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ABSTRACT

Given digital acoustic data emanating from the heart sounds of the beating heart

measured from laboratory sheep with implanted Bj6rk-Shiley Convexo-Concave heart

valves, it is possible to detect and extract the opening and closing heart beats from the

data. Once extracted, spectral or other information can then obtained from the heartbeats
..

and passed on to feature extraction algorithms, neural networks, or pattern recognizers so

that the valve condition, either fractured or intact, may be determined.



1.0 INTRODUCTION

Artificial heart valves have provided individuals with heart ailments an extended

useful and productive life.[ 1] Unfortunately, mechanical failure of these valves can be

fatal, if not detected early. Once detected, the treatment is an immediate reoperation and

replacement of the valve [2]. Therefore, it is necessary to develop valve failure detection

schemes that are highly reliable. Currently, there are no sensitive or reliable mechanisms ..

to detect valve failure.

Lawrence Livermore National Laboratory (LLNL) proposes to perform the

research and development necessary to construct an instrument capable of non-invasively

classifying the condition of implanted Bj6rk-Shiley Convexo-Concave (BSCC) heart

valves. This instrument will analyze acoustic signals recorded in vivo generated by a

functioning heart valve implanted in sheep. We will first develop the signal processing

necessary to extract pertinent information from the acoustic data and then develop BSCC

heart valve classification algorithms based on features of the enhanced acoustic signals.

These algorithms will automatically classify the condition of BSCC heart valves

implanted in sheep.

Classifying the condition of implanted BSCC heart valves is a difficult, complex

task. After preliminary analysis of acoustic data, it is readily al:,parent that a standard

signal processing solution would not be possible due to the hostile nature of the

biological environment, valve dynamics and noise from various sources. The acoustic

signals generated by the BSCC heart valves become distorted while propagating through

the biological medium of the sheep and eventually are digitized and recorded at the

output of a sensitive microphone also subjected to extraneous noise sources. Since the

fundamental physical characteristics (e.g. resonant frequencies) of these acoustic signals

vary at each heartbeat, it is necessary to incorporate ali of these characteristics or features

in a detection scheme aimed at differentiating between fractured and unfractured valves.

Based on a careful analysis of the modal structure of the valve performed both at Shiley

Inc. and LLNL, simple simulations of this modal response and more importantly, in-situ

real-time data/spectral analysis of ovine acoustic measurements gathered by LLNL at a

veterinary laboratory, we propose the following to solve the BSCC heart valve

classification problem. Our approach to solve the heart valve classification problem is

based on Statistical Pattern Recognition which essentially interprets the spectrogram

surface as either a signal or an image, extracts so-called features from it and attempts to

define various decision regions for detection/classification. As part of this study we have

also have investigated "adaptive" type classification schemes using neural networks.



Here algorithms modeled approximately on the human brain, are applied to spectrogram

data once the important features are extracted. The network learns the various valve

classes by repeated application of data. Both techniques offer much promise, but again

large quantities of high quality acoustic data must be processed to quantify their

performance with acceptable statistical reliability. Of course, improved signal processing

of the spectrogram and/or feature vectors can enhance performance. Our approach is

' outlined in more detail below in Figure 1. The steps we require to classify the condition

of a given BSCC heart valve are to: (1) _ and digitize the acoustic measurements

after the appropriate signal conditioning (performed by Shiley Inc.), (2) perform the

necessary signal processing to enhance the particular characteristic or features of the

BSCC heart valve (e.g. pre-assigned frequency bins) which will be used for

detecfion/discrminaton, (3) extract the selected features of interest in a simplified form

(e.g. averaging adjacent frequency bins), (4) perform heart valve classification

(fractured/unfractured) using techniques from detection/pattern recognition on either the

one-dimensional acoustic signal (feature versus time/frequency) or on the entire two-

dimensional structure (feature versus heart beat number) evolving from the data. Note

also that we will apply "adaptive" pattern recognition techniques implemented using a so-

called neural-net algorithm, (5) lg._the classification algorithm using a simulator fu'st

