=

2 (122
||\||22

| oEw 2
= * e

2l e

e 3

!t

g

I..
[1
(13
u.

Sg
w

SAND93-0256 Distribution
Unlimited Release Category UC-403
Printed March 1993

EVENT TRIGGERED DATA ACQUISITION IN THE
ROCK MECHANICS LABORATORY

Robert D. Hardy
Geomechanics Department
Sandia National Laboratories
Albuquerque, New Mexico 87185

MASTER

S

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Acknowledgements

DATAVG is based on a program written by D. J. Holcomb in 1983.

I wish to thank S. R. Brown and D. J. Holcomb for their suggestions while writing
the code. I also wish to thank S. R. Brown and W. R. Wawersik for their review of the

manuscript and their helpful suggestions.

Contents

1 BACKGROUND

2 OVERVIEW and DEFINITIONS

3 OPERATION

3.1

3.2

3.3
3.4
3.5
3.6
3.7

3.8
3.9

Set Up Channels
3.1.1 Test Identification
3.1.2 Channel Selection

........................

........................

........................

3.1.3 Channel Name
3.14 Channel Scale Factor
3.1.5 Trigger Value o0 0o
3.1.6 Data Offset Removal
3.1.7 Interface Hardware for this Channel
3.1.8 Completion of Channel Set Up
Set Up Screen e e e e
3.2.1 Number of Windows
3.2.2 Which Window,
Print Channel Data
Check Channel Set Up c....
Save Setup Data oo
Name Data File
Gather Data
3.71 Force Recording of a Sample (F1)
3.7.2 Reset a Window (F2)
3.7.3 Zooma WindowIn (F3).
3.74 Zoom a Window Qut (F4).
3.7.5 Redefine a Window (F5).
376 Cleara Window (F6)
3.7.7 Clear all Windows (F7)
3.7.8 Start anew Data File (F8)
3.7.9 End the Test (F9)
Recall Setup Data
ExittoDOS

4 TEMPERATURE CHANNELS

5 DISK FILES

5.1
5.2
5.3
5.4

Setup File
Header File

........................

........................

........................

.......................

10
10
10
11
11
11
11
11
11
12
12
12
12
13
13
13
14
14
15
15
15
15
15
15
16
16
i6
16
16

16

17
17
18
19
19

6 INSTALLATION NOTES
Keithley Box Configuration File
Temperature Data Fileso

6.1
6.2

7 LIMITATIONS AND REQUIREMENTS

File Management« o o oo e e
Screen Managemento eoee e e e e e
Time Interval Triggering Limitso v oo oo e v

7.1
7.2
7.3

8 COMPUTED CHANNEL DESIGN
COMPUTED CHANNEL INTERFACE
8.1.1 Computed Channel Driver Function Prototype
8.1.2 Initialize Computed Channel
8.1.3 Save Computed Channel Set Up Data
8.1.4 Restore Computed Channel Configuration
8.1.5 Normal Computed Channel Operation
8.1.6 Support Functionso
8.1.6.1 Get an Integer with prompt and default.
8.1.6.2 Get a Float with prompt and default.
8.1.6.3 Get a Board and Channel.
8.1.6.4 Validate a File Name.o

8.1

9 PROGRAM STRUCTURE

10 VARIABLES
Global General Datao

10.1
10.2
10.3
10.4
10.5
10.6

Time Data . .
Plot Data . . .

..............................

..............................

Program Channel Datao
Hardware Information« oo oo

Other Variables

A DATAVG.H

B DATAVG.C
B .1 TEMP.C - Temperature Channel Driver

C 500LIB.H

D 500LIB.C

E SRBGRAPH.H

F SRBGRAPH Composite Source
F .1 DEFINE.C ..
F .2 DEFDHR.C .
F .3 DRAWAXIS.C
F .4 DRAWB.C ..

..............................

..............................

..............................

