

BNL-47679
Informal Report

CARBONACEOUS AEROSOL PARTICLES FROM COMMON VEGETATION
IN THE GRAND CANYON

BNL-47679
DE92 040570

K. A. Hallock* and M. A. Mazurek
Environmental Chemistry Division
Brookhaven National Laboratory
Upton, NY 11973

G. R. Cass
Environmental Engineering Science
California Institute of Technology
Pasadena, CA

May 1992

* Prepared in partial fulfillment of
requirements for Honors Program,
Long Island University
Southampton Campus
Southampton, NY

UNDER CONTRACT NO. DE-AC02-76CH00016 WITH THE
UNITED STATES DEPARTMENT OF ENERGY.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Abstract

The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content.

Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

Carbonaceous Aerosol Particles from Common Vegetation in the Grand Canyon

Introduction

Aerosol particles in desert regions has become an area of increasing environmental research. One desert region which has been affected by the presence of aerosol particles is the Grand Canyon. The scenic view of the canyon is at times obscured greatly due to the haze produced by the presence of fine particulate matter suspended in the troposphere. The visibility reduction results from the ability of these particles to both scatter and absorb solar radiation. [1]

Aerosol particles are released into the atmosphere by many sources both natural and anthropogenic. Recent studies have shown that carbonaceous aerosol is the largest contributor to the total fine particulate mass at many desert sites. [2-6] In this report, we focus on identifying carbonaceous aerosols from live vegetation sampled at Hopi Point, AZ (southern rim of the Grand Canyon). These fine particle aerosols (size $< 2.0 \mu\text{m}$) are derived from epicuticular plant waxes, resinous exudates, and the lipid fraction of airborne microorganisms. [7] Samples of dead vegetation were also collected at Hopi Point as well as live and dead vegetation from Indian Gardens, AZ. However, extensive data reduction has not been performed for these samples as of yet.

Experimental Section

Sample Collection. A grab sampling technique was used to collect samples of live vegetation common to Hopi Point, AZ. These samples included vegetation from the Ponderosa Pine Forest and Pinyon-Juniper Woodlands on the southern rim of the Grand Canyon. E elevational belts, called life zones, have been established in which the dominant vegetation of the area reflects ecosystem ecology as a function of elevation. The Pinyon-Juniper Woodland is part of the Upper Sonoran Zone having an elevation of approximately

3500 to 7000 feet and the Ponderosa Pine Forest is part of the Transition Zone having an elevation of approximately 7000 to 8250 feet. [8] Figure 1 gives a pictorial summary of the life zones and plant communities of the Grand Canyon and Table 1 represents the vegetation collected for sampling.

To simulate the abrasion of leaf surfaces by wind, the leaves of the vegetation collected were placed in a clean Teflon bag and agitated to liberate and suspend surface waxes and resins. The contents of the Teflon bag was withdrawn through 2 μm size cut cyclone separators and collected on quartz fiber filters. (9)

Each filter was spiked with a known amount of perdeuterated tetracosane ($n\text{-C}_{24}\text{D}_{50}$) to serve as an internal recovery standard in GC/MS analysis. (10-12) Samples were extracted from the quartz fiber filters by the addition of three 15 ml portions of hexane, followed by three 15 ml portions of a 2:1 mixture of benzene/isopropanol.(13) Details of the extraction procedure and volume reduction procedure have been outlined in an earlier report (13). Once sample volume reduction was completed, the concentrated extract was divided into two aliquots. One aliquot was reacted with diazomethane to convert organic acids to their methyl esters and acidic hydroxy compounds to their methoxy analogues.(13)

GC/MS Analysis. Samples were analyzed using a Varian 4600 high-resolution gas chromatograph (HRGC). A Grob injector was used and the injector temperature was kept at 300°C. A 30 meter fused silica column was employed for compound separation. The gas chromatograph was connected to a flame ionization detector, which operated at a detector sensitivity of 10^{-12} m volts/amp (at attenuation = 1).. Mass spectrometric analysis was performed using a Finnigan 4000 quadrupole gas chromatograph/mass spectrometer interfaced with an INCOS data aquisition system. Ionization was produced by electron impact with an electron energy of 70eV. The scanning frequency was set at 0.5 sec⁻¹, ranging from 50 to 550 Daltons.(13) 1-phenyldodecane was used as a coinjection standard.

Results and Discussion

Compounds were identified by comparison of their mass fragmentation patterns to the NIST mass spectral reference library contained in the Finnigan INCOS data system. Additional searching was performed using the IBM-AT, version 3, 1990, NIST library.

When standards were available, compound identification was confirmed by comparison of mass fragmentation patterns and retention times of the sample with authentic standards analyzed using the same GC/MS system.(13)

The following key was used to denote the accuracy of compound identification: (a) positive, when the sample spectrum, standard spectrum, and NIST library spectrum were identical and also the retention time of the authentic standard and the sample were comparable; (b) probable, same as above except no authentic standard was available, but the NIST library spectrum agreed well with the sample spectrum; (c) possible, same as above, except that the sample mass fragmentation pattern contained additional ions from other compounds having minor peak coelution; (d) tentative, when the sample spectrum revealed additional mass fragments from one or more coeluting compounds with substantial overlap.

Figure 2 shows a typical gas chromatograph for vegetation samples. This chromatograph is for the live vegetation component collected as fine aerosol at Hopi Point, AZ. Compound identification for this sample is listed in Table 2.

Members of the n-alkane homolog series, n-C₁₆ to n-C₃₆, have been identified in this sample with C₂₃ to C₃₆ being the most prevalent range. The n-alkanes exhibit very similar mass fragmentation patterns. The key fragment ions displayed in the mass spectra of n-alkanes include masses 57, 71, 85, 99, 113, 129 etc.(7) Because the fragmentation patterns of n-alkanes are so similar, identification was based on the molecular ion and comparison of retention times with authentic standards. A typical mass fragmentation pattern for n-alkanes is shown in Figure 3.

High molecular weight n-alkanes (C₁₂ to C₄₀) are produced by biosynthetic processes which occur in vegetation.(14-16) These n-alkanes are derived from epicuticular plant waxes.(17-22) The n-alkane homologs show strong odd carbon number predominance providing evidence that n-alkanes having an odd number of carbon atoms are more abundant in plant waxes.(13) A selected ion plot of mass m/z 57 for the isolation of n-alkane homologs is shown in Figure 4. This figure clearly demonstrates the existence of odd carbon number predominance. Table 3 lists the n-alkane homologs identified in the selected ion plot.