(see Figure below) to ascertain proper performance and then measured acoustic data

composed of a training set to adjust algorithm parameters followed by a test set to

generate sample statistics (probability of detection, etc.), and finally (6) implerqedlLthe

algorithm along with an accompanying expert system (eventually in the instrument) and

process ali of the acquired data set to assess overall performance (probability of detection,

miss, false alarm etc.). In order to fully develop this approach, it is first necessary to

identify the difference between the acoustic signals generated by intact and fractured or

single leg separation (SLS) BSCC valves (modeli,_g/experiment). lt will be necessary to

compensate for distortions caused by biological tissue and by electronic instrumentation

(signal processing). Large volumes of acoustic data must be reduced to a manageable

size without losing significant information about the functioning heart valve (feature

extraction). A classification algorithm with extreme reliability must be developed and

proven (pattern recognition/test). The resulting signal processing, feature extraction, and

classification algorithms must be combined with other data and algorithms into a

sophisticated instrument for application to the clinical setting.
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Figure 1. LLNL Approach to BSCC Heart Valve Classification Problem.

The goal of this particular research proiect is to develop a technique to non-

invasively monitor the acoustic signals produced by implanted BSCC heart valves in

order to determine the structural condition of the valves. It is postulated tha: an intact

valve radiates a different acoustic signal than a SLS valve. A current feasibility study

conducted by LLNL indicates that it is possible to determine valve condition. However,

the main problem yet to be solved is to identify ali of the differences between the acoustic

signatures of intact and SLS valves and construct a classification system capable of

automatically recognizing those differences.

Shiley has provided the heart valve and the data acquisition, and so it is

the purpose of this report to outline our method for signal processing of the data. Shown

in Figure 2 is an expansion of the Signal Processing block of Figure 1.

The main purpose of the Signal Processing of the heart valve data is to enhance

signal levels and minimize the effects of noise and obtain results which will be put it into

a format that is useful for Feature Extraction. Initially, we must detect the various

heartbeats (i.e. openings, closings, etc.), screen for unacceptable beats, and extract them

from the data. We then filter the heartbeats into appropriate frequency bands and find

their corresponding spectrograms.

Section 2 will discuss our methodology and the algorithms for processing the data

The Appendix will have the actu',d C code description and usage.
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Figure 2: Signal Processing of Heart Valve Acoustic Data



2.0 ALGORITHMS

In this section, we discuss each operation depicted in Figure 2. First we discuss

the data identification and extraction procedure. Next, we detail our beat detection

algorithm followed by explanation our bad beat rejection algorithm. We then talk about

how and why we filter and resample the data into bands followed by discussion of the

spectral estimation techniques that we chose. Finally, we list the database created from

the signal processing.

..
2.1 Data Identification and Extraction

The data from Shiley comes in TAR format on Exabyte tapes. Since we have no

prior knowledge of the exact flies name¢, we must first list the table of contents of the

Shiley tape. Due to large file sizes and limited disk space, we then extract a subset of the

flies from the tape and process them until ali the files have been completed. Once a file is

on the hard drive, it must be converted from the Shiley interleaved format to a format that

can be readily utilized by our software. This is accomplished by removing the 1025

character header, converting the remainder to a 16 bit integer file followed by conversion

to a binary floating point file. We call this binary floating point file the raw data.

2.2 Beat Detection

Once we have the raw data, we can process it with our beat detection algorithm.

The purpose of this algorithm is to create a text file, called a "BEATS" file, which

contains the location in the raw data file and maximum value of each acceptable opening

and closing beat. The block diagram of our beat detection algorithm is shown in Figure

3.
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Figure 3: Beat Detection Algorithm

The fast operation we perform on the raw data is to bandpass filter it with a third

order butterworth filter. This filtering operation helps to smooth the data and suppress

noise so that it is better conditioned for the detection process.

