
111112-----2

Ulllg

Iilll'.25IIIllgIIIIIg

SAND93-0256 Distribution

Unlimited Release Category UC-403
Printed March 1993

EVENT TRIGGERED DATA ACQUISITION IN TIlE
ROCK MECHANICS LABORATORY

Robert D. Hardy

Geomechanics Department
Sandia National Laboratories

Albuquerque, New Mexico 87185

MTEP,
DIS_TION OF THIS I:)OCtJMENT IS UNLIMITED

Acknowledgements

DATAVG is based on a program written by D. J. Holcomb in 1983.
0

I wish to thank S. R. Brown and D. J. Holcomb for their suggestions while writing

the code. I also wish to thank S. R. Brown and W. R. Wawersik for their review of the

manuscript and their helpful suggestions.

Contents

1 BACKGROUND 9

2 OVERVIEW and DEFINITIONS 9

o

3 OPERATION 10

3.1 Set Up Channels 10
3.1.1 Test Identification 10

3.1.2 Channel Selection 11

3.1.3 Channel Name 11

3.1.4 Channel Scale Factor 11

3.1.5 Trigger Value 11
3.1.6 Data Offset Removal 11

3.1.7 Interface Hardware for this Channel 11

3.1.8 Completion of Channel Set Up 12

3.2 Set Up Screen 12
3.2.1 Number of Windows 12

3.2.2 Which Window 12

3.3 Print Channel Data 13

3.4 Check Channel Set Up 13

3.5 Save Setup Data 13
3.6 Name Data File 14

3.7 Gather Data 14

3.7.1 Force Recording of a Sample (F1) 15

3.7.2 Reset a Window (F2) 15

3.7.3 Zoom a Window In (F3) 15

3.7.4 Zoom a Window Out (F4) 15

3.7.5 Redefine a Window (F5) 15

3.7.6 Clear a Window (F6) 15

3.7.7 Clear all Windows (FT) 16

3.7.8 Start a new Data File (FS) 16

3.7.9 End the Test (F9) i6

3.8 Recall Setup Data 16
'.

3.9 Exit to DOS 16

4 TEMPERATURE CHANNELS 16

5 DISK FILES 17

5.1 Setup File 17
5.2 Header File 18

5.3 Data File 19

5.4 Thermocouple Data Tables 19

6 INSTALLATION NOTES 19

6.1 Keithley Box Configuration File 20
6.2 Temperature Dat_ Files 20

7 LIMITATIONS AND REQUIREMENTS 21
21

7.1 File Management •
7.2 Screen Management 21
7.3 Time Interval Triggering Limits 21

8 COMPUTED CHANNEL DESIGN 21

8.1 COMPUTED CHANNEL INTERFACE 21

8.1.1 Computed Channel Driver Function Prototype 22
8.1.2 Initialize Computed Channel 22

8.1.3 Save Computed Channel Set Up Data 23

8.1.4 Restore Computed Channel Configuration 23

8.1.5 Normal Computed Channel Operation 23

8.1.6 Support Functions 23
8.1.6.1 Get an Integer with prompt and default 23
8.1.6.2 Get a Float with prompt and default 23

8.1.6.3 Get a Board and Channel 24
8.1.6.4 Validate a File Name 24

9 PROGRAM STRUCTURE 24

10 VARIABLES 25
10.1 Global General Data 25

10.2 Time Data 27
10.3 Plot Data 27

10.4 Program Channel Data 28
10.5 Hardware Information 28

10.6 Other Variables 29

A DATAVG.H 30

B DATAVG.C 35

B .1 TEMP.C - Temperature Channel Driver 73

C 500LIB.H 79

D 500LIB.C 82

E SRBGRAPH.H 91 s

F SRBGRAPH Composite Source 93
F .1 DEFINE.C 94

F .2 DEF_DHR.C 05
F .3 DRAWAXIS.C 96

F .4 DRAW_B.C 100

F .5 MENU_BAR.C 101
F .6 LINE.C 102
F .7 LINE_TO.C 102

F .8 MOVETO.C 103
.}

F .9 POINT.C 103

F .10 PUT_CORD.C 104
• F .11 CLR_CORD.C 105

F .12 MAKECURS.C 105

F 13 PUT_CURS.C 106
F 14 CLR_CURS.C 107

F 15 RM_CUP,,S.C 107
F 16 SELECT.C 107

F 17 RESET_W.C 109
F 18 ERASE_W.C 110

F 19 ERROR.C 110
F 20 SCALE.C 111

F .21 SYM_CIR.C 112
F .22 SYM_CitOS.C 112

F .23 SYM_DIAM.C 112

F .24 SYM_SQR.C 113
F .25 SYM_STAR.C 113
F .26 SYM_TRI.C 114

F .27 SYM_X.C 114

G BUILDTC.C 116

List of Figures

1 Setup File 17
2 Header File 18
3 Data File 19

4 Keithley Configuration File, K500.CFG 20

7-8

1 BACKGROUND

increasing complexity of experiments coupled with limitations of the previously used
computers required improvements in both hardware and software in the Rock Mechanics

* Laboratories. Increasing numbers of input channels and the need for better graphics could
no longer be supplied by DATAVG, an existing software package for data acquisition and

. display written by D. J. Holcomb in 1983. After researching the market and trying several
alternatives, no commercial program was found which met our needs. The previous version

of DATAVG had the basic features needed but was tied to obsolete hardware. Memory
limitations on the previously used PDP-11 made it impractical to upgrade the software

further. With the advances in IBM compatible computers it is now desirable to use them
as data recording platforms.

With this information in mind, it was decided to write a new version of DATAVG which

would take advantage of newer hardware. The new version had to support multiple graphic
display windows and increased channel counts. It also had to be easier to use.

2 OVERVIEW and DEFINITIONS

This document describes a new and greatly expanded version of DATAVG as used

to record data in the Rock Mechanics Laboratory at Sandia National Laboratories/New
Mexico. DATAVG is currently at Version 1.10.

DATAVG is an event triggered data logging program. An event is defined as a change
in the quantity measured at any input channel which exceeds a user defined threshold. The

triggering threshold, DELTA, is the absolute value of the data change since the last recorded

reading. Input channels are continuously scanned. When a specified change in value has
been met at any channel, the data from all channels is recorded in a file and plotted on the
video screen.

Allowing any input to trigger recording facilitates tests in which there are several phases.

During each phase of the test a different set of input parameters may be of interest. With

DATAVG, data recording may proceed without user intervention to change sampling rates,
etc.

Event triggering also minimizes the amount of data recorded. With many commercial

programs sampling is at uniform time intervals. If a test is to run for a long time but some

part of the test requires fast sampling, as near failure of a specimen, a la-ge amount of
nearly useless data is recorded. DATAVG avoids this excess data by triggeri:::; at long time
intervals but short intervals in some other variable.

For instance, the load on a sample may be varied in a series of steps. At each step
some process is to be performed. With DATAVG the changes in load will trigger recording
during the load change phase. During the other process the load will be constant but some

* other variable will trigger recording. If nothing else is changing, the time channel will cause

some minimal recording rate. See section 7.3 for further information on triggering at time
intervals.

DATAVG supports one to four windows for data plotting and emulates an X-Y plotter.

Strip chart style plots are not supported. Each window displays data from two channels.
The same channel may be displayed in more than one window if needed.

3 OPERATION

DATAVG is menu-driven with the menus arranged in approximately the order required

to operate the program as shown below. 0

1) SET UP CHANNELS

2) SET UP SCREEN
3)PRINT CHANNEL DATA

4) CHECK CHANNEL SETUP
5)SAVE SETUP DATA

6)NAME DATA FILE

7) GATHER DATA

8)RECALL SETUP DATA
9) EXIT TO DOS

Item three,PrintChannel Data,isforuserconvenienceand compatibilitywiththeold

version.Itisconvenientfortestdocumentation.Item six,Name Data File,was carried

overfrom the previousversion.The Gather Data operation,item seven,willrequestthe
filename ifitwas not definedby item six.

Ifthe setuphas been savedin a diskfileitmay be recalledby item eight.This will
eliminateany needforadditionalsetupifa testisto be repeated.The channeland screen

data aresavedin a form which allowsoperationimmediatelyafterrecall.By use of this

featurea repeattestmay be run by selectingmenu itemeightfollowedby menu itemseven.
Saved setupflesmay be recalledthen editedby usingmenu itemsone or two. Itis

possibleto editthe screendisplayduringa testthen savethe changesby selectingmenu
itemfivebeforeleavingDATAVG. Ifsavinga setupafterthedatarecordingruns,firstcheck

the FirstPointZeroflagby usingthe Channel Setupmenu operation.Ifthefirstreading
happened tobe zero,thisflagwould be altered.

Menu items sixand sevenask fora filename to be used fordata storage.Two file
names are createdby appendingextensionstothename suppliedby theuser.The firstis

"filename.HDR"which storestheprogram version,a copyofthesetupinformation,a time

stamp, column headingsand the offsetswhich are subtractedfrom subsequentreadings.
The secondfileis"filename.DAT"which containsalldataforthetest.The ".DAT" fileis

closedand reopenedatselectedintervalsfordatasecurityreasons.
Menu operationswillnow be discussedinorder.

3.1 Set Up Channels

In the channel set up routine, most requested values show a default in parentheses
immediately before the prompt "?". If this value is satisfactory it may be selected by a
carriage return alone. *

3.1.1 Test Identification s

The first question asked is the test identification. The current test identification is shown

and may be changed by entering a new identification. If the current identification is correct,
as when editing a set up, just press ENTER.

l0

3.1.2 Channel Selection

Channel set up requests information on the data to be recorded in logical channel order

starting with the channel next higher than the highest one previously selected. Channels
may be defined in any order by entering the number of the desired channel.

Channel zero (0) is always TIME. TIME is always recorded in seconds starting at the

beginning of the test. A prompt will ask for the maximum interval between recordings.
" This interval is used to trigger recording if other channels are changing slowly.

3.1.3 Channel Name

The user is asked for the name to be used with this channel. The currently assigned
name is the default which may be retained by pressing ENTER. The channel name is used

for the column heading in the data file and axis labels on plots. Measurement units may
be included in the channel name, for example:

LOAD (Kn) or STROKE(in.).

3.1.4 Channel Scale Factor

The next prompt is for units per Volt. This is the real quantity corresponding to .1 volt
input. For example, a load cell conditioner provides 5V at 25000 lbs. tensile load. When

DATAVG asks for the units per Volt value respond with 5000 lbs. (or 5 KIPS where 1 KIP
= 1000 lbs). If compression is to be positive load, enter -5000 lbs. or -5 KIPS. The units

are not entered but are shown here for clarity. With this information DATAVG can scale
readings into proper engineering units.

The calibration plotting software used in the Rock Mechanics Lab provides units per
Volt in the graph header.

3.1.5 Trigger Value

The third prompt asks for the input change, in real units, required before recording data
is initiated. While recording data, DATAVG continuously scans all input channels. The

current readings are compared to the last readings in the data file. When the change equals

or exceeds the value entered here the current readings will be recorded in the file and all
plots are updated.

3.1.6 Data Offset Removal

The fourth prompt asks if the first data point is to be used as the zero offset. Frequently

transducer outputs are not exactly zero at the start of a test. If you are only interested

in the change during a test answer this question by pressing ENTER. If true readings are
required, answer by pressing "N". Data offsetting is done by subtracting the first readings

, of a test from all subsequent readings. The offset values are recorded in the data header

file so true readings may be restored if this is later required.

L
3.1.7 Interface Hardware for this Channel

Next the hardware to be used is specified. The user is asked for the interface board

in the Keithley box and the channel to be used. The prompt includes a menu of available

11

boards. Select the board by nunlber from the menu. Tile menu item numbers correspond
to the slot numbers in the Keithley 500 box. Item numbers higher than ten are computed

channel pseudo boards. Entries with no corresponding board name will be rejected. After

selecting a board, the user is asked for the channel on that board to be used. This prompt
includes the valid' range of channel numbers and only valid channels will be accepted. The

default is the channel following the last one selected on this board.

There is a possibility for confusion in selecting hardware channel numbers. The interface °
boards use a zero based numbering system. Each board starts numbering at zero. DATAVG

uses logical channels starting at zero also, but they do not start over on each board. The

user must plan hardware usage and be careful to enter proper data.
If the "TEMP" board is selected, a prompt will ask for the thermocouple type. This

allows an appropriate conversion to be applied to get degrees Celsius from each reading

taken. If there is no AIM7 board or if TIIERMO.CFG is missing, temperature readings
may not be made.

3.1.8 Completion of Channel Set Up

After answering ali questions about a channel, DATAVG returns to step 3.1.2. After ali
channels have been delined, enter "DONE" for the channel number.

Channel setup information will be displayed on the screen in tabular form. Channel

zero, if defined, will show a units/Volt value of 1. This is normal and will in no way limit
the recording time for a test. It only reflects a scale factor of one which is ai_plied to time

readings.
Press enter to return to the main menu.

3.2 Set Up Screen

3.2.1 Number of Windows

DATAVG will display the number of windows currently defined then ask for the number

of windows needed. The options are one through four. Invalid responses will be rejected.

During initial setup there are no windows defined ab,4 most defaults will be zero. The

default X axis channel will be -1 indicating an urused window.

3.2.2 Which Window

After selecting the number of windows, a prompt will ask which window to set up.

The default window will start at one and step to the next higher numbered window each

time through. Any valid window may be selected instead of the default by entering it's
number. Information about the data to be plotted in that window will be requested. This lp

operation repeats until all windows have been set up. If a window is selected which is
already configured properly, just take the default values at each question.

First, the user is asked for the number of the channel to be plotted on the X axis then

the number of the channel to be plotted on the Y axis. The defaults are the currently
defined channels. The first time a window is set up the X axis default will be -1 and the
Y axis channel will be zero.

12

If -1 is entered for the X axis channel, this window will be blank when data recording

starts. Blank windows may be activated during a test by redefining them with a real channel
on the X axis.

Next, tile user will be asked in turn for the minimum and maximum data values to

plot on each axis. Defahlt values will be displayed and they may be accepted by pressing

ENTER. During initial setup tile defaults will be zero. The minimum value plotted must
be smaller than the maximum. If tile maximum value entered is smaller than the minimum

value, DATAVG will exchange them so the plot routine will be happy.

After configuring the last window, a prompt will ask if ali windows are properly config-
ured. Press Y to end, or any other key to go back and redo one or more windows. This

function may be terminated at any time by entering -1 for the window number.

3.3 Print Channel Data

Selecting this option prints a table of information about this setup. Data is shown in
channel number order with only active channels displayed. The table shows the number

and name of each channel. This is followed by the full scale value and trigger threshold

(DELTA). Last is a zero offset column. If the zero offset value is non-zero, the first reading
will be subtracted from all recorded data. Usually the zero offset is one or zero, but it may

have any value.

Channel zero, if defined, will show a full scale value of 10. This is normal and will in no

way limit the recording time for a test. It only reflects a scale factor of one which is applied
to time readings.

Output will be sent to PRN: which may be redirected as needed. After printing the
chart, the main menu will be displayed.

3.4 Check Channel Set Up

This operation steps through the channels starting with channel one and displays read-

ings in volts. No scaling is performed. This allows confirmation of readings with a voltmeter.

After the reading is shown, the user is asked to change something affecting the channel then
press return. A new value will be displayed for confirmation of the change. Pressing return

will step to the next channel.

If the letter "A" is entered before the return, the same channel will be displayed again.

A channel may be tested as often as needed before going to the next channel.

After all channels have been tested, DATAVG will return to the main menu.

3.5 Save Setup Data

This operation saves all setup information in a file. The configuration of all channels
and windows is saved in an ASCII file. A name must be provided for the setup file. An

existing file of the same name will be replaced. There is no check for or warning before

replacing an old file.

After creating the setup file the main menu will be displayed.

13

3.6 Name Data File

As stated above, this operation is not required. It was retained from the previous version
of DATAVG because some users like to see a specific way to name their data file. If this

operation is not done explicitly before beginning a test, it will be done automatically.

This operation asks for a file name to be used for data storage. Blank lines are ignored
until a name is entered. After a name has been entered it is scanned for characters DOS

does not like. These are removed so the file name will be valid. If a complete path is "

specified, the directory must exist. DATAVG will not create directories. Since DATAVG

supplies the file type fields, only characters preceding the dot are kept.

After entering a file name, a prompt asks for the number of data points to be stored
before closing and reopening the file. A positive number must be entered. Entering one will

force closing of the data file after every point is recorded.

If the test will run unattended for long periods, a small number might be used since

data probably will not be recorded very fast. Larger numbers of points per file will increase
speed if data will be recorded quickly.

After answering these questions, DATAVG will return to the main menu.

3.7 Gather Data

This operation starts data recording. If a data file name has not been specified, this
information will be requested as described in Section 3.6.

The first operation is to open the data header file us!_g the name requested above. The
header file name is made by appending ".HDR" to the base file name. This header file is

described in Section 5.2. The file is opened in append mode to eliminate loss of any previous
file of the same name.

Next, all channels will be read and the zero offsets stored in the header file. These data

are, also, subtracted from readings takenduring the test to remove initial offsets.

The header file is then closed and a new file is opened with the same base name but the

type field will be ".DAT". The data file is described in Section 5.3. This file is also opened
in append mode and will start with the fir:_t data set.

Finally the screen plots are set up. All plots are initialized to display the data ranges
specified in Section 3.2. If a window includes a data value of (0,0) in its active area there
will be a small cross drawn to mark that location. The cross may be partial if one axis is
near zero.

There is a menu across the bottom of the screen. This menu describes the function key
actions. If the screen is EGA or better, the menu is two lines with the function key name

above it's action. On CGA screens only the function key actions are displayed.

At this time, the program enters a loop. Data is read and compared to the threshold

values. If any channel value has crossed the threshold, data from all channels will be

recorded and plotted. This loop is repeated until an active function key, as described *
below, is pressed.

During data recording, there are nine function keys active. Six of them affect windows,

and the rest perform various other tasks. Five of the function keys which affect windows
perform their task immediately if only one window is active. When multiple windows are
active, the user is prompted for the window number.

14

3.7.1 Force Recording of a Sample (F1)

This function forces recording of a data point. The current reading is stored regardless
of threshold crossing.

#

NOTE:

The following operations are useful but they do cause data logging to stop until the operation
is complete. It is recommended that the user be careful in selecting appropriate times to

perform these operations to minimize the loss of data.

3.7.2 Reset a Window (F2)

This function resets a window to show the maximum data range on both axes. This is
useful if the active plot region cannot be seen. If only one window is defined this function
is immediate.

3.7.3 Zoom a Window In (F3)

This function scales the selected window to show a smaller area and centers the plot
on the last data point. Both axes are scaled to 75% of their previous length. If only one
window is defined this function is immediate.

3.7.4 Zoom a Window Out (F4)

This function scales the selected window to show a larger area and centers the plot on
the last data point. Both axes are scaled to 133% of their previous length. If only one
window is defined this function is immediate.

3.7.5 Redefine a Window (F5)

This function allows redefinition of a window. The user will be asked for the window

number to be redefined. Channels to be plotted and scaling on either axis may be changed.
A window may be turned off by assigning channel -1 to the X-Axis. The information

required is as described in Section 3.2.2 which describes the screen set up process. After
entering the required data, the screen will be restored with the last one thousand data

points replotted. If only one window is defined this function is immediate.

This function cannot change the number of windows allocated screen space. For example,
if DATAVG was configured to use four windows, screen space is allocated in quarters. If
only three windows are in use, this function can turn on the fourth window and it can turn

off other windows but it cannot change the size of these windows. If DATAVG is configured

to use three windows, the screen is divided into quarters as above. However, this operation
, cannot turn on the fourth window.

3.7.6 Clear a Window (F6)

This function clears all data from a specified window. A prompt will ask which window

to clear. The valid range is displayed and inactive windows are rejected. This option is
useful when data is of a cyclic nature and you need to see better detail of a given cycle. A

15

=__

window is redrawn but no data is plotted. If only one window is defined this function is
imlaediate.

3.7.7 Clear ali Windows (FT)

This function clears data from ali windows. All windows are redrawn but contain no
data traces. .

3.7.8 Start a new Data File (FS)

This option closes the current data file and starts a new one with a new name. A prompt
will ask for a file name and number of points as described above. No ".HDR" file is created.
This is an extension of the test so the previous ".HDR" file is valid.

3.7.9 End the Test (Fg)

This function ends the test after confirmation from the user. The user must enter the

letter "Y" to end the test. All other responses will cause the test to resume. Data recording
is stopped while waiting for the user confirmation.

No shifted or otherwise modified function keys are defined and any unused function keys
are ignored.

3.8 Recall Setup Data
m

This operation asks for the name of a file containing setup data. A valid file name is
required. If the name cannot be remembered, press the ESC key and DATAVG will return

to the main menu. Exit from DATAVG and find the required name. After opening the file,
setup information is read into internal data structures. DATAVG will tolerate setup files
which are either too long or too short. A long file will be read until the maximum number
of channels have been processed. A short file will leave channels undefined but available for

use. The main menu is displayed on completion of this operation.

3.9 Exit to DOS

This operation returns to DOS after files are closed and the screen is cleared.

4 TEMPERATURE CHANNELS

Temperature channels are implemented as computed channels on a pseudo board named

TEMP. This board requires the presence of an AIM7 interface board. Types J and K
thermocouples are supported over a temperature range of -100 to +500 degrees Celsius *

using the tables supplied. The tables may be extended as needed by using the procedure

in Section 5.4. The conversion from voltage to temperature is done by a cubic spline r
interpolation. Interpolation tables are loaded from a disk file (THERMO.CFG) when the

first channel of this board is configured. If this file is not present in the current directory
DATAVG will issue a message and temperature readings will not be allowed.

16

5 DISK FILES

5.1 Setup File

, Setup flies contain all data needed to configure DATAVG for a particular job. Each field
in the file will be described in this section. See Figurp ; ibr an example setup file.

#

fLVDT 814 CAL
2
1

0, 0, 0, , 0, , , 0

0.01007, 0.0005, 1, AMM2, 1, I, 0.1" STANDARD, 1
1, 10, 1, AMM2, 2, I, LVDT 814, 2

0, 0, 0,, 0, I,, 0
0, 0, 0,, 0, I,, 0

0, 0, 0,, 0, I,, 0
.,.

O, O, :', , O, I, , 0
O, O, O, , O, I, , 0

O, O, O,, O, I,, 0
1, 2, O, 100, 5, 100,-0.01, 0.01, -10, 10

-1, O, O, O, O, O, O, O, O, 0
-1, O, O, O, O, O, O, O, O, 0

-1, O, O, O, O, O, O, O, O, 0

',,. j

Figure 1: Setup File

The first line lists the test name. The second line contains the highest numbered active
channel plus one and the third line contains the number of active windows.

Subsequent lines contain data for each channel. All available channels are represented
whether they are used or not.

Data are as follows with the fields separated by commas and spaces.
Column one, Scale factor in units per volt. Column two, Trigger threshold in scaled

units. Column three, Flag indicating whether the first reading is to be the zero offset. Non
zero values indicate a zero offset will be applied. Column four, The interface board name.

Column five, The hardware channel number on this board. Co_'umn six, A channel type

character (I (in), 0 (out) or C (computed)). Column seven, The channel name. Column

eight, The column number these data will occupy in the output file (0 if not in the file).
' The last four lines contain data about the windows. This data is tile screen positions

and user unit ranges for both axes. The data is as follows with the fields separated by
commas and spaces.

Column one, X axis channel. Column two, Y axis channel. Column three, Screen X axis

minimum. Column four, Screen X axis maximum. Column five, Screen Y axis minimum.

Column six, Screen Y axis maximum. Column seven, User unit X axis minimum. Column

17

eight, User unit X axis maximum. Column nine, User unit Y axis minimum. Column ten,
User unit Y axis maximum.