Along with the n-alkanes, the n-alkanoic acids prove to be major contributors to the organic aerosol content from the vegetation sampled. With the exception of C₂₉, the n-alkanoic acids, C₆ to C₃₀, have been identified successfully in the Hopi Point, live vegetation sample. The n-fatty acids are derived from epicuticular plant waxes and microbial lipid deposits on leaf surfaces.(7,15,23-33) The n-alkanes have a characteristic fragment of mass 74.(7) Figure 5 shows a selected ion plot of mass m/z 74 and Table 4 lists the n-alkanoic acid homologs identified in the selected ion plot. Unlike the n-alkanes, the n-alkanoic acids display strong even carbon number predominance.(27,32,34)

1-Octacosanol and the n-alkan-2-ones are derived from the same sources as the n-alkanes and n-alkanoic acids. The n-alkan-2-ones were classified as such due to their fragmentation patterns, however, compound names could not be specified.

Several monoterpenoids (C₁₀), sesquiterpenoids (C₁₅), and diterpenoids (C₂₀) have been tentatively identified as aerosols derived from the vegetation sampled. These compounds are constituents of resins from the conifer vegetation.(35) Although the identification of these compounds is only tentative, they are logical possibilities due to the type of vegetation sampled, i.e. Ponderosa pine, pinyon, and juniper. Several unknown sesquiterpenoids and diterpenoids have been classified as such due to their fragmentation patterns and molecular formulas.

The phthalate esters and organosilanes detected are sample contaminants derived from the silicone greases, plastics, and rubber components which are contributed from the sampling equipment and analytical procedures. (7) Several aromatic hydrocarbons (e.g. 1,1'-biphenyl) are also contaminants and originate from the organic extraction solvents.

Conclusions

The n-alkanes and n-alkanoic acid series appear to be prominent contributors to the total organic aerosol particulate matter traceable to plant waxes and resins. Identification of terpenoids emitted directly into the environment by vegetation provides insight into the possible terpenoid chemical compounds which undergo photochemical reactions in the atmosphere.

Although the concentrations of these aerosols have not yet been determined, the identification of the aerosols produced by vegetation is an important first step towards understanding the organic aerosol composition which contributes to visibility reduction in the Grand Canyon. Knowing the types of organic compounds present as aerosols and their origins helps in determining a natural background for the total organic aerosol content.

Acknowledgements

We thank Michael Jones, Heather Mason, Lynn Salmon, and Darrell Winner of the California Institute of Technology for collection of the ambient aerosol and authentic source samples from Grand Canyon National Park. Meteorological back trajectory computations were performed by Martin Leach of Brookhaven National Laboratory. Financial support from the National Park Service through the University of California at Davis under Contract No. CX-0001-8-0017 is gratefully acknowledged. Additional support was provided by the U.S. Department of Energy under the Atmospheric Chemistry Program within the Office of Health and Environmental Research under Contract No. DE-AC02-76CH00016.

Bibliography

- (1) Sloane, C.S. (1984) *Atmos. Environ.*, 18, 871-878.
- (2) Tombach, I.H.; Fitz, D.R.; Drake, R.L.; Muller, B. (1985). Aerosols in the rural west. *Presented at 78th Annual Meeting of the Air Pollution Control Association*, Detroit, MI, June 16-21, 1985.
- (3) Reible, D.D.; Ouimette, J.R.; Shair, F.H. (1982) *Atmos. Environ.*, 16, 599-613.
- (4) Macias, E.S.; Zwicher, J.O.; Ouimette, J.R.; Hering, S.V.; Friedlander, S.K.; Cahill, T.A.; Kuhlmeier, G.A.; Richards, L.W. (1981). *Atmos. Environ.*, 15, 1971-1976.
- (5) Macias, E.S.; White, W.H.; (1985). Analysis of visibility and aerosol data from EPRI's regional air quality studies. *Presented at 78th Annual Meeting of the Air Pollution Control Association*, Detroit, MI, June 16-21, 1985.
- (6) Trujonis, J.; McGown, M.; Pitchford, M.; Blumenthal, D.; Roberts, P.; White, W.; Macias, E.; Weiss, R.; Waggoner, A.; Watson, J.G.; Chow, J.C.; Flocchini, R. (1988). The RESOLVE Project Final Report: Visibility Conditions and Causes of Visibility Degradation in the Mojave Desert of California. Report NWC TP 6869, prepared for the Naval Weapons Center, China Lake, CA by Santa Fe Research Corp., Bloomington, MN, 1988.
- (7) Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. (1991). *Environ. Sci. Technol.*, 25, 684-694.
- (8) Whitney, S. *A Field Guide to the Grand Canyon*. (1982). Quill: New York; pp. 30-35.
- (9) Hildemann, L.M.; Markowski, G.R.; Cass, G.R. (1991). *Environ. Sci. Technol.*, 25, 744-759.
- (10) Mazurek, M.A.; Simoneit, B.R.T.; Cass, G.R.; Gray, H.A. (1987). *Intern. J. Environ. Anal. Chem.*, 29, 119-139.
- (11) Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. (1989). *Aerosol Sci. Technol.*, 10, 408-419.

(12) Mazurek, M.A.; Hildemann, L.M.; Cass, G.R.; Simoneit, B.R.T.; Rogge, W.E. (1990). Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon. In *Symposium on Measurement of Airborne Compounds: Sampling, Analysis, and Data Interpretation*. American Chemical Society, Washington, D.C., Aug. 1990, Winegar, E. and Keith, L.H. eds., ACS, Wash., D.C.

(13) Mazurek, M.A.; Rogge, W.F.; Hildemann, L.M.; Cass, G.R.; Simoneit, B.R.T. (1991). Quantification of urban organic aerosols at a molecular level: identification, abundance, and seasonal variation. Submitted to *Atmospheric Environment*, October, 1991.

(14) Douglas, A.C.; Eglington, G. (1966). *Comparative Phytochemistry*, Swain, T. Ed., Academic Press: London, 57-77.

(15) Matsumoto, G.; Hanya, T. (1980). *Atmos. Environ.*, 14, 1409-1419.