Then, from the filtered raw data we compute a signal that consists of the ratio of a

sliding short term average to sliding long term average. The output is a signal of

potential events, where an event is either an opening or closing. The short term average

is computed as,

m_v(x)= x(t_) , typically NST = 50 samples
• "ST k-,O

and the long term average is computed as,

mLr(X) = _ 2_ xt,tk), typically NLT = 500 samples
_'LT k-O

and their ratio is then,

m=(x)
Rsn.r = mt.r(X )



After this signal of potential events, RSTLT, is created, we then pick both a

threshold to discriminate between the noise and the signal for event screening, and a

windowsize for which events occurring inside will be coalesced together. From looking

at RSTLT in Figure 4, we see that a good threshold to use is 3.0, and from experience, a

good windowsize to use is 2800 samples based on a sampling rate of 2.0833 * 10-5

seconds. At this point, a text file with the beginning and ending locations of each event

in the raw data file is created. Shown here is a portion of what the text file looks like:

11864 13425
16428 16504
54364 54831
73007 73079
94616 95018
112161 113195
135352 135769
152912 154298

Using the text file of events just created, the absolute maximum value of each

event is found in the raw data file and then appended to the text file. The text file then

looks like:

11864 13425 14359.(X)(X)O0
16428 16504 131.0(X)(0X)
54364 54831 8361.(X)(KI(X)
73007 73079 227.0(0000)
94616 95018 17119.(X)(K)_
112161 113195 133.(X)(K)_
135352 135769 17063.(K)(K)(X)
152912 154298 283.(X)(X)_

Now that we know the maximum value of each event, we should be able to tell

which is an opening and which is a closing. Distinguishing between openings and

closings is accomplished by finding the best threshold that maximizes the toggles

between the openings agd closings. After this threshold value is determined, a 0 or 1 is

appended onto the text file, where a 0 indicates an opening, and a 1 indicates a closing.

The text file now appears as:

11864 13425 14359.(X)(X)(X) 1
16428 16504 131.(X)(X)(K) 0
54364 54831 8361.0(X)(X)0 1
73007 73079 227.0(0)0)0 0
94616 95018 17119.(X)0(0X) 1
112161 113195 133._ 0
135352 135769 17063.(X)(X)00 1
152912 154298 283.0(0)0(0 0
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Next, we perform a beat timing check which relies on and ensures the regularity

of the beats. The average time between similar events is calculated and a check is made

for each event to find out if it is within a certain percentage deviation from that average.

When an out of range event is found, a -1 is inserted in piace of the 1 or 0 that was

already there ir_the text file. We typically allow a 20% deviation. The marked text tile

appears like this:

11864 13425 14359.(D0(K_ 1
16428 16504. 131.000(X_ -1
54364 54831 8361 ._ 1
73007 73079 227._ 0
94616 95018 17119.000000 1
1J2161 113195 133.000000 0
135352 135769 17063._ 1
152912 154298 283._ 0

The final step is to output the corrected text file called the "BEATS" file, which is done

by taking into account the events marked with a -1 and keeping only acceptable length

open-close sequences. We typically accept sequences with length five or greater. The
"BEATS" file would then look like this:

54364 54831 8361,0(0)0(O 1
73007 73079 227.0(0)0(0 0
94616 95018 17119.000000 1
112161 113195 133.0(0)0(O 0
135352 135769 17063.0(0)0(0 1
152912 154298 283.0(0)0(0 0

2.3 Bad Beat Rejection

In the bad beat rejection algorithm, we ensure the proper beat ordering, and

perform some outlier quality control. Although at this point we could extract the

openings and closings based on the "BEATS" file created thus far, because the openings

and closings vary somewhat widely in amplitude, we want to reject those that are outside

of a certain boundary. In Figure 5 is shown the block diagram of the bad beat rejection

algorithm.