5.2 Header File

The header file (filename.HDR, Figure 2) starts with the version of DATAVG being
used. The version includes the compilation date. The version information occupies the first

two lines. Next comes a copy of the setup data as described in Section 5.1. There is a time

stamp (including the date and time) followed by the column headings. Column headings
are the names of each active channel. The offset data are stored in the last line of the

header file. This offset information may be used to reconstruct actual readings if needed.

fDATAVG FOR THE IBM PC

Version 1.0, 5/12/1992
LVDT 814 CAL
2

1

0, 0, 0,, 0,,, 0

0.01007, 0.0005, 1, AMM2, 1, I, 0.1" STANDARD, 1
1, 10, 1, AMM2, 2, I, LVDT 814, 2

• 0, 0, 0,, 0, I, , 0
" O, O, O, , O, I, , 0

O, O, O, , O, I, , 0

O, O, O,, O, I, , 0
O, O, O, , O, I, , 0

O, O, O,, O, I,, 0

1, 2, 0, 100, 5, 100,-0.01, 0.01, -10, 10
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0

-1, 0, 0, 0, 0, 0, 0, 0, 0, 0

-1, 0, 0, 0, 0, 0, 0, 0, 0, 0

Mon Aug 31 15:31:50 1992

" 0.1" STANDARD" " LVDT 814"

-0.999594, -0.93985

Figure 2: Header File

If a filename is re-used, the new header information will be appended to the existing

file. It is easy to find the new header information by searching for the DATAVG program
name in the file.

18

5.3 Data File

Data storage starts in the second file (filename.DAT, Figure 3). Data are stored in

ASCII real numbers with comma and spaces between columns. The data format may
be floating point or exponential, whichever is shorter. Time data is expressed in elapsed
seconds, since the start of test, in floating point format. Ali data from an event are stored

. in a single line. Lines are terminated by Cit LF pairs as is customary in DOS systems.

-6.46163e-06, -0.00256348
-0.00056577, 0.55899

-0.00107591, 1.04019
-0.00158082, 1.55411

-0.0057996, 5.76239

-0.00634324, 6.29132
-0.00687273, 6.83188

,. j

Figure 3: Data File

Data files (filename.DAT) contain data only. If a filename is re-used, dasa will be

appended to the existing file. There is no blank line or other marker in the file to indicate

where re-use started. It is possible to find the point where data was appended by looking
for a jump, usually negative, in the time channel.

5.4 Thermocouple Data Tables

The tables in THERMO.CFG are created by a supporting program (BUILDTC, see
Appendix G for source code), and are based on tables in the OMEGA temperature
measurement data book Vol. 28. Tables may be created or extended by creating a file

named TEMP.D containing temperature, millivolt pairs in ascending order of temperature.
In THERMO.CFG, the first line of a table must contain the thermocouple type letter,

a comma and the number of temperature points in the list. Subsequent lines contain the

AIM7 board output in volts referenced to zero degrees C, a comma then the temperature in
degrees Celsius, a comma and the cubic spline coefficient data. One data point is allowed

on a line. Multiple thermocouple types may be contained in a file by concatenating them.
While BUILDTC does not care how many types are contained in a file, only the first ten

will be read by DATAVG. To conserve memory, the number of types should be kept to a

minimum and only the types in use should be in the configuration file THEttMO.CFG.
_t

6 INSTALLATION NOTES

When installing DATAVG, a file named K500.CFG, Figure 4, must be created. It must

contain the address of the interface board and the names, etc., of the boards iv the Keithley
box. This file is described in detail in Section 6.1.

19

The first line contains the segment address of the 500-IBIN-A interface board. This

board is memory mapped and must not conflict with other boards or DOS. If DOS 5.X or
Windows is in use, it is possible to load system programs in high memory areas which may
conflict with the factory default address of CFF8 HEX. Run the DOS command

MEM/D > PRN"

to print the memory map. If any programs start at addresses near CFF80, check for conflicts.
Any conflicts will require changing the board address, as described in the Keithley manual,
to remove the conflict. In a GATEWAY 2000 486DX2/50, setting the board to DFF8 works.
DATA VG has not been tested with EMM386.

6.1 Keithley Box Configuration File

The file K500.CFG, Figure 4, must be in the \DATAVG directory when DATAVG is
started. This file contains the configuration of the Keithley 500 mainframe. K500.CFG
must be maintained current for the specific computer. This is the only part of DATAVG
which is specific to a particular computer.

The first line contains the segment address of the interface board expressed in HEX
notation. When DATAVG starts, it reads K500.CFG and uses this address to initialize the
interface board. Subsequent fines contain a fist of the boards present.

Board list fines contain four fields separated by commas. The first field is the board

name. Following the name is the slot number, channel count and board type. The type is

Input or Output.
While newer Keithley 500 mainframes can identify the boards present, DATAVG does

not currently make use of this feature. Instead, DATAVG uses the board list in K500.CFG.

6.2 Temperature Data Files

The temperature measurement system in DATAVG uses pre-computed data tables which
' Fare read from a file named THERMO.CFG. rHERMO.C G must be in the \DATAVG

directory when temperature channels are configured. The file structure is discussed in
Section 5.4.

DOF8

AMM2,1,16,I
AIM3,3,32,I

AOM1,5,2,O

DIO1,8,16,I
DIM1,9,16,I
PIM2,10,4,I

J

Figure 4: Keithley Configuration File, K500.CFG

2O

7 LIMITATIONS AND REQUIREMENTS

DATAVG uses 500LIB to interface with its hardware. The library is written with the
assumption that a Keithley 500-IBIN-A interface board is present. This board contains the

" counters and clock used to time events. The older 500-IBIN board will not work since it

does not include a crystal oscillator. The analog input routines assume a sixteen bit A/D
, converter on a Keithley 500-AMM2 board. If different hardware is needed, 500LIB must be

modified and recompiled.

7.1 File Management

Data are recorded whenever the defined threshold is crossed on any channel. Data are
written to disk when they are plotted on screen. A power failure during a test could cause

the loss of any data written to the file. Closing the file assures that the disk directory will
be updated in a timely manner which reduces chances of data loss. Therefore, for data

security, the number of data points recorded in a file before closure is limited. When this

limit is reached the file is closed and reopened. Subsequent data are appended to the file,
and this process is repeated until the end of test. There is a limit of 65536 data points

before closing the data file.

7.2 Screen Management

All plots are updated to reflect the latest data written to disk. This update does not
wait for the file closure discussed in Section 7.1.

7.3 Time Interval Triggering Limits

The time data used for triggering is stored in a float. This supplies sufficient precision

to allow triggering at one-second intervals for about ninety days. If a test runs longer than
this, trigger at longer intervals. Actually, one-second intervals would be rather short for a

test of this length so the loss of precision should not be a problem.

8 COMPUTED CHANNEL DESIGN

The remainder of this document is primarily of interest to programmers. The user

probably will not need to read further. This section is included to document the program
structure.

8.1 COMPUTED CIIANNEL INTERFACE

Computed channels are implemented using object-oriented programming techniques.
d

They are treated by DATAVG as if they resided on boards. Pseudo boards may be defined

which have needed properties. These boards may support multiple channels like a real
, board. Each channel of a pseudo board must return a computed value based on real readings

and/or other computed channels.

The user may write computed channel drivers and link them into the program by making

proper references in the MAKEFILE. This requires adherence to the function prototype to

21

avoid compiler complaints. User-written drivers must take care of any required initialization.
User-written drivers must #include "DATAVG.H". If using Borland MAKE, create a file
named DATAVG.LNK containing the linker instructions.

Computed channel drivers must keep static variables or arrays containing information Q

used for their calculations. They must, also, handle four functions signified by the card_slot
variable. Card_ot values of-1, -2 and -3 specify special functions as described below.

Another re(uirement is to place the function prototype near the beginning of DATAVG.H

so the compiler can reference it. Include the board name, slot number, channel count, type

and driver pointer in the box[] array found in DATAVG.H. When installing the pseudo
board, choose a slot number greater than ten and within the limits of the box[] array,

(currently 15 as defined by MAX_SLOT). Board names should be seven or less characters.

8.1.1 Computed Channel Driver Function Prototype

The function prototype for computed channel drivers is:

float name(int channel, int card_slot, int num_to__ve).

8.1.2 Initialize Computed Channel

A card_slot value of -1 signifies a need to initialize this channel. This function may
request any information required to perform the required operation such as scale factors
and input sources.

In the setup_channels function (Section 3.1), the user is asked for data about each
channel. Part of this data is the board name and board channel to be used for this program
channel. If the board is a pseudo board, the board driver will be called to do any required

initialization. The initialization request will be signified by a card_slot number of -1.
When making the initialization call, the driver will be given the pseudo board channel

to be configured. The num_to__verage variable will contain the program channel number

being processed. The program channel being processed is useful in detecting references to
other channels which will contain obsolete data at the time this channel is evaluated. Only

channel numbers less than this one can provide currently valid data from the D[] array.

Computed channel drivers may use previous channel data, or they may make indepen-
dent readings from the interfaces. During set up, it is possible to test references to other

channels to see if they have been defined. This may be done by testing their scale variable
(channels[ni.scale). Channels which are in use have non-zero scale factors. References to
undefined channels should be treated as warnings, since they may be defined later. At run

time, references to undefined channels should be flagged as errors and the run stopped.

During configuration of a computed channel, a physical channel may be selected by a

call to get_valid_board(). This function requires a pointer to the prompt text. It returns an

index into the box[] array where information about the board is located, get_valid_board()
also returns the selected channel on the board. The driver element of the box[] array entry
may be called to make a real reading. Several real readings may be taken as needed by

calling the appropriate drivers. This data may be combined with data from previously read

channels as needed. Previously read data is in the D[] array and may be indexed by the

channel number. Obtaining data from the D[] array is much quicker than making new
readi_Lgs. It is possible to write drivers which use new readings only when needed.

22

8.1.3 Save Computed Channel Set Up Data

The save_setup() function (Section 3.5) in DATAVG calls computed channel drivers

during its operation, save.setup() calls the driver with the pseudo board channel number
* and a slot number of -2. The driver must write any required data to the setup file. This

operation is needed because DATAVG has no way to know what this driver does or how it is
, done. Drivers normally maintain private data which needs to be restored before operation

can resume. The file pointer to be used is data_file and the information should be saved in
ASCII with a newline at the end.

8.1.4 Restore Computed Channel Configuration

The restore.setup() function in DATAVG (Section 3.8) calls computed channel drivers

during its operation, restore_setup() calls the driver with the pseudo board channel number
and a slot number of -3. The driver must read saved set up data from the setup file, using
the file pointer data_file, and rebuild its internal tables. User prompts may be made for
other data as required.

8.1.5 Normal Computed Channel Operation

During data collection, the driver for a computed channel will receive a card_slot num-
ber as shown in channels.card_slot, the channel number for this board and the number of

readings to average. The number to average is a compile-time constant and is probably

meaningless in a computed channel context but is included for a consistent interface.
The driver must perform its function and return a float result. If data from lower

numbered channels is desired, it may be obtained from the D[] array. The channel number
is the index into this array.

8.1.6 Support Functions

There are several support functions available to writers of computed channel drivers.

These include functions to prompt for and validate numerical data and board identification.
Use of these functions can make your code smaller and easier to write.

8.1.6.1 Get an Integer with prompt and default, get_int() returns an integer. It

requires a prompt string and default value. Input is validated to insure the Correct type. and

the default is returned if the user presses ENTER alone. See the prototype in DATAVG.H
for details of this function.

/
t

//

8.1.6.2 Get a Float with prompt and default, get_float() returns a float. It re-

' quires a prompt string and default value. Input is validated to insure the correct type, and
the default is returned if the user presses ENTER alone. See the ,prototype in DATAVG.H
for details of this function../

23

8.1.6.3 Get a Board and Channel. get_valid_board() requires a pointer to a prompt

string. It asks for and obtains a board and channel identification. This function returns an
index into the box[] array. By using this index, a description of the selected board may be
located. This function also returns a channel number on the board. See the prototype in
DATAVG H for details of this function. °

8.1.6.4 Validate a File Name. validate_file_name() requires a pointer to a string con-

taining the file name to be validated. All characters DOS does not like are removed and the
remainder are concatenated in the original string. The name and type fields are truncated

so they do not exceed their maximum lengths. This function removes control and illegal
characters but does not case shift the string.

9 PROGRAM STRUCTURE

DATAVG, written in Turbo C for the IBM PC family, is derived from a program of
the same name which ran on a Digital PDP-11. The original, written in MTS BASIC, was

severely limited by the hardware environment. Using the PC allows greater flexibility in
interfacing and display hardware and larger memory.

DATAVG currently operates with a Keithley 500 data acquisition system. A Keithley
500-IBIN-A interface board is REQUIRED since it contains the cloci circuits used for

timing events. A Keithley 500-AMM2 board is assumed, but a 500-AMM1 could be used

with minor program changes, as could the Keithley 570 or other hardware.

DATAVG supports computed channels which are implemented using object-oriented
programing techniques. Computed channels may perform nearly any function required

including experiment control. In this implementation of DATAVG, there is a temperature
board which is implemented using computed channels. See Section 8 for instructions on
writing your own drivers.

Display hardware which may be used includes IBM CGA, EGA, VGA and IBM8514

color plus Hercules monochrome. EGA, VGA and 8514 are definitely preferred. When

using a color interface board, a color monitor MUST be used. There is no support for gray
scale on a monochrome VGA system.

DATAVG source code is contained in the file DATAVG.C (Appendix A for DATAVG.H,
and Appendix B for DATAVG.C). This module requests inclusion of DATAVG.H which

includes any required standard header files and a few locally-created header files. Locally-
created headers are 500LIB.H and SRBGRAPH.H. DATAVG.H contains definitions and

data declarations for the program. 500LIB.H and SRBGRAPH.H provide function proto-
types for their respective modules.

DATAVG uses 500LIB to interface with the hardware. This is a driver package written

in Turbo C which makes some assumptions about the available equipment. This library was
not intended to be as comprehensive as the Keithley-supplied driver package. It is assumed

that there will be a 500-IBIN-A interface board or equivalent which provides the timing
equipment. Further, it is assumed there will be a 500-AMM2 in slot one of a Keithley
500 mainframe. By changing some definitions and recompiling the library, it is possible to

support a 500-AMM1. Source code for 500LIB.H is in Appendix C and 500LIB.C is in
Appendix D.

24

In writing DATAVG, efforts were made to keep the code modular and to eliminate special
cases. Channel zero (TIME) requires some special treatment since no scaling is done. Also,
computed channels are "Black Boxes" which may have private data. This requires that

computed channel drivers be able to do their own setup. They must, also, be able to save
and restore their own configuration.

Functions were written so they could be used in several places throughout the code.
, Some functions are used to set up the parameters for a call to another, reusable, function.

In a few cases, the use of flag variables allowed changing the behavior of functions for
initialization vs. normal use.

In user-interface functions where speed is not needed, functions were used to make the

code more readable. This was done where the same type of information was requested in
several places and verification was needed.

In the user-interactive routines, extensive range checking has been implemented. When
input is requested, the data is checked to prevent use of invalid information. For instance,

if a number is needed the program will not allow alphabetic entries. Most prompts include
acceptable ranges, and these are tested before DATAVG will continue.

Routines which read files created by this program do not contain extensive range testing_

It was assumed that data in files created by DATAVG, including setup files, had already
been range checked and was correct. While it is possible to modify or create setup files

with a text editor, there is virtually no error checking while reading them. Be careful when
editing setup files.

DATAVG uses SP_BGRAPH to do plotting. This is a graph package written by S. R.

Brown and modified by R. D. Hardy (both Sandia National Laboratories). SRBGRAPH
is a very modular library of object modules which may be linked into any program which

requires X-Y graphing capabilities. See Appendix E for the header SRBGRAPH.H and
Appendix F for composite source code.

10 VARIABLES

This section discusses the global variables used by DATAVG.

10.1 Global General Data

char BUFFER[64] ;

This is a character array used for data entry from the keyboard. In the fllnctions which
interact with the user, most data are read in string form and later parsed into the required
form.

char Test_ID[64] ;
,a

This string holds the test identification which is placed in the data file header.

* char Data_file_name[64];

This string holds the complete data file path. Space is allowed for the longest path DOS
can handle.

25

inr num_chan;

This is the highest program channel number in use. It is not the number of channels.
This variable appears in line two of the setup file.

inr Points_this_file;

The number of data points recorded since opening the data file. This variable is used
to decide when we need to close and reopen the data file.

inr Poi_%s_per_file;

The number of points to store before closing and reopening the data file.

long Total_points;

Total number of data readings recorded in this test.

inr plot_data_count;

This variable is not used as its name implies. It is an index into the channel data

storage buffer. This variable is used by the plot function and to compare current data
against previously stored data.

inr plot_windows;

The highest numbered window in use. This variable appears in line three of the setup
file.

unsigned inr SEQUENCE;

A flag used to show whether we are storing data or the data header.

float D[MAXCHAN+I];

This global array contains the current data readings. During data scanning, this array

contains data for ali channels which have been read. Higher numbered channel data is not
valid. Computed channels may use data from this array as needed.

4

FILE *data_file, *printer;

File pointers.

26

10.2 Time Data

struct ktime Ktime ;

' A structure defined in 500LIB.H r'hich is ,sed to return time codes from the Keithley
interface board.

double base_time ;

This variable holds the time when data recording started. This value is subtracted from

all times to get relative time from the start of recording.

double rel_time ;

This variable holds the time from the Keithley board relative to program start. The

Keithley board timer is started during program initialization and can contain a significant

value before recording starts.

struct timeb start_time;

A structure defined in/TC/INCLUDE/SYS/TIMEB.H. This structure is used to return

DOS system time which is used to time stamp the data file header.

10.3 Plot Data

typedef struct Window

{

inr Xchan; /, Channels to plot on each axis */

inr Ychan;

inr SXmin; /* Screen coordinates for this window */

inr SXmax ;

inr SYmin;

inr SYmax ;

float UXmin; /, User coordinates for this window */

float UXmax;

float UYmin;

float UYmax;

};

This structuredefinedin DATAVG.H contains alirequired data about a givenwindow.

struct Window win_data[MAXWIND0WS] ;
p

An array of window data structures with one entry for each window. A maximum of

four windows is allowed in the current version, but this could be changed if required. Four

windows are a good trade between visibility and the amount of data we could display.

27

10.4 Program Channel Data

typedef s_ruct ch

{
char name[64]; /* title for axis labels */

float scale; /* data scale factor, units per volt */

float trigger; /* delta value to trigger recording */

float zero; /* zero offset value */

inr card_slot; /* interface device slot number */

inr chart; /* interface device channel ,/

float (,driver)(); /* Pointer to the driver function ,/

char type; /* channel type, In, Out or Computed */

float far *data; /* data buffer pointer */

};

This structure defined in DATAVG.H contains the data required for each program chan-

nel. It can be used for either real or computed data channels.

struct ch channels [MAXCHAN+I] ;

An array of channel data structures. There is one entry for each program channel

allowed. Currently there are thirty channels but this could be increased if needed.

10.5 Hardware Information

typedef struct k500 /* interface box configuration info */
{

char board[8]; /* board name ,/

inr card_slot; /* slot in box */

inr channels; /* number of channels supported */

char type; /* input or output (I, 0 or T) */
float (*driver)(); /* Pointer to the driver function ,/

};

The box[] array of structures defined in DATAVG.H contains data for each Keithley

500 board present. This structure is also used to hold information about pseudo boards

supporting computed channels ,;tarting at card_slot 11. There is an entry for each real and

pseudo board. Currently there are fifteen entries, but this could be changed.

struct k500 box[MAX_SLOT + I];

The boards data structure defined in DATAVG.}{ contains a master list of ali Keithley
boards and their characteristics. It is used during auto-identify and to hold driver pointers.

Limited to 35 boards by hardware limitations. This array of structures is initialized at
compile time.

28

struck module

{
char name [8] ;

inr channels ;

" char type;

float (*driver) () ;

, };

struct module boards[MAX_BOARDS] ;

10.6 Other Variables

There are local variables used in various function_. The variables i, j, k and n are fre-

quently used for loop counters and indexes. Other va,riables are named and commented so
their function is obvious.

END OF VARIABLES LIST

29

APPENDICES

A DATAVG.H
], ** ,/

/* datavg.h _/
/* Header file for DATAVG data logging program. */
/* Written by */
/* R. D. Hardy */
/* Sandia National Laboratories ,/
/* Department 6117 */
/. April 17, 1992 */
/* */
/* Modification History ./ -
/* */
/* June 25, 1993 */
/* Changed definition of SIXTEEN RDH */
/* ,/
/* Comments configured for C2LATEX and IbTEX./
/. ** ./

#include <stdio.h>

#include <string.h>
#include <stdlib.h>

$include <time.h>

#include <sys\tiaeb.h>
#include <conio.h>

#include <math.h>

#include <ctype.h>
#include <dos.It>

#include <spline .h>
#include "5001ib.h"

#ifdef DATAVG

#include <graphics.h>

#include <srbgraph.h>
#define VERNUN1.10 /* Version Number */
#endif

/* MAXCHAN = MAXIMUM NUMBER OF LOGICAL CHANNELS EXCLUDING TIME */
#define MAXCHAN 40

/* MAX.SLOT is the number of boards allowed including psudo-boards */
#define MAX_SLOT 15

/* Other constants ./

#define MAX_NODULES35 [* number of entries in boards array */
#define NS_COUFr ((unsigned int)1000) /* counter 1 value, one second */
#define SEC_COUNT((unsigned int)1000) /* counter 0 value, seconds counter */
#define Zooa_Scale 0.75 /* Window zoom scale factor ,/

/* global function prototypes */
void validate_file_name(char *name) ;
void get_valid_board(char *text, int *box_index, inr *chart) ;
float get_float(char ,prompt,float del) ;
int get_int(char $prompt,int del);
float (*find_driver_pointer(char *name)) () ;
char $get_board_name(float ($driver) ()) ;

3O

/* computed channel prototypes */
float axial_stress(int chart, inr card_slot, int n);
float thermocouple(inr chart, int card_slot, inr n);

, /. ** ./

/* global data */
#ifdef MAIN

#define EXTER_

%else

#define EXTERN extern
#endif

EXTERN float D[MAXCHAN+I]; /* input data buffer */
EXTERN char board_list [300]; /* List of available boards ./

typedef struct ch /* Channel data */
{

char name [64] ; /* title for axis labels */

float scale; /* data scale factor, units per volt ./
float trigger; /* delta value to trigger recording */
float zero; /* zero offset value */
inr card_slot ;' /* interface device slot number */
int chart; /* interface device channel within slot */
float (*driver)(int chart,int card_slot, inr n);

char type; /* channeltype,(Input,Output, Computed]) ,/
float far *data; /* data bufferpointer*/

);

EXTERN struct ch channels[MAXCHAN+l] ; /* MAXCHAN channelsplusTIME */

typedef struct kS00 /* interface box configuration info ./
{

char board[8] ; /* board name */
int card_slot; /* slotin box ,/

inr channels; /* number of channels supported ,/
int last_chart; /* last channel used on this board */

char type; /* input or output (I, 0 or C) */
float (*driver)(int chart,int card_slot, int n) ;

};

#ifdef MAIN

struct kSO0 box[MAX_SLOT + I] -
(

/* Card slot zero is not used, it is a dummy only */
/* this space will be filled in during program startup */

{"" ,0,0,-1,' ',NULL}, /* dummies for rem card slots ./
{ ,1,0,-1,' ',NULL},
{ ,2,0,-1,' ',NULL},

" {"",3,0,-1, ' ',NULL},
.... ,4,0,-1,' ',NULL},

{"",5,0,-1,' ',NULL},
{"",6,0,-1,' ',NULL},
{ ,7,0,-1,' ',NULL},
{"",8,0,-1,' ',NULL},
{"",8,0,-1,' ',NULL},
{"",10,0,-1,' ',NULL},