(16) Simoneit, B.R.T.; Mazurek, M.A. (1989). *Aerosol Sci. Technol.*, 10, 267-291.

(17) Simoneit, B.R.T. (1977). *Mar. Chem.*, 5, 443-464.

(18) Simoneit, B.R.T. (1978). *Chemical Oceanography, 2nd ed.*; Riley, J.P. and Chester, R. eds. Vol.7, Academic Press: New York, pp. 233-311.

(19) Simoneit, B.R.T. (1979). *Proceedings Carbonaceous Particles in the Atmosphere*. Novakov, T. ed.; NSF-LBL. pp.233-244.

(20) Simoneit, B.R.T. (1980). *Advances in Organic Geochemistry 1979*. Douglas, A.G. and Maxwell, J.R. eds., Pergamon Press: Oxford, pp. 343-352.

(21) Simoneit, B.R.T.; Eglington, G. (1977). *Advances in Organic Geochemistry 1975*. Campos, R. and Goni, J. eds. Enadimsa: Madrid, pp. 415-430.

(22) Simoneit, B.R.T.; Chester, R.; Eglington, G. (1977). *Nature*, 267, 682-685.

(23) Brown, F.S.; Baedecker, M.J.; Nissenbaum, A.; Kaplan, I.R. (1972). *Geochim. Cosmochim. Acta.*, 36, 1185-1203.

(24) Ching, T.M.; Ching, K.K. (1962). *Science*, 138, 890-891.

(25) Jamieson, G.R.; Reid, E.H. (1972). *Phytochemistry*, 11, 269-275.

(26) Kaneda, T. (1967). *J. Bacteriology, Mar.*, 894-903.

(27) Kolattukudy, P.E. (1970). *Lipids*, 5, 259-275.

(28) Lasetet, J.L.; Valle, R. (1971). Environ. Sci. Technol., 5, 631-634.

(29) Lechevalier, M.F. (1977). CRC Crit. Rev. Microbiol., 5, 109-210.

(30) Morrison, R.I.; Blick, W. (1967). J. Sci. Ed. Agric., 18, 351-355.

(31) Shaw, N. (1974). Adv. Appl. Microbiol., 17, 63-108.

(32) Simoneit, B.R.T. (1989). J. Atmos. Chem., 8, 251-275.

(33) Simoneit, B.R.T.; Cox, R.E.; Standley, L.J. (1988). Atmos. Environ., 22, 983-1004.

(34) Hall, D.H.; Donaldson, L.A. (1963). Nature, 191, 95-96.

(35) Mazurek, M.A.; Simoneit, B.R.T. (1982). Atmos. Environ., 16, 2139-2159.

Table 1. Dominant Vegetation Collected at Hopi Point, AZ.

Life Zone	Community	Vegetation Common Name	Vegetation Scientific Name	Plant Family
Transition	Ponderosa Pine Forest	Native grass		
Transition	Ponderosa Pine Forest	Ponderosa Pine	<i>Pinus ponderosa</i>	Pinaceae
Transition	Ponderosa Pine Forest	Sagebrush	<i>Artemesia tridentata</i>	Compositae
Upper Sonoran	Pinon-Juniper Woodland			
Upper Sonoran	Pinon-Juniper Woodland	Utah Juniper	<i>Juniperus osteosperma</i>	Cupressaceae
Upper Sonoran	Pinon-Juniper Woodland	Banana Yucca	<i>Yucca baccata</i>	Liliaceae
Upper Sonoran	Pinon-Juniper Woodland	Pinyon	<i>Pinus edulis</i>	Pinaceae

Table 2.
GC/MS Injection F7217 -- Live Vegetation, Hoopi Point, Fine Aerosol

Peak Number	File Scan Number	Compound Name	Formula	Cor. (pound Identification*)
Standard Compounds				
31	F7217.0735	1-Phenyldodecane	C18H30	a
42	F7217.0851	Perdeutero tetracosane	C24D50	a
n-Alkanes				
	F7217.	n-Decane	C10H22	nd
	F7217.	n-Dodecane	C12H26	nd
	F7217.	n-Tridecane	C13H28	nd
	F7217.	n-Tetradecane	C14H30	nd
	F7217.	n-Pentadecane	C15H32	nd
	F7217.0618	n-Hexadecane	C16H34	a
	F7217.	n-Heptadecane	C17H36	nd
	F7217.	n-Octadecane	C18H38	nd
30	F7217.0721	n-Nonadecane	C19H40	b
33	F7217.0750	n-Cosane	C20H42	a
	F7217.	n-Heneicosane	C21H44	nd
	F7217.	n-Docosane	C22H46	nd
	F7217.0836	n-Tricosane	C23H48	b
40	F7217.	n-Tetracosane	C24H50	nd
	F7217.0887	n-Pentacosane	C25H52	b
	F7217.	n-Hexacosane	C26H54	nd
	F7217.0934	n-Heptacosane	C27H56	b
	F7217.	n-Octacosane	C28H58	nd
	F7217.0987	n-Nonacosane	C29H60	b
45	F7217.1020	n-Triacontane	C30H62	a
49	F7217.1062	n-Hentriacontane	C31H64	b
57	F7217.	n-Dotriacontane	C32H66	nd
53	F7217.1172	n-Triaccontane	C33H68	b
55	F7217.1247	n-Tetraaccontane	C34H70	a
57	F7217.1358	n-Pentraaccontane	C35H72	b
66	F7217.1454	n-Hexacontane	C36H74	a
67				

Table 2 (continued)**GC/MS Injection F7217 -- Live Vegetation, Hopi Point, Fine Aerosol**

