
Optimal Eigenvalue Computation

on Distributed-Memory R/IIR/ID Multiprocessors

S.Crivelli and E.R. Jessup
Department of Computer Science

University of Colorado, Boulder 80309-0430

CU-CS-617-92 October 1992

University of Colorado at Boulder

T_chnical Report CU-CS-617-92
Department of Computer Science

Campus Box 430
University of Colorado

Boulder, Colorado 80309

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
cnc¢ heroin to any specific commercial product, process, or service by trade name, trademark,
manufacturcr, or otherwise dots not necessarily constitute or imply its cndorscmcnt, recom-

mendation, or favoring by the United States Government or _.ny ardency thereof. The views
and opinions of authors expressed hcrcin do not necessarily state or reflect those of the
United States Government or any agency thcrcof.

_1 _,nl'_,R!BUT!ON.. OF T141.¢,PIPINI IMi=NT !8 UNLIMITED
W

Optimal Eigenvalue Computation

on Distributed-Memory MIMD Multiprocessors

S. Crivelli and E.R.. Jessup"

Department of Computer Science

University of Colorado

Boulder, Colorado 80309

October 1992

Abstract

In [13],Simon provesthatbisectionisnot theoptimalmethod forcomputingan eigen-
valueon a singlevectorprocessor.In thispaper,we show thathisanalysisdoesnotextend

in a straightforwardway to the computationof an eigenvalueon a distributed-memory

MIMD multiprocessor.In particular,we show how the optimalnumber ofsections(and

processors)touseformultisectiondependson variablessuchasthe matrixsizeand certain
parametersinherentto the machine.We alsoshow thatparallelmultisectionoutperforms

the variantof parallelbisectionproposedby Swarztrauberin [15]forthisproblem on a
distributed-memoryMIMD multiprocessor.We presenttheresultsofexperimentson the

64-processorInteliPSC/2 hypercubeand the 512-processorIntelTouchstoneDeltamesh

multiprocessor.

1 Introduction

Bisection and multisection are simple and effective techniques for accurately solving the real

symmetric tridiagonaJ eigenvalue problem. When one eigenvalue is needed, bisection begins

with an interval known to contain that eigenvalue. The interval is halved and then replaced

with the interval half found to contain the eigenvalue. The process repeats recursively until

the length of the interval is less than a given threshold. The midpoint of the final interval is

accepted as the computed eigenvalue [14]. Multisection is a generalization of bisection that

splits the initial interval into p . 1 >. 2 subintervals [10].

The bisection procedure, first described by Givens [5], uses the sequence of the determinants

of the principal minors of a matrix to locate its eigenvalues. Let 7" = [77j,(j,T/j+t] be a real,

symmetric, tridiagonal n × n matrix, with diagonal elements (j, for j = 1..... n, and off-

diagonal elements r/i ¢ 0, for j = 1,..., n- 1. Let d_.j denote the characteristic polynomials of

the submatrices of 7" consisting of rows and columns i through j, then

di.0(,\) = 1

"Department of Computer Science, University of Colorado, Boulder, CO 80309-0430 (crivells_cs.colorado.edu

and jessup@cs.colorado.edu). Both authors were funded by DOE contract DE-FG02-92ER25122 and by NSF

grant CCR-9109785. Part of this work w_ completed when the second author was in residence at Oak Ridge

National Laboratory and funded by DOE contract DE-AC05-84OR21400.

1

. MAS LR
OF THIS DOOUMENT IS UNLIMITEO _"_DISTRIBUTION

d;,j(a) (;'; a)d : a _ _= - , -r/j_t i.j-2(A) 2 < i,j < n. (1)

In particular, the sequence of leading principal minors of the matrix T-)_is obtained by setting
i = 1 in equation (1). The number of eigenvalues of T smaller than A is equal to the number

of sign agreements of the consecutive terms in the Sturm sequence {dtj(A)} [5].
Because the linear recurrence (1) may cause overflow or underflow problems, it is preferable

to use the Sturm sequence {fj(A)} defined as

fo() = Co-
,.}

fj(A) = _'J-A f_-l(A) J = 1,...,n-1 (2)

where fj(A) = dl,j(A)/dl,j_l(A). In this case, the number of eigenvalues of T smaller than A
is equalto the numberofnegativeterms in the sequence [2], the numberof
eigenvalues in the interval [A-x,Ao) is the difference o'(Ao) - o'(A_x). (Although it is generally
more robust than sequence (1), Kahan shows that sequence (2) may sometimes overflow as well
[913

It is possible to achieve parallelism either by using the recurrence formula (2) or by directly
computing the principal minors of T - _ and their characteristic polynomials. In the first case,
parallelism can be attained either by simultaneously evaluating the Sturm sequence at p interior

points of the search interval, one evaluation per processor, or by computing different eigenvalues
in parallel [7, 8]. In the second case, parallelism can be attained by using the associative property

of matrix multiplication which allows splitting the evaluation of the minors among the different
processors [15].

Several parallel bisection and multisection procedures have been proposed since Huang's
work on the ILLIAC IV [6], but tittle has been proven about their efficiencies. Lo, et.al. [10]
propose a combination a_gorithm for the Alliant FX/8 in which eigenvalues are first isolated

within disjoint subintervals through parallel multisection and then extracted to a given pre-
cision by serial bisection. The second step is made parallel by assigning different eigenvalues

to different processors. Their rationale for using multisection in the isolation phase is that
multisection creates more tasks than bisection, thus allowing faster isolation of the eigenvalues

and better processor load balance. Bernstein and Goldstein [3] argue against these reasons,
noting that multisection may create a large number of tasks associated with empty intervals.
They claim that an accelerated bisection technique should lead to better processor utilization

with less overnead when the number of eigenvalues computed is large compared to the number
of processors.

