we can also incur substantial errors by approximating the
minimum of T, with the minimum of 7.

region 2.b begins at d;. In this region the cost function increases linearly as 8(a + d). There-
fore, we will not find any minimum value greater than d; for T, in this region.

Bisection vs. Multisection

n | dmin | bisection | multisection | ratio
10 0 0.02336 0.04472 1.91
20 0 0.03726 0.04342 1.17
25 0 0.04330 0.04472 1.03
26 0 0.04460 0.04496 1.01
27 5 0.04696 0.04522 0.96
28 5 0.04832 0.04542 0.94
29 5 0.04968 0.04566 0.92
30 5 0.05116 0.04606 0.90
30 3 0.07900 0.05186 0.66
100 5 0.14852 0.07218 0.49

Table 1: Execution times for computing the smallest eigenvalue of matrix [1,2,1] on the iPSC/2.

We now estimate the values of d. and d; in order to define those regions more precisely.
To find the point d. we need to find the solution to 374 /8d = 0. Because we cannot solve
this equation analytically we approximate 1/log(2% + 1) by 1/d. The relative error that this
approximation incurs is

1/log(2¢ + 1) - 1/d log(2¢ + 1)I

1/ log(2¢ + 1) Cd ’
which is small for & > 1. In fact, it can be easily seen that, for any d > 1, E.(d) > E.(1) ~ 0.58.
Therefore, for d > 1, T4 can be approximated by the function:

E.(d) = |

=11

~loge
d

T+zﬁ(a+d)[+1],

and its first derivative is
—B =0T, /0d~3 [ligj,%”‘-‘ + 1] = 0.

Manipulating this expression and considering only the positive root we get

d. = /- log(€)e. (M

To find the point d; where the cost function T, becomes a straight line, it is necessary to

solve
—loge/log(2¢ +1) = 1.
Manipulating this equation we get d; as:
l1—c¢
. (8)

Finally, to illustrate how the different regions look like, we give particular values to the
parameters in equations (7) and (8). Recall that, on the iPSC/2, a value of @ = 4.6 corresponds
to a mairix of order 100. Thus, for the problem of evaluating a single eigenvalue of an order
100 matrix on an iPSC/2 to precision ¢/2 =~ 10~!¢ the values of d. and d; are 13 and 37
respectively. Because dmqp, = 6, we can conclude that, for these parameters, D is contained in
region 1. Because a > 1.2, multisection performs better than bisection, and therefore, we can
take dmgp as the optimal number of »rocessors to use in this problem.

d(= log

10

4 On Mesh-Connected Architectures

In the preceeding sections we analyzed parallel implementations of multisection and bisection
on the hypercube. Because of the high ratio between the communication and computation costs
on the iPSC/2, we considered only those algorithms involving O(d) communication startups.
Among those approaches, the Alternate Direction Exchange multisection algorithm was shown
to be the most efficient optimal approach. In fact, while ADE takes only d communication
startups to determine the new search interval, the GB approach takes 2d startups to accomplish
the same task. However, although ADE outperforms GB on the hypercube, this algorithm is
intimately tied to the hypercube topology. Because we cannot implement ADE on mesh-
connected architectures, we investigate in this section the time complexity of the GB approach.

As described for hypercubes in section 2.2.1, each processor computes a Sturm sequence
count and sends it to the master processor. The master gathers the information, computes the
next interval, and broadcasts it back to the rest of the processors. While the computation cost
of this algorithm is the same for mesh-connected processors as for hypercubes, it is necessary to
reconsider the communication time complexity for the new architecture. According to {1}, there
is an optimal broadcast (gather) algorithm for meshes that does not cause network contention
and has the same logarithmic time complexity as for hypercubes. Figure 3 depicts a contention-
free broadcast from node 0 to all others on a linear array (1].