Peak Number	File/Scan Number	Compound Name	Formula	Compound Identification*
n-Alkenoic Acids (as methyl esters)				
1	F7217.0161	n-Hexanoic acid methyl ester	C7H14O2	(C6 FA)
3	F7217.0281	n-Heptanoic acid methyl ester	C8H16O2	(C7 FA)
5	F7217.0405	n-Octanoic acid methyl ester	C9H18O2	(C8 FA)
10	F7217.0476	n-Nonanoic acid methyl ester	C10H20O2	(C9 FA)
13	F7217.0530	n-Decanoic acid methyl ester	C11H22O2	(C10 FA)
15	F7217.0575	n-Undecanoic acid methyl ester	C12H24O2	(C11 FA)
19	F7217.0616	n-Dodecanoic acid methyl ester	C13H26O2	(C12 FA)
22	F7217.0653	n-Tridecanoic acid methyl ester	C14H28O2	(C13 FA)
28	F7217.0668	n-Tetradecanoic acid methyl ester	C15H30O2	(C14 FA)
30	F7217.0721	n-Pentadecanoic acid methyl ester	C16H32O2	(C15 FA)
34	F7217.0752	n-Hexadecanoic acid methyl ester	C17H34O2	(C16 FA)
39	F7217.0782	n-Heptadecanoic acid methyl ester	C18H36O2	(C17 FA)
41	F7217.0811	n-Octadecanoic acid methyl ester	C19H38O2	(C18 FA)
44	F7217.0839	n-Nonadecanoic acid methyl ester	C20H40O2	(C19 FA)
52	F7217.0864	n-Eicosanoic acid methyl ester	C21H42O2	(C20 FA)
55	F7217.0889	n-Heneicosanoic acid methyl ester	C22H44O2	(C21 FA)
59	F7217.0913	n-Docosanoic acid methyl ester	C23H46O2	(C22 FA)
64	F7217.0937	n-Tricosanoic acid methyl ester	C24H48O2	(C23 FA)
	F7217.0963	n-Tetradecosanoic acid methyl ester	C25H50O2	(C24 FA)
	F7217.0993	n-Pentadecosanoic acid methyl ester	C26H52O2	(C25 FA)
	F7217.1028	n-Hexacosanoic acid methyl ester	C27H54O2	(C26 FA)
	F7217.1071	n-Heptacosanoic acid methyl ester	C28H56O2	(C27 FA)
	F7217.1123	n-Octacosanoic acid methyl ester	C29H58O2	(C28 FA)
	F7217.	n-Nonacosanoic acid methyl ester	C30H60O2	(C29 FA)
	F7217.1268	n-Triacontanoic acid methyl ester	C31H62O2	(C30 FA)

Table 2 (continued)**GC/MS Injection F7217 – Live Vegetation, Hopi Point, Fine Aerosol**

Peak Number	File, Scan Number	Compound Name	Formula	Compound Identification*
<u>n-Alkanes</u>				
58	F7217.1113	1-Octacosanol	C28H58O	a
<u>n-Alken-2-ones</u>				
20	F7217.0630	nd	nd	p
61	F7217.1138	nd	nd	p
65	F7217.1292	nd	nd	p
<u>Monoterpeneoids (C10 compounds)</u>				
4	F7217.0368	Linalool oxide	C10H18O2	p
7	F7217.0450	Camphor	C10H16O	p
8	F7217.0458	4-Terpineol	C10H18O	p
9	F7217.0471	Borneol	C10H18O	p
11	F7217.0480	α -Terpineol	C10H18O	p
12	F7217.0516	Bornyl acetate	C12H20O2	p
16	F7217.0585	Monoterpenoid acid	C12H24O3	p
29	F7217.703	Camphorsulfonic acid	C10H16O4S	p
<u>Sesquiterpenoids (C15 compounds)</u>				
17	F7217.0603	δ -Cadinene	C15H24	p
18	F7217.0612	Calamenene	C15H22	p
21	F7217.0641	Nerolidol or Farnesol	C15H26O	p
23	F7217.0660	Sesquiterpenol	C15H24O	p
24	F7217.0666	Ylangene or thujopsene	C15H24	p
25	F7217.0670	Sesquiterpenol	C15H24O	p
26	F7217.0676	Cadinol	C15H26O	p
27	F7217.0679	Cedreanol	C15H26O	p
32	F7217.0741	Sesquiterpenol	C15H26O	p

Table 2 (continued)**GC/MS Injection F7217 -- Live Vegetation, Hopi Point, Fine Aerosol**

Peak Number	File/Scan i number	Compound Name	Formula	Compound Identification*
35	F7217.0756	Sesquiterpenol	C15H22O	d
36	F7217.0771	Sesquiterpenol	C15H26O	d
<u>Terpenoids (C20 compounds)</u>				
37	F7217.0779	Manoyl oxide or epimanoyl oxide	C20H34O	d
54	F7217.1004	Diterpenoid	nd	d
<u>Aromatic Hydrocarbons</u>				
2	F7217.0168	Methoxybenzene	C7H8O	c
6	F7217.0431	Phenol	C6H6O	b
14	F7217.0572	1,1'-Biphenyl	C12H10	b
<u>Contaminants -- Phthalate Esters</u>				
38	F7217.0799	1,2-Benzenedicarboxylic acid, butyl 2-methylpropyl ester	C16H22O4	b
48	F7217.0916	Benzyl butyl phthalate	C19H20O4	b
50	F7217.0943	1,2-Benzenedicarboxylic acid, diisooctyl ester	C24H38O4	b
<u>Contaminants -- Organosilanes</u>				
43	F7217.0856	Organosilane	nd	p
47	F7217.0909	Organosilane	nd	p
51	F7217.0960	Organosilane	nd	p
56	F7217.1028	Organosilane	nd	p
60	F7217.1128	Organosilane	nd	p

Table 2 (continued)**GC/MS Injection F7217 -- Live Vegetation, Hopi Point, Fine Aerosol**

Peak Number	File/Scan Number	Compound Name	Formula	Compound Identification*
Resin Components				
	F7217.0858	Retene	C ₁₈ H ₁₈	a
	F7217.(ca 878)	Methyl 1-pimарате	C ₂₁ H ₃₂ O ₂	a
	F7217.0876	Methyl isopimарате	C ₂₁ H ₃₂ O ₂	b
	F7217.0890	Methyl dehydroabietate	C ₂₁ H ₃₀ O ₂	a
46	F7217.0891	Methyl 13-isopropyl-5a-podocarpa-	C ₂₁ H ₂₈ O ₂	b
	F7217.(ca 893)	Methyl o-methyl-podocarpate	C ₁₉ H ₂₆ O ₃	a
	F7217.(ca 900)	Methyl abietate	C ₂₁ H ₃₂ O ₂	b
	F7217.(ca 951)	Methyl 13-isopropyl-5a-podocarpa- isomer	C ₂₁ H ₂₈ O ₂	c
	F7217.0982	Methyl 7-ketodehydroabietate	C ₂₁ H ₂₈ O ₃	a