Ipsen and Jessup [7] show that on a distributed-memory multiprocessor (Intel's iPSC/1
hypercube), interprocessor communication and processor synchronization costs of the multisec-
tion phase make the combined algorithm of [10] slower than the bisection procedure alone. On
the other hand, Simon [13] defends multisection by proving that, for a single vector processor,
bisection is not the optimal method for computing one eigenvalue.

It is known that a single eigenvalue is computed more efficiently by serial bisection than

by serial multisection [10]. In this paper, we develop a formal analysis of the relative costs of
bisection and multisection on a distributed-memory multiprocessor. We compare the costs of

computing a single eigenvalue by serial bisection, by parallel multisection, and by Swarztrauber's

parallel bisection [15]. We show how the optima/method for computing one eigenvalue depends

on a number of variables, such as the size of the matrix and certain parameters of the multipro-
' cessor used. Our analysis is supported by experiments on a 64-processor Intel iPSC/2 hypercube

multiprocessor and the Intel Touchstone Delta, a distributed-memory MIMD machine whose
512 i860-based nodes are interconnected as a two-dimensional rectangular grid.

The paper is organized as follows. In section 2, we derive an analytical expression for the
arithmetic time required to compute a single eigenvalue by multisection. We also analyze two

' communication schemes that are competitive on the hypercube and present the time complexity

for each approach. In section 3, we determine the optimal approach by deriving an appro:d-
mation to the optimal number of processors and obtaining an estimate of the error incurred
by using this approx.imation. Numerical results are presented to illustrate the behavior of the
cost function proposed in this work. The time comple:dty for multisection on mesh-connected

architectures is investigated in section 4. In section 5, we present some comparisons between
the analysis of multisection costs for the hypercubes and the one obtained by Simon for vector

processors in [13]. In section 6, we derive an analytical expression for the time required to com-
pute a single eigenvalue by Swarztrauber's parallel bisection and compare it to the multisectioa
costs obtained in section 2. Finally, we present a brief summary in sectioa 7.

2 Time Complexity Analysis for Multisection

In this section, we develop an analytical expression for the time required to compute a single
eigenvalue by multisection on a hypercube multiprocessor. First, we determine the number of
iterations needed to extract an eigenvalue from an interval of width l when the interval is split

into p + 1 subintervals at each iteration. If the final interval width turns out to be 5 = le, where
e is a given threshold, it is necessary to carry out at least k serial multisection steps, until

I/(v+ 1)k < 5.

lteplacing 5 with its value le and taking the logarithm gives

kp = r-log(_)/log(p+ 1)].

Note that when p = 1, kl gives the number of bisection steps. This argument is independent
of the base of the logarithm, but throughout this paper, we take log(z) to mean log2(z).

2.1 Computation Cost

At each iteration, p division points are determined and the recurrence in equation (2) is eval-

uated at each point. If the interval endpoint3 are A-I and Ao, the distance between division

points is ,k = (Ao - ,\-I)/(P + 1). and the division points are A; = A_l + i_, i = 1, p.
The cost of computing these points is P_I + _,,'_.,where _.,'1is the time for a floating point

addition or subtraction and _o is the time for a floating point multiplication or division. The

Sturm sequence evaluation at each point takes n floating point divisions and 2n floating point
subtractions. In addition, counting the negative terms in the sequence requires n floating
point comparisons. Therefore, the total cost for computing a single eigenvalue by the serial

multisection algorithm is

TM = k, • [p• (n, (o._1+ ,;2+ "_2)+ _) + _2],

where 72 is the time for a floating point comparison.

When the p Sturm sequences are evaluated in parallel --one per processor-- at each mul-

tisectionstep, processorsmust communicate to determine the next search interval.Because

communication costscan be quitesignificantin theseparallelalgorithms,we examine e_cient

communication schemes in the followingsubsection.

2.2 Communication Cost

On e_sting hypercube multiprocessors,the costof data communication ishigh in comparison

to the costof floatingpoint computation. In particular,the costof communicating an m-byte

message from one hypercube processortoa neighboringone is/3+rnr,where thecommunication

startup latency/3 isgenerallylargein comparison to the transmissiontime per byte r and to

the time for a floatingpointoperation.On the iPSC/2, _/r = 975,_/_i = 59, and _/_2 = 56

[4].
These costratiosleadus toconsideronlycommunication schemes thatminimize thenumber

of message startups,i.e.,thatuse a number of message startupsproportionalto the dimension

d of the hypercube, with p = 2a processors[ll].We do not,however, attempt to decreasethe

impact of communication through redundant computation. Specifically,a processorevaluates

the Sturm sequence at only one divisionpointinsteadof determiningthe number ofeigenvalues

within an intervalby evaluatingthe Sturm sequence at both endpoints.

There are two basicmechanisms fordeterminingthe nextsearchintervalfrom the distributed

Sturm sequence counts in O(d) communication steps.These depend on all-to-oneor all-to-all

communication primitivesas discussed,forexample, in [Ii].