31

/* Install computed channel data starting here */
/* Make sure MAX.SLOT is large enough to include ali entries */

{"TF_J_", 11,16,-1, 'C' , thermocouple},
/* "AXSTRES",12,1,-1,'C',axial.stress This module not tested */ #

};

#else
extern struct kSOO box[NAZ_SLOT + 1];

#endif /* MAIN */

EXTERNFILE ,data_file;

#ifdef DATAVG

#if MAXWIMDOWS > 4

#undef MAXWINDOWS

#define I_tXWINDOWS4 /* we use only four windows */
#endif /* MAXWINDOWS */

/* data buffer size */
#define BUFSIZE 1000

/* number ofreadingstoaveragefornoisereduction*/
#define Num_to_average I0

/* window positiondefinitionsinpercentoffullscreen*/
#define WIN_TOP I00

EXTERNinr WIN_BOTTOM;
#define WIN_LEFT 0
#define NIN_RIGHT I00

/* menu bar position definitions in percent of full screen */
EXTERNinr MENU_TOP;
#define NENU_BOTTOM0
#define MENU_LEFT 0

#define MENU_RIGHT I00

EITERN double base_time; /* time offset,holdsstartingtime ,/
EXTERN double tel_time; /* time from startofprogram */

EKTERN inr plot_data_count; /* counterforpointsinplotbuffers,/

EITERN long Total_points; /, total points recorded in test */
EXTERmint Points_this_file, Points_per_file;
EXTERN int Check;

EXTERN int num_chan;

EXTERN inr plot_windows; /* number of windows to use ,/
EXTERN unsigned inr SEQUENCE;
EXTERN FILE *printer;

EXTERNunion BEGS Regs; /, register copy for int86() ,/ o

EXTERN char Test_ID[64];

EXTERN char Data_file_name[64] ;

EXTERN char filename[64];
4

EXTERN char BUFFER[64] ;

EXTESN struct ktime Ktime; /* time code buffers for KEITHLEY counters */

EXTERN struct timeb start_time; /, wall clock time storage *1

32

typedef struct Window /* our window data */
(

int Xchan; /* X channel for this window */
int Ychan; /, Y channel for this window */
inr SXmin; /, Screen coordinates for this window */

' int SXmax;
int SYmin;
int SYmax;

' float UXmin; /* User coordinates for this window */
float UXmax;
float UYmin;
float UYmax ;

};

EXTERN struct Window uin_data[MAXWINDOWS];

/* master data structure used during auto-identify and to hold */

/, driver pointers */

struct module
(

char name[8];
int channels;

char type;
float (,driver)(/*int chan, int card_lot, int n*/);

};

Sifdef MAIN
' struct module boards[MAX_MODULES] -

{"AMM1A", 1, ' I ' ,BULL},
"'{"ARM1", 1, ' I ', NULL},

{"ARM2" ,16, 'I' ,read_Al_2},
{"AIM2" ,2, 'I ' ,NULL},
{"AIM3" ,32, 'I ' ,read_AIM3},
("AIM4", 1, ' I ', NULL},
{"AIMS", I,'I',NULL},

{"AIM6",I,'I',NULL},

{"AIM7",16,'T',read_AIM7},

{"AIM8",I,'I',NULL},
{"AIM9",I,'I',NULL},

{"PIMI",2,'I',NULL},

{"PIM2",4,'I',read_PIM2},
{"STEPI", 1, '0 ' ,NULL},

{"STEP2", 1, '0 ' ,NULL},
{"AOM1/2" ,2, '0 ' ,write_AOM1},

, {"AOMI/5" ,5, '0' ,write_AOMl},
("AIM2/I",1, 'I',NULL},
{"AOM2/2",2, '0',NULL},

{"AOM3" ,2, '0 ' ,NULL},
{"AOM4" ,2, '0' ,NULL},

{"DIM1", 16,'I',read_DIM1},

{"DOMI" ,16, '0' ,ELL},

{"DIOI", 16, '0 ' ,write_DI01},

33

{"PCNI". 1. '0 ' .MULL}.
{"PCM2" .2. '0 ' .NULL}.
{"GPIB" .1. 'I ' .NULL}.

{"PROTO". 1. '0 ' .NULL}. .
{"". 1. ' I ' .NULL}.
{"". 1. ' I ' .NULL}.
{"". 1. 'I' .rOLL}.
{"". 1. 'I'.NULL}.

{"". 1. 'I' .MULL}.
{"". 1. 'I' .MULL}.
{"". 1. 'I' .MULL}.

};

Selse
extern struct module boards[MAX_HODULES] ;

#endif /, MAIN */
#endif /'_ DATAVG */

#under EXTERR

34

B DATAVG.C

/, ** ,/
/* DATAVG.C ** DATAVG FOR THE IBM PC FAMILY. */

, /, USES ALL INPUT BOARDS SUPPORTED BY A KEITHLEY 500 BOX. ,/
/, THE FILE K500.CFG MUST BE PRESENT IN THE DATAVG DIRECTORY TO ,/
/, INFORM THIS PROGRAM ABOUT AVAILABLE HARDWARE. ,/

, /, THE FILE THERMO.CFG MUST BE PRESENT IN THE DATAVG DIRECTORY TO ,/
/, PROVIDE TttIS PROGRAM WITH THERMOCOUPLE CURVE DATA. ,/

/, MAXCHAN IS TIlE NUMBER OF CHANNELS SUPPORTED BY THIS PROGRAM ,/
/, EXCLUDING TIME. BUFSIZE IS TItE DATA BUFFER SIZE FOR EACH CHANNEL ,/
/, ,/

/, Written by: */
/* R. D. Hardy */
/* Sandia National Laboratories */

/* Department 6117 */
/* April 17, 1992 */
/* */

/* Comments configured for C2LATEX and I#TEX*/
/, ** ,/
/* Modification }tistory */
/* */

/, June 25, 1993 */

/* Changed get_setup() so it will read setup files created with more */
/* or less than MAXCItAN channels. RDIt */
/* */
/* */
/* */
/* */
/* */
/, ** ,/
/* MODIFICATION HISTORY */
/, */

/* March 25, 1993 */
/* DATAVG now looks for it's K500.CFG files in the DATAVG directory. */
/* Changed version to 1.10 in DATAVG.H RDH */
/* */

/* May 25, 1993 */

/* Fixed bug in channel setup function. It was possable to set */
/* channels greater than MAXCtIAN. RDiI */
/* */
/, ** ,/

#define MAIN /* MAIN includes the global data in this module */
#define DATAVG /* Includes our definitions, other programs don't get them. */
#include "datavg.h" /* define global data, DO NOT MOVE THIS LINE */

• /* static function prototypes */
static inr init_channela(void);
static void show_setup(void);

• static void gen_show_setup(FILE *dev);

static void get_file_name(void);
static void check_channels(void);

static void get_data(void);
static int proc_function_key(int key);

35

static int get_window_nmaber(void);

static inr save_setup(void);

static void urite_setup(void);
static void get_setup(void);

static void datavg_init (void) ;

static void get_box_configuration(void) ;

static void de_init(void);

static int test_kb(void); J

static void nee_line(void) ;

static void read_data(int nua_chan) ;

static void write_data(int flag);

static void redrau_uindows(int flag);

static void plot_data(int flag);
static void my_init_graph(void);

static void setup_window(int eindov);

static void def_eindow(int windoe);
static void redo_uindoe(int eindow);

static void zoom_in_windoe(int windoe);

static void zoom_out_window(int eindoe);

static void zoom(int uindoe, float scale);

static void clr_window(int windoe);

static void set_driver_ptr(int slot);
static float timecode(void);

static int open_data_file(void);

static char Version[64] ; /, Program version string */

static int MaxY; /* screen height */

/, ** */

void main(void)

/* INITIALIZE PROGRAM VARIABLES */
datavg_init () ;

/* MAIN MENU LOOP */

vhile (1)

(
clrscr() ;

printf("_skn\n",Version);

puts(" MAIN MENUkn");

puts(" 1) SETUP CHANNELS");

puts(" 2) SETUP SCREEN");

puts(" 3) PRINT CHANNEL DATA");

puts(" 4) CHECK CHANNEL SETUP");

puts(" 5) SAVE SETUP DATA");

puts(" 6) NAME DATA FILE");

puts(" 7) GATHER DATA");

puts(" 8) RECALL SETUP DATA");

puts(" 9) EXIT TO DOS");

fputs("\nENTER YOUR SELECTION ",stdout);

36

switch (getche ())

case '1':

(
if(init_charmels() "" O)

t de_init() ; /* out of memory, abort */

break;

}

case _2 _ :

{
my_ init_graph () ;
break;

}

case '3' :

{
show_setup () ;

break;

}

case '4' :

{
check_channels () ;

break;

}

case ' ,5' :

{
save_setup() ;

break;

}

case '6' :

(
get_f ile_na_e () ;
break;

}

case '7 ' :

{
get_data() ;
break;

}

case '8' :

{
get_setup() ;
break;

. }

case '9': /* EXIT TO DOS ROUTINE */

• {
de_init () ;

break ;

}

37

del ault:

{
break;

}

} /* main0 */
J

void interrupt nev_ctl_C() ;
void intenmpt new_etl_break();
static void interrupt (,ctlc) () ;
static void interrupt (,ctlbrk) () ;

/, **,/
/* INITIALIZATION CODE CALLED ONLY ONCE */

static void datavg_init(void)
{

inr k ;

open_graph() ; /* open graphics */
MaxW - getaaxy() ; /* get screen size */

if(MaxY • 200) /* setup menu bar position and size ,/
WIN_BOTTOM - 5; /, CGA */

else

WIN_BOTTOM ffi10; /* EGA or better ,/

MENU_TOP = WIN_BOTTOM;

closegraph() ; /* restore screen */

printer - stdpx_;
Data_file_name[OI - '\0';

delay(O); /* calibrate delay routine */

sprintf(Version," DATAVG FOR THE IBM PC\nVersion _3.If, _s",
VERNUM,__DATE__) ;

/* read box configuration into a global structure ,/

get_box_conf iguration() ;

/* initialize some channel variables */

for(k-I;k<=MAXCHAN;k++)

channels[k] .name[OI = '\0'; /* clear name */
channels [k]. scale = 0.0 ; /* unused channel */
channels [k].zero _ O. 0; /* no offset ,/

channels[k] .trigger - O.0; /* no trigger */
channels [k].type = ' I ' ; /* input */
channels[k] .data ', NULL; /* clear data pointer */

)

/* insure unused windows will not plot */
for (k-O ; k<lL_gWINDOWS;k++)
ein_data[k].Xchan - -I ;

38

/* Turn off CTRL-C and CTRL-BREAK checking ,/
Rags .h. ali - 0x33;
Rags.h. al - 0; /, Get current flag */
inr86 (0x21, ItRegs, Id_egs) ;
Check - Regs.h.dl; /, Save flag so it can be restored */4

Regs.h. ah - 0x33;
, Regs.h.al - 1; /, Set flag */

Regs.h.dl - 0; /* No Control-C checking ,/
inr 86 (Ox21, _Regs, _Regs) ;

ctlc - getvect(Ox23);

ctlbrk., getvect(0xlb);
setvect (0xlb,new_ctl_break) ;
setvect (0x23 ,new_ctl_C) ;

/* Initialize some other global data */
strncpy (Test_ID, "DUM_ DURM¥DUffi_ DUMMYDUMMY'°, sizeof (Test_ID)) ;
plot_data_count = -1; /, counter for points in plot buffers ,/

) /* datavg_init() ,/

/, ** ,/

/* This function de-instal]_ the CTRL-BREAK trap and cleans up */
/* before exiting the program. */
/, ** ,/

static void de_init (void)

........................ _

closegraph() ;
restorecrtmode () ;
clrscr () ;

/* restore Control-Break status */

Regs.h. ah = 0x33 ;
Regs.h.al ffi 01; /* Set flag */
Regs.h.dl ffi Check; /* To previous value */
inr86 (0x21, _Regs, &Rags) ;
setvect (0xlb,ctlbrk) ;

setvect (0x23 ,ctlc) ;

puts ("BYE");
exit (0) ;

} /* de_init() ,/

/, ** ,/

/* This function gets the interface box configuration and fills in. */
/, the box D array. If the interface cannot auto-identify boards ,/
s'* a configuration file will be read. */
/, ** ,/

• static void get_box_configuration(void)
{

inr k;
int card_slot, max_chart;

unsigned inr SEG;
char type ;
char name [sizeof (box [0]. board)] ;

FILE *cfg;

39

/. open configuration file */
if ((cfg ffi fopen(.\\DATAVG\\k500, cfg","r")) == NULL)
{

clrscr() ;

fputs(,,Configuration file K5OO.CFG not found, Aborting_n",etderr) ;
exit(l) ;

)
?

/* read segment address from file and initialize the interface */

fgets (BUFFER,sizeof (BUFFER), cfg) ;
sscanf (BUFFER,"Xx", &SEG);
init_5OO(SEG) ; /* init hardware */
set_timer(NS COUNT,SEC_COUliT); /* set the counters */

/, read configuration from the file */
for (k-1 ;k<-lO; k++)

if (fgets(BUFFER,sizeof (BUFFER) ,cfg) =ffi NULL)
break ;

strtok(BUFFER,",");

strncpy(name,BUFFER,sizeof(box[0].board));
sscanf(strtok(NULL,"\n"),"Xd,Xd,Xc",&card_slot,/tmax_chan,&type);

strcpy(box[card_slot].board,name) ;
• .

box[card_slot],card_slot - card_slot ;

box[card_slot].channels = max_chan;

box[card_slot].type = type;
box[k].last_chart= -I;

set_driver_ptr(card_slot); /* put driverpointerin box_]*/
)
fclose(cfg);

) /* get_box_configuration() */

/. ** ./

/* load driver pointers into the box structure. */
static void set_driver_ptr(int slot)
{

int i ;

/* lookup board name inmaster list*/
for(ilO;i<MAX_MODULES;i++)

if(strcmp(box[slot].board,boards[i].name) == O)
break;

P

if(i _- MAX_MODULES)

return; /* name not found */

/* getdata about thisboard and placeinbox structure*/
box[slot].driver = boards [i].driver;

} /* set_driver_ptr() */

4O

/* SETUP PHASE */
/. ** ,/
/* CHANNEL SETUP */
/, ** ,/

' /* Get data from user and place in channels control structures */
static int init_channels(void)
{

' int k, n, return_val - 1;
float val ;

int than;
char bur [64] ;

/* build a board list string for prompts */

strcpy(board_list,"Available boards are - \n\n Slot Name_n");
for (kffil ;k<fMAX_SLflT;k++)
(

sprintf (buf,"\n _2d) ",k) ;
strcat (board_list ,buf) ;
if (strlen (box [k]. board))
(

strcat (board_list, box [k]. board) ;
}

}

strcat(board_list,"\nPlease select by number ? ");

clrscr () ;
f flush (stdin) ;

fprintf (stdout,"\n\nEnter Test ID.\n Current value = (Zs)\n" ,Test_ID) ;

fgets (buf,sizeof (buf), stdin) ;
strtok (bur, "\r\n") ;

strupr (buf) ;

if(strlen(buf) > 1)

strcpy (Test_ID,buf) ;

if (num_chan =ffi O)
(

hUm_chart ffi - 1 ;
n = -1;

}
else

n = num_chan;

/* get info for aJl channels */
while (1)
(

clrscr() ;

fputs("Enter channel data. Defaults are shoen in ().\n\n",stderr);

/, insiston a vMid channelnumber */
while (1)

{

fflush(stdin) ;

fprintf(stdout,"\nCHANNEL # 0 - 7.dOR DONE (7.d)? ",MAXCHAN,num_chan+l);

strupr(fgets(BUFFER,sizeof(BUFFER),stdin));

41

if (strncmp(BUFFER, "DONE",4) -_ O)

goto status;

if(sacanf(BUFFER,"_d",lm) n. 1)

if((n <- MAXCHAN)k (n >- 0))
break; /* valid channel selected */

}

else

{
n = nina_chart+l; /* take default channel number */

if (n <- MAXCHAN) /, test for valid channel */
break;

printf("_uSelect a loeer channel number or DONE_u");
}

}

if (num_chau < n)
num_chan - n;

if(n -ffiO)

fputs("\nCHANNEL 0 IS ALWAYS TIME.\n",stdout) ;

strcpy(chamtels [0].name,"TIME") ;

channels [0] .scale - 1.0; /* no scaling on time */
channels [0]. cardslot - -I ;
channels[OI .zero ,, 1.0; /. first point is always zero for TIME */

channels[OI .type - 'X'; /. type X is time ,/
} /* n == 0 */

else

{

/* get channel data n%me */
f flush(stalin) ;

fprintf(stdout,"TITLE FOR CHANNEL#7,d (7.s) ? ",
n,channels In].name) ;

st rupr (fgets (BUFFER, sizeof (BUFFER), stdin)) ;
strtok(BUFFER,"\r\n") ;

if(BUFFER[OI tffi'\n')
{
strncpy(channels[ni.name,BUFFER,sizeof(channels[n].name));

}
} /* n != 0 */

/* get channel scaling info */ "
if(n !- O)
{

sprintf(BUFFER,"I_ITS PER VOLT FOR CHANNELgd (gg) ? ",
n, channels In]. scale) ;

42

val = get_ _loat (BUFFER,channels In]. scale) ;
channeka _,J.scale - val;

} /* n != 0 */

/* Get sample interval info */
sprintf(BUFFER,"SA_°LE INTERVALli SCALEDUNITS FOR CHANNEL_d (_g) ? ",

n, channels In]. trigger) ;

va1 = get_float (BUFFER, channels Cn]. trigger) ;

channels In]. trigger = fabs(val) ;

/* Get offset info */
if(n != O)
{

fprintf(stdout,+'IS FII_ST POINT THE ZERO FOR _d (¥ or N) (¥) ? ",n);
f f lush(stdin) ;

strt_, (fgets (BUFFER, sizeof (BUFFER), stdin)) ;
strtok (BUFFER, "\r\n') ;

if(BUFFER[O] != '\n')

channels[_].zero = (BUFFERCO] == 'Y') ? 1.0 : 0.0;

else

channels[ni .zero = 1.0;

/* get data about this board and piace in channels structure ,/
if(channels[ni,card_slot > O)
{ /* chaimel has been defined before */

printf("Curr_.nt board/channel = _s, Zd, Any changes (Y or Ii) ? :,
box [channels [n]. card_slot], board, channels In]. chart) ;

f flush(stdin) ;

strupr (fgets (BUFFER, sizeof (BUFFER), stdin)) ;
strtok (BUFFER, "\r\n") ;

if(BbFFERCO]== 'V')
{ /* changes desired ./

get_valid_board(board_list, kk, kchan);
channels In]. card_slot = box [k]. card_slot ;

channels In]. type = box[k], type ;
channels [ni. driver = box [k] .driver;
channels [ni. chan- chan;

}
}

else
{ /* channel has not been defined */

get_valid_board(board_list, kk, kchan) ;
channels [n].card_slot = box[k].card_slot;

channels[n] .type - box[k] .type;
channels[n] .driver = boxCk] .driver;
channels [n]. chan = chart;

} /* card_slot L 0 */

/* setup if this is a computed channel */
if(channels[nj.type =_ 'C')

channels On] •driver (ch_T,, -1 ,n) ;
} /* n!= 0 */

43

/, allocate memory only if needed, if redoing a setup buffers exist */
if (channels[ni .data -= NULL)

{
if((channels[ni.data = farcalloc(BUFSIZE,sizeof(float))) == NULL)

{ J
fputs("Out of memory for data buffers, Aborting setup.\n",stderr);
delay(lO000) ; /e wait so user can read message */
return_val _ O;
break ;

>
)

} /* data loop, gets data for ali channels */

/, exit point for this function */
status:

clrscr () ;

ten_shoe_setup (stderr) ;
fputs("Enter to continue",stderr) ;
fflush(stdin) ;

getch() ;
return(return_val) ;

} /* init_channels 0 */

/, *** */
/, SAVE SETUP DATA */
/, Setup tile first line is the test ID. */
/, The second line contains the number of channels. */
/, The third line contains the number of windows. */

/, Lines four through MAXCHAN + three are the channel data. */
/* Computed channels insert additional lines. */
/, The last four lines contain the window data. */
/, *** */

static int save_setup(void)
{

chile(l)
{

fflush(stdin) ;

fputs('%a\nEnter setu p file name. ? ",ardour);
strupr (fget8 (BUFFER,sizeof (BUFFER), stdin)) ;
strtok(BUFFER, "\r\n") ;
validate_f ile_nmae (BUFFER) ;

if (strlen(BUFFER)) /, insist on a file name */
{

if((data_file - fopen(BUFFER,"w")) "" NULL)
{
fprintf(stderr,"Unable to open setup file _s._n",BUFFER) ;

fputs("Disk must be full_n",stderr) ;

delay(10000) ; /, wait so use can read message */ e,
return(O);

>
4

else

break;
>

)

44

write_setup() ;
fclose (data_file);

return(l) ;

} /* save.setup() */

t

/, *** ,/

/* Write setup data to a file. */
q /* Setup file first line is the test ID. */

/* The second line contains the number of channels. */
/* The third line contains the number of windows. */
/* Lines four and onward are the channel data. */
/* The last four lines contain the window data. ,/
/, *** ,/

static void write_setup(vold)
{

int k, column;

char name [sizeof(box[0].board)];

fprintf (data_file," 7,skn",Test_ID);
fprintf (data_file,"Zd\nZd\n",num_chan,plot_vindows);

/* channeldata */

for (columnffiO,kffiO;k<ffiHAXCHAN;k++)

{
name[O] = '\0'; /* clearboard name */

if(channels[k].scale !- 0.0)

{
column++; /* next output column */

if (k !ffi O) /* time channel does not have a board name */
{

strcpy (name, box [channels [k]. card_slot], board) ;
}

fprintf(data_file,"Zg, Zg, Zg, Zs, Zd, Zc, \"Zs\", Zd\n",
channels[k].scale,

chmmels [k].trigger,
chmmels [k].zero,

nails

channels[k].chart,

channels[k].type,

channels[k].name,
channels[k].scale !- 0.7 column : 0);

• /* savecomputed channelsetupdata ,I

if(channels [k].card_slot > 10)

channels [k].driver (channels[k].chart,-2,O);
}

45

/* window data */
f or (k-O ;k<4 ; k++)
(

fprintf(data_file,"Sd, Sd, Sd, Sd, Zd, Sd, %g, Zg, Zg, %g\n",
win_data [k].Xchan,
win_data [k]. Ychan,
g in_dat a [k]. SXmin,
win_data[k]. SXmax,
win_data [k]. SYmin,
win_data[k]. SYmax,
g in_dat a [k]. UY_in,
gin_dat a [k]. UXmax,
win_dat a [k]. UYmin,

gin_dat a [k]. UYmax) ;

}
} /* write_setup() $/

/, ***,/
/* RECALL SETUP DATA */

/* Setup file first line is the test ID. */
/* The second line contains the number of channels. */
/* The third line contains the number of windows. */

/* Lines four through MAXCHAN + three are the channel data. */
/* The last four lines contain the window data. */
/, *** ,/

static void get_setup(void)
(

int slot, k, j;
char *ptr ;
char name [8] ;

fpos_t Pos, NegPos;

clrscr() ;

while(l)

(
fflush(stdin);

fputs ("\n\nEnter setup file name.",stderr);

fputs("knBlank entry to return to main menu ? ",stderr);

strupr (fgets(BUFFER,sizeof_BUFFER),stdin));

if(strlen(BUFFER) < 2)

return;

strtok(BUFFER,"\r\n'');

if((data_file - fopen(BUFFER,"r")) != NULL)
break;

/* determinelengthofsetup fileso we do not read too much orlittle.*/

k=O; A

while (fgets(BUFFER,sizeof(BUFFER),data_file))
k++;

k -- 4; /* totM lines including header */

46

regind(data_file) ;