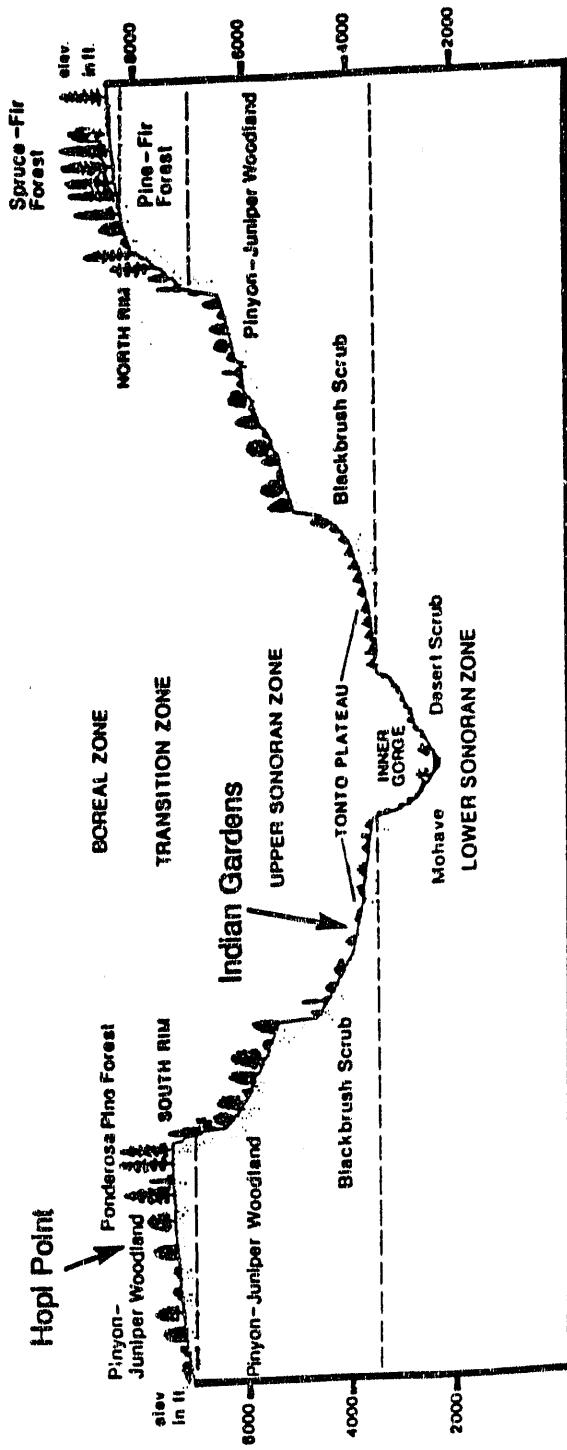
* a = positive, when the sample spectrum, standard spectrum and NIST-library spectrum were identical and also the retention time of the authentic standard and the sample compound were comparable

b = probable, same as above, except no authentic standard was available, but the NIST-library spectrum agreed very well with the sample spectrum and retention time of the standard

c = possible, same as above, except that the sample mass fragmentation pattern contained additional ions from other compounds having minor peak coelution

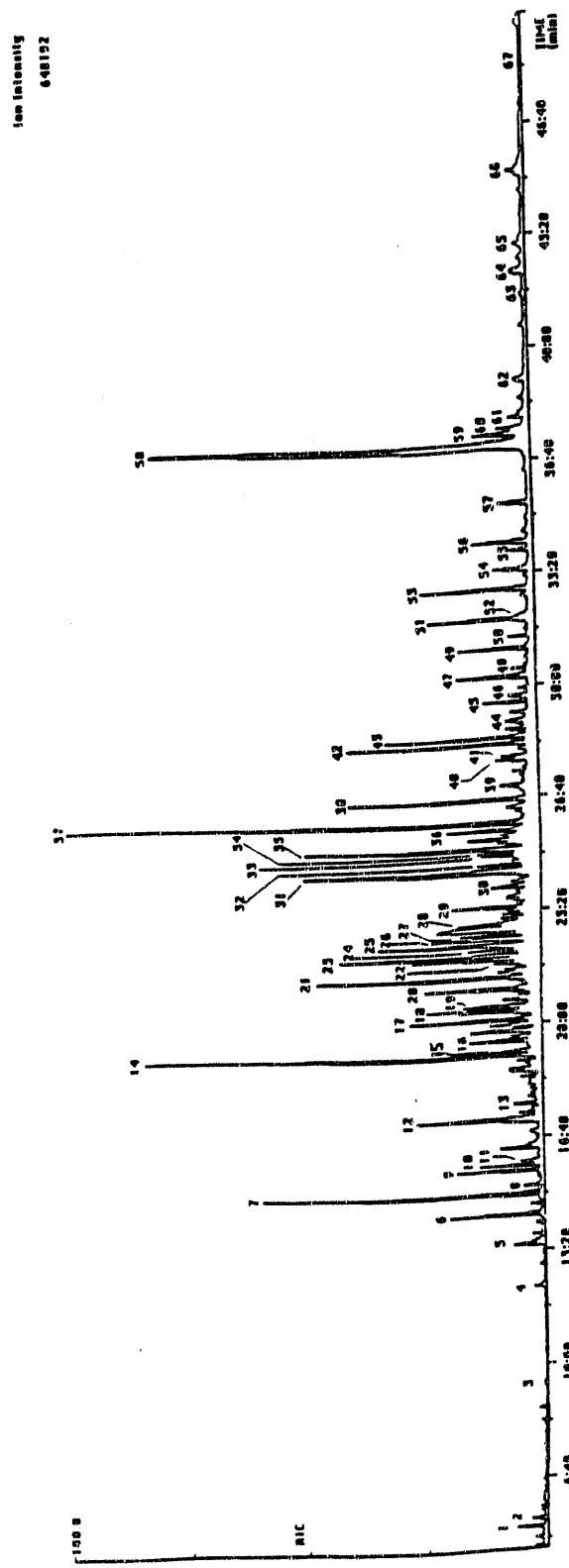
d = tentative, when the sample spectrum revealed additional mass fragments from one or more coeluting compounds (noise) with substantial overlap