10



_ Bound "r NEWBEATS

Figure 5: Bad Beat Rejection Algorithm

The f'u'stoperation performedis to searchthrough the "BEATS" file and ensure that the

orderingis close-open-close-open etc. (e.g. If the sequence ordering was close-open-

open, then the second opening would be rejected.) A temporary"BEATS" file is created
with the properordering. Next, from the absolute maximum values of the openir,_s in the

temporary "BEATS" file, a mean and standard deviation(o) are calculated. Then, ali
close-open sequences whose absolute opening maximum value lies outside the mean +

na, where n is an input, arerejected. We typically use n= 0.5 if there are more than 100
beats detected, otherwise we use n=l.0 if thereare less. A "NEWBEATS" file is then

created.

Illustrated in Figure 6 is an example before and afterthe bad beat rejection algorithm. As
can be seen from the example, the first opening is kept, and the other two are rejected.

11



2 xi04 Multiple openings detectedI I 1 ' I

closing i:losing
.................................................................... I .......................

0 -/ ' _ " : " "" : ' ' : .............

-I ............................ 3"61_.hiffgsdei_.c_i_l...........................................

-2 ! i i ,,, ,. , i t

0 0.5 1 1.5 2 2.5

Sample number x104

2 xi04 After Bad Beat ReiectionAlgorithm

l ................. . ............. . ............................... ° .............. . ...............

Iopeningremains

-2 i, * *

0 2000 41_ 6000 8000 1000(3 121)00

Samplenumber

Figure 6: Bad Beat Rejection Example

The corresponding "BEATS" and "NEWBEATS" file sections are shown here:

BEATS file NEWBEATS file

6779049 6779575 8218.(K)0(_ 1 6779049 6779575 8218.(XXX)O01
6792507 6793842 474.0(XXX)O 0 6792507 6793842 474.(XXgg)O 0
6811314 6812726 496.(KXXXX) 0 6834592 6835001 15183.0(XXXX)l
6830384 6830441 97.0(XXX)O 0
6834592 6835001 15183.(gXXX)O1

12



2.4 Beat Extraction

Now that we know where to find ali the good beats in the raw data, we can then

extract them. Based on the starting and ending locations in the "NEWBEATS" file, the

openings and closings are cut from the raw data file and pasted together into separate

opening and closing data flies. Each opening and closing is centered in a window of user

defined size. We use a windowsize of 4096 samples at a sampling rate of 2.0833 * 10.5

seconds to ensure that we capture the whole opening beat. The capability exists in the

code to put the openings and closings into one file, but we keep them separate for

processing purposes.

The noise just prior to each opening is extracted as weil. Care is taken to be sure

that the noise does not overlap the previous closing. If the code decides that it has run

into the previous closing, it writes a noise errors file indicating this.

The result of the beat extraction is three main flies, and "openings", "closings",

and "noise" file. A block diagram of the process is shown below in Figure 7.

Raw data file
i

1
Input: windowsi_ Window _ ( " _ ['_"°P_i_cgs"_ calculation | IExtraction/catenationl /

L _ ]._"ciosings"
NEWB,EATSfile - (BEATiScentered[ t (cut&paste) II ,, file

in the window) j x_ ....... J I__noise' file

I l Ii i

_ Beat location defined

as
in "NEWBEATS" file

Window thai the
beat is ¢enmrv,d in

Figure 7" Beat Extraction Algorithm

In Figure 8 examples of the "openings", "closings", and "noise" files are presented.

13
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2.5 Filtering and Resampling

On a beat by beat basis, the data is filtered into three bands and resampled if

necessary. We would not need to do this if the spectrum were flat, but because the

spectrum has much more energy in the higher frequencies, we divide it up in such a way

that we can look at important parts of the spectrum separately. The three bands we

• employ currently are a low band from 1-5 kHz, a medium band from 3-7 kHz, and a high

band from 7-24 khz. For the low band we apply a bandpass filter, and then are able to

downsample by a factor of four. Likewise for the medium band we apply a bandpass

filter and are able to downsarnple by a factor of two. The high ha, ld is merely highpass

filtered with no down sampling. Depicted in Figure 9 is an example of the low, medium,

and high bands for opening beats.