2.2.1 The Gather-Broadcast Approach (GB)

The firstapproach is a gather-broadcastroutinein which each processorsends itsSturm se-

quence count to a singlemaster processor.That processorthen computes the endpointsofthe

next search intervaland broadcaststhem back to allthe other processors.Because the hyper-

cube isa connected graph,itispossibletoconsideritas a spanning tree,which isa sub-treeof

the graph that containsthe master as rootand allotherprocessorsa-_leaves.When a spanning

treebased gather and broadcastare used,the communication costis

O.d,3+ (d- 1)(4+

for an integer*4 processor number and real*8 endpoints [11].

The total time to compute one eigenvalue using this algorithm is

TaB = {time forone eigenvaluecount

+ time to find a new interval by gather-b_'oadcast}

,number of iterations

= (,_(2_-'1+ _2 + "Y2)+

2dh+ (d- 1)20,,-)I-,,ogEllog('<;+ 1)].

2.2.2 The Alternate Direction Exchange A.pproach (ADE)

The second communication option is based on alternate direction exchange (ADE) as described

in [11]. ADE is typically used to accumulate in all p = 2 d processors a vector of length pk whose

components are initially distributed evenly among them. In each of d communication steps, the
d-cube splits into a different pair of (d- 1)-cubes. In the first step, corresponding processors in
the two cubes exchange their k elements and accumulate a vector of length 2k. In subsequent
steps, the processors exchange and accumulate all previously accumulated data so that in the
last step processors send messages of length 2_-tk and accumulate the full vector.

In the case of multisection, it is not necessary for all processors to accumulate M1 Sturm
sequence counts. If eigenvalue m is sought, each processor only needs the division points ,\{

and Ai+l surrounding eigenvalue m. If division point Ai is assigned to processor i, { = 1,..., p,
this information can be computed by any processor from Sturm sequence counts a(i) marked
with the identifiers of the counting processor/. At each step of the ADE for multisection, each
processor retains only the count closest to the eigenvalue index m.

Thus, at each step of the ADE for multisection, two integers (i and ct(i)) are sent in each
direction between each pair of processors. The processors then determine which identifiers to
retain. Every step then takes

2d(fl + (2 • 4)r) + dTx,

where 71 is the time for an integer comparison. If the machine allows simultaneous bidirectional
sends across the same communication channel, the total cost reduces to

d(/3 + (2 * 4)7 + 71),

and the alternate direction scheme involves roughly half the communication latency of the

gather-broadcast scheme. The iPSC/2 supports such sends when the message size is less than
100 bytes [12].

Using the ADE communication scheme, the total cost for computing a single eigenvalue by
parMlel multisection becomes

TADE = {time for one eigenvalue count

+ time to find a new interval by ADE}

• number of iterations

= {n(2wl + ¢02+ _'2) + _ol + w_ +

d(/3 + 87 + _'1)} * f-log(e)/log(2 d + t)].

When d = 0, multisection reduces to serial bisection.

Therefore, the ADE approach performs better than GB for parallel multisection because it

requires half the number of communication startups.

3 The Optimal Approach

In this section, we use parallel multisection based on an ADE in order to determine the op-

timal number of sections and processors to use. However, it is important to note that the
same conclusions can be derived by using any other communication scheme that involves O(d)

startups.
For further analysis, we neglect the contributions of data transfer r and integer com-

parison 71 because the startup time /3 is much larger than either (/3 >> r, 71) and write
c_ = (arithmetic costs)//3. The cost function for multisection then becomes

Tc= 2(d + loge/log(2d+ 1)]. (3)

0,1

0"09f

0.(_

,_, 0.07

_ 0.06

"_ 0.1_

0.04 :_._.":'_,".r-._..........:-': ,o o

0°0_ o o,O a°°" "°°

,,m.oo_OO_°°o ''''_°''_" °

• (,*

0.% ,o ., 7; ., Too
4

Figure 1: Functions Tc, T_, and T+.

The locationof the minimum ofTc definestheoptimalnumber of divisionpointsto use in
bisectionor multisection.In thissection,we determinehow the locationof thatminimum

depends on theparametersa,_ and _.

BecausethestraightforwardanalysisoftheceilingfunctioninTc isunwieldy,we firststudy
the auxiliaryfunctionsT_ and T+

- logE

7'_ = ,3(a+d)iog(2 a + 1) (4)

T+ =

Figure 1 depicts the functions Tc, T_, and T+ plotted against the continuous variable d for
a = 4.6, ;3 = 390 and -log(e) = 54. This choice of variables corresponds to computing an
eigenvalue of an order 100 matrL_: on an iPSC/2 to precision e/2 m 10 -16.

3.1 Estimating the Location of the Minimum of Tc

As d increases, the cost function Tr zigzags between T_ and T+, with its local maxima lying on

T+ and its local minima on T_, until the point where it grows linearly as the function ;3(c_+ d).
Function T_ has one global ma_mum then decreases monotonically, converging asymptotically
to the constant function -/3 log e. Function T+ increases then, depending on the value of a,
may fall to one local minimum; T+ ultimately rises asymptotically to the function Tc. In Figure
1, T+ has a local minimum for a value of d > 0.

Because Tc does not have a global minimum, we need to study the behavior of the function

in the interval of processors available to us in order to find a local minimum. Let D = [0, d,_]
denote that interval, where d,_ is the maximum number of available processors. The location

d,,_i,_of the minimum value of Tc in D determines the number p,_m = 2d=_" of division points

(and processors) to use for most efficient bisection or multisection.

Because the minima of Tc Lieon the smooth curve T_, we employ T_ to estimate the global
minimum of Tc in D. Because 2"_ has exactly one maximum located at d,,_==,its minimum in
D lies at an endpoint of that interval. We will locate this global minimum of T_ in D relative
to the position of the global maximum of 7,_.