/. find position of window data in file ,/
for(;k;k--)

- fgets (BUFFER, sizeof (BUFFER), data_f ile) ;

fgetpos (data_file ,kPos) ;

regind(data_file) ;

/. get test lD */
fget s (BUFFER, sizeof (BUFFER), data_f ile) ;
strtok (BUFFER, "\r_m '') ;

strncpy (Test_ID, BUFFER,sizeof (Test_ID)) ;

/* get channel and window counts */
fscanf (data_file, "_d_n", knma_chan) ;
f scanf (data_file, "_d\n" ,kplot_windogs) ;

/, read data for ali channels and fill in structures */
f or (k-O; k<=NAXCHAN;k++)
(

if (fgets(BUFFER,sizeof (BUFFER) ,data_file) == NULL)
(

for (k=0; k< 10; k++)

puts ("\007") ;

puts(" Unexpected end of setup file encountered");

puts(" Aborting RECALL SETUP operation \007");

delay(5000);
return;

}

/, channel name may be quote delimited, remove the trailing quote if so */

if((ptr = strrchr(BUFFER, '\"')) !ffi NULL)
(

ptr - '\0'; / terminate string at last quote */
ptr - strrchr(BUFFER, '\"')+1; /, find first quote */

}

sscanf (strtok (BUFFER,", "), "Sf" ,&channels [k]. scale) ;
sscanf (strtok (NULL," ,"), "_f", kchannels [k]. trigger) ;
sscanf (strtok (NULL," ,"), "_f", kchannels [k]. zero) ;

strcpy(nane,strtok(NULL," ,")+1) ; /, get board name */
sscanf (strtok (HULL," ,"), "%d", &channels [k]. chart) ;

* sscanf (strtok (NULL, ",") +1 ,"_c", kchannels [k]. type) ;

if(ptr != NULL)
' st rncpy (channels [k]. name, ptr, sizeof (channels [k]. name)) ;

else

strncpy (channels[k].name,strtok(NULL,",\0")+I,sizeof(channels[k].name));

47

if(channels[k].scale != 0.0)

(
/. lookup board name inbox listtofindslotnumber */

if(k _= O)

(
for (slot=l;slot<=MAX_SLOT;slot++)

(
if((strlen(name) > O) t& (strcmp(box[slot].board,name) --0))

{
break; /* jump out ofsearchloop */

}
}

if(slot == MAX_SLOT)

(
puts("Invalid setup file, this box is missing a required board");

printf("Missing board is Zs\n" ,name);

delay(lO000);
exit(l); /* name not found */

/* set driver pointers & other data */
channels [k]. card_slot 1 slot ;
cheamels [k] .driver I box [slot]. driver ;

}

/* Mlocate memory only if needed */
if ((channels [k]. data I f arcalloc (BUFSIZE, sizeof (float))) =1 NULL)
(

fputs("Out of memory for data buffers, Aborting setup.\n",stderr) ;

delay(lO000); /* waitso usercan readmessage */
exit(l);

}
}

/* restore computed channel setup data ,/
if (channels[k] .card_slot > 10)

channels [k]. driver (channels [k]. chan, -3, O) ;

fgetpos(data_file,tNewPos);
if(NewPos 11 Pos)

break;
}

/* load window data ,/

rewind(data_file) ;
fsetpos (data_f ile ,&Pos) ;

48

for (klO ;k<4 ; k++)

(
fgets (BUFFER, sizeof (BUFFER), data_f ile) ;
j .- sscanf(BUFFER,"Sd, Sd, Sd, Sd, Sd, Sd, Sf, Sf, Sf, Sf,\n",

kwindata [k]. Xchan,

" _u in_dat a [k].Ychan,

_win_data [k].SXmin,

kwin_data [k].S_max,

&ein_data [k] • SYmin,

_ein_data [k]. SYmax,

&win_data [k] .UXmin,

&win_data [k] .UXmax,

&win_data [k] •UYmin,

kw in_dat a [k].UYmax) ;

if((j != 10) i (j == EOF))

(
f or (slot=O ; slot< 10 ;slot++)

puts ("\007") ;

printf(" Invalid window Zd data encountered\n",k);

puts(" Aborting RECALL SETUP operation \007");

delay (5000) ;
return;

/, adapt screen position to resolution */

j = (((WIN_TOP- WIN_BOTTOM) / 2) + WIN_BOTTOM);

switch (plot _windows)

{
case 1 :

(
win_data[O] .SYmin z WIN_BOTTOM;

break ;

}

case 2 :

win_data[O] .SYmin = j

win_data[I] .SYmax = j;

win_data[I] .SYmin = WIN_BOTTOM;

break;

case 3 :

case 4 :

(
win_data[O]. SYmin = j ;

win_data[1].SYmin -- j;

win_data[2] .SYmax _ j ;

, win_data[2]. SYmin - I/IN_BOTTOM;

win_data[3] • SYmax = j ;

win_data[3] .SYmin - WIN_BOTTOM;

, break ;

f close (data_file) ;

} /* get_setup() */

49

win_d_ta[O]. SI_ax - O; /* used for error detection */

while(l)
{

fprintf (stderr, "\n_nCurrent window count - _d\n" ,plot_windows) ;
sprintf(BUFFER,"Enter number of windows to be displayed 1-4 (_d) ? ",

plot_windows);

plot_windows - get_int(BUFFER,plot_windows);

switch(plot_windows)
{

case 1:

{

/* only oae window ,/
gin_data[O].SXmin - WIN_LEFT;
win_data[O].SYmax = WIN_RIGHT;
win_data[O] .SYmin - WIN_BOTTOM;
win_data[O] .SYmax m WIN_TOP;
break;

}

case 2 :
{

/* top window */
win_data[OI .Slain - WIN_LEFT;
win_data[O] .SXmax - WIN_RIGHT;
win_data[OI .SYmin - (((WIN_TOP - WIN_BOTTOM) / 2) + WIN_BOTTOM);

win_data[O] .SYmax - WIN_TOP;

/* bottom window */

win_data[I] .SXnin - WIN_LEFT;
win_data[l] .SXnax - WIN_RIGHT;
win_data[l] .SYmin - WIN_BOTTOM;

win_data[l] .SYmax - (((WIN_TOP - WIN_BOTTOM) / 2) + WIN_BOTTUN);
break;

}

case 3 :
case 4:
{

/* top left window */
win_data[OI .SlnJ_u - WIll_LEFT;
win_data[O].Slmax - (((WII_KIGEr - WIN_LEFT) / 2) + WIN_LEFT);
win_data[O] .SYmin- (((WIN_TOP- WIN_BOTTOM) / 2) + WIN_BOTTOM);
win_data [0]. SYmax - WIN_TOP;

5O

/* top right window */
win_data[I] .Slain - (((WIN_RIGHT - WIN_LEFT) / 2) + WIN_LEFT);
win_data[l] .Slaax = WIN_RIGHT;
win_data[l] .SYmin = (((WIN_TOP - WIN_BOTTOM)/ 2) + WIN_BOTTOM);
win_data[l] .SYmax = WIN_TOP;

/, bottom left window */
win_data[2] .Slain = WIN_LEFT;

" win_data[2] .SXmax = (((WIN_RIGHT - WIN_LEFT) / 2) + WIN_LEFT);
win_data[2] .SYmin m WIN_BOTTOM;

win_data[2] .SYmax - (((WIN_TOP - WIN_BOTTOM) / 2) + WIN_BOTTOM);

/, bottom right window */
win_data[3] .SXmin- (((WIN_RIGHT - WIN_LEFT) / 2) + WIN_LEFT);

win_data[3] .SXmax - WIN_RIGHT;

win_data[3] .SYmin = WIN_BOTTOM;

win_data[3] .SYmax ffi(((WIN_TOP - WIN_BOTTOM) / 2) + WIN_BOTTOM);

break;

}

default:

{
puts("Invalid window count");
break ;

}
}
if(win_data[O].SXmax != O)

break ;

}

while(l) /* do windows until user finished */

{
if(plot_windows > l)
{

8printf(BUFFER,"Setup which window 1-Y,d (Y,d) -1 to end ? ",
plot_windows, next_window) ;

i ffi get_int(BOFFFA,next_window) ;

if(i "" -1)
break;

if((i >ffi 1) & (i <= plot_windows))
{

setup_window (i-1) ;
}

next_window = i+1 ;
}
else

{
setup_window (0) ;

, next_window++;
}

, /* see if we are done */
if(next_window > plot_windows)

{
fputs("Finished Y or N (N) ? ",stdout) ;
f f lush(stdin) ;

51

if(toupper(getche()) -= 'Y')
(

break;

puts("") ;

/* myinit_graph() */

/, ** ,/

/* setup a window scaled as the user desires */
static void setup_window(int window)
(

float min, max;
int than;

/* Get X-AXIs channel for this window */

sprint f (BUFFER,
"Enter channel to plot on window 7,d X-Axis (7,d) or (-1 = none) .7 -
window+ 1, win_dat a [window]. Xchan) ;

chan= get_inr (BUFFER,win_data [window]. XchazD ;
win_data[window] .Xchan = chan;

if(chan == -I)

return;

/* Get Y-Axis channel for this window */

sprintf(BUFFF_,"Enter channel to plot on window 7,d Y-Axis (7.d) ? ",
window+l, win_data[window]. Ychan) ;

chan = get_int (BUFFER, win_dat a [gindow]. Ychan) ;
win_data[window] .Ychan = chan;

/* Get X,-Axis minimum value to plot ,/

sprintf(BUFFER,"Enter X-Axis minimum value (7,g)? ",
win_data [window].UXmin) ;

rain= get_float (BUFFER,win_data[window].UXmin);

[* Get X-Axis maximum value to plot */
sprintf(BUFFER,"Enter X-Axis maximum value (_g) ? ",

win_data [window].UXmax) ;

max = get_float (BUFFER,win_data[window].UXmax) ;

/* store user data in proper order, swap if needed ,/
if(rain <= lax)
(

win_data[window] .UXmin = rain;
win_data[window] .UXmax = max;

}

else

{
win_data[window].UXmin = max;

win_data[window] .OX_ax = rain;
)

52

/* Get Y-Axis minimum value to plot */

sprintf(BUFFER,"Enter Y-Axis minimum value (_g) ? ",
win_data[window].UYmin);

rain- get_float (BUFFER,uin_data[windou].UYmin);
¢

/* Get Y-Axis maximum value to plot */

sprintf(BUFFER,"Enter Y-Axis maximum value (_g) ? ",
• win_data[window].UYmax) ;

max - get_float (BUFFER,win_data[windo"]•UYmax) ;

/* store user data in proper order, swap if needed */
if(rain <" max)
{

uin_dat a [u indow] •UYmin = rain;
win_dat a [window]. UYmax = max;

}

else

{
win_data[window] .UYmin = max;
win_data[window] .UYmax = rain;

}

} /, setup_window() */

/, ** */
/, PRINT CHAN DATA */

static void show_setup(void)

{
gen_show_setup (printer);

fputc('\f',printer);
} /* show_setup()*/

/, ** */

/, genera] case show setup function */
static void gen_show_setup(FILg *dev)

{
inr k;

ftime(_start_time) ; /, get time stamp */

fprintf(dev,"kr\n\t Test Name -- Zs\rknkn",Test_ID) ;
fprintf(der,"kt 7,skr\n",asctime(localtime(_start_time.time)));

fputs("\t CHAN # TITLE UNITS/YOLT DELTA ZERO\r\n\n",
dev) ;

for (k=O ;k<ffiMAXCHAN;k++)

if(channels[k] .scale != 0.0)

(
fprintf(dev,"\t Y.4d Y,17s ZlO.4f ZlO.4f Zd\r\n",

k, channels [k] .name, channels [k] • scale,
• channels [k].trigger, (int)channels[k]•zero) ;

}
}

} /* gen_show_setup*/

53

/, ** ,/
/* CHECKS IF CHANg ARE OK */

/* This function reads and displays data from each active channel. */
/* Data is shown in VOLTS for ease in comparison to machine indicators ,/
/* Temperature channels will display in unusual units. */

static void check_channels(void)
{

int 1 ;

puts ("\n\n") ;

for(i=I;I<-MAXCHAN;i++)
{

if(channels[ii.scale != 0.0)

{

while (1)
(

read_data(nua_chan) ; /, read the channe]s ,/

D[1] += channels [1] .zero; /* undo the scaling */
D[I] /= channels Ill.scale;

printf ("\n%s\n", channels [1]. name) ;
printf("FOR CHAN_d VOLTAGEIS _f_",l,D[1]);
printf(" CHANGECHAII_d, PRESS RETURN",1);

fflush(stdin) ;

strupr (gets (BUFFER)) ;

read_data(nua_chan) ; /* read the channels ,/

D[1] += channels [1].zero; /, undo the scaling ,/
D[1] /= channels [1] .scale;

printf("NEW READING FOR _d IS _f\n",l,D[1]);

fputs("PRESS RETUI_ OR A(AGAIN) ",stdout);
fflush(stdin) ;

strupr (gets (BUFFER)) ;

if(strcmp(B_FER, "A't))
break;

}
}

}
} /* check_channels 0 */

/, ** ,/
/* Check file names and remove characters DOS doesn't ilke ,/
/, ** ,/

void validate_file_name(char *name)

char *ptr = name;
char *ptrl = "*,$;<>?=";

while(l) /* strip out control characters */

if(*ptr -= NULL)
break

54

if((*ptr <= 'z') k (*ptr > ' '))
ptr++;

else

*(ptr) = '\0';
strcat (nmte, (ptr+l)) ;

, }
}

while(l) /, strip out other invalid punctuation characters */
{

if(*ptrl == BULL)
break;

ptr - etrchr(naae,*ptrl++) ;

if (ptr := BULL)
(

*ptr - '\0';
strcat (name ,++ptr) ;

}
}

/* truncate name field if needed */

if((ptr - strrchr(name,'\\')) == BULL)
ptr = strchr (name, ' : ') ; /* no sub-directory on path */

if (ptr == NULL) /* path or drive not present */
ptr = name;

else

ptr++;

if((ptrl = strchr(name, '. ')) != NULL) /, type field present ,/
{

if((ptrt - ptr) > 8)
{

*(ptr+8) = '\0';
strcat (name,ptr1) ;

}

else

if(strlen(ptr) > 8)

,(ptr+8) = '\0';
}

}

else

' if(strlen(ptr) • 8)

*(ptr+8) = '\0';
}

/* truncate type field if needed ,/
if((ptr = strchr(naae, '. ')) := NULL)

if(strlen(ptr) > 3)
*(ptr+4) = '\0';

55

} /, validate_file-name() */

/, **,/
/* RUN PHASE */
/, ** */
/* GET FILE NAME */

static void get_file_naae(void)
(•

/* SET FILE SEQUENCE NUMBER TO ZERO */
SEqUFJ/CE = 0;

fflush(stdin) ;

fputs("\n\nENTER FILE NANEFOR DATA STORAGE? ",stdout);

/* make sure we get a file name */
while(l)

(
strupr(fgets(Data_file_name,sizeof(Data_file_naae),stdin));
strtok(Data_file_nale,".\r\n");

validate_file_name(Data_file_naae);

if(strlen(Data_file_name)> O)

break;

}

/* make sure we get a number */
while(l)

(
fflush(stdin);

fputs("HOW MANY DATA POINTS BEFORE CLOSING OUTPUT FILE ? ",stdout);

if(fscanf(stdin,"_,d",&Points_per_file)=ffi1)
if(Points_per_file > O)

break;
>

} /* get_file_name() ,/

/, ** ,/
/* menu bar text ,/

/* there must be 20 strings defined. The first 10 print on the */
/* bottom of the screen. The next 10 print above them. ,/

char far *titles[20] =

"Take Pt", /* F1 take a point */
"Reset W", /* F2 reset window to full scales */
"Zoo- in", /* F3 zoom and center a window */
"gooa OUt", /* F4 shrink and center a window */

"Define W", /* F5 redefine a window completely */
"Cir Win", /* F6 clear data from a window */
"Cir Ali", /* F7 clear data from ali windows*/

"New File", /* F8 start a new file */
"End Test", /* F9 end the test */
"", /* FIO */

"FI" "F2" "F3" "F4" "FS" "F6" "FT" "F8" "F9" "FIO", , , , , , , , ,

};

56

/* This is thr main acquisition loop. START DATA RECORDING */

static void get_data(void)
{

inr k, j;

if(strlen(Data_file_name) -- 0) /* Be sure we have a file */

get_file.na_e () ;e

if(open_data_file() -- 0) /, make the first data file ,/
return;

ba_e_tike - 0.0; /* time offset, holds staxting time */
rel_time - 0.0; /* time from start of program ,/
plot_data_count _ -1; /o counter for points in plot buffers */
Points_this_file - 01

/* CLEAR DATA ARRAY */

f or (j =0; j <-NAXCltAN;j ++)
{

D[j]-O.O;
}

/* WAIT FOR RETURN BEFORE STARTING */

fputs("_t_rYress enter to start test",stderr);
f flush(stdin) ;

fgets (BUFFER,s_zeof(BUFFER),stdin);

/* Draw windows */

redraw_windows(0) ; /* draw windov _ but no plot ,/

/* Write data r le header, setup data in first file. */
fprintf (data_file, "_s\n" ,Version) ;

erite_setup () ;

/* time stamp the file */
ftime (kst art_t JJae) ;

fprint f (data_file, "\n_s_n '', asct ime (localtime (Es _art_t_e. tile))) ;

/_ put channel names in the file */
fol" (k-O; k<-nma_chan; k++)

if (channels [k]. scale !,, O. O)

fprintf(data_file," \"_s\"",channels [k].name);

new_line ();

, /* LOAD ZEROS */
read_data(nina_chart) ; /* initial data values */

, for(k-1 ;k<fnma_chan;k++) /* piace zeros in channel structures */
if(channels[k] .zero !- 0.0) /* non-zero is the offset flag */

/* remove previous offset and store the new one */
channels[k] .zero ,, D[k] + channels[k] .zero;

/* record initial offsets in file */
write_data(O); /s save current time offset */

/, close file containing setup data (name.HDR) s/
fclose (data_f/le) ;

/, real data starts in file name.DAT */
if(open_data_file() == O) /, make the data file */

return;

/, initialize data reporting and plots */
base_time = rsi_rise; /, establish time offset */

read_data(num_chan) ; /* read initial values and remove offsets */

/, place in plot buffers and file */
write_data(O) ;

Total_points = (long)plot_data_count;

/, COLLECT DATA ,/
while(l) /, do until user requests stop */
{

read_data(nina_chart) ; /, get data from each channel */

/, CHECK FOR LARGE ENOUGH CHANGE */
f or (k=O;k<=nma_chan;k++)
(

if(channels[k] .scale := 0.0) /, test only active channels */
(

if ((labs (D[k] - channels [k]. data [plot_data_count]))
>= channels [k]. trigger)

write.data(l) ; /, write ali data and plot */
break; /* no need to test further */

}

}

/* TEST KEYBOARD INTERRUPT STATUS */
if(proc_function_key(test-kb()) "= 1)

return;
} /* end of data collection loop */

} /* get.data 0 */

/, *** ,/
/, This function processes function keys for get-data 0 */
/, Returns 1 if program should exit to main menu, error or end of test */

static inr proc_function_key(int key)
(

switch(key)
(

case 0: /* no ruction keys prJessed*/

break;
}

58

cue 1: /, F1 write a data point */
(

grits_data (1) ;
break;

case 2: /* F2 Redo window */

redo_windog (8et_windog_mmber ()) ;
break;

case 3: /* F3 zoom in window */

zoon_ in_window (get_g indog_nmaber ()) ;
break;

case 4: /* F4 Zoom out window */
{

zooa_out_eindoe (get_eindoe_nmaber ()) ;
break;

case 5: /, F5 Redefine window */

def_window(get_gindow_ntmber()) ; /* define the window to use */
break;

case 6: /, F6 Clear data from a window */

clr_windog (get_gindog_mmber ()) ;
break;

case 7: /, F7 Clear data from ali windows */

closegraph() ; /, reset screen to text mode and clear */
clrscr() ;
cir_window(-1) ; /, clear ali active windows */
break;

case 8: /, F8 Start new file */

closegraph () ;
clrscr() ;
fprintf (stdout,"\tTOTAL POINTS_ld_n",Total_points) ;
fclose(data_file) ;

get_f ile_name () ;
SEQUENCE= 1; /* no header for this name */

if(open_data_file() == O) /* make the data file */
return(I) ; /* error */

G9

redraw_windows(I) ; /, redraw and replot */
Points_this_file = O;
break;

/* F9 End test */
case 9:

closegraph() ;
clrscr() ;

fprintf (stdout,"\tTOTAL POINTS %ld_n" ,Total_points) ;
fputs("\nDo you really want to end this test (Y or N) ? ",stderr);

if(toupper(getche()) != _Y')
{

redraw_uindows (1) ;
break;

}

fclose(data_file) ; /, close file */
Data_file_name[O] ffi '\0'; /, dump old file name */
return(I); /, back to main menu */

del ault :
break;

} /* end of switch */

return(O) ;

} /* proc_function-key0 */

/, ** */

/* get a valid window number. If only one window is in use it is */
/, returned as default. */

static inr get_gindog_number(void)

int i, j, window;

/, reset screen to text mode and clear */

closegraph() ;
clrscr() ;

/* check for one window in use */

if(plot_windows -- 1)
return(O) ;

/* check for multi-window screen with only one in use */

for(ilO,j=O ;i<plot_uindous;i++)

if(gin_data[ii.Xchan != -I)

j++, uindoe-i;
}

if(jnl)

return(uindow);

DU

/* Multiple windows in use, get the desired one from user */
while (1)
{

fflush(stdin) ;

fprintf(stderr," Which window (1 -]{ld) ? ",plot_windows) ;
_t

if(scanf("_l",&window) -- 1)
if((window >- 1) lt (window <- plot_windows))

break;
)

return(--window) ;

} /, get_window_number0 */

/, ** */
/, TAKE A READING AND RETURN IN THE DD ARRAY */

static void read_data(inr nina_chart)
{

int k. j ;

/, read from each channel and scale readings into user units */
D[O] = timecode() ;

/* clear accumulators */
f or (lr. 1;k<ffinma_chan;k++)

V[k] - 0.0;

/* Read and average ali active channels */
for (j"0 ;j <Must_to_average ; j ++)

for(k"l ;k<fntm chart;k++) /, scan ali channels */

if(channels[k] .scale !" 0.0) /, process only if in use */

/, get raw reading in volts and divide by Num_to_avera_e then accumulate */
U[k] +ffi (chemnels [k]. driver (channels [k]. chem,

channels [k].card_slot, 1)

/ (float)Ibm_to_average) ;
)

/, complete scaring and offsetting */
. f or (ks I ;k<fnua_chem; k++)

{
DEk] *" channelstk], scale;
D[k] -" channels[k], zero;

}

_" /* read_data() */

61

/, *** ,/

/* return a time in seconds from unsigned millisecond and seconds counts. */
I* adjust for rollover in raw_time at 65536 seconds. *I
/* update global time value (re.l_time). */

/, *** ,/
static float t/aecode(void)
(

static unsigned long seconds; /* running seconds counter */
static unsigned long carry_time; /s working buffer */
static urmignsd long rollover_dstect; /* previous seconds */
static unsigned inr ms; /* milliseconds at this reading */

/* read the timer */

read_timer(kKtiae) ; /* get time from counter */

/* compute and save time in seconds and milliseconds ,/
ms - MS_COUNT- Ktime.loe; /* MS_COUNT is a defined constant */

seconds = (Iong)(SEC_COUNT - Ktime.high);

if(seconds < rollover_detect)

carry_time += SEC_COUNT; /* SEC_COUNT is a defined constant */

/* save current time reading for ro]lover detection */
rollover_detect = seconds;

tel_time = ((((double)(seconds + carry_time)) + (((double)Is) / 1000.0))
- base_time) ;