19
20
20

21
21
21
21

21
21
22
22
23
23
23
23
23
23
24
24

24

25
25
27
27
28
28
29

30

35
73

F.5 MENUBARC « o oot e e e e e e e 101
F 6 LINEC . o oot e e e e e e e e 102
F 7 LINETO.C . o oo oo e e e e e i 102
F.8 MOVETO.C . o oovee et 103
F O POINT.C -« o ovooe e e e e e e 103
F .10 PUT.CORD.C .« v o v oot et e e 104
F .11 CLR.CORD.C .« v et et e e e e e 105
F 12 MAKECURS.C .+« o o ot e e e e e e e e e 105
F .13 PUT.CURS.C « ot ot e e e e e e e e e 106
F 14 CLR.CURS.C. o o v oo e e e e e 107
F .15 RM.CURS.C « o v v o et et e e e e e 107
F 16 SELECT.C .« . v oo et e e e e e 107
F A7 RESETW.C .« o ot et e e e e e e e 109
F A8 ERASEW.C « o oo v et e e e e e e 110
F .19 ERROR.C. o o v oot e e e e e e 110
F .20 SCALE.C . o o o v et 111
F 21 SYMCIR.C . o vt ee e e e e e e e e e 112
F 22 SYM.CROS.C o v o v e e e e 112
F 23 SYMDIAM.C + oottt e e 112
F 24 SYMSQR.C « o v voe e e e 113
F 25 SYMSTAR.C + o o v ot e e e e e e e e 113
F .26 SYM.TRLC . o o v v ottt e e e e e 114
F 27 SYMX.C oo ot ot e e e e e e e 114

G BUILDTC.C 116

List of Figures

1
2
3
4

Setup File oo e e e 17
Header File o e e e e e e 18
Data File e e e e 19
Keithley Configuration File, K500.CFG 20

1 BACKGROUND

Increasing complexity of experiments coupled with limitations of the previously used
computers required improvements in both hardware and software in the Rock Mechanics
Laboratories. Increasing numbers of input channels and the need for better graphics could
no longer be supplied by DATAVG, an existing software package for data acquisition and
display written by D. J. Holcomb in 1983. After researching the market and trying several
alternatives, no commercial program was found which met our needs. The previous version
of DATAVG had the basic features needed but was tied to obsolete hardware. Memory
limitations on the previously used PDP-11 made it impractical to upgrade the software
further. With the advances in IBM compatible computers it is now desirable to use them
as data recording platforms.

With this information in mind, it was decided to write a new version of DATAVG which
would take advantage of newer hardware. The new version had to support multiple graphic
display windows and increased channel counts. It also had to be easier to use.

2 OVERVIEW and DEFINITIONS

This document describes a new and greatly expanded version of DATAVG as used
to record data in the Rock Mechanics Laboratory at Sandia National Laboratories/New
Mexico. DATAVG is currently at Version 1.10.

DATAVG is an event triggered data logging program. An event is defined as a change
in the quantity measured at any input channel which exceeds a user defined threshold. The
triggering threshold, DELTA, is the absolute value of the data change since the last recorded
reading. Input channels are continuously scanned. When a specified change in value has
been met at any channel, the data from all channels is recorded in a file and plotted on the
video screen.

Allowing any input to trigger recording facilitates tests in which there are several phases.
During each phase of the test a different set of input parameters may be of interest. With
DATAVG, data recording may proceed without user intervention to change sampling rates,
etc.

Event triggering also minimizes the amount of data recorded. With many commercial
programs sampling is at uniform time intervals. If a test is to run for a long time but some
part of the test requires fast sampling, as near failure of a specimen, a la~ge amount of
nearly useless data is recorded. DATAVG avoids this excess data by triggerix 5 at long time
intervals but short intervals in some other variable.

For instance, the load on a sample may be varied in a series of steps. At each step
some process is to be performed. With DATAVG the changes in load will trigger recording
during the load change phase. During the other process the load will be constant but some
other variable will trigger recording. If nothing else is changing, the time channel will cause
some minimal recording rate. See section 7.3 for further information on triggering at time
intervals.

DATAVG supports one to four windows for data plotting and emulates an X-Y plotter.
Strip chart style plots are not supported. Each window displays data from two channels.
The same channel may be displayed in more than one window if needed.

3 OPERATION

DATAVG is menu-driven with the menus arranged in approximately the order required
to operate the program as shown below.

1) SET UP CHANNELS

2) SET UP SCREEN

3) PRINT CHANNEL DATA
4) CHECK CHANNEL SETUP
5) SAVE SETUP DATA

6) NAME DATA FILE

7) GATHER DATA

8) RECALL SETUP DATA

9) EXIT TO DOS

Item three, Print Channel Data, is for user convenience and compatibility with the old
version. It is convenient for test documentation. Item six, Name Data File, was carried
over from the previous version. The Gather Data operation, item seven, will request the
file name if it was not defined by item six.

If the setup has been saved in a disk file it may be recalled by item eight. This will
eliminate any need for additional setup if a test is to be repeated. The channel and screen
data are saved in a form which allows operation immediately after recall. By use of this
feature a repeat test may be run by selecting menu item eight followed by menu item seven.