Now, if d,,_==,< 0, 2"_ decreases monotonically in the interval D and takes its minimum

value at d = d,_=p. Let us assume for the moment that Tc and 7'_ are somewhere coincident in

D after reaching their ma.'dmum values. In particular, if Tc(d,,,,_p) = T_(d,,_=p), the minimum
of Tc also occurs at d = dmi,_ = &nap. However, because Tc is not smooth, its minimum may

actually lie to the left of d = d,_=p. In fact, the minimum of Tc ties at the largest d < d,_.,p
such that Tc(d) = T_(d). In this case, d,_i,_ > 0, and multisection with p = 2d''',, is the most
efficient method.

If dma z > 0, the minimum value of T_ is attained at one of the endpoints of D. Hence, the

minimum of Tr is attained either at d = 0 or at some 0 < d < dm=p. (As above, d,_i,_ can equal
dma_, only if Tc(d,.n,,p) = T_(d,n_p).) There are then two possibilities:

1. If d,ni,_ = 0, increasing the number of division points increases the run time. Therefor.e,
bisection is optimal.

2. If d,_i,_ > 0, multisection into p + 1 = 2z''- + 1 intervals is optimal.

Because the sign of d,_===is so important we now investigate d,,,,,=,. The maximum of 2"_
lies where OT_/Od = O. Although the zero of this derivative cannot be determined analytically,
we can determine the problem size at which the maximum lies at dm,,=, = 0. Manipulation of
02"_./0d = 0 leads to

(2d_°x + 1) log(2 d''o_ + l)
2dm..x --drear = Or.

When al,n==,= 0, c_ = 2. For problems with a >_ 2, d,_,==,< 0, and multisection is always the
most efficient option.

It remains to determine when multisection should be applied if a < 2, which corresponds
to the case dm=z > 0 discussed above. Note that bisection and multisection take the same time

to compute the eigenvalue when Tc(0) = Tc(d_=_,), that is, when

- Ilog(2a-'-. + 1)

On the iPSC/2 the maximum number of available processors corresponds to a cube dimension

d,_,,_, = 6. Thus, assuming - log(e) = 54, the crossover point between multisection into Prnir,"4-1
intervals and bisection occurs a_ a = 1.2. No'v, since ,3 = 39O microseconds and a _ 0.046n,
this crossover point corresponds to a matrix of order n .._27.

To find the minimum of Tc we assumed that Tc and T_ were coincident in at least one point

of interval D. To prove it, we need the following lemma.

Lemma 3.1 Let S be the step function defined as:

S(d) = I-log e/log(2 d + 1)]

and S_ the continuous .function defined as:

S_ (d) = - log e/log(2 d + 1).

=!l

Then the distance A between two consecutive peaks of the function Tc is such that

-1

- OS_lOd"

Proof: The distance between two consecutive peaks of the function Tc is determined by the
width of the steps of the function S. If A is the width of the step where S(d) lies, the following
holds:

S_(d + A)- S_(d) < -1. (5)

Because S- is monotonically decreasing, for any increment in d, Sd, we get

OS---=Sd< S_(d + 5d) - S_(d). (6)Od -

where the derivative OS_/Od is evaJuated at d. La particular, taking 5d = A and applying (5)
to (6) we get:

-1
A<

- aS_lad"
[]

Accordingto the lemma, at d = 0, A < 2/-loge. Consequently,to have at leastone
coincidentpointin D = [0,dm=p],we need A < d,,=pwhichisaccomplishedforthosevaluesof

e such thate < 2-2/4"=p.Usingdm=p = 6 we gete < 0.7937,which ingenera/can be easily
satisfiedforE = lengthfinalinterva//lengthinitia/intervM.Recallthat,inourexampleon the

iPSC/2,we consider¢/2_ 10-16whichmeans thatwe can expectcoincidencebetweenT_ and
T= in theintervalD.

3.2 The Error Incurred by Using T_ to Model Tc

We have determinedthattheoptima/number ofprocessorsisgivenby p = 2d'_-,wheredmi,_

isthe minimum ofTc in D. Becausewe cannotdetermined,n_,Lanalytically,we decidedtouse
the minimum of T_ in D whichoccurseitherat d = 0,meaning thatbisectionisoptimal,or

drna_,meaning thatmultisectionisoptima/.Next,we determinetheerrorintroducedby using
the minimum of T_ in placeof theminimum of Tc when multisectionisoptimal.BecauseTc

zigzagsbetween7'_and T+, themaximum errormade by takingd,,_apinpiaceofdmi,_isgiven
by T+(dm=p)- T_(d,,ap)= _(a + dm=p).

Although we choosedma_,as an approximationforthe minimum ofTc,itisimportantto
note thattherearesome caseswhere itrea//yistheoptimalchoice.In fact,therearesome

valuesofc_forwhich thefunction7'_issosteepatdmap that

lT_(d,,_p) - T_(dm,p - 1)1> T+(dm°,)- T_(d,_,p) = 13(a + d,_,p).

That is, the change in T_ for d varying from d,,_,p - 1 to d,,_,p is larger than the error incurred

by considering dm_p as the minimum. That error is bounded by the difference between T+ and
T_ at d_p.

In our example on the iPSC/2, we get a p 8.73. This means that when the size of the

matrix is larger than 189, dm,p is a good approximation, and we can choose muhisection with

p = 2d"-p as the optimal method.