/* return value will round oil at high values but is used only for triggering */
return((float) rel_t ims) ;

} /* timecode() */

/, ** ,/
/* Write data to the file. */

/* If flag is set this a new data point to be stored in the next buffer */
/* location. Otherwise it is an initial point. Place the point in */
/* the file in any case ,/

static void write_data(int flag)
{

inr k;
int first = 1;

if (flag)
(

plot_data_count++; /* set storage pointer for this event ,/

plot_data_count X= BUFSIZE;
}

if (chatmels [O] .scale != 0.0)
{

fprintf (data_file, "g12.3lr" ,rel_time) ; /* write time stamp */
first = O;

}

62

for (k-1; k<_nma_chan; k++)
(/, put data in a f_e */

if(channels[k] .scale != 0.0) /, write data value */
(

' if (first)
(

fprintf (data_f ile, "_{12.6g" ,D [k]) ; /, first column ,/
first - O;

}

else
(

fprintf(data_file,", _12.6g" ,D[k]) ; /, not first column */
}

}

new_line () ;

Total_points++; /, _est for end of this file */
Po ints_this_file++;

if (Points_this_file >" Points_per_file)
(

fclose (data_file) ;

if (open_data_file() =- O)
return; /* Open Error */

Points_this_file " O;
}

/* store data in buffer */
for (k_0 ;k<-num_chan; k++)

if(channels[k] .scale !- 0.0)
(
channels[k] .data[plot_data_count] " D[k] ;

}

plot_data(flag) ; /, plot the current data points */
} /* write_data() */

/, *****************,/
/* GRAPHICS ROUTINES */
/* ******************/
/* Plot the data on the screen */
/* If flag is non-zero the point is to be plotted */

static void plot_data(int flag)
(

inr window;

inr end m plot_data_count;

for (window-O; window<plot_windows; window++)
' (

/* do not select inactive windows */
if (win_dat a [windou]. Xchan !- - 1)
(

select_window (window) ;

63

if(flag)
{ /* draw lineto thispoint*/
draw_line_to(channels[win_data[window].Xchan].data [end],

channels [ein_data[vindoe].Ychan].data [end]);

}

else

{ /* set origin for this plot */
move_t o (channels [win_dat a [window]. Xchan]. dat a [0],

channels [win_dat a [windoe]. Ychan]. data [0]) ;
)

)
}

} /* plot_data() */

/, ** ,/

/* Define a window with new axes and plot the data buffer in it */
/* Axes are scaled to full scale for the channels in this window. ,/

/, The screen is completely redrawn */
static void def_windov(int eindov)

{

setup_window(eindoe);
redraw_windon(1) ; /* redraw and replot,/

) /* def_window() */

/, ** ,/

/* Redo a window with new axes and plot the data buffer in it */
/* Axes are scaled to full scale for the channels in this window. ,/
/* The screen is completely redrawn */
/, ** ,/

static void redo_eindoe(int eindoe)

float X, Y;

/* absolute value of full scale for this channel */

/* scale is in units per volt. "10.0 compensates for 10V full scale ,/
/* input range */

X ffi labs(channels [win_data[windoe]. Xchan]. scale * 10. O) ;
Y " labs(channels [ein_data[eindoe]. Ychan]. scale * 10. O) ;

/* put new plot limits in window control structure */
uin_data[windoe].UXmin = -X; /* lower left corner ,/
win_data[window] .UYmin - -Y ;

win_data[eindoe].UZmax - X; /* upper right corner ,/
win_data[windoe].[J_m_Llt m y ;

redraw_windows(I) ; /* redraw and replot */
) /* redo_window() ,/

/, ** ,/

/* Zoom window in. The window is magnified by Zoom.Scale and the */
/* last data point is centered. The screen is completely redrawn ,/

/, ** ,/
static void zoom_in_eindoe(int window)

zoom(window, Zoom_Scale);

redraw_windovs(1); /* redraw and replot*/

64

} /* zoom_in_window() */

/, ** ,/

/* Zoom window out. The window is demagnified by Zoom_Scale and the ,/
/, last data point is centered. The screen is completely redrawn */

- /, ** ,/
static void zoom_out_window(int window)

{

' zoom(window, 1.0 / Zoom_Scale);
redraw_windows(1) ; /* redraw and replot ,/

/, zoom_out_window() */

/, ** ,/

/* This is a generic zoom function used by the above functions ,/
/, ** ,/

static void zoom(inr window, float scale)

float x, deltax, y, deltay;

if(win_data[window].](chart!ffi-I) /* only zoom activewindows ,/

{

/* Get lastdata point*/

x - channels [win_data[window].Xchan].data[plot_data_count];

y = channels [win_data[window].Ychan].data[plot_data_count];

/* compute offsets,(range*scale),then divideby 2.This provides*I
I* offsetseach sideofthe lastpoint*/

deltax- ((win_data[window].UXmax- win_data[window].UXmin) • scale) / 2.0;

deltay = ((win_data[window].UYmax- win_data[window].UYmin) • scale) / 2.0;

/, put new plotlimitsinwindow controlstructure,/
win_data[window] .U%min -- x - deltax; /* lower left corner ,/

win_data[window] .UYmin - y - deltay;

win_data[window] .UXmax - x + deltax; /* upper rightcorner*/

win_data[window] .UYmax - y + deltay;
}

} /* zoom() *I

/, ** ,/
/, Clear data from a window. Ali data is erased from the specified ,/
/* window by replacing it with the last data value. The last point */
/* remains to initialize the plot. If the window number is -1 ali */
/, windows will be cleared. */
static void clr_window(int window)

{

inr i, k, x, y;
float X, Y;

if(window -= -1)
{

for(iffiO;i<MAXWINDOWS;i++)

, {

if(win_data[i] .Xchan !- -1) /* Activewindows only */
{

x - win_data[i].Xchan;

y = win_data[i].Ychan;

65

/, Get last data values into local variables to avoid repeated indexing */
X = channela[x].data[plot_data_count];
Y - channels[y].data[plot.data_count];

for (k-O; k<BUFSIZE; k++)
(

channels[xi .data[k] - X; /, Fill buffers ,/

channels [y]. data [k] - Y;
}

}
}

}

else

x = win_data[windog] .gchan;

y - gin_data[gindog] .Ychan;

/* Get]ast data values into local variables to avoid repeated indexing _/
X - channels[xi .data[plot_data_count] ;
Y - channels[y] .data[plot_data_count] ;

f or (k-O; k<BUFSIZE; k++)

channels[xi .data[k] ffi X; /* Fill buffers */

channels[y] .data[k] = Y;
}

}

redrau_uindon (1) ; /* redraw and replot */
} /* clr_window 0 */

/, ** ,/

/* redraw ali active windows and optionally replot the data. e/
/* replot if flag is non-zero. */
/, ** ,/

static void redraw_uindows(int flag)

int i, j;
char title[16];

open_graph() ; /* setup graphics */

for(i-O; i<plot_windous; i++) /* redefine and plot all windows ,/

if (uin_data [ii. Xchan ! - -1)

del ine_eindoe (i, win_data[ii. SY_ain,
win_data[ii. SYnin,
gin_dat a [ii. SYdaax,
gin_dat aIii. SYnax, "
gin_data[ii. UXnin,
gin_data[ii. UYmin,
gin_data[ii. Ugnax,
win_data[ii. UYmax) ;

66

sprintf (title, '*Window _ld", i+l) ;
del ine_head_r (i ,title) ;
draw_axes(i, 5,5, channels [win_data[ii. lchan], nale,

channels [win_data Ii]. ¥chan]. name) ;

/, *** ,/

/, Plot_data_count indexes the last data placed in the buffer. */
' /* Start plotting from the oldest point (plot_data.count+l) ,/

/* and continue to the end of the buffer. Then precede to the ,/
/, last point inserted (plot_data_count). */
/, *** ,/

if (flag)
(

/* ptr will be (plot_data_count + 2) if the buffer has wrapped around. */
/, Otherwise ptr starts at 1. This logic starts the plot at the oldest */
/, data and prevents plotting parts of the buffer which have not been ,/
/, filled. ,/

/* get data bufferpointers,/

float far *X- channels[win_data[i].Xchan].data;

float far *Y ffi channels[vin_data[i].Ychan].data;

inr ptr- ((Total_polnts- (long)plot_data_count) > O) ?
(plot_data_count + 2) : I;

/* starting point, move to the oldest point */
move_to(X[ptr -l'l. Y[ptr -1]);

/, do the plot with wrap around until the latest point is encountered */

j - 1; /, default for one data point */

if(Total_points > Ii)

for (j=ptr; j ! =plot_data_count ;j++)

j Z= 8UFSIZE;
draw_line_to(X[j], Y[j]);

/* complete the line to the last point */
draw_line_to(X[j], Y[j]);

}

if(MaxY < 200)

menu_bar(MENU_TOP, lO,titles); /* make menu bar *I

else

menu_bar (MENU_TOP,20, t itles) ;

} /* redraw_windows() */

67

/, **************** ,/
/, UTILITY ROUTINES */
/, ****************,/
/, NEW LINE SUBROUTINE */
/, This is a generic function to allow for multiple output streams ,/

static void nee_line(void)
(

fputs ("_" ,data_file) ; _

} /* newllne() */

/, ** ,/

/, prompt and get an integer value from the user */
/, a valid number or blank line is required ,/
/* a blank line will cause return of the default value. ,/
/, ** ,/

int get_int(char *prompt, int del)
(

inr val ;
char bur [32] ;

while(l)

fflush(stdin) ;

fputs (prompt ,stderr) ;
strupr (fgets (bur, s izeof (bur), stdin)) ;
strtok(buf," \r\n") ;

if (bur [0] -. ,\n,)
(

va1 - del; /* take default value ,/
break;

)

if (sscanf (buf,"_d" ,&val) -- 1) /* scan input */
break; /* take input value */

)

return(rsi) ;

) /* get_int 0 */

/, ** ,/

/* prompt and get a float value from the user */
/* a valid number or blank line is required */
/* a blank line will cause return of the default value. ,/

/, ** ,/
float get_float(char ,prompt, float del)

float val ;
char bur [32];

while(1)

(
fflush(stdin) ;

fputs (prompt, stderr) ;
strupr (fgets (bur. s izeof (bur). stdin)) ;
strtok(buf. "\r\n") ;

68

if (bur [0] -- '\n')
{

val - del; /* take default value */
break;

, }

if (sscanf (buf,'_g" ,Itval) -- I) /* scan input */
, break; /* take input value */

}

return(va1) ;

} /, get_float() */

/, ** ,/

/* This function tests for keyboard input and returns a key code */
/* indicating which function key was pressed. F1 - F9 are supported. ,/
/* Any other key returns zero. */
/, ** ,/

static inr test_kb(void)
{

if (kbhit ())
{

if(getch() == O)
{

seitch (get ch ())
{

case 59: /* FI */
return(l) ;

case 60: /* F2 */
return (2) ;

case 61: /* F3 ,/

return (3) ;

case 62: /* F4 */
return(4) ;

case 63: /* F5 */
return(S) ;

case 64: /* F6 */
return (6) ;

case 65: /* F7 */

return (7) ;

case 66: /* F8 */
return(8) ;

• case 67: /* F9 */
return(9) ;

• default: /* Unused function key. */
return(O) ;

}
}

}

69

return(O) ; I* No key pressed. *I
} /* test.kb 0 */

/, ** ,/
/* function to open flies and report on detected errors */

/* returns zero on error, one if no error. */
/* If SEQUENCE = 0 the type is .HDR, else, the type is .DAT */
/, ** ,/

static inr open_data_file(void)
(

/* remove old file type and replace it */
strcpy (f ilenmae, Dat a_f ile_nmae) ;

if(SEQUF_CE == O)
(

strcat (filename, ", HDR") ;

SEQUEIICE= 1; _,

else

strcat (filenmae, ". DAT") ; \

\

/* Open in append mode so we do not destroy data if the file exists */

if((data_file ffi fopen(filenaue,"a")) == NULL)

clrscr() ;
fprintf (stderr,"\n\nUnable to open data file Xs\n",filename) ;

fputs("Disk or Directory must be full\n",stderr) ;

delay(10000) ; /* wait so user can read the me_age */
return(0) ; /* ERROR */

}

return(I) ; /* OK */

} /* open_data_file 0 */

/, ** ,/

/* get a valid board name and channel number form the user */
/* Input data is a pointer to the prompt text. */
/* Returns an index into the box D array and the board channel to ,/
/* be used. */
/, ** ,/

void get_valid_board(char *text, inr *box_index, inr ,chan)

inr k, del;
char bur [16] ;

ghile(1) /* insist on a valid board name ,/
(

fputs("SELECT BOARDFOR THIS CHANNEL_n",stderr) ;
fputs (text ,stderr) ;

70

if(scanf("_d",ak) == I)
(

If((k > O) _ (k <= I_I_SLOT) tit (strlen(box[k] .board) > 0))

• *box_index = k;
break;

}

del = (box[kJ.last_chan+ ! > box[k3.channels-1) ?
box [k]. channe] s- 1 : b x [k]. last_chan+l ;

ghile(1) /* insist on a valid channel # */
{

fprintf (stder_,"WHICH BOARDCHANNELIS TO BE USED0 - _d (_d) ? ",
box[k] .channels-1, del) ;

while (1)
(

f flush(etde) ;
fgets(buf, eizeof (bur) ,etdin) ;

if(etrl_n(buf) > 1)
(

etrtok tbuf, "\n") ;

if (escanf (buf,"Y.d".chan) =- 1
break;

}

_lee
{

*chan = box [k]. l_t_chan + 1;
break;

}

if((*chan >= O) kt (,cha_ < box[k].charmels))
(

box [k] .last chem = ,chem;
break;

}
}

} /, get_valld_board() ,/

/, ** ,/
/, Given a driver pointer find the board name in the boards array. */
/* return a pointer to the name. */

• /, ** ,/
char *get_board_name(float (*driver) ())
(

. inr i ;

for(i=O;i<MAX_MODULES;i++)
if(driver =" boards[i] .driver)

return(buards [i]. name) ;

71

return(INLL) ;

} /* get_board-nameO */

/, **,/
/* find driver pointer given the board name */
/, ** ,/

float (,find_driver_pointer(char ,name)) ()
{

int i ;

for(i=O;i<MAX_MODULES;i++)

if (strncap(nae,boards [i] .name,8) == 0)
return(boards [i]. dr_ ver) ;

return(NULL) ;

} /, find_driver_pc'nter() */

72

B .1 TEMP.C - Temperature Channel Driver

/, ***,/
/* TEMP.C */

/* This module implements thermocouple temperature readings for */
• /* DATAVG. It is assumed that a Keithley AIM7 is present. */

/* This pseudo-board supports 16 channels. */
/* */
/, ***,/
/* Written by */
/* R. D. Hardy */
/* Sandia National Laboratories */

/* Department 6117 ,/
/* April 17, 1992 */
/, ,/

¢* Comments configured for C2LATEX and LATEX*/
/, *** ,/
l, On entry if card_slot ----- -1 call the initialization code to setup */
¢* local scaling data and a list of the physical channels to be used. */
¢* If card_slot == -2 call the channel data save function. ,/
/* If card.slot == -3 call the chv.nnel restore function. ,/

/* If card.slot _.= 0 compute the temperature in degrees C. */
f, *** ,/

/* MODIFICATION HISTORY */

I, March 25, 1993 */

/* TEMP.CFG must be in the DATAVG directory. RDH. */
/, ,/

I, June 25, 1993 */

I* Made extensive changes in init(), restore() and build_tables(). ,/
/* This module did not properly initialize itself. RDH */
/* ,/
/* ,/
/, *** ,/

_include "datavg.h"

#define NAX_TC_TAB 5 /* number of thermocouple types ,/

[* function prototypes ,/
static void init(int than);
static inr find_board(void);
static void init_error(char *text);
static void save(inr than);
static void restore(inr chart);

static struct spline_tab *get_TC_type(void);
static float scale_telp(float TENP, struct spline_tab *TTAB, int card_slot);
static void build_tables(void) ;

static inr flag - O;

typedef struct spline_tab

double *xa; /* Pointer to temp. array ,/
double *ya; /* Pointer to voltage array ,/

. double *y2a; /* Pointer to coefficient array */
int n; /* Number of elements in the arrays */
char type; /* Thermocouple type character */

};
static struct spline_tab TC[NAX_TC_TAB];

73

/* array of structures holding channel data ,/
static struct
(

inr chan; /, rea] board channel */
struct spllne_tab ,table; /, pointer to spline table for this type e/

} chanl[lS] ;

t

inr slot;

/, *** ,/
/*MainFunction. Thisfunction dispatches to other functions to ,/
/*implement a thermocouple reading board for DATAVG.,/
/, *** ,/

float thermocouple(inr than, inr card_slot, inr n)
{

floaL data;

switch(card_slot)
{

case -1: /* initialize this channel */
{

init (than) ;
return(-1) ;

}

case -2: /* save configuration for this channel ,/

save (chem) ;
return(- 1) ;

case -3: /* restore configuration for this channel */
{

restore (chem) ;
return(-1) ;

}

default: /* read data from this channel */
{ /* 100.0 restores the AIM7 gain which is no */

/* longer passes through read_AIMT() */
data = read_tIHT(chanl[chan].chan, slot, n) * 100.0;
return(scale_tenp(dat a, chanl [chan]. table, slot)) ;

}
}

} /* thermocouple() */

74

le Initialize the thermocouple spline tables if not already done el
if(fla8 == o)
(

if((slot - find_board()) -= -1)
, (

init_error("allq7 board required. ") ;
return;

build_tables () ;
)

/* get the thermocouple type */
chanl[chan], table - get_TC_type () ;

} /* init0 */

/, *** ,/
/* locate the AIM7 board and return it's slot number. */
/, *** ,/

static int find_board(void)
{

int i ;

/* search for the _im7 board */
for (i=l ; i<=10; i++)
{

if (strncap(box[i] .board,"AIN7",4) == O)
break;

}

if(i > lO)
{

return(-1) ;

return(i) ;
) /* find_board() */

/, *** ,/
/* save the configuration data for chan in the file data_file. */
/_ **$************************ */

static void save(int chan)

fprintf(data_file,"_{d,_c\n",
chanl[chan],chan, than1[chan].table->type);

]" 1" save() */
r

/, *** ,/
/, restore configuration data for chan from the file data_file. */
/, *** ,/

static void restore(inr chart)

char type, BUFFER[64];
int i ;

75

if(flag "" O)
{

if((slot " find_board()) "" -1)
{

init_error ("AIM7 board required. ") ;
return;

} /, build array of data tables */ #
build_tables () ;

}

/* get board channel and thermocouple type */
fgets (BUFFER,sizeof (BUFFER),data_f ile) ;
sscanf (BUFFER,"_d, _c\n", kchanl [chan] .chart, _type) ; ...

/, look up the type in the tables */
f or (i-O; i<MAI_TC_TAB;i++)

if (TC[i].type == type)
break;

if(i == MAX_TC_TAB)
init_error("Thex_ocouple type not found in tables");

/* set pointer to table structure */
chanl[chau] .table - kTC[i] ;

} /* restore() */

/, *** */
/* Print error message and return */
/, *** */

static void init_error(char .text)
{

char bur [8] ;

clrscr () ;

puts (text) ;
puts(" Cannot configure for temperature measurement.");
puts(" Return to continue.") ;
fflush(stdin) ;

fgets (bur ,sizeof (bur), stdin) ;
} [* init_error() */

/_ *** */
/* function to build the interpolation tables from disk file */
/, *** */

static void build_tables(void)
{

FILE *cfg;
char type ;
inr k, n, tc_tab;
char BUFFER[64] ;

if((cfg = fopen("\\etTtVG\\THERNO.CFG","r")) == MULL)
{

init_error("Thermocouple data file THERNO.CFG not found.");
return;

}

76

/, Process ali available thermocouple data tables */
for (tc_taboO; t c_t ab<NAg_TC_TAB;tc_tab++)
{

fgets (BUFFER, sizeof (BUFFER), cfg) ;
if(sscanf(BUFFgR,,,_c,_d_n,,,Ittype,lm) !"= 2) /. Size and type */

" {
break; /, Quit if file exhausted */

TC[tc=tab] .type - toupper(type); /, Put in structures */
TC[tc_tab] .n - n;

/. Allocate memory for the tables */
if((TCEtc_tab] .xa = aalloc(n * sizeof(double))) -" lULL)
{

break; /, quit if out of memory */

)

if((TCEtc_tab] .ya = aalloc(n * sizeof(double))) == NULL)
{

break;

if((TCEtc_tab] .y2a = aalloc(n * sizeof(double))) == NULL)

(
break;

/. Read the tables from disk */
f or (k-O ;k<n; k++)
{

fgets (BUFFER, sizeof (BUFFER), cfg) ;
if (sscanf (BUFFER, "glf ,Y.lf, glf\n",

TC[tc_tab].xa+k, TC[tc_tab] .ya+k, TC[tc_tab].y2a+k) !" 3)

break;

]

/. close configuration file and clear data file name buffer */
fclose (cfg) ;

flag = 1;
} /, build.tables() */

/, ** */

/, get valid thermocouple type from user */
/, ** */

static struct spline_tab ,get_TC_type(void)
{

char types[3,__TC_TAB] ;
inr n;)

char ,ptr = types;
char BUFFER[16] ;

for (n-O; n<NAX_TC..TAB;n++)
(

if (TC In]. type -" NULL)
break;

77

•ptr++ - TC[zt]. type;
• ptr++- ' '"P I

• ptr++ = ' ',"
}

• (ptr-2) - '\0'; /, terminate the string */
strupr (types)

while (1)
{

printf("Enter thermocouple type (_s) ? '*,types);
fflush(stdin) ;

strupr (fgets (BUFFER, sizeof (BUFFER), stdin)) ;
ptr - BUFFER;

while (isspace (,ptr))

ptr++; /* remove leading white space */

f or (n=O; n<I_X_TO_TAB; n++)
{ /* Thermocouple types */

if (*ptr == TC[n] .type)
return(tTC [ni) ;

}

fputs (" Invalid type\n", stderr) ;
}

#if __TURBOC__ < Ox400
return(kTC [ni) ;

#endif

} /* get-TC_type 0 */

/, *** ,/
/, scale a temperature related voltage into degrees C with correction */

/* for cold junction temperature. Assume use of an AIM7 board. */
/, *** ,/

static float scale_reap(float TEMP,struct spline_tab *TTAB, inr card_slot)

float offset, colp;
inr i - O;

/, get board temperature in offset. 1000.0 corrects for board scaling */
offset - 1000.0 * read_AIN7(32,card_slot,5);

/* interpolate to get voltage corresponding to temperature. */
/, we use linear interpolation because we are within a small range */
while(TTAB -> ya[i] < offset)

i++;

comp - ((offset - _AB->ya[i-1]) / (TrAB->ya[i] - TrAB->ya[i-1]));

/* offset is now the junction voltage correction */
offset = ((TTAB->xa[i] - TTkB->xa[i-1]) * co--p) + TTAB->xa[i-1];

4

/* spline interpolate to get measured temperature */
return (splint (TTAB->xa, TTAB->ya, TTAB->y2a, TTAB->n, (TE_ + off set))) ;

} /* scale_temp() */

78

C 500LIB.H

/, ** ,/

/* 500LIB.H */

- /* Prototypes and data declarations for 500LIB.C ,/

/* */

/* Written by Robert D. Hardy */

* /* Sandia National Laboratories */

/* Department 6117 */

/* April 17, 1991 */

/, */

/* Comments configured for C2LATEX and LATEX,/
/, ** ,/

#include <stdio.h>

#include <dos.h>

/* Timer value structure. This must be Mlocated by the calling program. ,/

typedef struct ktime
{

unsigned inr low;

unsigned inr high;

};