If we have a two-dimensional grid of p = p; X p; points, where p; = 2%, { = 1,2, it
will be necessary to perform d = dy + d2 = log(p1) + log(pz2) = log(p) steps to complete a
broadcast (gather) operation [1]. The basic idea is to partition the two-dimensional array along
one dimension, thereby reducing the problem to that for linear arrays. These, in turn, are
recursively partitioned, doubling the number of partitions at each step, and creating distinct
sub-arrays which can proceed independently with the broadcast (gather) procedure. In this way,
a minimum spanning tree broadcast (gather) can be performed on mesh-connected architectures
as efficiently as on hypercubes. The only difference is in the way that the minimum spanning
tree is derived using the binary representation of the nodes. While the order in which bits are
toggled to derive the tree is not important for hypercubes, it is for meshes due to contention
problems [1].

Therefore, under reasonable assumptions, the time complexity analysis of the GB multisec-
tion approach remains the same on both hypercube and mesh-connected architectures. Figure
4 depicts the cost function Tgp corresponding to the GB multisection approach for computing
the smallest eigenvalue of the 1000 x 1000 matrix [1,2,1] plotted as a solid line against the
continuous variable d = log(p). On the same plot, it also shows the times measured on the
Intel Touchstone Delta (circles). The values of the parameters used in computing Tgg are
~log(e) = 54, 8 = 75, and w = v = 0.1. These values correspond to double precision accuracy
on the Delta. The figure shows good agreement between the theoretical and the actual timings
in the range of available processors.

5 On Vector Processors

In this section, we compare the cost function T¢ for the hypercube, defined in equation (3), to
the cost function C for vector processors obtained by Simon [13]:

C = (s +rp)[—loge/log(p +1)],

11

000 001 010 011 100 101 110 111

W—-o—o—o Step 1
v—o— o —e Step 2
AVARAV AR VER A

Figure 3: Broadcasting a message from node 0 on a linear array (most significant bit to least
significant bit). Cource: [1].

03 v v v . -
o2st 4
%‘ o} .
£
E 0.15} :
o.1f . .
e 2 3 N ; 6 7 3

Figure 4: Theoretical and actual values of the cost function for computing an eigenvalue of
the [1,2, 1] matrix of order 1000 on the Delta.

12

ChandC_fr

delog(p)

Figure 5: The scaled vector cost functions 1C and %C-. These dimensionless quantities show
the optimal number of sections to use on a vector processor.

where s is the startup cost of the vector loop, r the asymptotic rate, and p the number of
multisection points. We confirm that the analysis is considerably more straightforward for a
vector processor than for a distributed-memory multiprocessor.

A comparison of Figures 1 and 5 shows that T, differs dramatically from C. The reason
is that, on vector processors, the vector loop startup cost is independent of the number of
multisection points while the asymptotic arithmetic cost increases linearly with this number.

In the vector case, a minimum always occurs for some number of division points p > 1. Thus,
multisection is always optimal on vector processors. In contrast, the distributed-memory cost
function T does not have a global minimum but instead a global maximum. Therefore, a study
of the function in the interval of available processors is necessary to find the local minimum.
Our analysis shows different behaviors of T, depending on the values of the different parameters
involved. Thus, in the hypercube case, the optimal method depends on the problem order, the
ratio between communication and computation costs, and on the number of processors available.

Although it is clear from [13] that multisection into p + 1 intervals is the best choice in
the vector case, it is not straightforward which value of p produces the minimum cost. For
instance, for a machine with ratio s/r = 60, the value of pp;, obtained by Simon from running
his multisection code on a random matrix of order 3000 is 37, whereas the predicted p is 25.
Simon attributes this difference to the fact that the predicted value is obtained considering
only the multisection loop, whereas the experimental p,u;, comes from taking into account the
execution time of the whole multisection code.

In his analysis, Simon actually uses the function

C- = (s + rp)(~log e/ log(p + 1))

analogous to 7. defined in equation (4) for distributed-memory multiprocessors. Figure 3
depicts the functions C and C- plotted against the continuous variable d = log(p) for s/r = 60.0
and - log(e) = 54.