0.11,

0"I t alpha,. 30._

0.08

"-' 0.07

0.06 alpha - 1.7

0.05 alpha=
...wq

o.O.Ol0.01 * ,

d

Figure 2: The cost function Tc for different values of a (computed and measured).

Figure 2 depicts the function Tc plotted against the continuous variable d for several values of

c_(solid lines as marked). Also shown are times measured on the iPSC/2 (circles) for hypercubes
of dimension d = 0, 1,..., 6. On a cube of dimension d, p = 2d division points are used. The
figure shows good agreement between the model and actual timings in the range of available

processors. Table 1 shows experimental results on the iPSC/2 using d,_ap = 6.

We have seen that the maximum error made by taking the minimum of T_ instead of the

minimum of Tc is bounded by the difference between T+(dm,w) and T_(d,n,,p). Because this
difference increases as d increases, it is necessary to analyze the benefits of adding more and
more processors versus the magnitude of the error incurred. Furthermore, the function Tc

becomes a straight line after some point, after which it is no longer beneficial to add processors.

To facilitate the analysis, we define two important values old: dc _ 0 is the point at which T+
attains its local minimum (if there is one), and dt is the point at which Tc begins to rise linearly.

The point di is thus the smallest value of d that satisfies the equation _-log e/log(2 d . 1)] = 1.
These values in turn distinguish three regions:

region 1 begins at d = 0 and ends at the point rain(dc, di). In this region, Tc zigzags between
two decreasing functions. Therefore, we can expect better results when we increase the
number of processors.

region 2.a begins at the point rain(dc, dr) and ends at dr. Since the cost function jags between
the asymptotically decreasing function 7'_ and the now increasing function 7'+, processors
in this region must be added carefully. In fact, while we still can get better results

by adding more processors, we can also incur substantial errors by approximating the
minimum of Tc with the minimum of T_.

region 2.b begins at di. In this region the cost function increases linearly as _(_ + d). There-

fore, we will not find any minimum value greater than di for Tc in this region.

IIIlil ,_

Bisection vs. Multisection
n d,n{,_ bisection multisection ratio
l0 0 0.02336 0.04472 1.91

20 0 0.03726 0.04:342 1.17

25 0 0.04330 0.04472 1.03

26 0 0.04460 0.04496 i:0]_-
27 5 0.04696 0.04522 0.96

28 5 0.04832 0.04542 0.94

29 5 0.04968 0.04566 0.92
30 5 0.05116 0.04606 0.90

--5-_ 5 0.07900 0.05186 0.66

100 I 5 0.14852 0.07218 0.49

Table 1: Execution times for computing the smallest eigenvalue of matrix [1,2,1] on the iPSC/2.

We now estimate the values of dc and dt in order to define those regions more precisely.
To find the point d= we need to find the solution to aT+/Od = 0. Because we cannot solve
this equation analytically we approximate 1/log(2 d + 1) by 1/d. The relative error that this
approximation incurs is

1/log(2d + 1) - 1/d log(2 a + 1)]E_(d) I
1/log(2d + l) I--I1 - - d '

which is small for d > 1. In fact, it can be easily seen that, for any d > 1, E,.(d) > Er(1) _ 0.58.
Therefore, for d _> 1, T+ can be approximated by the function:

T+ _ _(c_+ d) [- l°g e]_+1 ,
and its first derivative is

r]-_ = OT+/Od.._ /3 L d2 +1 =0.

Manipulating this expression and considering only the positive root we get

dc = V_- log(e)_. (7)

To find the point dt where the cost function Tc becomes a straight line, it is necessary to
solve

- log e/log(2 d . 1) = 1.

Manipulating this equation we get dt as:
1-e

dt = log _ (8)
£

FinaLly, to illustrate how the different regions look like, we give particular values to the
parameters in equations (7) and (8). l_ecaJ_lthat, on the iPSC/2, a value of a = 4.6 corresponds

to a ma_rL_ of order 100. Thus, for the problem of evaluating a single eigenvalue of an order
100 matrix on an iPSC/2 to precision e/2 _ 10-16 , the values of dc and dt are 13 and 37

respectively. Because dm,,1,= 6, we can conclude that, for these parameters, D is contained in
region 1. Because a > 1.2, multisection performs better than bisection, and therefore, we can

take d,,_ap as the optimal number of _rocessors to use in this problem.

10

4 On Mesh-Connected Architectures

In the preceeding sections we analyzed parallel implementations of multisection and bisection
on the hypercube. Because of the high ratio between the communication and computation costs

on the iPSC/2, we considered only those a/gorithms involving O(d) communication startups.
Among those approaches, the Alternate Direction Exchange multisection algorithm was shown

to be the most efficient optima/ approach. In fact, while ADE takes only d communication
startups to determine the new search interval, the GB approach takes 2d startups to accomplish

the same task. However, a/though ADE outperforms GB on the hypercube, this a/gorithm is
intimately tied to the hypercube topology. Because we cannot implement ADE on mesh-

connected architectures, we investigate in this section the time complexity of the GB approach.
As described for hypercubes in section 2.2.1, each processor computes a Sturm sequence

count and sends it to the master processor. The master gathers the information, computes the

next interval, and broadcasts it back to the rest of the processors. While the computation cost
of this a/gorithm is the same for mesh-connected processors as for hypercubes, it is necessary to

reconsider the communication time complexity for the new architecture. According to [1], t_ere
is an optima/broadcast (gather) algorithm for meshes that does not cause network contentio.

and has the same logarithmic time complexity as for hypercubes. Figure 3 depicts a contention-
free broadcast from node 0 to all others on a linear array [1].