/*Function prototypes ,/

void init_500(unsigned inr SEG);
float read_ANN2(int channel, int card_slot, inr n);

float read_AIN3(int channel, inr card_slot, int n);

float read_AINT(int channel, inr card_slot, inr n);

float read_PIN2(int channel, inr card_slot, inr n);

void reset_PIN2(int channel, inr card_slot);

float read_tel(void);

float read_gnd(void);

float scale_AMN2(unsigned long reading);

unsigned inr read_ad(void);

float read_DIOl(int channel, int card_slot);

float read_DINl(int channel, inr card_slot);

float yrite_AON1(int channel, inr card_slot, unsigned inr data);
float grite_DIOl(int channel, inr card_slot, inr data);

void set_tiLer(unsigned int el, unsigned inr cO);
void read_timer(struct ktime *bur);

inr read_ID(int card_slot);

#ifdef K5OOLIB

• #ifdef MAIN

#define EXTERN

#else

#define EXTERN extern

#endif /*MAIN ,/

/* define pointers to interface functions. ,/

79

/* AMM2 command structures */
typedef union CommndA
{

struct

{
int chart :4; /, channel number, 0-7 or 0-15 ,/
int mode :1; /, differential or single ended */

int local_gain : 1; /* Ix or 10x */ •
inr ACQ_aode :I; /, normal or auto */
int filter :I; /, 100KHzor 2KHz*/

}f;

unsigned char end;
};

typedef union CosmandB
{

struct
{

inr card_slot :4; /, 0-15 */
int readnode :I; /, Status or Data */

int range :1; /, +/-10V or 0-10V */
int global_gain :2; /, lx, 2x, 5x or 10x */

}f;

unsigned char end;
};

/* Address offsets. */
#define CND1A 0
#define CMD1B 1
#define CMDIC 26

#define CNDID 27

#define CND2A 2

_def ine CND2B 3

Jdefine CMD2C 21

#define CMD3A 4

#deline CND3B 5

Jdefine CMD3C 22

#define CND4A 6

#define CMD4B 7

Sdefine CMDSA 8

_define CND5B 9
#define CMD6A 10
#define CMD6B 11

#define CMD7A 12
#define CMDTB 13
#define CMD8A 14
#define CMD8B 15

#define CMD9A 16
#define CMDgB 17

#define CNDIOA 18

Sdefine CNDIOB 19

/* define some names to be used later. */

/, Use 128 in a 16MHz Compaq, 512 for a 486/50 */

80

#define SIATEEli 512 /* delay count for 16uS delay in read_ad() */
#_tefine EOC_nask 0x80 /, mask to isolate EOC bit */

/, Global gain command codes. */
4*

#define xl 0 /, Set IX gain */
#define x2 1 /* Set 2X gain */

. _define x5 2 /, Set 5X gain */.
#define xl0 3 /, Set 10X gain ,/

/* array of board specific command addresses */
EXTERN unsigned char far ,ports[11] [4];

/* Fixed addresses on the AMM2 */

EXTERNunsigned char far ,SLOT;

EXTERNunsigned char far ,AD_LOV;
EXTEI_ unsigned char far ,AD_HIGH;
EXTERN unsigned char far *AD_RECAL;

EXTERH unsigned char far ,AD_START;

EXTERN unsigned char far ,AD_STAT;

EXTERN unsigned char far ,DA_STROBE;

EXTERB unsigned char far ,EOC;

/* Fixed addresses on the interface board */ . '._
EXTERH unsigned char far ,COUNTERO;

EXTEP_ unsigned char far ,COUNTER1;

EXTEP_ unsigned char far ,COUNTER2;

EXTEP_ unsigned char far ,COUHT_CONT;

EXTERN unsigned char far ,TINER_GLOBAL; !
EXTERNunsigned char far ,TINER_STAT;

EXTERNunsigned char far ,SET_INT;

#under EXTERN
_endif /* K5OOLIB */

81

D 500LIB.C

/. ** ./
/* 500LIB.c */
I* This file contains the drivers for a Keitldey 500 box. ,I
/* */

/* Written by Robert D. Hardy */
/* Sandia National Laboratories */

/* Department 6117 */
/* April 17, 1991 */
/* */

/* Comments configured for C2LATEX and I0,TEX*/
/. ** ./

/* Modification History: */
/* */

/* May 25, 1993 */
/* Changed AMM2 to use differential inputs conditionally */
/* if K575 is not defined. RDH */
/* */

/* June 25, 1993 */

/* Corrected timing error in read_ad 0. Fast machines did */
/* not wait long enough before starting conversion. RDH */
/* */

/* June 25, 1993 */

/, read.AIM7() removes the board gain so readings are in */
/* volts. This allows use of the board for low voltage ,/
/* inputs. RDH */
/* ,/
/, ** ,/

#define MAIM /* provide storage for device pointers */
#define K500LIB /* provide definitions for our data ./
#include "5001ib.h"

/* Keithley interface segment ,/

static unsigned inr KS00_SEG = 0xcff8;

/* AMM2 command buffers */
static union Con.aandA A;
static union ComaandB B;

/. ** ./

/* Function to initialize the interface and set pointers to */
/* interface functions. */
/. ** ,/

void init_500(unsigned inr SEG)
{

K5OO_SEG = SEG; /* static copy of segment */

/* Create pointers to ali command and status ports. */
ports[l] [0] = I'IK_FP(K5OO_SEG,Clql)IA) ;
ports[l] [I] = NK_FP(KSOO_SEG,CNDIB) ;

ports[l] [2] = NK_FP(K5OO_SEG,CNDIC) ;
ports[li [3] = NK_FP(KSOO_SEG,CND1D);

ports[2] [0] = NK_FP(KSOO_SEG,CND2A) ;

ports[2] [I] = NK_FP(K5OO_SEG,CHD2B) ;

ports[2] [2] = N[_FP(KSOO_SEG,CI_2C) ;

oo2

ports[3] [0] - RK_FP(K5OO_SEG,CND3A);
ports[3] [1] - MK_I_(KSOO_SEG,CMD3B);

ports[4] [0] - MK_FP(K5OO_SEG,CMD4A);
ports[4] [1] - I__FP K5OO_SEG,CMD4B);

ports[5] [0] - NK_I_ K5OO_SEG,CMD5A);6

ports[S] rl] - NK_FP(E5OO_SEG,CMD5B);
ports[6] [0] = MK_FP(K5OO_SEG,CMD6A);
ports[6] El] = MK_FP(K5OO_SEG,CMD6B);b

ports[7] [OI - MK_FP(K5OO_SEG,CMD7A) ;

ports[7] [1] = MK_FP(K5OO_SEG,CMD7B);
ports [8] [OI = MK_FP(K5OO_SEG,CMD8A);
ports[8] [1] - MK_FP KSOO_SEG,CMD8B);
ports[9] [0] = MK_FP KSOO_SEG,CMD9A);
ports[9] [1] = MK_FP(K5OO_SEG,CMD9B) ;

ports[lO] [0] - MK_FP(KSOO_SEG,CMDIOA) ;

ports[lO]II] - MK FP(K5OO_SEG,CMDIOB);

/, Interfa£e board addresses */
COUNTERO= MK_FP(KSOO_SgS,ox40) ;
COUMTER1 = MK_FP(K5OO_SEG,Ox41) ;
COUMTER2= MK_FP(KSOO_SEG,Ox42);
COUNT_CONT= MK_FP(KSOO_SEG,Ox43);
TIMERGLOBAL = MK_FP(K5OO_SEG,Ox60) ;
TIMER_STAT - MK_FP(K500_SEG,Ox61) ;

SET_INT = MK FP(K5OO_SEG,0x63) ;

AD_LOW- MK FP(K500 SEG,CMD1A);
AD_HIGH = MK_FP(KSOO_SEG,CMDtB);
AD_START- MK_FP(KSOO_SEG,CMD1D);
AD_RECAL = MK FP(K5OO_SEG,CMD1C);

EOC - MK_FP(KSOO_SEG,CMD1D);

SET_INT ffi Oxff; / Disable ali interrupts. */

/, Reca/ibrate the AMM2 A/D converter */
A chart = 0; /, set initial mode */

#ifndef K575

A.f.mode = O; /, Differentia/input on AMM2 */
#else

A.f.mode = 1; /, Single ended input on AMM2 */
#endif

A. f. local_gain = xl ; /* l X */
k. f. ACO_mode = 0 ; /, Regular acquire */
A.f.filter = O; /* 100KHz filter */

B.f.card_slot = 1; /, AMM2 in slot 1 ,/
' B.f.readmode = O; /, read calibrate status */

B.f.range = 1; /, +/-10V range */
B.f.global_gain = xl; /, 1X ,/

,AD_LOW - A.cmd; /, Send command bytes */
*AD_HIGH = B.cmd;

,AD RECAL = 0xff; /, START RECALIBRATION */

83

vhile((*bD_LON & EOC_mask) >- 0x80) ; /, Wait for calibration to complete */

B.f.readmode " 1; /, Read AD data mode */

delay(0) ; /, calibrate the delay routine just in case */ "
}

/, ** ,/
/, Functions to read from analog channels. */
/, ** ,/
/, read and average n samples from AMM2 board */
/, ** ,/

float read_A_2(int channel, int card_slot, int n)

{
int i:

unsigned long data = 01;

/, Select the slot to be used. */
B.f.card-slot = card_slot; /, AMM2 is always in slot 1 */

/, Select the channel to be used. */
A. f. chart = channel;

read_ad() ; /, dummy read to clear AD */
for (if0 ; i<n; i++)

data +ffi read_ad();

data /ffi (long)n; /, average reading */
/, scale into volts */

return (scale_ANN2 (data)) ;

}

/, ** ,/

/, read and average n samples from AIM3 board */
/, ** ,/

float read_AIN3(int channel, inr card_slot, inr n)

{

inr i ;

unsigned long data = 01;

/* Select the slot to be used. */

B. f. card_slot ffi card_slot ;

/* Select the channel to be used. */

sports[card_slot] [0] = channel;

read_ad() ; /, dummy read to clear AD */
for (ilO; i<n; i++)

data +- read_ad() ;

data /- (long)n; /, average reading */
/* scale into volts ,/
return (scale_AMM2(data));

}

84

/, ** ,/

/* read and average n samples from AIM7 board */
/, ** ,/

float read_AIM7(int channel, inr card_slot, inr n)
{

int i;

unsigned long data - 01;

0 /* Select the slot to be used. ,/
B. f. card_slot - card_slot ;

/* Select the channel to be used. */

*ports[_ard_slot] [0] - channel;

read_ad() ; /* dummy read to clear AD */
for (i-O;i<n; i++)

data +- read_ad() ;

data /= (long)n; /* average reading */
return(scale_IMM2(data) / 100.0); /* scale into volts */

: }

/, ** ,/
/, Routine to read from a PIM2 board. 16 bit counters. */

-_ /, ***************_ ************************************* ,/

_ float read_PIM2(in_ channel, int card_slot, int n)
{

unsigned int data;

,ports[card_slot] [0] = channel; /* select channel */
data ffi *ports[card_slot] [0] + (,ports[card_slot] [1] << 8) ;
return((float)data) ;

/, ** ,/
/* Routine to reset a PIM2 board channel */
/, ** ,/

void reset_PIM2(£nt channel, int card_slot)
{

ports[card_slot] [1] ffi channel; / reset channel */

/, ** ,/

/* Routine to read the ground (0V) reference */
/, ** ,/

float read_gnd(void)

unsigned inr data;

B. f. card_slot - 0 ;
data - read_ad() ;
return((float)data) ;

, }

/, ** ,/

I /* Routine to read the 10V reference */
/, ** ,/

float read_ref (void)

unsigned inr data;

85

B. f. card_slot - 13;
data - read_adO ;
return((float)data) ;

}

/, ** ,/

/* Scale an unsigned integer into a voltage */
/* Assume use of an AMM2 board for reading the */

/* data in integer forE. */ o
/, ** ,/

static _loat scals_LtM2(urmisnsd lon 8 readin 8)
{

/* definitions for AMM2 board ,/
_defins £MM2_offsst 10.0

Sdefine kMM2_counts_per_volt 3276.75

return(((float)reading / _2_counts_per_volt) - _q2_offset) ;

lundef A_q2_of fset

#under M_q2_counts_per_volt
}

/, ** ,/

/* Low level routine used to read any analog */
/, input channel regardless of board. The AMM2 */
/, assumed contains the A/D converter for the ,/
/* whole box. ,/
/, ** ,/

static unsigned inr read_ad(void)
{

inr i;

/* Send the commands ,/
*AD_LOW- A.cad;
*tD_HIGH - B.cwl;

/* delay for settling, must be at least 96 microseconds */
for(i-0;i<(SIXTEEIi*6) ;) /* define SIXTEEN as needed */

i++;

/* Start conversion */
*AD_START - Oxff;

/* delay for conversion, must be at least 16 microseconds */
for(i-0;i<SIlTFS'i;) /, define SIXTEEN as needed ,/

i++;

ehile((*EOC k E0C_mask) _. 0x80); /, Wait for EOC */

/* Read the data */
return(*AD_LOW + (*AD_HIGH << 8));

}

/, ** ,/

/* Function to write to an analog channel. Assumes AOM1. */
/* Data must be scaled into an unsigned int. ,/
/, ** ,/

float write_tONI(inr channel, inr card_slot, unsigned inr data)
{

channel <<- 1 ;

86

,ports [card_slot] [0] - channel++;
,ports[card_slot] [1] - (data & 255) ;
*ports [card_slot] [0] - channel;
,ports[card_slot] [1] - (data >> 8) ;

. *DA_STROBE = 1;

return(0) ;
,)

/. ** ./

/* Function to read from d_tal channels. 1 bit channels. */

float read_DI01(_vtt channel, inr card_slot)
{

inr bit, byte, data;

unsigned char bur ; /* local copy of port data */

bit .. channel _ 8; /* identify the bit position */
byte ,, channel / 8;
data - (1 << bit) ; /* position the data bit for use as a mask */

/* channels 0-15 are input, channels 16-31 are output only */
if(byte > 1)

return(-1. O) ;

,ports[card_slot] [0] ,. byte; /, select the port containing the channel */
bur ,. ,ports[card_slot] [1] ; /, get the data from the board */

return((buf lt data) ? 0.0 : 1.0);
}

/, **,/
/* Function to read from digital channels. 1 bit channels */
/, ** ,/

float read_DINl(int channel, int card_slot)
{

inr bit, byte, data;
unsigned char bur; /, local copy of port data ,/

bit - channel _ 8; /, identify the bit position */
byte .. channel / 8;
data - (1 << bit) ; /* position the data bit for use as a mask */

bur ,, *ports [card_slot] [byte] ; /* get the data from the board */

return((buf lt data) ? 0.0 : 1.0);
}

#

/, ** ,/

/* Function to write to a digital channel. 1 bit channels. */

, /* ** ,/
float write_DlOl(int channel, inr card__lot, int data)
(

int bit, byte;

static unsigned char bur [4] ; /* localcopy of portdata */

87

data It- 1; /* Low bit only */
bit - channel g 8; /* identify the bit position */

byte = channel / 8;
data <<= bit; /* position the data bit for use as a mask */

m,

/, channels 0-15 are input, channels 16-31 are output only 8/

if(byte < 2)
return(-1) ;

!

if (data)

bur[byte] [= data; /* set the bit */

else

bur [byte] Jt= !data; /* clear the bit */

• ports[card_slot] [0] ,, byte; /* select the port containing the channel */
• ports[card_slot] [1] = bur [byte] ; /* send the data to the board */
return(0) ; /* no error */

/, ** ,/
/* Function to read the board identifications. ,/

/* Return board ID code or -1 if unable to read the ID */
/, ** ,/

inr read_ID(int card_slot)
{
/* int i; ,/

/* char far *slot_sd = MK_FP(K500_SEG,0x14); ,/

/* char far *start = MK_FP(K500_SEG,0x15); ,/
/* char far *get_id = MK_FP(K500_SEG,0x16); ,/

/* *slot_sd -- card_slot; ,/
/* *start -- Oxff; ,/

/* for(i=0;iiS0;i++) ,/
/* if(*start & 0xS0) ,/
/* break; ,/

/* return((i =-- 50)? -1 : (*getJd & 0xff)); ./

return(-1) ;

/* read_ID() ,/

/, ** ,/
/* Function to set the timer. ,/

/* Assumes an 8254 with ali counters run in mode 2 ca_.aded ,/
/* to roll 2 - 1 - 0. A 1MHz clock into counter 2 is assulaed. ,/

/* This function initializes the counters to the following state,/
/* Counter 2 - divide by 1000 to roll over at Ims intervals */
/* Counter 1 - divide by cl. */

t

/* Counter 0 - divide by cO. ,/

/* Where cl and cO are user specified constants. ,/
/, ** ,/

void set_riser(unsigned inr cl, unsigned int cO) "{

unsigned inr i, 1, h;
struct ktlme bur;

88

/* set no ro]lover for quick init. Ali counters run at IMHz. */

*TIMER_GLOBAL= (unsigned char)OxO;

i - 1000;
"_ 1 = i _ Oxff;

h = i / 256;

t

COUiiT_C011T = 0xb4; / select counter 2 in mode 2 */
,COUIrrER2 = 1; /, load I000 to roll at milliseconds ,/
*COUIiTER2= h;

• COUlff_COlCr= 0x74; /, select counter 1 in mode 2 */
• COUWrER1= 20; /, short count to condition counters */
• COUNTER1= O;

• COUFI'_coFr = 0x34; /*select counter 0 in mode 2 ,/
• COUliTER0- 20;
• COUI_ER0 = 0;

/* Wait for counter 0 to count to a low value. */
/* Set 48 bit rollover mode. */
/* Load counter I with ci. */
/* Load counter 0 with cO. ,/

bur.high - 15;
ghile(buf.high >= 10)

read_tiaer(&buf);

TIIL_R_GLOBAL= (unsigned char)0x3; / set 48 bit roliovermode ,/

i = cl;

1 = i & Oxff;

h = i / 256;

COUIIT_COIIT= 0x74; / select counter 1 in mode 2 */
COULTER1= 1; / load with ci */
,COUMTER1= h;

i = cO;
1 = i & Oxff;
h = i / 256;

• CouFr_C01T = 0x34; /,select co_ater 0 in mode 2 */

' *COUITER0 = 1; /, load with cO ,/
• COUITERO= h;

8

/* wait for counter 0 to_oad,/
while(bur.high != CO)

read_timer(&buf');
}

89

/* Func_:i.on to read the timer. */
I* *I

/* The _ime is returned in bur as two unsigned integers. */
/* The low integer is in milliseconds and the high one is */
/* in seconds. The seconds counter rolls over at 65536 or less ,/
/, which amounts to about 18 hours max. If timing is required */

/* for extended periods the using program must adjust for the */ ,
/, rollover in a local seconds counter. */
/, ** ,/

void read_t_aer(struct ktime *bur)

union

unsigned inr j;
struct

unsigned char low;
unsigned char high;

}i;
} k;

• COUBT_coFr .. Oxd6; /, latch counters 0 & 1 for reading */

/, read low word */

k. i. low ffi ,COUNTER1; /, read low byte */
k.i.high = *COUNTERI; /* read high byte */
buf->low = k. j _ /* store result ,/

/* read high word */
k.i. low = ,COUNTER0; /, read low byte ,/
k. i .high = *COUNTEEO; /* read high byte */
buf->high - k. j ; /* store result */

9O

E SRBGRAPH.H

/* ** */
/* SRBGRAPH.H */

, /* */
/* This file defines the functions and data structures for a windowing */

/* graphics package written by Steve R. Brown and edited by */
/* Robert D. Hardy Sandia National Laboratories Dept. 6117. */
/, */

/, Comments configured for C2LATEX and IATF_/X*/
/, ** ,/

#include <stdio.tt>

#include <string.h>
#include <stdlib.h>

#include <conio.h>

#include <math.h>

#include <graphics.h>

#define I_XNINI)OWS 8 /* Number of windows allowed. ,/

/, global data, only visible in the graphics library ,/
#ifdef GRAPH_LIB

#ifdef DATA

#define EXTE_

const float MARGIN = O.1, HEADSIZE = 0.05, TICKSIZE = 0.01;
#else

#define EXTERN extern

extern const float MARGIN, HEADSIZE, TICKSIZE;
#endif

#define HEADER_LEN40 /* Length of window header line. */
#define TRUE 1
#define FALSE 0
#define CLIPON 1
#define CLIPOFF 0

struct WINDOWINFO

int SXI, SYI, SX2, SY2; /* screencoordinates*/

float UXI, UYI, UX2, UY2; /* usercoordinates*/

char HEADER [HEADER_LEN];

int DRAWN;

int Xstart, Ystart; /* linestartingpoints*/
float Ag, AY, BY;

int XIWND, X2WND, YINND, Y2WND, SYMBOLSIZE;

);

EXTERN struct NINDOWINFO WIND[MAXNINDONS];

EXTERN inr

, GRAPHDRIVER, /* The graphics device driver */
GRAPHMODE, /* The graphics mode value */
MAXX, MAXY, /* The maximum resolution of the screen */

ERRORCODE, /* Reports any graphics errors */
MAXCOLOR, /* The maximum color value available ,/

91

ICURSOR, ¥CURSOR,

pUkXWIIFDOW, IIDEI,

FIRSTCURSOR,

BACKGROUIDCOLOR,

WINDOWCOLOR,

AXISCOLOR,

DP_WCOLOR,

0ur_Font, Ha, Hd, Vm, Vd, Te, Th; /. text scaling and font */

EITERN void .CURSOR;

void srbgraph_aake_near_string(char .header,char far .hdr,inr n);
#endif /. GRAPH-LIB */

/. FUNCTION PROTOTYPES */

void far data(void) ;

void far error(char far .string);

void far open_graph(void) ;

void far drae_border(int SYdain, inr SYmin, inr SYJaax, inr SYaax,
char far .header);

void far define_window(int eindow, inr SXJain, int SYmin,
inr SXaax, inr SYmax,

float UYJain, float UYmin,

float Ulaax, float UYmax);

void far select_window(inr window) ;
void far define_header(inr window, char far .hdr);

void far ¢oord_display(float xc, float yc, char far *c);
void far erase_coord_display(void) ;

void far reset_eindows(void);

void far erase_window(inr windoe);

inr far window_x(float x) ;

inr far window_y(float y);

void far draw_axes(J_t window, inr tick.x, inr tick.y,
char far snaaex, char far .naaey);

void far draw_point(float xr, float yr);
void far drae_line(float UXmin, float UYain, float UYJaax, float UYaax);

void far draw_line_to(float xr, float yr);

void far move_to(float xr, float yr);

void far draw_square(float xr, float yr);
void far drae_x(float xr, float yr);

void far draw_triangle(float xr, float yr);
void far drae_diaaond(float xr, float yr);

void far draw_circle(float xr, float yr);

void far drae_cross(float xr, float yr);

void far draw_star(float xr, float yr);

void far aake_cursor(void) ;

void far put_cursor(float x, float y);
void far erase_cursor(void);

void far free_cursor(void);

void far menu_bar(int top, int n, char far .text[I);

92

F SRBGRAPH Composite Source
/, *** ,/
/* SRBGRAPH.C */
/* */

' /* This file contxins the first part of a windowing graphics package */
/* written by Steven R. Brown and edited by Robert D. Hardy */
/* Sandia NationM Laboratories Dept. 6117. */
/, */

/* comments configured for C2LATEX and IbTEX*/
/, *** ,/

#define GRAPH_LIB /* provides the aata definitions */
#define DATA /* declares data */

#include "srbgraph.h"

/, ** ,/

/* InitiMize graphics and report any errors that may occur */
/, ** ,/

void far open_graph(void)
(

registerfarbgidriver (CGA_driver_far);

registerfarbgidriver(EGAVGA_driver_far);

registerfarbgidriver (Herc_driver_far);

registerfarbgifont (small_font_far);

vhile (1)

(

GRAPILqODE= IBM8514HI ;