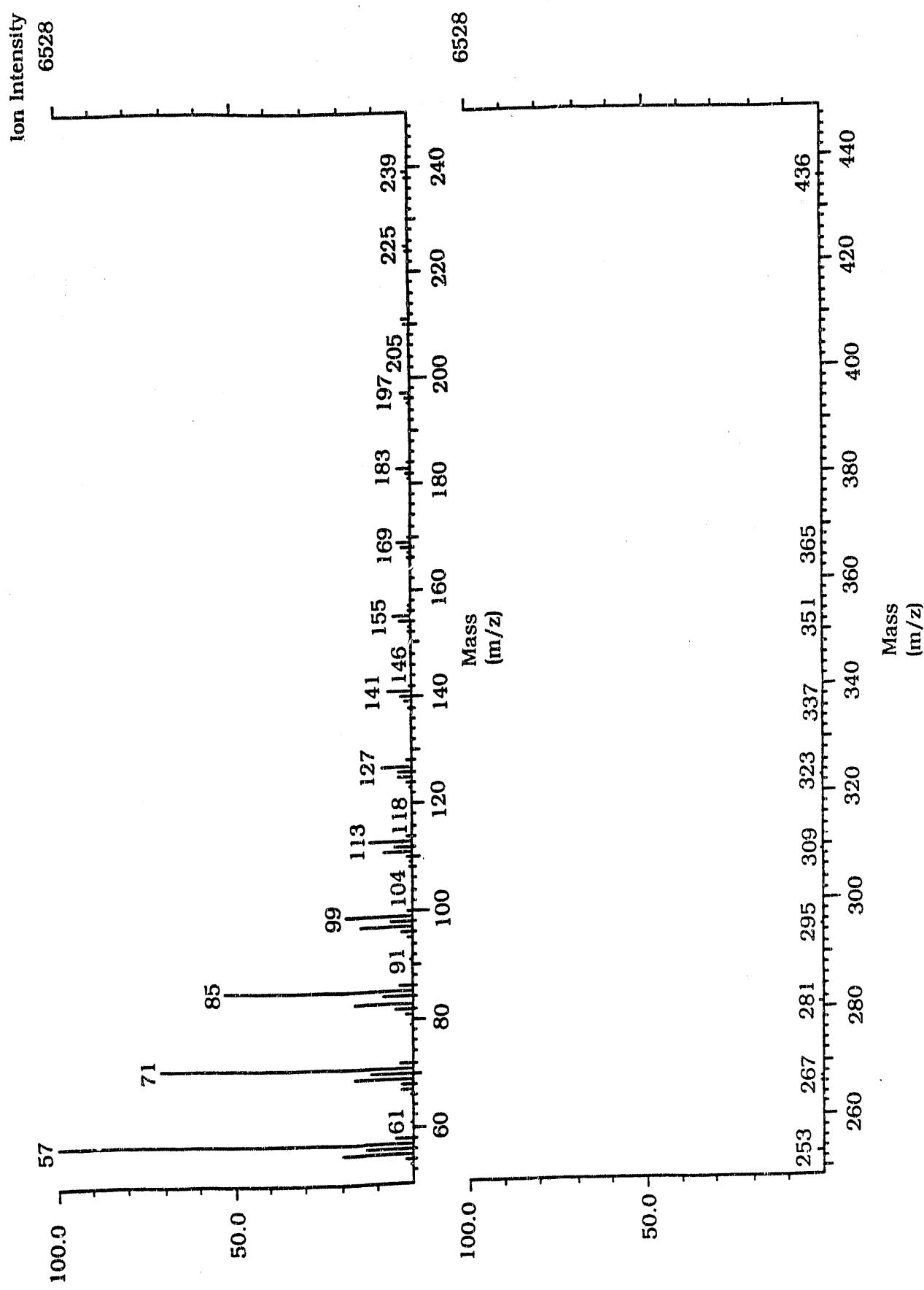
nd = not detected

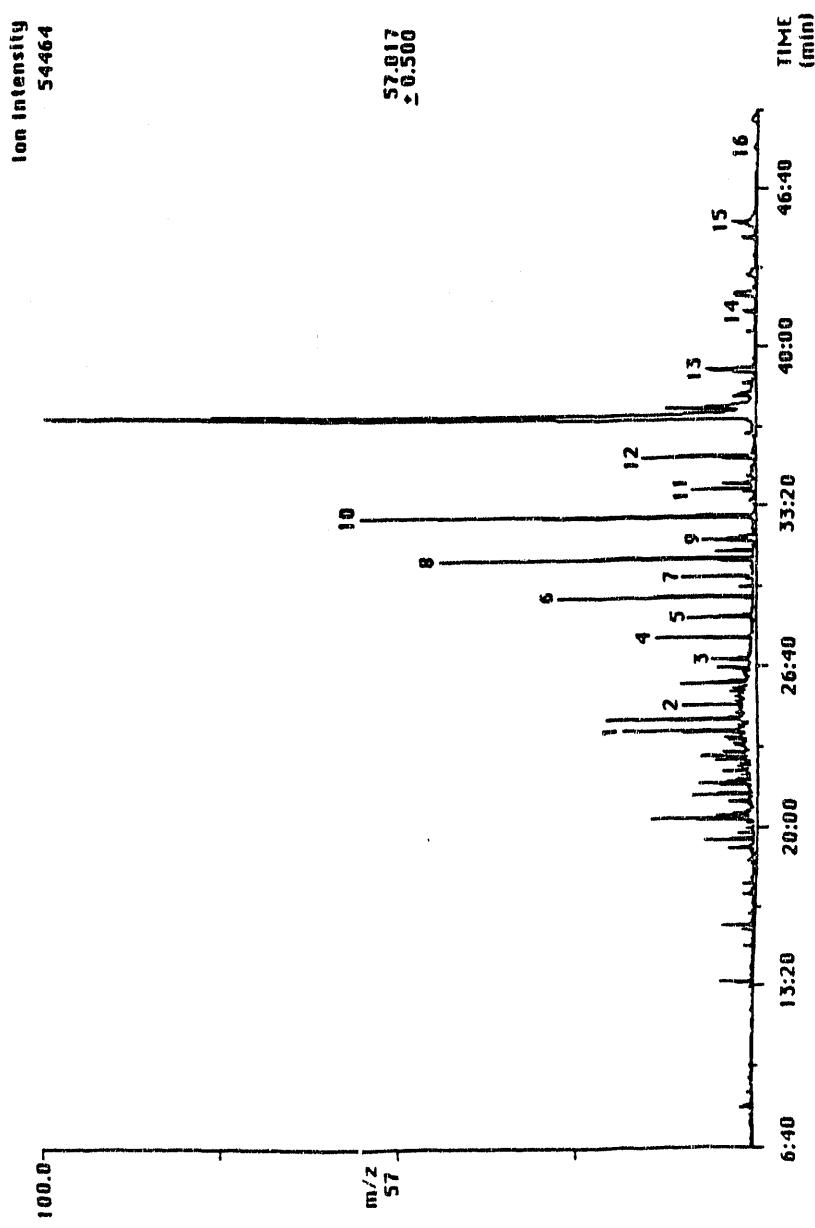

Table 3.
 GC/MS Injection F7217 -- Live Vegetation, Hopi Point, Fine Aerosol
 Selected Ion Plot of Mass m/z 57 vs. Scan Time for Isolation of n-Alkane Homologs (n-C19 to -C36).