Saved setup files may be recalled then edited by using menu items one or two. It is
possible to edit the screen display during a test then save the changes by selecting menu
item five before leaving DATAVG. If saving a setup after the data recording runs, first check
the First Point Zero flag by using the Channel Setup menu operation. If the first reading
happened to be zero, this flag would be altered.

Menu items six and seven ask for a file name to be used for data storage. Two file
names are created by appending extensions to the name supplied by the user. The first is
“filename.HDR” which stores the program version, a copy of the setup information, a time
stamp, column headings and the offsets which are subtracted from subsequent readings.
The second file is “filename.DAT” which contains all data for the test. The “.DAT?” file is
closed and reopened at selected intervals for data security reasons.

Menu operations will now be discussed in order.

3.1 Set Up Channels

In the channel set up routine, most requested values show a default in parentheses
immediately before the prompt “?”. If this value is satisfactory it may be selected by a
carriage return alone.

3.1.1 Test Identification

The first question asked is the test identification. The current test identification is shown
and may be changed by entering a new identification. If the current identification is correct,
as when editing a set up, just press ENTER.

10

3.1.2 Channel Selection

Channel set up requests information on the data to be recorded in logical channel order
starting with the channel next higher than the highest one previously selected. Channels
may be defined in any order by entering the number of the desired channel.

Channel zero (0) is always TIME. TIME is always recorded in seconds starting at the
beginning of the test. A prompt will ask for the maximum interval between recordings.
This interval is used to trigger recording if other channels are changing slowly.

3.1.3 Channel Name

‘The user is asked for the name to be used with this channel. The currently assigned
name is the default which may be retained by pressing ENTER. The channel name is used
for the column heading in the data file and axis labels on plots. Measurement units may
be included in the channel name, for example:

LOAD (Kn) or STROKE(in.).

3.1.4 Channel Scale Factor

The next prompt is for units per Volt. This is the real quantity corresponding to +1 volt
input. For example, a load cell conditioner provides 5V at 25000 lbs. tensile load. When
DATAVG asks for the units per Volt value respond with 5000 lbs. (or 5 KIPS where 1 KIP
= 1000 1bs). If compression is to be positive load, enter —5000 lbs. or —5 KIPS. The units
are not entered but are shown here for clarity. With this information DATAVG can scale
readings into proper engineering units.

The calibration plotting software used in the Rock Mechanics Lab provides units per
Volt in the graph header.

3.1.5 Trigger Value

The third prompt asks for the input change, in real units, required before recording data
is initiated. While recording data, DATAVG continuously scans all input channels. The
current readings are compared to the last readings in the data file. When the change equals
or exceeds the value entered here the current readings will be recorded in the file and all
plots are updated.

3.1.6 Data Offset Removal

The fourth prompt asks if the first data point is to be used as the zero offset. Frequently
transducer outputs are not exactly zero at the start of a test. If you are only interested
in the change during a test answer this question by pressing ENTER. If true readings are
required, answer by pressing “N”. Data offsetting is done by subtracting the first readings
of a test from all subsequent readings. The offset values are recorded in the data header
file so true readings may be restored if this is later required.

3.1.7 Interface Hardware for this Channel

Next the hardware to be used is specified. The user is asked for the interface board
in the Keithley box and the channel to be used. The prompt includes a menu of available

11

boards. Select the board by nuinber from the menu. The menu item numbers correspond
to the slot numbers in the Keithley 500 box. Item numbers higher than ten are computed
channel pseudo boards. Entries with no corresponding board name will be rejected. After
selecting a board, the user is asked for the channel on that board to be used. This prompt
includes the valid range of channel numbers and only valid channels will be accepted. The
default is the channel following the last one selected on this board.

There is a possibility for confusion in selecting hardware channel numbers. The interface
boards use a zero based numbering system. Fach board starts numbering at zero. DATAVG
uses logical channels starting at zero also, but they do not start over on each board. The
user must plan hardware usage and be careful to enter proper data.

If the “TEMP” board is selected, a prompt will ask for the thermocouple type. This
allows an appropriate conversion to be applied to get degrees Celsius from each reading
taken. If there is no AIM7 board or if THERMO.CFG is missing, temperature readings
may not be made.

3.1.8 Completion of Channel Set Up

After answering all questions about a channel, DATAVG returns to step 3.1.2. After all
channels have been defined, enter “DONE” for the channel number.