GRAPBDRIVER = IBM8514;

initgraph(_GRAPHDRIVER, &GRAPHMODE, "");

if((ERRORCODE = graphresult ()) == grOk)
(

Our_Font - SMALL_FONT;

}lm = 2, Hd ffi 1. Vm = 2, Vd ffi 1;
BACKGROUNDCOLOR - BLACK;

NINDONCOLOR ffi LIGHTBLUE;
AXISCOLOR ffi YELLOW;
DRANCOLOR = WHITE;

break;
}

GRAPHMDDE ffiO;

GRAPHDRIVER - DETECT;

initgraph(_GRAPHDRIVER, &GRAPHMODE, "");

if((ERRORCODE ffigraphresult ()) _- grOk)
(

Our_Font ffiDEFAULT_FONT; ,

_. Hm ffi 1, Hd ffi 1, Vm ffi 1, Vd ffi 1;
if((GRAPHDRIVER =ffi VGA) I I (GRAPHDRIVER_ffi EGA))
.{

, BACKGROUNDCOLOR ffiBLACK;

NINDOWCOLOR " BLUE;

AXISCOLOR = LIGHTRED;

DRANCOLOR - WHITE;
}

93

else

{
BACIGROU|DCOLOR" BLACK;
WINDOWOOLOR - BLACK;
ILXISCOLOR - WHITE;
DRAWCOLOR ,, WHITE;

}
break;

}

printf(" BGI graphics system error: _s_n", grapherrorm_g(ERRORCODE)) ;
closegraph() ;
exit (1) ;

}

NAXCOLOR- get--color() ; /, Read maximum number of colors*/
_XX - getmaxx() ;

NAXY - getmaxy () ;
NAXWINDOW- 0;

setuserchars ize (Hl, Hd, Vm,Vd) ;

Th - textheisht("W") ;
Te " texteidth("W");

}

/, *** */
void far srbgraph_make_near_string(char ,header,char far ,hdr,inr n)
{

int i;

for (i-O ;i<n-I ; i++)
if((headerIii " ,hdr++) "" NULL)

break ;

header[ii " '\0';

}

F .1 DEFINE.C

/, ***,/
/* DEFINE.C */
/* */
/* This file contains part of a windowing graphics package written by */
/, Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept 6117. */
/* */
/* comments configured for C2LATEX and IATEX*/
/, *** */

#define GRAPH_LIB /* provides the data definitions */

#include "srbgraph. h"

/, *** *I
/* fill in the WINDINFO structure for this window if all parameters */
/* are valid e/
/, *** */

void far define_windoe(int window,
inr Slain, inr SYMixI,inr Slaax, inr SYmax,

flcat Ulain, float UYlin, float Ulaax, float UYmax)

94

float Xconst 1 (float)_Ll / 100.0;
float Hax¥ 1 (float)_l¥;
float ¥const 1 (float)_X¥ / 100.0;

if((window < O) ll (window > _XWINDOWS))
error ("deline_window, Invalid window number") ;

' /* range check input values */
if ((Shin < Shax) &t /, min values must be i max values */

(SYain < SYmax)
(SY_in >= O) _ /, window position must be within screen */
(SXmax <= 100) auk
(SYmin >= O) tlt

(SYmax <- 100) t&
(UXmin < UXmax)

(UYnin < UYmax))

(
WIND[window] .HEADER[0] - '\0'; /, clear header storage */
WIND[window] .DRAWN - FALSE; /, window not drawn */

/, origin: lower left corner */
WIND[window] .SX1 = (inr) ((float)SXmin * Xconst) ;
_IND[window].SY1 - (int)(MaxY - ((float)SYaax * ¥const));
WIND[window] .UX1 - UXmin;
WIND[window] .UY1 = UYmin;

/, origin: upper right corner */
WIND[window] .SX2 = (inr) ((float)SXmax * Xconst) ;
WIND[window] .S¥2 = (inr) (MaxY - ((float)SYnin * Yconst)) ;

WIND[window] .UX2 = UXmax;
WIND[window] .UY2 = UYmax;

if (window > MAXWINDOW)
(

MAXWINDOW = window; /* count windows defined*/

}
>

else /* invalid input data */
error ("del ine_eindow, bad data provided") ;

)

F .2 DEF_DHR.C

/, **/
/, DEF_HDR.C */
/* */
/, This file contains part of a windowing graphics package written by */
/, Steven R. Brown and edited by Robert D. Hardy */
/, Sandia National Laboratories Dept. 6117. */

• /* */
/, comments configured for C2LATEX and LATEX*/
/, *** */

#define GRAPH_LIB /, provides the data definitions */

#include "srbgraph. h"

95

/, ** ,/
/, piace the header text in the generic structure */
/, ** ,/

void far define_header(inr window, char far ,hdr)
(

char header[HEADER_LgN] ;

if (eindow <- DL&XWINDOW)

{
srbgraph_make_near_strix_(header,hdr,sizeof(header));

strncpy(WIND[window]•HEADER,header,HF£DER_LEN-I);
}

}

F .3 DRAWAXIS.C

/, *** ,/
/, DRAWAXIS.C */
/* */
/* This file contains part of a windowing graphics package written by ,/
/, Steven R. Brown and edited by Robert D. Hardy */
/, Sandia NationaJ Laboratories Dept. 6117. */
/* */
/, Comments configured for C2LATEX and I_TF/X*/
/, *** ,/

#define 0RAPH_LIB /, provides the data definitions */

#include "srbgraph. h"

static void far draw_x_axis(int number_of_ticks, char far *name);

static void far draw_y axis(int number_of_ticks, char far *name);
static void scale_axes(char **text, int n, float NIN, float NAg);
static void make_X_labels(int nmaber_of_ticks);
static void make_Y_labels(int nmaber_of_ticks);

static char s[HEADER_LEN];
static float dx, dy, delta;
static int ticks;

static char *Xptrs[25] ; /, pointers used in axis labeling routines */
static char *Yptrs[25];

/, *** ,/
/, draw the X-axis in the current window */

/* The window to use must be selected before calling this routine */
/, *** ,/

static void far draw_x_axis(int number_of_ticks, char far *name)
{

int text_pos;
inr line_height - Th+3;

setvieuport (WIND[INDEX].XIWND, WIND[INDEX]•YIWND,
WIND[INDEX].X2WND, UIND[INDEX].Y2MND, CLIPOFF) ;

setcolor(AlISCOLOR) ;

/* lower line ./

line (eindoe_x(WlND [INDEX]. UX1), windoe_y (WIND[INDEX]. UY1),
windoe_x(WIND[INDEX] .UX2) ,windoe_y(WIND[INDEX] .t_{1)) ;

96

/* upper line */
1 ine (wandow_x (WIND[INDEX]. UX1), window_y (WIND[INDEX]. UY2),

window_x(WIND[IIDFA] .UX2) ,vindow_y(WIND[INDFA] .Wf2)) ;

/* graticule spa_ing */
' delta- (WIND[INDEX].UX2- WIND[INDEX] .UXI) / (float)(number_of_ticks-l);

/* vertical graticule lines */
' setlinestyle(DOTTED_LINE,0,NORM_WIDTH) ;

for (tacks = 1; tacks < (nmaber_of_tacks-1); tacks++)
{

dx = (float)ticks , delta;

1ane (eandoe_x (WIND[INDEX]. UXl+dx), wandoe_y (WIND[INDEX]. UY1),
window_x (WIND[INDEX]. UXl+dx), e andoe_y (WIND[INDEX]. UY2)) ;

}

/* label ticks, text has already been generated */
setlLnestyle (SOLID_LINE, O,NORM_WIDTH);
settext just ify (CENTER_TEXT,CENTER_TEXT);
settextstyle (Our_Fong, HORIZ_DIR,O) ;

/, llne position for text ,/
text_pos = (vindow_y(WIND[INDEg] .UY1) + Th + 3);

for (ticks = O; tacks <= (ntmber_of_ticks-1); ticks++)
{

dx - (float)ticks * delta;
outtextxy (window x (WIND[INDEX]. Ug l.dx), t ext_pos, Xptrs [ticks]) ;

free (Xptrs It icks]) ; /* return storage */
)

text_pos += line_height;

outt ext xy (window_x (WIND[INDEX]. UXl+dx), t ext_pos, Xptrs It acks]) ;
free (Xptrs It icks]) ;

/* label axis */

setvieeport (0, O, MAXX, MAXY, CLIPOFF) ;
set text just afy (CENTER_TEXT,BOTTOM_TEXT);
srbgraph_make_near_strLng (s ,name, sizeof (s)) ;
outtextxy(((WIND[IliDFA] .X2WND - WIND[INDEX] .X1WND) / 2) + WIND[INDEX] .X1WND,

(WIND[INDEX].SY2 - 2) ,s) ;

setcolor (DRAWCOLOR);

setvaevport (WIND [INDEX]. X1WND, WIND[INDEX]. ¥1WND,
WIND[INDEX]. X2WND, WIND[INDEX]. Y2_D, CLIPON) ;

)

/, *** $/

/* draw t6e Y-aXiS in the current window */

/* The window to use must be selected before calling this routine */
/, *** ,/

t

static void far drav_y_axis(int nuaber_of_ticks, char far *name)
{

int text_pos ;
ant line_height = Th + 3;

97

rl •.,, i_ , n

setviewpor_ (WIND[INDEX]. IlWND, WIND[INDEI]. YlWND,
WIND[INDEI].Z2WND, WIND[INDEX] .Y2WND, CLIPOFF);

setcolor(UlSCOLOR) ;
J

/* left Une *I
line (window_x (WIND[INDEX] .UXl), uindow_y(WIND [INDEX]. UYI),

windou_x (WIND[l]fl)El]. UX1), uindou_y (WIND[INDEX]. UY2)) ;

/* right line ,/
I ine (s indou_x (Wl ND[INDEX]. UX2), windos_y (gl ND[INDEX]. UY1),

windos_x (WIND[I NDEX]. UX2), window_y (WIND[INDEX]. UY2)) ;

/* graticule spacing ./
delta = (WIND[INDEX] .UY2 - WIND[INDEX] .U¥1) / (ffloat) (number_off_ticks-1) ;

/. horizontal graticule lines */
setlinestyle (DOTTED_LINE,0, NORM_WIDTH);

for (ticks = 1; ticks < (ntmber_of_ticks-1); ticks++)
{

dy = (float)ticks * delta;
1 ine (window_x (WIND[INDEX]. UX1), window_y (WIND[INDEX]. UYl+dy),

eindoe_x(WIND[IgDEX] .UX2) ,window_y(gIND[INDEX] .UYl+dy)) ;
}

/* label ticks, text has already been generated */
setlinestyle (SOLID_LINE, 0 ,NORN_WIDTH);
settextstyle (Our_Font, HORIZ_DIR, O) ;
settext just ify (RIGHT_TEXT,CENTER_TEXT);

/* line position for text */
text_pos = (window_x(WIND[INDEX].UXl) - Tw);

for (ticks = O; ticks <ffi(number_of_ticks-l); ticks++)

{
dy = (float)ticks * delta;

outt extxy (text_pos, window_y (WIND[INDEX]. UYl+dy), Yptrs [ticks]) ;

free(Yptrs[ticks]); /* return storage */
}

[* put exponent on screen */
outtextxy (text_pos, (eindow_y (WIND[INDEX]. UY2)-line_height),

Yptrs [ticks]) ;

free (Wptrs [ticks]) ;

/* label axis */

setviewport(O, O, NAXX, MAXY, CLIPOFF) ;
sett ext style (Our_Font, VERT_DIR,O) ;
set text just ify (RIGHT_TEXT,CENTER_TEXT);

srbgraph.make_near_string (s ,name ,sizeof (s)) ;
outtextxy((glND[INDEX] .SX1 + Th +3),

(((WIND[INDEX]. ¥2WND - WIND[INDEX]. Y1WND) / 2) + WIND[INDEX]. Y1WND),s) ;

98

IIIII,.ooo
°__ nln_Jill1" Illli_

illilNlllllgIlllig

settextatyle (Our_Font, HORIZ_DIR, O) ;
setcolor (DRAWCOLOR);

setvieeport(WIND[INDEX].X1WND, WIND [INDEX].YI_D,
WIND[INDEX].XRWND, WIND[INDEX] .¥2WND, CLIPON);

/, *** ,/

4 /* draw both axes in the selected window */
/, *** ,/

void far draw_axes(int window, int ticksx, inr ticksy,

char far ,nalex, char far *nalaey)
{

select_w indow (window) ;

if _INDE% > MAXWINDOW)

error("drae_axes, undefined window") ;

make_X_labels(ticksx) ; /* make labels and reset plot limits ,/
make_Y_labels (t icksy) ;

draw_x_uis(ticksx,na_ex) ; /, draw axis using predefined labels */
draw_y_axis (ticksy ,nmaey) ;

drav_cross(O.O,O.O) ; /* place a marker at 0,0 */
)

/, *** ,/

/* make a set of X axis labels and reset the plot limits. This must */
/* be done before the axes are drawn. */
/, *** ,/

static void make_g_labels(int ntmber_of_ticks)

inr i ;

/* _ocate label storage */
for (i_O; i<_number_of_t icks; i+.)

Xptrs[i] = malloc(16) ;
}

/* create label text */

scale_axes(Xptrs,number_of_ticks,WIND [INDEX].UXI,WIND [INDEX].UX2) ;

/, *** ,/

/* make a set of Y axis labels and reset the plot limits. This must */
/* be done before the axes are drawn. */
/, *** ,/
static void make_Y_labels(int number_of_ticks)

,
inr i;

/* Mlocate label storage */
for(ilO;i<ffinumber_of_ticks;i++)

{
Yptrs[i] - malloc(16) ;

}

99

/, create label text */
scale_axes (¥ptrs, number_of_t icks, WIND[INDEX]. UY1, WIND[INDEX] •IP/2) ;

}

!

/, This function creates an array of tick labels in text[], text[] */
/, must be at least n+l items long. The XAxis labels are in */
/, text[0] - text[n-I]. The exponent string is in text[n]. */ #
/, *** ,/

static void scale_axes(char **text, inr n, float MIN, float MAX)

{
inr i ;
double L;

float step, start;
float power;

/, scale from mid point */

start ffiloglO(labs(((double)MAX- (double)MIN) / 2.0));

if(start < 0.0)
start-- ;

L - powl0((int)start); /, Scale f_ctor */
pover = logl0(L) ;
start = MIN / L; /, make starting values */

step = (MAX- MIN) / ((n-l) * L);

for(if0;i<n; i++) /, make axis labels */
{
sprintf(text[i],"_.2f",(start+(i.step)));

}

sprintf(text[n],"E_+3d",(inr)power); /. make exponent string*/
}

F .4 DRAW_B.C

/, ***,/
/* DRAW_B.C */
/* */
/* This file contains part of a windowing graphics package written by */
/* Steven R. Brown and edited by Robert D. Hardy */
/* Sandia National Laboratories Dept. 6117. */
/* */
/* comments configured for C2LATEX and IbTEX*/
/, *** ,/

_define GRAPH_LIB /* provides the data definitions */

_include "srbgraph. h"

/, *** ,/

/* draw a border and put in the header text */
/* The window to use must be selected before calling this routine */
/, *** ,/

void far draw_border(inr SXmin, inr SYmin, inr SXmax, inr SYmax,
char far ,header)

{
inr size - MAXY . HEADSIZE;

int scale ;

100

serfillstyle(SOLID_FILL,WINDOWCOLOR);
bar3d(O, slze,SXmax-SXmin,SYmax-SYmin,O,FALSE) ;

serfillstyle(SOLID_FILL,BACKGROUNDCOLOR) ;
bar3d(O, O,SXmax-S%min,size,O,FALSE);

4

if (header _= "")

(
q scale - size / Th;

setusercharsize (scale, 1, scale, 1) ; /* sc&|e to fit space */

set text just ify (CENTER_TEXT,CFJTER_TEXT) ;
settextstyle(0ur_Font,HORIZ_DIR,0);

outtextxy((SXmax-SXmin) / 2, size / 2, header);

setusercharsize (Hs,Hd,Vm,Vd); /* restoretextscaling*/
)

)

F .5 MENU_BAR.C

/, **,/
/* MENU.BAR.C */
/, */
/* This file contains part of a windowing graphics package written by */
/* Steven R. Brown and edited by Robert D. Hardy */
/* Sandia National Laboratories Dept. 6117. */
/* */

/* comments configured for C2LATEX and IATEX*/
/, ** ,/

/, *** ,/
/* draw a menu bar at the bottom of the screen, the bar is divided */

/, into ten boxes across the screen width, the bar always starts at */

/* the bottom of the screen, top defines the height of the bar in */
/* percent of screen height, if n/. 10 there are two rows of boxes */
/* in height screen area. text from the array text 0 is placed in ,/
/* the boxes. */
/, *** ,/

@define GRAPH_LIB /* provides the data definitions */
#include "srbgraph.h"

/, *************************************,/
/* make a box and display the X,Y values */
/, ************************************* ,/

void far menu_bar(int top, int n, char far *text[])
{

inr i;

float i, r, t, b;
float deltaX, deltaY;

float height ;

height - (float)MAXY / 100.0 * (float)top;

deltaX - (float)MAXX / 10.0; /* set intervals for boxes */

deltaY - (n > 10)? height / 2.0 : height;

1 - 0; /* init box positions */
r., delta]{;

b ffi MAXY; /* BGI top is 0 */
t ffi b - deltaY; /* our system is inverted */

101

setf illstyle (SOLID_FILL, BACKGROUlfl)COLOR);
settext just ify (CEFrER_TEXT, CENTER_TEXT);
setviewport (0,0 ,MAXX,MAX¥,CLIPON) ;

draw boxes and fill in text
!

for (i=O; i<n; i++)
{

bar3d(l, t ,r,b, O,FALSE) ; p

outtextxy((int)(1 + (deltaX / 2)), (int)(t + (deltaY / 2)), text[i]);
1 = r; /, set next left and right ends */
r = (r + deltaX);

if(i == 9)

{
1 = 0; /* set next left and right ends ,/
r = deltaX;

b = t; /* set next top and bottom */
t = (t - deltaY);

)
}

)

F .6 LINE.C

/, ***,/
/* LINE.C */
/* */

/* This file contains part of a windowing graphics package written by */
/, Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept. 6117. */
/, */
/* comments configured for C2LATEX and I_TEX*/
/, *** ,/

ltdefine GRtPH_LIB /* provides the data definitions */

#include "erbgraph. h"

/, *** ,/

/* draw a line between the specified points in the current window ,/
/* the current position is not updated */
/, *** ,/

void far draw_line(float UYmin, float UYain, float UXJaax, float UYmax)
{
iine(vindov_x(_in), windom_y(Irfmin),window_x(UXmaz),vindow_y(trfaax));

}

F .7 LINE_TO.C

/, ***,/
/* LINE_TO.C */
/* */

/* This file contains part of a windowing graphics package written by */
/* Steven R. Brown and edited by Robert D. Hardy */
/* Sandia National Laboratories Dept. 6117. */
/* */

/* comments configured for C2LATEX and I_TF_*/
/, ** ,/

#define GlttPH_LIB /* provides the data; definitions ,/
#include "erbgraph. h"

102

/* draw a line to the specified point in the current window ,/
/, the current position is updated ,/
/, *** ,/

void far drae_line_to(float xr, float yr)
' (

inr Xs, Ys;

Xs n eindoe_x(xr);

gs - eindoe_y(yr) ;

1 ine (WI_D [INDEX]. Xstart, WIND[INDEX]. Yst art, Xs ,¥s) ;

WIND[INDEX] .Xstart = Xs;

WIND[INDEX] .Ystart - Ys;
}

F .8 MOVETO.C

/, *** ,/
/, MOVE'i O.C */
/, */

/* This file contains part of a windowing graphics package written by */
/, Steven R. Brown and edited by Robert D. Hardy */
/, Sandia National Laboratories Dept. 6117. */
/, ,/

/, comments configured for C2LATEX and IaTEX*/
/, *** ,/

#define GRAPH_LIB /* provides the data definitions ,/

#include "srbgraph.h"

/, ************************************ ,/

/, place the current position at xr, yr */

/, used before starting a line plot */
/, ************************************ ,/

void far move_to(float xr, float gr)
{

WIND[INDEX] .Xstart - eindoe_x(xr) ;
WIND[INDEX] .Ystart = windoe_y(yr) ;

F .9 POINT.C

/, *** ,/
/, POINT.C */
/, ,/

/, This file contains part of a windowing graphics package written by */
• /, Steven R. Brown and edited by Robert D. Hardy ,/

/, Sandia National Laboratorics Dept. 6117. ,/
/, */

' /* comments configured for C2LATEX and IbTEX*/
/, *** ,/

#define GRAPH_LIB /* provides the data definitions */
#include "srbgraph.h"

103

/, ********************************** ,/
/* put a point in the current window */
/, ********************************** ,/

void far drae_point (float xr, float yr)
{
putpixel(window_x(xr), windoe_y(yr), DRAMCOLOR) ; f

}

&

F .10 PUT_CORD.C

/, ***,/
/* PUT_CORD.C */
/* */

/* This file contains part of a windowing graphics package written by */
/* Steven R. Brown and edited by Robert D. Hardy ,/
/* Sandia National Laboratories Dept. 6117. ,/
/* */
/* comments configured for C2LATEX and IATEX,/
/, *** ,/
/* coordinate display routines for SRBGRA'PH library ,/

#define GRAPH_LIB /* provides the data definitions */
#include "srbgraph.h"

/. ************************************** ./
/* make a box and display the X,Y values ,/
/. ************************************** ,/

void far coord_display(float xc, float yc, char far *c)
{
char sx[40], sy[40];
int size;

size = MAXY * HEADSIZE;

setvievport(VINI)[INDEX].SXl, WIND[IHDEX].SY1,

WIND[INDEX].SX2, WIND[INDEX].SY2, CLIPON) ;
setfillstyle(SOLID_FILL,BACKGROUNI)COLOR);

bar3d((NIND[I|DEX].SX2- NIND[INDEX].SXI) / 2, size+2,

WIHD[INDE%].SX2- WIND[INDE%].S%I - 2, 2*size, O, FALSE);

gcvt (xc ,S,sx) ;

gcvt (yc ,5 ,sy) ;
strcat(sx,,,, ,,);
strcat (sx ,sy) ;

settex+,justify(LEFT_TEXT,CErrER_TEXT);

outtextxy((WIND[INDEX].SX2 - WIND[INDEX].SXI) / 2 + 2, 1.5*size+2, c);

%

settext just ify (CENTER_TEXT,CEBTER_TEXT);
outtextxy(3 , (WIND[INDEX].SX2 - WIND[IHDEX].SX1) / 4, 1.5*size+2, sx);

setvievport (WIND[IBDEX]. XIWND, WIHD[IHDEX]. YlnD,
WIND[IIDEX]. X2WIfl), WIND[IJDFA] .Y2b_D, CLIPOH) ;

}

104

F .11 CLR_CORD.C

/, ** ,/
/* CLR_CORD.C */

/* /* This file contains part of a windowing graphics pa£kage written by */
t /* Steven R. Brown and edited by Robert D. Hardy */

/, Sandia National Laboratories Dept. 6117. */
/, */

/* comments configured for C2LATEX and I_TEX*/
/, ** ,/

#define 01L_PH_LIB /* provides the data definitions */
#include "srbgraph. h"

/, ********************************* ,/

;* remove the coordinate display box */
/, ********************************* ,/

void far erase_coord_display()
{

inr size ;

size = NAXY • HEADSIZE;

setviewport(WIND[INDEX].SX1, WIND [INDEX].SYI,
WIND[INDEX].SX2, WIND[INDEX].SY2, CLIPON) ;

setfillstyle(SOLID_FILL,WINDOWCOLOR);
bar ((WIND[INDEX].SX2 - WIND [INDEX].SX1) / 2, size+2,

WINP[INDEX].SX2 - WIND[INDEX].SXI - 2, 2*size);

setviewport (WIND[INDEX].X!WND, WIND[INDEX].YIWND,
WIND[INDEX].X2WND, WIND [INDEX].Y2WND, CLIPON);