Peak Number	File, Scan Number	Compound Name	Formula
n-Alkanes			
1	F7217.0721	n-Noradecane	C19H40
2	F7217.0750	n-Cosane	C20H42
3	F7217.0849	n-Heneicosane	C21H46
4	F7217.0836	n-Tricosane	C23H48
5	F7217.0862	n-Tetracosane	C24H50
6	F7217.0887	n-Pentacosane	C25H52
7	F7217.0911	n-Hexacosane	C26H54
8	F7217.0934	n-Heptacosane	C27H56
9	F7217.0958	n-Octacosane	C28H58
10	F7217.0987	n-Nonacosane	C29H60
11	F7217.1021	n-Triacontane	C30H62
12	F7217.1062	n-Heneitracontane	C31H64
13	F7217.1172	n-Triatricacontane	C33H68
14	F7217.1247	n-Tetraatricacontane	C34H70
15	F7217.1358	n-Pentatricacontane	C35H72
16	F7217.1454	n-Hexatricacontane	C36H74

Table 4.


GC/MS Injection F7217 -- Live Vegetation, Hopi Point, Fine Aerosol
 Selected Ion Plot of Mass m/z 74 vs. Scan Time for Isolation of n-Alkanoic Acids (as methyl esters)


Peak Number	File/Scan Number	Compound Name	Formula
1	F7217.0161	n-Hexanoic acid methyl ester	C7H14O2 (C6 FA)
2	F7217.0281	n-Heptanoic acid methyl ester	C8H16O2 (C7 FA)
3	F7217.0405	n-Octanoic acid methyl ester	C9H18O2 (C8 FA)
4	F7217.0476	n-Nonanoic acid methyl ester	C10H20O2 (C9 FA)
5	F7217.0530	n-Decanoic acid methyl ester	C11H22O2 (C10 FA)
6	F7217.0575	n-Undecanoic acid methyl ester	C12H24O2 (C11 FA)
7	F7217.0616	n-Dodecanoic acid methyl ester	C13H26O2 (C12 FA)
8	F7217.0653	n-Tridecanoic acid methyl ester	C14H28O2 (C13 FA)
9	F7217.0688	n-Tetradecanoic acid methyl ester	C15H30O2 (C14 FA)
10	F7217.0721	n-Pentadecanoic acid methyl ester	C16H32O2 (C15 FA)
11	F7217.0752	n-Hexadecanoic acid methyl ester	C17H34O2 (C16 FA)
12	F7217.0782	n-Heptadecanoic acid methyl ester	C18H36O2 (C17 FA)
13	F7217.0811	n-Octadecanoic acid methyl ester	C19H38O2 (C18 FA)
14	F7217.0839	n-Nonadecanoic acid methyl ester	C20H40O2 (C19 FA)
15	F7217.0864	n-Eicosanoic acid methyl ester	C21H42O2 (C20 FA)
16	F7217.0899	n-Heneicosanoic acid methyl ester	C22H44O2 (C21 FA)
17	F7217.0909	n-Docosanoic acid methyl ester	C23H46O2 (C22 FA)
18	F7217.0937	n-Tricosanoic acid methyl ester	C24H48O2 (C23 FA)
19	F7217.0963	n-Tetracosanoic acid methyl ester	C25H50O2 (C24 FA)
20	F7217.0993	n-Pentadocosanoic acid methyl ester	C26H52O2 (C25 FA)
21	F7217.1028	n-Hexacosanoic acid methyl ester	C27H54O2 (C26 FA)
22	F7217.1071	n-Heptacosanoic acid methyl ester	C28H56O2 (C27 FA)
23	F7217.1123	n-Octacosanoic acid methyl ester	C29H58O2 (C28 FA)
24	F7217.1187	n-Nonacosanoic acid methyl ester	C30H60O2 (C29 FA)
25	F7217.1266	n-Triacontanoic acid methyl ester	C31H62O2 (C30 FA)


Figure 1. Life zones and plant communities of the Grand Canyon. Approximate location of sampling sites, Indian Gardens and Hopi Point, are indicated.

Source: S. Whitney, 1982. [8].

Figure 3. Plot of mass fragmentation pattern vs. relative ion intensity for scan 1062 from live vegetation, fine aerosol sample (F7217). This mass spectrometric plot is for the n-alkane homolog, n-C₃₁H₆₄, and shows a very small molecular ion at m/z 436.

Figure 4. Selected ion plot of mass m/z 57 vs. scan time for isolation of n-alkane homologs (n-C₁₉ to -C₃₆) from live vegetation, Hopi Point, fine aerosol sample (F7217).