Channel setup information will be displayed on the screen in tabular form. Channel
zero, if defined, will show a units/Volt value of 1. This is normal and will in no way limit
the recording time for a test. It only reflects a scale factor of one which is applied to time
readings.

Press enter to return to the main menu.

3.2 Set Up Screen
3.2.1 Number of Windows

DATAVG will display the number of windows currently defined then ask for the number
of windows needed. The options are one through four. Invalid responses will be rejected.

During initial setup there are no windows defined and most defaults will be zero. The
default X axis channel will be —1 indicating an urused window.

3.2.2 Which Window

After selecting the number of windows, a prompt will ask which window to set up.
The default window will start at one and step to the next higher numbered window each
time through. Any valid window may be selected instead of the default by entering it’s
number. Information about the data to be plotted in that window will be requested. This
operation repeats until all windows have been set up. If a window is selected which is
already configured properly, just take the default values at each question.

First, the user is asked for the number of the channel to be plotted on the X axis then
the number of the channel to be plotted on the Y axis. The defaults are the currently
defined channels. The first time a window is set up the X axis default will be ~1 and the
Y axis channel will be zero.

If —1 is entered for the X axis channel, this window will be blank when data recording
starts. Blank windows may be activated during a test by redefining them with a real channel
on the X axis.

Next, the user will be asked in turn for the minimum and maximum data values to
plot on each axis. Default values will be displayed and they may be accepted by pressing
ENTER. During initial setup the defaults will be zero. The minimum value plotted must
be smaller than the maximum. If the maximum value entered is smaller than the minimum
value, DATAVG will exchange them so the plot routine will be happy.

After configuring the last window, a prompt will ask if all windows are properly config-
ured. Press Y to end, or any other key to go back and redo one or more windows. This
function may be terniinated at any time by entering —1 for the window number.

3.3 Print Channel Data

Selecting this option prints a table of information about this setup. Data is shown in
channel number order with only active channels displayed. The table shows the number
and name of each channel. This is followed by the full scale value and trigger threshold
(DELTA). Last is a zero offset column. If the zero offset value is non-zero, the first reading
will be subtracted from all recorded data. Usually the zero offset is one or zero, but it may
have any value.

Channel zero, if defined, will show a full scale value of 10. This is normal and will in no
way limit the recording time for a test. It only reflects a scale factor of one which is applied
to time readings.

Ouiput will be sent to PRN: which may be redirected as needed. After printing the
chart, the main menu will be displayed.

3.4 Check Channel Set Up

This operation steps through the channels starting with channel one and displays read-
ings in volts. No scaling is performed. This allows confirmation of readings with a voltmeter.
After the reading is shown, the user is asked to change something affecting the channel then
press return. A new value will be displayed for confirmation of the change. Pressing return
will step to the next channel.

If the letter “A” is entered before the return, the same channel will be displayed again.
A channel may be tested as often as needed before going to the next channel.

After all channels have been tested, DATAVG will return to the main menu.

3.5 Save Setup Data

This operation saves all setup information in a file. The configuration of all channels
and windows is saved in an ASCII file. A name must be provided for the setup file. An
existing file of the same name will be replaced. There is no check for or warning before
replacing an old file.

After creating the setup file the main menu will be displayed.

13

3.6 Name Data File

As stated above, this operation is not required. It was retained from the previous version
of DATAVG because some users like to see a specific way to name their data file. If this
operation is not done explicitly before beginning a test, it will be done automatically.

This operation asks for a file name to be used for data storage. Blank lines are ignored
until a name is entered. After a name has been entered it is scanned for characters DOS
does not like. These are removed so the file name will be valid. If a complete path is
specified, the directory must exist. DATAVG will not create directories. Since DATAVG
supplies the file type fields, only characters preceding the dot are kept.

After entering a file name, a prompt asks for the number of data points to be stored
before closing and reopening the file. A positive number must be entered. Entering one will
force closing of the data file after every point is recorded.

If the test will run unattended for long periods, a small number might be used since
data probably will not be recorded very fast. Larger numbers of points per file will increase
speed if data will be recorded quickly.

After answering these questions, DATAVG will return to the main menu.

3.7 Gather Data

This operation starts data recording. If a data file name has not been specified, this
information will be requested as described in Section 3.6.

The first operation is to open the data header file using the name requested above. The
header file name is made by appending “.HDR” to the base file name. This header file is
described in Section 5.2. The file is opened in append mode to eliminate loss of any previous
file of the same name.