}

F .12 MAKECURS.C

/, *** ,/
/* MAKECURS.C */
/, ,/
/* This file contains part of a windowing graphics pa£kage written by ,/
/, Steven R. Brown and edited by Robert D. Hardy */
/* Sandia National Laboratories Dept. 6117. */
/, ,/
/* comments configured for C2LATEX and I_TEX,/
/, ** ,/

cursor routines for SRBGRAPH library

Sdefine GRAPH_LIB /* provides the data definitions ,/

#include "srbgraph. h"

/, ** ,/
, /* draw a cursor mark in the current window ./

/, ** ,/
void far make_cursor(void)

, {
int ulx, uly;

inr lrx, lry;
inr cursorsize;
inr scale;

105

/* draw_cursor */
XCURSOR= I0;
YCURSOR= 10;
scale = 5;
line (XCURSOR-scale, ¥CURSOR,XCURSOR+scale ,'_CURSOR);

!

iine (ICURSOR,YCURSOR-scal e, XCURSOR,YCURSOR+scale) ;

/* Read cursor image */
ulx = gCURSOR-scale;

uly = YCURSOR-scale;
irx = XCURSOR+scale;

lry = XCURSOR+scale;

cursorsize = imagesize(ulx, uly, lrx, lry);
CURSOR= aalloc(cursorsize) ;

getiaage(ulx, uly, lrx, lry, CURSOR);

" -- /* erase old */

putiaage(lCURSOR-scale, YCURSOR-scale, CURSOR, fOR_PUT);
FIRSTCURSOR= TRUE;

}

F .13 PUT_CURS.C

/, **,/
/* PUT_CURS.C */
/* */

/* This file contains part of a windowing graphics package written by ,/
/, Steven R. Brown and edited by Robert D. Hardy */
/, Sandia National Laboratories Dept. 6117. */
/* */
/* comments configured for C2LATEX and LATEX*/
/, *** ,/

#define GRAPH_LIB /* provides the data definitions */

#include "srbgraph.h"

/, *** ,/

/, position the active cursor in the current window */
/, *** ,/

void far put_cursor(float x, float y)
{

inr scale = 5;

if (FIRSTCURSOR == FALSE) /* erase old cursor ,/

putiaage(XCURSOR-scale, YCURSOR-scale, CURSOR, XOR_PUT);

FIRSTCURSOR = FALSE;
't

XCURSOR = windov_x(x) ;

YCURSOR = window_y(y) ;

/* draw new cursor ,/

putinage(XCURSOR-scale, YCURSOR-scale, CURSOR, XOR_PUT);
}

106

F .14 CLR_CURS.C

/, **,/
/* CLR_CURS.C */

. /* /* This file contains part of a windowing graphics package written by ,/
/, Steven R. Brown and edited by Robert D. Hardy */
/* Sandia National Laboratories Dept. 6117. */
/* */
/* comments configured for C2LATEX and lATEX*/
/, ** ,/

#define GRAPH_LIB /, provides the data definitions */
#include "srbgraph.h"

/, ******************** ,/
void far erase_cursor()

(
inr scale ffi5;

putimage(XCURSOR-scale, YCURSOR-scale, CURSOR, XOR_PUT) ;
FIRSTCURSOR = TRUE;

F .15 RM_CURS.C

/, ***,/
/* RM_CURS.C */

/* */
/* This file contains part of a windowing graphics package written by */
/* Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept. 6117. */
/* */
/* comments configured for C2LATEX and I_TEX,/
/, *** ,/

#define GRAPH_LIB /, provides the data definitions */

#include "srbgraph.h"

/, ********************* ,/
void far free_cursor()

free (CURSOR) ;

F .16 SELECT.C

/, ** ,/

/* SELECT.C */
/* */

r /* This file contains part of a windowing graphics package written by */
/* Steven R. Brown and edited by Robert D. Hardy */
/* Sandia National Laboratories Dept. 6117. */

, /* */
/* comments configured for C2LATEX and I_TEX,/
/, *** ,/

#define GRAPH_LIB /, provides the data definitions */
#include "srbgraph.h"

107

/, *******************************_*********************************** ,/
/, set the window for future operations and draw it if not alreaxiy */
/, done the plot routines use a generic WINDINFO structure fired in */
/, by select-window0 */
/, *** ,/

void far select_¢indow(intuindov)

{

char msg[64] ;

if (vindow <- MAXWINDOW)

{
INDEX " window; /* current window number for other routines */

ii (WIND[INDEX].DRAWN == FALSE)
{

setviewport(WIND[INDEX].SX1, /, draw the window */
WIND[INDEX].SY 1,
WIND[IP_'DEX].SX2,

WIND[INDEX].SY2,

CLIPON);

draw_border(WIND[INDEX].SX1,

WIND[INDEX].SYI,
WIND[INDEX].SX2,

WIND[INDEX].SY2,

WIND [INDEX].HEADER);

/* window now drawn, check for zero length user axes */

if ((WIND[INDEX].UX1 =B WIND[INDEX].UX2) I I
(WIND[INDEX].UY1 == WIND[INDEX].UY2))

{
* defau|t values if either axis has no length */

/* this should not be the case */

WIND[INDEX].XIWND = WIND[INDEX].SX1;

WIND[INDEX].X2WND = WIND[INDEX].SX2;

WIND[INDEX].YIWND " WIND[INDEX].SYI + MAXY * HEADSIZE;

WIND[INDEX].Y2WND = WIND[INDEX].SY2 ;

WIND[INDEX].AX = 1.0;
WIND[INDEX].AY = 1.0;

WIND[INDEX].BY - WIND [INDEX].YRWND - WIND[INDEX].Y1WND;

WIND[INDEX].SYMBOLSIZE - (WIND[INDF_].SX2 - WIND[INDF_] .SX1) * TICKSIZE / 2;
}

else /* useraxes have length ,/
{

/* compute graticule area ,/
/* leave window-size*2*MARGIN on left */

WIND[INDEX].XIWND I WIND[INDEX] .SI1 +

(WIND[INDEX].SX2- WIND[INDEX].SXl)
, 2 * MARGIN;

/* leave window.size*MARGIN on right ,/
WIND[INDEX].X2WND - WIND[INDEX].SX2 -

(WIND[INDEX].SX2 - WIND[INDEX] .SX1) * MARGIN;

108

/* leave window_size*MARGIN + HEADSIZE on top */
WIND[INDEX].YIWND = WIND [INDEXJ•SYI + ((WIND[INDEX]•SY2 -

WIND[INDEX] .SYI) * MARGIN) + (MAXY * HEADSIZE) ;

/* leave window_size*l.5*MARGIN on bottom */
' WIND[INDEX]._2WND= WIND[INDEX].sw2 -

(WIND[INDEX].SW2- WIND[INDEX]•SYI)
• 1.5 • MARGIN;

/* X scale factor */
WIND[INDEX].AX - ((WIND[INDEX].X2WND - WIND[INDEX] •XlWND) /

(WIND[INDEX].UX2 - WIND[INDEX] .UX1));

/* Y scale factor */
WIND[INDF.X].AY" ((WIND[INDEX]._r2WND- WIND[INDEX].VlWND)/

(WIND[INDEX] .UY2 - WIND[INDEX] .UY1)) ;

/* Y offset, used to invert Y-AXIS */
WIND[INDEX] .BY -- (WIND[INDEX] .Y2WND - WIND[INDEX] .YIWND) ;

/, SYMBOLSIZE is used to draw markers */
WIND[INDEX] .SYHBOLSIZE "_ (WIND[INDEX] .SX2 - WIND[INDEX] .SXl)

• TICKSIZE;

)
WIND[INDEX].DRAWN = TRUE;

}

setviewport(WIND[INDEX]•XlWND, WIND [INDEX__•YIWND,
WIND[INDEX] .X2WND, WIND [INDEX].Y2WND, CLIPON);

else

{
sprintf(msg,"select_window, undefined window Sd.\n" ,window);
error (msg) ;

)

F .17 RESET__N.C

/, *** */
/, RESET.W.C */
/, */
/, This file contains part of a windowing graphics package written by */
/, Steven K. Brown and edited by Robert D. Hardy */
/, Sandia National Laboratories Dept. 6117. */
/, ,/
/* comments configured for C2LATEX and IbTEX*/
/, *** */

#define flRAPH_LIB /. provides the data definitions */

#include "srbgraph.h"

/, ********************************,/
• /* ali windows use the whole screen */

/. ******************************** ,/

void far reset_windows()
(

inr window;

109

_or (window = O; window < IUJUIIIDOUS; window++)
{

de_ine_windov(gindov, O, O, 100, 100, O_ O, 1, 1);
MilD[window] .Xstaz-t = O;

VIii)[window]. Tntart = 0;
}

8elect_vindog(O) ; *
)

F .18 ERASE_W.C

/, ***./
/* EKASE_W.C */
I* *I

I* This file contains part of a windowing graphics package written by *I
/, Steven R. Brown and edited by Robert D. Hardy ,/
/e Sandia National Laboratories Dept. 6117. e/
/* */
le Comments configured for C2LATEX and IbTEX*/
/, *** ,/

8define GR_H_LIB I* provides the data definitions */

#include "srbgraph. h"

/, ****************************** ,/
/* clear the selected window area */
/, ****************************** ,/

void far erase_gindog(int uLndoe)
(

if (eindoe <= lqAXMIIIDOM)

WIND[window] . DRaWN= FALSE;
setviewport(O, 0, MIND[window].SX2, MIND[window].SY2, CLIPOJ) ;

setfillstyle (SOLID_FILL, BACKGROO3IDCOLOR);
bar(WIND[window]. SXl, glND[w/ndow]. SY1,

MIND[window] .SX2, MIND[gindow]. SY2) ;
)

else

error ("erase_window, _def ined windowe');

)

F .19 ERROR.C

/, **,/
/* ERROR.C */

/*/* This file contains part of a windowing graphics package written by ./
/* Steven R. Brown and edited by Robert D. Hardy */
/* Sandia National Laboratories Dept. 6117. */
/, ,/
/* comments configured for C2LATEX and I#TF_*/
/, *** ,/

8define GKAPll_LIB /e provides the data definitions */

_tinclude "srbgraph. h"

110

void zar error(char far *string)
{

closegraph() ;

t printf ("graphics module error: _s\n" ,string) ;
exit(l) ;

)

F .20 SCALE.C

/, ***,/
/* SCALE.C */
/* */
/* This file contains part of a windowing graphics package written by */
/* Steven R. Brown and edited by Robert D. Hardy */
/* Sandia National Laboratories Dept. 6117. */
/* ,/
/* comments cow,figured for C2LATEX and IbTEX*/
/, *** ,/_....

#define GRAPH_LIB /, provides the data definitions ,/

#include "erbgraph. h"

/, *** ,/
/, scale the X-axis data to fit in the current window */
/, *** ,/

, inr far _indog_x(float x)
{

inr temp;

x -= WIND[INDEX] .UI1;

temp = (WIND[INDEX] .Ag * x);

if (reap > NAXX)
(

reap = NAXX;
)

return((teap < 0) ? 0 : temp);
)

/, ** ,/
/* scale the Y-axis data to fit in the current window ,/
/, ** ,/

inr far eindog_y(float y)
{

inr temp;

y -= WIND[INDEX] .UY1 ;
reap - (WIND[INDEX] .BY - WIND[INDEX].A¥ * y);

I

if (tenp > MAIY)
{

, tenp = P_.XY;
)

return((teap < O) ? 0 : tenp);
}

111

_

F .21 SYM_CIR.C

/, *** ,/
/, SYM_CIR.C */
/* */
/* This file contains part of a windowhlg g_'aphics package written I,y ._/ j
/, Steven R. Brown and edited by Robert D. Hardy ,/
/, Sandia National Laboratories Dept. 6117. ,/
/* */
/, comments configured for C2LATEX and _TEX,/
/, ** *********************** ,/

#define GRAPH_LIB /* provides the data definitions */

#include "srbgraph.h '°

/, ************************************* ,/

void far draw_circle(float xr, float yr)
(

circle (eindoe_x(xr), eindoe_y (yr), WI_D[INDEX]. SYMBOLSIZE) ;
}

F .22 SYM_CROS.C

/, *** ,/
/, SYM_CROS.C */
/, */

/* This file contains part of a windowing graphics package written by */
/, Steven R. Brown and edited by Robert D. Hardy */
/* Sandia National Laboratories Dept. 6117. ,/
/* */

/* comments configured for C2LATEX and IATEX,/
/, *** ,/

#define GRAPH_LIB /* provides the data definitions */
#include "srbgraph.h"

/, ************************************ ,/

void far drae_cross(float xr, float yr)
(

inr x, y, sym_size = WIND[INDE%].SYMBOLSIZE;

x = eindoe_x(xr);

y = window_y(yr);

line(x - sym_size, y, x + sym_size, y);
line(x, y - sym_size, x, y + sym_size);

}

F .23 SYM_DIAM.C

/, *** ,/
/* SYM-DIAM.C ,/
/* */

/* This file contains part of a windowing graphics package written by */
/* Steven R. Brown and edited by Robert D. Hardy ,/
/* Sandia National Laboratories Dept. 6117. ,/
/* */

?

/* comments configured for C2LATEX and IATEX,/
/, *** ,/

#define GP,APH_LIB /* provides the data definitions */
#include "srbgraph. h"

112

/, ************************************** ,/
void far drau_dismond(float xr, float yr)
{

int x, y, syn_size - WIND[INDEX].SYNBOLSIZE;

!
x - eindoe_x(xr) ;
y - uindow_y(yr);

!

line(x - sym_size, y, x, y - sym_size);
line(x, y - syn_size, x + sym_size, y);
line(x + sym_size, y, x, y + syn_size);
line(x, y + syn_size, x - sym_size, y);

}

F .24 SYM_SQR.C
/, ***,/
/* SYM_SQR.C */
/, */

/* This file contains part of a windowing graphics package written by ,/
/* Steven R. Brown and edited by Robert D. Hardy */
/* Sandia National Laboratories Dept. 6117. ,/
/* */
/* comments configured for C2LATEX and IbTEX*/
/, *** ,/

/, symbol drawing routines ,/
#define GRAPH_LIB /* provides the data definitions */

#include "srbgraph.h"

void far draw_square(float xr, float yr)

{
inr x, y, sym_size ffiWIND[INDEX].SYMBOLSIZE;

x - window_x(xr) ;

y = uindou_y(yr);

rectangle (x - sym_size, y + sym_size,x + sym_size, y - sym_size);
}

F .25 SYM_STAR.C

/, *** ,/
/* SYM.STAR.C */
/* */
/* This file contains part of a windowing graphics package written by */
/* Steven R. Brown and edited by Robert D. Hardy */
/* Sandia National Laboratories Dept. 6117. ,/
/, ,/

= /* comments configured for C2LATEX and IbTEX*/

/* *** ,/
#define GRAPH_LIB /* provides the data definitions */

_. #include "srbgraph. h"

/, *********************************** ,/

= void far drae_star(float xr, float yr)

iut x, y, scale - WIND[INDEX].SYMBOLSIZE;

113

x = window_x(xr);
y = window_y(yr);

line(x - scale, y, x + scale, y);

line(x, y - scale, x, y + scale); t

scale ,u 0.707;

line(x - scale, y + scale, x + scale, y - scale);

line(x - scale, y - scale, x + scale, y + scale);
}

F .26 SYM_TRI.C

/, *** ,/
/* SYM_TRI.C */
/* */
/* This file contains part of a windowing graphics package written by */

/* Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept. 6117. */

/* */

/* comments configured for C2LATEX and IbTEX*/
/, *** ,/

#define 6RtPH_LIB /* provides the data definitions */

#include "srbgraph.h"

/, *************************************** ,/

void far draw_triangle(float xr, float yr)
{

inr x, y, sym_size = _IND[INDEI] .SYMBOLSIZE;

x = eindow_x(xr);

y - windos_y(yr);

line(x - sym_size, y + sym_size,x, y - sym_size);

line(x, y - sym_size, x + sym_size,y + sym_size);

line(x + sym_size, y + sym_size,x - sym_size, y + sym_size);
}

F .27 SYM_X.C

/, *** ,/
/, SYM_X.C */
/* */
/* This file contains part of a windowing graphics package written by ,/

/* Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept. 6117. ,/
/* ,/

/* comments configured for C2LATEX and IbTEX*/
/, *** ,/

#define GRAPH_LIB /* provides the data definitions */

#include "srbgraph.h"

#

/, ******************************** ,/

void far draw_x(float xr, float yr)

inr x, y, sym_size = WIND[INDEX].SI_BOLSIZE;

114

x - windog_x(xr);

y - windou_y(yr);

line(x - sym_size, y + sym_size,x + sym_size, y - op_size);

line(x - sym_size, y - sym_size,x + sym_size, y + sym_eize);
}

115

G BUILDTC.C

/, *** ,/
/, BUILDTC.C */

/, Program to build spline tables for thermocouple data in DATAVG. */
/, */
/, Written by: */

/, Robert D. Hardy */ (_
/, Sandia National Laboratories */

/, Dept. 6117 */
/, April 17, 1992 */
/, */
/, Comraents configured for C2LATEX and IbTEX*/
/o *i

/, *** ,/
/, The first line of a data set contains the thermocouple type */
/, letter followed by the number of data points to follow (N). */

/, Input data is temperature, millivolts pairs separated by commas */
/, with one point per line. */
/, */

/, This program computes coefficients and creates a file containing */
/, the voltage, temperature and coefficient numbers with voltage ,/
/, scaled for board gain of 100 as done on the Keithley AIMT. The */
/, output consists of N sets of numbers preceded by a header line. ,/
/, The header gives the thermocouple type letter in upper case */
/, followed by the number of points in the data (N). Each data ,/
/* point occupies one line in the file. The line contains three */
/, columns of ASCII characters with comma separators. The columns */
/, are temperature, voltage and the coefficient numbers in that ,/
/* order. */
/, */

/* The data for each type of thermocouple follows the same format ,/
/* with no particular order. This allows flexibility in */
/* configuration for a particular requirement. If few thermocouple */
/* types are used the tables may be small and therefore consume less ,/
/* memory. */

#include <etdio.h>

#include <etdlib.h>

#include <ctype.h>

#include "spline .h"

void get_tenp(void) ;

void put_tenp(void) ;

/* arrays used for spline fitting to thermocouple data */
/* allow for 1000 points ,/

double xa[1000]; /* Voltage */

double ya[1000]; /* Temperature */

double y2a[1000] ; /* Spline coefficient ,/

116

inr n;

char type;

FILE *cfg;

FILE ,output;

void lain(void)
{

if((cfg " fopen("temp.d","r")) "_ NULL)
{

puts("Error, input file not :found");
exit (1) ;

}

if ((output = fopen("thermo, cfg", "e")) == gULL)

puts('Error, unable to create output :file");
exit (1) ;

}

while(!feof (cfg))

get_temp() ; /, read input data into arrays */

/, compute coefficients */
spline(xa, ya, n, le30, le30, y2a);

put_temp() ; /, write results to a file */

:fclose (cfg) ;

/, **/
/* */
/* Read a file containing temperature, voltage pairs. One pair */

/* per line. The first line contains the type letter and point */
/, count in that order. Voltage readings axe in millivolts. This */
/, function multiplies them by 100 for the board gain then divides */

/* by 1000 to get volts. The multiply divide operation is lumped */
/* by dividing each voltage reading by 10.0 which is the net */
/, effect. */
/, *** */

void get_tesq_ (void)

int i ;

:fscanf(c:fg,"Y.c,Y,d_", &type, lm) ;
!

for(ilO;i_; i++)
{.

fscanf(cfg,"_lg,_lg\n", kya[i], kxa[i]) ;

xa[i] /= 10.0;
}

}

117

/, *** ,/
/* Create a file containing the processed input data and the */
/* coefficient data. The first line is the type character ,/
/, followed by the point count. The rest of file is voltage, */
/, temperature, coefficient all on one llne with commas for */
/, separators. The file is ASCII real. */ 4
/, ** ,/

void put_teap (void)
{

int i ;

/. write type character and point count ./
fprintf (output,"_c, _d_n", toupper(type), n) ;

/. write data table for this type */
for (i=O; i<n; i++)
{

fprintf (output,"_lg, _lg, _lg\n", xa[i], ya[i], y2a[i]) ;
t

/. *** ./
/* SPLINE.C */
/* Taken from Numerical Methods in C */
/, */

/* Given arrays x[1..n] and y[l..n] containing a tabulated function, */

/, i.e. Yi = f(Xi), with X1 i X2 i...i Xn, and given values ypi and */
/* ypn for the first derivative of the interpolating function at ,/
/* points 1 and n respective]y, this routine returns an array */
/* y2[1..n] that contains the second derivatives of the */

/, interpolating function at the tabulated points Xi. If ypi and/or ,/
/* yvn are equal to le30 or larger, the routine is signaled to set */
/, the corresponding boundary condition for a natural spline, with */
/* zero second derivative on that boundary. ,/
/, */

/* Modified to use zero based array indices by decrementing the */
/* pointers. */
/, *** ,/

#include "spline.h"

#ifdel __TURBOC__

void spline(double *x,double *y,int n,double ypl,double ypn,double *y2)

#else

void spline (x, y,n, ypl, ypn,y2)
double *x;

double *y ; l

inr n;

double)rpl;

double ypn;

118

double *y2;
_endif

{
STATIC inr i,k;

STATIC double p,qn,sig,un,*_;

--x; /* decrement pointers for index correction */

, --y;

--y2;

U " alloc((n-1),sizeof (double));

/* Set the lower boundary to be "natural" or to have a specified first derivative. */

if (ypl > 0.99e30)
y211] - u[1] - 0.0;

else

{
y2[1] = -0.5;
u[1] - (3.0 / (xi2] -xi1])) * ((y[2] -y[1]) / (xi2] -xi1]) -ypl);

}

/* This is the decomposition loop of the tridiagonal algorithm. ,/
/* y2 D and u0 are used for temporary storage of the decomposed factors. */

for (i,,2; i<=n-1 ; i++)
{
sig- (x[i]- x[i-1])/ (x[i+l]- x[i-1]);

p ffi (sig * y2[i-1]) + 2.0;

y2[i] = (sig- 1.0) / p;

u[i] - ((y[i+l] - y[i])/(x[i+l]-x[i]))

-((y[i] - y[i-1]))/((x[i] - x[i-1]));

u[i] = ((6.0 * u[i]) / (x[i+l] - x[i-1])) - ((sig * u[i-1]) / p);
}

/* Set the upper boundary to be "natural" or to ha,:e a specified */
/, first derivative. */

if(ypn > 0.99e30)
qn ffi un = 0.0;

else

{
qn = 0.5;

un = (3.0/(x[n] - x[n-l])) * (ypn - (y[n] - y[n-l]) / (x[n] - x[n-l]));
}

y2[n] = (un-qn * u[n-l]) / ((qn * y2[n-l]) + 1.0);

/* This is the back-substitution loop of the tridiagonal algorithm */

; for (kffin-1 ;k>=l ;k--) '_
y2[k] = (y2[k] * y2[k+l]) + u[k];

free (u) ;
}

119

Distribution

Internal Distribution:

6100 R.W. Lynch

6111 J.L. Wise
6117 S.R. Brown

6117 L.W. Carlson
6117 D.J. Holcomb

6117 J.C. Lorenz
6117 W.A. Olsson

6117 D.S. Preece
6117 L.W. Teufel

6117 T.V. _Ibrmey
6117 W.R. Wawersik

6117 D.H. Zeuch
6117 D.J. Zimmerer

6117 R.D. Hardy (10)
6117 Geomecha_uicsLaboratoryFile(10)

7141 TechnicalLibrary(5)
7151 TechnicalPublicationsDepartment

7613-2 Document ProcessingforDOE/OSTI (10)
8523-2 CentralTechnicalFiles

120