15
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Figure 9: Exarnplcs of opening low, medium, and high band flies

16



2.6 Spectral Estimation

Now from the three bandswe create spectrograms. The spectrograms arecreated

by taking the spectra of each opening a beat a time and then stacking the spectra together.

From this, we should be able to observe spectral lines at various frequencies. Because the

high band tends to have a lot of sharp peaks, we found that the AR (Auto-Regressive)

" model [3] worked well using 100rh order. This is because the AR model is an all-pole

model, which means that the transfer function has the form,

o"
_t

H_(z) = A(z) where o is the white noise standard deviation

where

A(z) = 1+ thz -1+...+asz -_

The spectral estimate is then formed as,

ct:AT

s' (ta)=Ia(e, )l=
For the low and medium bands, the spectrum is rather broad band and does not appear to

have any sharp peaks. Because of this, we found that the MVDR (Minimum Variance

Distortionless Response) model[3] for spectral estimation worked satisfactorily using

25th order. The MVDR spectral estimate is formed by averaging ali the lower order AR

models in the following fashion,

1 1 N 1

s,,,,;,(a)=-; sia,)

Along with the spectrum, when using the MVDR model, we create a f'de of the reflection

coefficients, which can be used to reconstruct the entire spectrogram and can also be used

to derive other features directly[4]. Or, when using the AR model, we create a file of the

AR coefficients. In both cases we write the variance, 02, for each beat to a file. See

Figure 10 for examples of the low, medium, and high spectrums.

17
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2.7 Database

The result of these algorithms is a database of useful information about the heart

valves. The files that are currently stored in the database have the Shiley filename

followed by a suffix. The file suffixes we store are:

"- _beats- text file containing start sample, stop sample, max value, and event indicator

newbeats- updated and screened "_beats" text file

_openings - binary floating point data file with the extracted and concatenated openings

_closings - binary floating point data file with the extracted and concatenated closings

noise - binary floating point data file with the extracted and concatenated noise chunksm

noiserrs - text file with location of possible noise error locationsm

_oplow- low bandopeningsfile

_oplowps, _oplowvar, _oplowrefl - low band opening spectrum, variance, and reflection
coefficients files

_opined - medium band openings file

_opmedps, _opmedvar, -opmedrefl - medium band opening spectrum, variance, and

reflection coefficients files

_ophigh - high band opening file

_ophighps, -ophighvar, _ophighar - high band opening spectrum, variance, and
reflection coefficients flies

18



3.0 SUMMARY

We have developed the signal processing capabilities to detect, identify, and

extract opening and closing heartbeats from a data file containing them. Likewise, we

can obtain information about the heartbeats, such as the power spectrum, which is useful

for feature extraction. With this variety of information about the heartbeats from the two

types of valves (SLS and intact), we are confident that with the proper features, we -

should be able to distinguish between them.

19
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APPENDIX

Unless otherwise indicated, ali programs take their input file from standard input

and write their output flies to standard output.

A.I Tape File Conversion

tail + 1025c fllename - to get rid of the header

sDlitsheep.c - reads interleaved file from Shiley and creates a 16 bit integer file.

Inputs: starting index, optional finish index

Example: splitsheep 0 < input > output

stof.c - converts 16 bit integer file to binary floating point

Example: stof < input > output.float

A.2 Beat Detection

butter.c- filtering

Inputs: filter order, filter type, low frequency cutoff, high frequency cutoff, and delta t

where filter type = (0 Lowpass)(1 Highpass)(2 Bandpass)(3 Bandreject)

Example: butter 3 2 0.2 0.45 1.0 < input > output

detect.c - sta to Ira ratio

Inputs: short term average window length(sec), long term average window length(sec),

and delta t (sec)

Note: If delta t is entered as 1.0, then the short term and long term average

window lengths can be entered as the number of samples.

Example: detect 50.0 500.0 1.0 < input > output

- thresholding and event location text file

Inputs: threshold between signal and noise, windowsize(sec), delta t

Note: If delta t is entered as 1.0, then the windowsize can be entered as the number of

samples.