13

In this example, the optimal number of processors, pmin, obtained by neglecting and using
the ceiling function are 25 and 22 respectively, whereas the value obtained experimentally by
Simon is 37. Observe that although the actual minimum of C occurs at p = 29.1, we consider
only the integer values of ppnin. That is the reason why we take p = 22 as the minimum value.

Because the approximation of T, with T_ may incur significant errors, we first thought,
by analogy, that the discrepancies between the predicted p and the one obtained numerically
by Simon could be partially attributed to the neglecting of the ceiling function. However, the
results obtained by using C are only slightly different from those obtained by using C_. and
consequently do not justify this argument. Ignoring the ceiling in the vector cost function C
does not affect the final conclusions about the optimal value of p. See Figure 5.

Finally, because the location of the extreme value of C may vary with ¢, we compute the
value of pnin for € = 1078, The minimum for this single precision example also occurs at p = 22
and does not affect our conclusions.

6 Time Complexity Analysis for Swarztrauber’s Parallel Bi-
section (SPB)

In this section, we develop an analytical expression to estimate the time required to compute
a single eigenvalue by the parallel bisection approach proposed by Swarztrauber {15]. This
method is based on the parallel evaluation of the Sturm sequence {d),;(A)} at each bisection
point. If we define

J
PICO Ce—A m

Qii(A) = kl;[[A (9)

it can be shown that

d; j(}) njdij-1(A)

ii(A) = - I . 10
Qus(A) { imrdier s (V) =Tom1 i1 goa(A) (10)
Thus, the terms of the Sturm sequence {d;;(A)}, j = 1,...,n are given as the upper left

elements of {Q1,;(A)}, 7 = 1,...,n respectively. The sequence {Q1,;(A)};=1,n can be evaluated
in parallel by using the associative property of matrix multiplication according to the formula

Qij = QikQk+1,) (11)
foranyi<k<7-1.
Using this splitting formula, the computation can be performed in logn steps following a
binary tree scheme. Figure 6 illustrates the data dependency graph for the case n = 4.
The parallel algorithm to compute the Sturm sequence proceeds as follows:
Step (1) - In parallel, computu:
Qii+1 = QiiQivriv1, 1=1,...n =1, (12)

where Q;; are 2 x 2 matrices obtained by setting i = j in equation (9).

Step (2) - In parallel, compute:
Qi3 = Q11Q23
Q14 Q1,2Q34 (13)

Qii+s = Qiiv1Qi+2,i43 1=2,...n-3.

14

step 2

Qp,

step 1

Ql 1 Q22 Q33 Q44

Figure 8: Data dependency graph for n = 4.

Step (k) - In parallel, compute:
Quov-t4i = QuiQigrar-14e i=1,...257" (14)
Qiiy2i-1 = Qi,i+2*-1—1Q.‘+2*-1.i+2"—1 i=2,...n- 2k + 1.

Step (logn) - In parallel, compute:

Ql'zlo; n—l+1,. .oy Ql'n.

We analyze in the following subsections, the computation and communication costs of this
procedure.

6.1 Computation Cost

We first analyze the arithmetic cost that each Sturm sequence evaluation incurs. 3y looking at
equations (12-14), it can be seen that there are n — 1 matrix multiplications in the first level
of the computational tree, n — 2 in the second and n - 2%=1in the k'? level. The total number
of 2 x 2 matrix multiplications involved in the log n levels of the computational tree is then

logn-—-1

Z (n-2")=nlogn+1—n.
1=0

Furthermore, each matrix multiplication requires 8 floating point multiplications and 4 floating
point additions, except for the matrices at the first level which only take 6 multiplications and
2 additions because they have a zero element. Thus, the serial computation cost to compute
the Sturm sequence at each bisection step of this algorithm is

(4wy + 8wz) * (nlogn — n) + 2w; + 6ws.