If we have a two-dimensiona/ grid of p = Pl ×P= points, where pi = 2d_, i = 1,2, it
will be necessary to perform d = dt + d2 = log(pl)+ log(p2) = log(p) steps to complete a

broadcast (gather) operation [1]. The basic idea is to partition the two-dimensiona/array a/ong
one dimension, thereby reducing the problem to that for linear arrays. These, in turn, are
recursively partitioned, doubling the number of partitions at each step, and creating distinct
sub-arrays which can proceed independently with the broadcast (gather) procedure. In this way,

a minimum spanning tree broadcast (gather) can be performed on mesh-connected architectures
as efficiently as on hypercubes. The only difference is in the way that the minimum spanning
tree is derived using the binary representation of the nodes. While the order in which bits are

toggled to derive the tree is not important for hypercubes, it is for meshes due to contention
problems [1].

Therefore, under reasonable assumptions, the time complexity ana/ysis of the GB multisec-

tion approach remains the same on both hypercube and mesh-connected architectures. Figure

4 depicts the cost function Tcs corresponding to the GB multisection approach for computing
the smallest eigenva/ue of the 1000 x 1000 matrix [1, 2, 1] plotted as a solid line against the

continuous variable d = log(p). On the same plot, it also shows the times measured on the
Intel Touchstone Delta (circles). The values of the parameters used in computing Tns are

-log(e) = 54, fl = 75, and ,_ = 7 = 0.1. These values correspond to double precision accuracy
on the Delta. The figure shows good agreement between the theoretical and the actual timings
in the range of available processors.

5 On Vector Processors

In this section, we compare the cost function Tc for the hypercube, defined in equation (3), to
the cost function C for vector processors obtained by Simon [13]:

C = (s + rp)[-loge/log(p+ 1)],

11

000 001 010 011 100 101 110 !11
e.,_:::• _ • _ o-_eo_ • _ e_ e Step i

m-----,__--- Step 2

Figure 3: Broadcss_ing a message from node 0 on a linear array (most significant bit to least
significant bit). ,?ource: [1].

O..3

ol
A

8
._ 0.1.5

o_'1_

0.1 l__

0.05 , J

d

Figure 4: Theoretical and actual values of the cost function for computing an eigenvalue of
the [1,2, 1] matrix of order 1000 on the Delta.

12

0 Jo i i • ; , ,o
a.4_(e)

1
Figure 5: The scaled vector cost functions _C and ;C_. These dimensionless quantities show
the optimal number of sections to use on a vector processor.

where s isthe startupcostof the vectorloop,r the asymptoticrate,and p the number of
multisectionpoints.We confirmthatthe analysisisconsiderablymore straightforwardfora
vectorprocessorthan fora distributed-memorymultiprocessor.

A comparisonof Figuresi and 5 shows thatTc differsdramaticallyfrom C. The reason

isthat,on vectorprocessors,the vectorloopstartupcostisindependentof the number of
multisectionpointswhiletheasymptoticarithmeticcostincreaseslinearlywiththisnumber.

In thevectorcase,a minimum alwaysoccursforsome number ofdivisionpointsp > I.Thus,
multisectionisalwaysoptimalon vectorprocessors.In contrast,thedistributed-memorycost
functionTc doesnot havea globalminimum butinsteada globalmaximum. Therefore,a study
of thefunctionin theintervalofavailableprocessorsisnecessaryto findthe localminimum.

Our analysisshows differentbehaviorsofTcdependingon thevaluesofthedifferentparameters
involved.Thus,in thehypercubecase,theoptimalmethod dependson theproblemorder,the

ratiobetweencommunicationand computationcosts,and on thenumber ofprocessorsavailable.
Although itisclearfrom [13]thatmultisectionintop + I intervalsisthe bestchoicein

the vectorcase,itisnot straightforwardwhich valueof p producesthe minimum cost.For

instance,fora machinewithratiosir = 60,thevalueofP,ni,_obtainedby Simon from running
hismultisectioncode on a random matrixoforder3000is37,whereasthe predictedp is25.
Simon attributes this difference to the fact that the predicted value is obtained considering

only the multisection loop, whereas the experimental p,,_i,, comes from taking into account the
execution time of the whole multisection code.

In his analysis, Simon actually uses the function

c_ = + log/log(p+ I))

analogous to T_ defined in equation (4) for distributed-memory multiprocessors. Figure 5

depicts the functions C and C_ plotted against the continuous variable d = log(p) for sir = 60.0
and - log(e) = 54.

13

In thisexample,theoptimalnumber of processors,P,,,i,_,obtainedby neglectingand using
the ceilingfunctionare25 and 22 respectively,whereasthe valueobtainedexperimentallyby
Simon is37. Observe thatalthoughthe actualminimum oi"C occursatp _ 29.1,we consider
onlythe integervMues ofpmi,_.That isthereasonwhy we takep = o2 as theminimum value.

Because the approximationof Tc with T_ may incursignificanterrors,we firstthought,
by analogy,thatthe discrepanciesbetween thepredictedp amd theone obtainednumericaLly
by Simon couldbe partiallyattributedtotheneglectingoftheceilingfunction.However,the

resultsobt_ned by usingC'areonlysLightlydifferentfrom thoseobtainedby usingC'_and
consequentlydo notjustifythisargument.Ignoringtheceilingin the vectorcostfunctionC'

does not affectthefinalconclusionsabout theoptim_ valueofp. See Figure5.
Finally,becausethelocationoftheextremevalueofC may varywith E,we compute the

valueofpmi,_fore = I0-s.The minimum forthissingleprecisionexamplealsooccursatp = 22
and does not affectour conclusions.