Example: segment 3.0 2800 1.0 < input > output.text

21



- statistic appended to each line of text file

Inputs: binary floating point data file name, operation, windowsize

where operation = (0 get absolute maximum value of event)(1 get average value of

event), and the windowsize should be the same as in segmcnt.c

Example: getstat input.float 0 2800 < input.text > output.text

.. togglemax.c - maximize open and close toggling and append 0 or I to each line in the text

file

Example: togglemax < input.text > output.text

- timing regularity check and marking of the text file if bad

Inputs: percentage deviation from average event spacing to allow

Example: togglefix 0.2 < input.text > output.text

tQgglefilter.c - outputs corrected text file and ensures at least a certain length sequence of

openings and closings

Inputs: length of shortest acceptable open-close sequence

Example: togglefilter 5 < input.text > output_beats

A.3 Bad Beat Rejection

fixlpeats.c - modifies text file to make ordering close-open etc., rejects out of bound

openings along with their previous opening.,

Inputs: beats file name, newbeats filename, percentage of the standard deviation to use

for the boundaries

Example: fixbeats input_beats output_newbeats 50

A.4 Beat Extraction

extract.c - based on the text file of start and stop locations, this extracts the beats out of

. the raw data and centers them in a window.

Inputs: raw data filename, extraction flag( 0 = openings, 1= closings, 2=both),

windowsize in samples

Example: For this routine and the following routines, see A.8 for examples.

- extracts noise just prior to each opening

22



Inputs: raw data file name, filename for noise errors,windowsize in samples

A.$ Filtering and Resampling

r.¢,_i19_- On a window by window basis, filters and resamples the data

Inputs: Downsample factor, samplingrate(see), windowsize in samples

A.6 Spectral Estimation

powers_necmvdr.c - On a window by wind _wbasis, it finds the power spectrum using

the Minimum VarianceDistortionless Resp _nsemethod.

Inputs: model order, sample rate in seconds, windowsize in samples, reflection
coefficient filename, variance filename

_tmwers_c ar.c - On a window by window basis, it finds the power spectrum using the

Auto Regressive (Levinson Durbins) method.

Inputs: model order, sample rate (see), windowsize in samples, ar coefficient filename,
variance filename

A.7 Pr_.nting

printsheep,G:- This roJtine converts a power spectrum output file into a spectrogram View

file and pnnts it out on our Tektronics printer.

Inputs: Filename, windowsize

A.8 Shellscript "gol"

This UNIX shellseript automates the signal processing of the heart valve data for a

particular file.

#!/usr/local/bin/bash

export DISPLAY=$ {HOST} :0

tail +1025c $1 Isplitsheep 0 1stof > $2

butter 3 2 0.2 0.45 1.0 < $2 1detect 50.0 500.0 1.0 1segment 3.0 $4 1.01 getstat $2 0 $4 I

togglemax Itoggleflx 0.21 togglefilter 5 > $3_i:eats

23



fixbeats $3_beats $3_newbeats 50

extract $2 0 4096 < $3_newbeats > $3_openings

extract $2 l 4096 < $3_newbeats > $3_closings

extracm $2 $3_noiserrs 4096 < $3 newbeats > $3 noise

resamp 4 1000 5000 .(_208333 4096 < $3_openings > $3_oplow

".- resamp 2 3000 7000.0000208333 4096 < $3_openings > $3_opmed

• resamp 1 7000 24_90.0000208333 4096 < $3_openings > $3_ophigh

powspec_mvdr 25.000083333 1024 $3_oplowrefl $3_oplowvar < $3_oplow >

$3_oplowps

printsheep $3_oplowps 1024

powspec_mvdr 25.0(X)(_16667 2048 $3_opmedrefl $3_opmedvar < $3_opmed >

$3_opmedps

printsheep $3_opmedps 2048

powspec_ar 100.0000208333 4096 $3_ophighar $3_ophighvar < $3_ophigh >

$3_ophighps

printsheep $3_ophighps 4096
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