Assuming that we can distribute this cost evenly among the p processors, the parallel compu-
tation cost per Sturm sequence evaluation becomes roughly

1—1)*(4w1+8w2)*(nlogn+l—n). (15)

Adding the cost of computing the bisection points and counting the sign agreements in the
Sturm sequence to (13) and considering all the steps in the bisection iteration gives the to-
tal arithmetic cost per processor for computing a single eigenvalue by Swarztrauber’s parallel
bisection algorithm as

1
Tspg = ky * [; * (dwy + 8wy) * (nlogn + 1 - n) 4+ nyy +wy +w2] . (16)

6.2 Communication Cost

As illustrated in Figure 6, it is necessary to carry out log n steps to evaluate the Sturm sequence
at each bisection point. For our analysis, we will ignore contention problems and assume
that each processor is involved in at most one 2 X 2 matrix send or receive per step. The
communication cost is then

logn(B + 4 * 87), (17)

for real*8 matrix elements. Once the Sturm sequence is evaluated, its terms reside on different
processors, and it is necessary to accumulate them in order to count the number of sign agree-
ments. This interchange can be accomplished using the ADE approach described in {11] and
reviewed in section 2.2.2 of this paper.

The ADE algorithm is used to accumulate a vector whose components are evenly distributed
among the processors. If the machine allows simultangous bidirectional exchange across the
same communication channel, the cost of the vector accumulation becomes

dB + 87+ (2¢ - 1), (18)

for real*8 vector elements.
Thus, adding expressions (17) and (18) to equation (16), the total time to compute one
eigenvalue to accuracy €/2 by Swarztrauber’s parallel bisection is

Tspg = {computation cost for each Sturm sequence evaluation
+ communication cost for each Sturm sequence evaluation
+ time to interchange the terms by ADE}
xnumber of iterations

1
= {;(4w1 +8wp) *#(nlogn+1—-n)+ny, +w; +wy +

logn*(B+4+87)+ ,
df+8r«(p— 1)}« [—logel,

where d = log(p).

Therefore, even in the best situation when each processor sends or receives at most one 2 x 2
matrix per step, the communication cost for this method is higher than for the other two, i.e.,
multisection based on BG or ADE, for any number of processors. Because the computation
cost for each Sturm sequence evaluation is divided by p, we first thought that SPB could be
competitive for a large number of processors. However, this is not the case, as illustrated in
figure 7 where it can be seen that multisection is more efficient than SPB even for large number
of processors.

16

16 _
s e
g 18t . -
-/‘
I
g2 145} ' |
B)
. SPB ..*
'5’ 14} "/ |
2
-E 13.5} Multisection q
g
2 13- |
12.5F |
) ‘ : ‘ : . A " = -
0 0.2 0.4 0.6 0.8 1 12 T3 o)
o -

Figure 7: The cost functions Tspp and Tapg for p = 1024.

Figure 7 shows a comparison between theoretical values obtained using the functions Tspg,
i.e., the cost of multisection using ADE, and Tspp, i.e., the cost of SPB, for p = 1024. The
values of the parameters considered correspond to those for the iPSC/2 given in (4], and ¢ is
the double precision machine error. Hence, 8 = 390, 7, w;, and wy are as described in section
2.2, 72 = 5.4, and - log(¢) = 54.

The situation illustrated in figure 7 remains unchanged even for larger number of processors
—i.e., p > 1024— due to the high communication cost incurred by this method. Therefore, the
parallel Sturm sequence evaluation proposed by Swarztrauber is not a competitive method for
computing one eigenvalue on the distributed-memory multiprocessors considered in this paper.

7 Summary

In this paper, we have studied and compared the costs of computing a single eigenvalue by serial
bisection, parallel multisection, and Swarztrauber’s parallel bisection, on different distributed-
memory MIMD multiprocessors. We have shown that parallel multisection outperforms Swarz-
trauber’s parallel bisection. We have also shown that the optimal number of processors (and
sections) depends on such parameters as the ratio between communication and computation
costs and the matrix size.