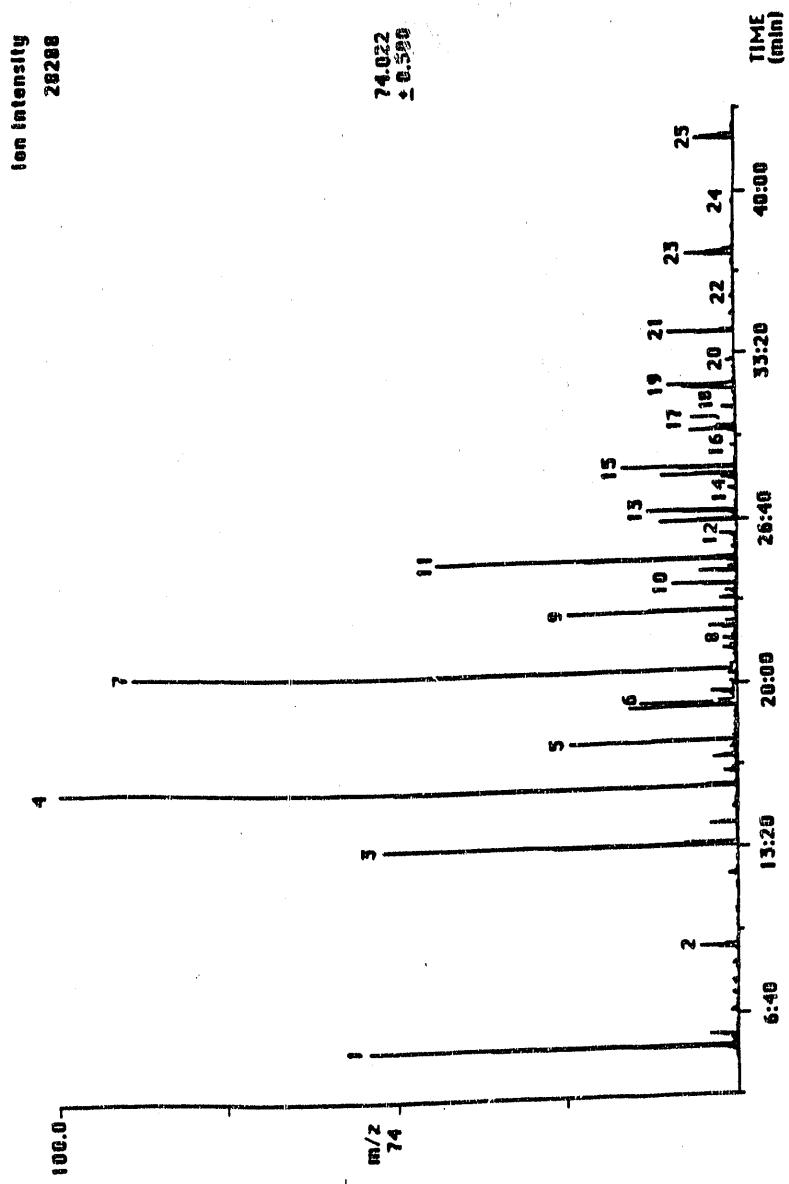
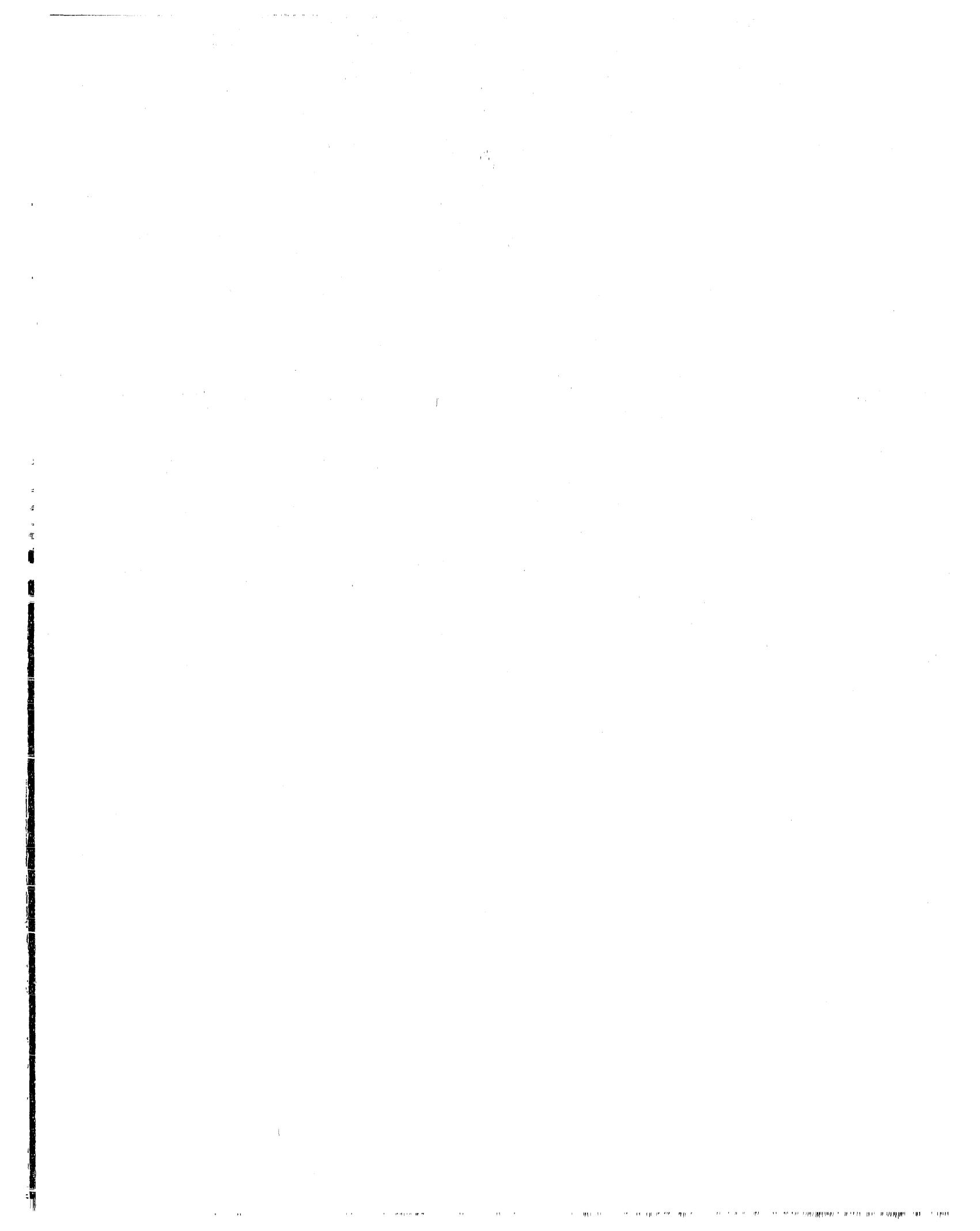



Figure 5. Selected ion plot of mass m/z 74 vs. scan time for isolation of n-alkanoic acids (as methyl esters) from live vegetation, Hopi Point, fine aerosol sample (F7217).

END

DATE
FILMED
11/16/92