6 Time Complexity Analysis for Swarztrauber's Parallel Bi-.

section (SPB)

In thissection,we developan analyticalexpressiontoestimatethetime requiredtocompute

a singleeigenvalueby the parallelbisectionapproachproposedby Swarztrauber[15].This
method isbased on the parallelevaluationof theSturm sequence{dl,j(A)}ateach bisection
point.Ifwe define

k=i -77k-i0 ' (9) ,
itcan be shown that

Qia(A) = [dl,j(A) _jdi,j_l(A)] (10)-r1¢-1 di+t,j(A) -_?i-lr/jdi+l,j-l(A) "

Thus, the terms of the Sturm sequence {dl,j(A)}, j = 1,...,n are given as the upper left
elements of {Q_d(A)}, j = l,...,n respectiveiy. The sequence {Q_,j(A)}j=_,,, can be evaluated
in parallel by using the associative property of matrix multiplication according to the formula

Qi,j = Qi,kQ_:+l,i, (11)

for any i <_ k <_j -1.

Using this splitting formula, the computation can be performed in log r_ steps following a

binary tree scheme. Figure 6 illustrates the data dependency graph for the case n = 4.
The parallel algorithm to compute the Sturm sequence proceeds as follows:

Step (1) - In parallel, comput,.':

Qi,i+l = Qi,iQi+l,i+l, i = 1,...n - 1, (12)

where Qi,i are 2 x 2 matrices obtained by setting i = j in equation (9).

Step (2) - In parallel, compute:

Ql,3 - Ql,lO_,a

Q1,4 = Q1,2Qa,4 (13)

Qi,i+a = Qi,i+lQi+:,i+a i = 2,...n - 3.

14

Qf3 Q14

step 2

1

Q22 Q33 Q,4

Figure 6: Data dependency graph for n = 4.

Step (k) - In parallel, compute:.

Q1,2k-t+i = Ql,iQi+l,2k-l+i i= 1,...2 k-t (14)

Qi,i+2k_l = Qi,i+2k-l_lQi+2k-t,i+2k_l i = 2,...rr -- 2k + 1.

Step (log n)- In parallel, compute:

O1,:'0, +1,••., O

We aaaalyze in the following subsections, the computation a_d communication costs of this
procedure.

6.1 Computation Cost

We first analyze the arithmetic cost that each Sturm sequence evaluation incurs. 3y looking at

equations (12-14), it can be seen that there are n - 1 matrix multiplications in the first level
of the computational tree, n - 2 irt the second and n - 2k-1 in the k tA level. The total number

of 2 x 2 matrLx multiplications involved in the log n levels of the computational tree is then

logn- 1

Z (n- 2i) = n log n + 1- n.
i=o

Furthermore, each matrix multiplication requires 8 floating point multiplications and 4 floating

point additions, except for the matrices at the first level which only take 6 multiplications and
2 additions because they have a zero dement. Thus, the serial computation cost to compute
the Sturm sequence at each bisection step of this algorithm is

(4_1 + 8w2) • (n log n - n) + 2wl + 6w2.

Assuming that we can distribute this cost evenly among the p processors, the parallel compu-
tation cost per Sturm sequence evaluation becomes roughly

1
- *(4_i + 8w2)* (nlogn + 1 - n). (15)
P

15

|

Adding the cost of computing the bisection points and counting the sign agreements in the
Sturm sequence to (15) and considering all the steps in the bisection iteration gives the to-
ta/arithmetic cost per processor for computing a single eigenva/ue by Swarztrauber's parallel

bisection algorithm as

Tsps=kl* .(4_l+8_2)*(nlogn+l-n)+n72+_l+_2 . (16)

6.2 Communication Cost

As illustrated in Figure 6, it is necessary to carry out log n steps to evaluate the Sturm sequence
at each bisection point. For our analysis, we will ignore contention problems and assume
tkat each processor is involved in at most one 2 x 2 matrix send or receive per step. The
communication cost is then

log,_(_ + 4 • Sr), (lT)

for real*8 matrix elements. Once the Sturm sequence is evaluated, its terms reside on different

processors, and it is necessary to accumulate them in order to count the number of sign agree-
ments. This interchange can be accomplished using the ADE approach described in [ll] and

reviewed in section 2.2.2 of this paper.
The ADE algorithm is used to accumulate a vector whose components are evenly distributed

among the processors. If the machine allows simultaneous bidirectional exchange across the
same communication channel, the cost of the vector accumulation becomes

dB + 8r • (2d - I), (18)

for rea/*8 vector elements.

Thus, adding expressions (17) and (18) to equation (16), the total time to compute one

eigenva/ue to accuracy E/2 by Swarztrauber's parallel bisection is

Tsps = {computation cost for each Sturm sequence evaluation

+ communication cost for each Sturm sequence evaluation

+ time to interchange the terms by ADE}

• number of iterations
1

= {_(4_l+8w2)*(nlogn+l-n)+n72+a;l+w=+
&

logn • (# + 4 * Sr) +

+ (v - 1)}• [-log d,

where d = log(p).
Therefore, even in the best situation when each processor sends or receives at most one 2 x 2

matrix per step, the communication cost for this method is higher than for the other two, i.e.,
multisection based on BG or ADE, for any number of processors. Because the computation

cost for each Sturm sequence evaluation is divided by p, we first thought that SPB could be

competitive for a large number of processors. However, this is not the case, as illustrated in

figure 7 where it can he seen that multisection is more efficient than SPB even for large number
of processors.