In general, multisection performs better than bisection on the iPSC/2 and Delta machines.
and the maximum number of processors availabie is a good, practical approximation to the
optimal number of sections to use. Bisection is the best choice only for small size matrices. An
example in section 3 shows that bisection is preferred for computing an eigenvalue to double
precision on the iPSC/2 when the matrix order is no greater than 27.

17

Acknowledgements

We thank Bill Gropp for his aid in running experiments on the Delta, Rik Littlefield for his
helpful comments on an early draft of this work, and Robert van de Geijn for providing Figure

3.

References

[1]

(2]

[3]

(4]

(6]
[7]
(8]
(9]
(10]
[11]

(12]

[13]

M. BARNETT, D.G. PAYNE, AND R. vAN DE GEUN, Optimal broadcasting in mesh-

connected architectures, Dept. of Computer Science, University of Texas, Technical Re-
port TR-91-38, 1991.

W. BARTH, R.S. MARTIN AND J.H. WILKINSON, Calculation of the eigenvalues of a sym-
metric tridiagonal matriz by the method of bisection, Handbook for automatic computation:
Linear Algebra, Springer Verlag, 1971, pp. 249-256.

H. BERNSTEIN AND M. GOLDSTEIN, Optimizing Givens’ algorithm for multiprocessors,
SIAM J. Sci. Stat. Comput., 9, 1988, pp. 601-602.

T. DUNIGAN, Performance of the Intel iPSC/860 hypercube, Oak Ridge National Labora-
tory, Technical Report ORNL/TM-11491, 1990.

W. GIVENS, Numerical computation of the characteristic values of a real symmetric matriz,
Oak Ridge National Laboratory, Technical Report ORNL-1574, 1954.

H. HUANG, A parallel algorithm for symmetric tridiagonal eigenvalue problems, Center for
Advanced Computation, University of lllinois, CAC Document 109, 1974.

I. IPSEN AND E. JEssuP, Solving the symmetric tridiagonal eigenvalue problem on the
hypercube, SIAM J. Sci. Stat. Comput., 11, 1990, pp. 203-229.

E. JESSUP, Parallel solution of the symmetric tridiagonal eigenproblem, Dept. of Computer
Science, Yale University, Research Report 728, 1989.

W. KAHAN, Accurate eigenvalue of a symmetric tridiagonal matriz, Dept. of Computer
Science, Stanford University, Technical Report CS41, 1966 (revised June 1968).

S. Lo, B. PHILLIPE, AND A. SAMEH, A multiprocessor algorithm for the symmetric tridi-
agonal eigenvalue problem, SIAM J. Sci. Stat. Comput., 8, 1987, pp. 155-165.

Y. SAAD AND M. ScHULTZ, Data communication in hypercubes, Dept. of Computer Sci-
ence, Yale University, Research Report 428, 1985.

S. SEIDEL, M.H. LEE, AND S. FOTEDAR, Concurrent bidirectional communication on the
Intel iPSC/860 end iPSC/2, Dept. of Computer Science, Michigan Technological Univer-
sity, Technical Report CS-TR 90-06, 1990.

H. SiMON, Bisection is not optimal on vector processors, SIAM J. Sci. Stat. Comput., 10,
1989, pp. 205-209.

18

(14] B. SmiTH, J. BoYLE, J. DoNGARRA, B. GArRBow, Y. IKEBE, V. KLEMA, AND
C. MOLER, Matriz eigensystem routines-EISPACK Guide, Lecture Notes in Computer
Science, Vol. 6, 2nd edition, Springer- Verlag, 1976.

[15] P. SWARZTRAUBER, A parallel algorithm for computing the eigenvalues of a symmetric
tridiagonal matriz, unpublished manuscript, 1991.

19

‘I I3olq3