16

16 "" , , ' , , , '" , ,

15.5

U 14.5 .-
._ °'"**°

SPB ../

14 /"

.2
N 13.5 Mulfiscction

y
'_ 13

12"5I
12 c , , , , , ,o o12 0.4 0.6 ols l 1_2 1.4 11. _.8

n zlO4

Figure 7: The cost functions TSpB and TADE for p = 1024.

Figure 7 shows a comparison between theoretical values obtained using the functions TADE,

i.e., the cost of multisection using ADE, and TsPB, i.e., the cost of SPB, for p = 1024. The

values of the parameters considered correspond to those for the iPSC/2 given in [4], and e is
the double precision machine error. Hence,/3 = 390, r, wl, and w2 are as described in section

2.2, 72 = 5.4, and -log(e) = 54.
The situation illustrated in figure 7 remains unchanged even for larger number of processors

--i.e., p > 1024-- due to the high communication cost incurred by this method. Therefore, the
parallel Sturm sequence evaluation proposed by Swarztrauber is not a competitive method for
computing one eigenvalue on the distributed-memory multiprocessors considered in this paper.

7 Summary

In this paper, we have studied and compared the costs of computing a single eigenvalue by serial
bisection, parallel multisection, and Swarztrauber's parallel bisection, on different distributed-

memory MIMD multiprocessors. We have shown that parallel multisection outperforms $warz-
trauber's parallel bisection. We have also shown that the optimal number of processors (and
sections) depends on such parameters as the ratio between communication and computation
costs and the matrix size.

In general, multisection performs better than bisection on the iPSC/2 and Delta machines.

and the maximum number of processors available is a good, practical apprommation to the
optimal number of sections to use. Bisection is the best choice only for small size matrices. An
example in section 3 shows that bisection is preferred for computing an eigenvalue to double

precision on the iPSC/2 when the matrix order is no greater than 27.

17

Acknowledgements

We thank BillGropp forhisaidin runningexperimentson the Delta,Pdk Littlefieldforhis

helpfulcomments on an earlydraftofthiswork,and Robertvan de GeijnforprovidingFigure
3.

References

[1] M. BARNETT, D.G. PAYNE, AND R. VAN DE GEIJN, Optimal broadcasting in mesh-

connected architectures, Dept. of Computer Science, University of Texas, Technical Re-
port TR-91-38, 1991.

[2] W. BARTH, R.S. MARTIN AND J.H. WILKINSON, Calculation of the eigenvalues of a sym-
metric tridiagonal matriz by the method of bisection, Handbook for automatic computation:
Linear Algebra, Springer Verlag, 1971, pp. 249-256.

[3] H. BERNSTEIN AND M. GOLDSTEIN, Optimizing Givens' algorithm for mulZiprocessorw,
SIAM J. Sci. Stat. Comput., 9, 1988, pp. 601-602.

[4] T. DUNmAN, Performance of the [nteI iPSC/860 hypercube, Oak Ridge National Labora-
tory, Technical Report ORNL/TM-11491, 1990.

[5] W. GIVENS, Numerical computation of the characteristic values of a real symmetric matriz,
Oak Ridge National Laboratory, Technical Report ORNL-1574, 1954.

[6] H. HUANG, A parallel algorithm for symmetric tridiagonal eigenvalue problems, Center for
Advanced Computation, University of Illinois, CAC Document 109, 1974.

[7] I. IPSEN AND E. JESSUP, Solving the symmetric tridiagonal eigenvalue problem on the
hypercube, SIAM J. Sci. Star. Comput., 11, 1990, pp. 203-229.

[8] E. JESSUP, Parallel solution of the symmetric tridiagonal eigenproblem, Dept. of Computer
Science, Yale University, Research Report 728, 1989.

[9] W. KAHAN, Accurate eigenvalue of a symmetric tridiagonal matriz, Dept. of Computer
Science, Stanford University, Technical Report CS41, 1966 (revised June 1968).

[10] S. Lo, B. PHILLIPE, AND A. SAMEH, A multiprocessor algorithm for the symmetric tridi-
agonal eigenvalue problem, SIAM J. Sci. Stat. Comput., 8, 1987, pp. 155-165.

[11] Y. SAAD AND M. SCHULTZ, Data communication in hypercubes, Dept. of Computer Sci-
ence, Yale University, Research Report 428, 1985.

[12] S. SEtDEL, M.H. LEE, AND S. FOTEDAR, Concurrent bidirectional communication on the

Intel iPSC/860 and iPSC/2, Dept. of Computer Science, Michigan Technological Univer-
sity, Technical Report CS-TR 90-06, 1990.

[13] H. SIMON, Bisection is not optimal on vector processors, SIAM J. Sci. Stat. Comput., 10,
1989, pp. 205-209.

18

IK

, , ,, i,, I kh , ,

i

[14] B. SMITH, J. BOYLE, J. DONGARRA, B. GARBOW, Y. IKEBE, Y. KLEMA, AND
C. MOLER., /v[atriz eigensystem routines-EISPACK Cuide, Lecture Notes in _omputer

Science, Vol. 6, 2hd edition, Springer-Verlag, 1976.

[15] P. SWAR.ZTP,.AUBER., A parallel algorithm for computing the eigenvalues of a symmetric

tridiagonal matrix, unpublished manuscript, 1991.

19

"-- "_i