Next, all channels will be read and the zero offsets stored in the header file. These data
are, also, subtracted from readings taken during the test to remove initial offsets.

The header file is then closed and a new file is opened with the same base name but the
type field will be “.DAT”. The data file is described in Section 5.3. This file is also opened
in append mode and will start with the first data set.

Finally the screen plots are set up. All plots are initialized to display the data ranges
specified in Section 3.2. If a window includes a data value of (0,0) in its active area there
will be a small cross drawn to mark that location. The cross may be partial if one axis is
near zero.

There is a menu across the bottom of the screen. This menu describes the function key
actions. If the screen is EGA or better, the menu is two lines with the function key name
above it’s action. On CGA screens only the function key actions are displayed.

At this timne, the program enters a loop. Data is read and compared to the threshold
values. If any channel value has crossed the threshold, data from all channels will be
recorded and plotted. This loop is repeated until an active function key, as described
below, is pressed.

During data recording, there are nine function keys active. Six of them affect windows,
and the rest perform various other tasks. Five of the function keys which affect windows
perform their task immediately if only one window is active. When multiple windows are
active, the user is prompted for the window number.

14

3.7.1 Force Recording of a Sample (F1)

This function forces recording of a data point. The current reading is stored regardless
of threshold crossing.

NOTE:
The following operations are useful but they do cause data logging to stop until the operation
is complete. It is recommended that the user be careful in selecting appropriate times to
perform these operations to minimize the loss of data.

3.7.2 Reset a Window (F2)

This function resets a window to show the maximum data range on both axes. This is
useful if the active plot region cannot be seen. If only one window is defined this function
is immediate.

3.7.3 Zoom a Window In (F3)

This function scales the selected window to show a smaller area and centers the plot
on the last data point. Both axes are scaled to 75% of their previous length. If only one
window is defined this function is immediate.

3.7.4 Zoom a Window Out (¥4)

This function scales the selected window to show a larger area and centers the plot on
the last data point. Both axes are scaled to 133% of their previous length. If only one
window is defined this function is immediate.

3.7.5 Redefine a Window (F5)

This function allows redefinition of a window. The user will be asked for the window
number to be redefined. Channels to be plotted and scaling on either axis may be changed.
A window may be turned off by assigning channel —1 to the X-Axis. The information
required is as described in Section 3.2.2 which describes the screen set up process. After
entering the required data, the screen will be restored with the last one thousand data
points replotted. If only one window is defined this function is immediate.

This function cannot change the number of windows allocated screen space. For example,
if DATAVG was configured to use four windows, screen space is allocated in quarters. If
only three windows are in use, this function can turn on the fourth window and it can turn
off other windows but it cannot change the size of these windows. If DATAVG is configured
to use three windows, the screen is divided into quarters as above. However, this operation
cannot turn on the fourth window.

3.7.6 Clear a Window (F6)

This function clears all data from a specified window. A prompt will ask which window
to clear. The valid range is displayed and inactive windows are rejected. This option is
useful when data is of a cyclic nature and you need to see better detail of a given cycle. A

15

window is redrawn but no data is plotted. If only one window is defined this function is

iminediate.

3.7.7 Clear all Windows (F7)

This function clears data from all windows. All windows are redrawn but contain no
data traces.

3.7.8 Start a new Data File (F8)

This option closes the current data file and starts a new ore with a new name. A prompt
will ask for a file name and number of points as described above. No “.HDR” file is created.
This is an extension of the test so the previous “.HDR?” file is valid.

3.7.9 End the Test (F3)

This function ends the test after confirmation from the user. The user must enter the
letter “Y” to end the test. All other responses will cause the test to resume. Data recording
is stopped while waiting for the user confirmation.

No shifted or otherwise modified function keys are defined and any unused function keys
are ignored.

3.8 Recall Setup Data

This operation asks for the name of a file containing setup data. A valid file name is
required. If the name cannot be remembered, press the ESC key and DATAVG will return
to the main menu. Exit from DATAVG and find the required name. After opening the file,
setup information is read into internal data structures. DATAVG will tolerate setup files
which are either too long or too short. A long file will be read until the maximum number
of channels have been processed. A short file will leave channels undefined but available for
use. The main menu is displayed on completion of this operation.

3.9 Exit to DOS

This operation returns to DOS after files are closed and the screen is cleared.

4 TEMPERATURE CHANNELS

Temperature channels are implemented as computed channels on a pseudo board named
TEMP. This board reguires the presence of an AIM7 interface board. Types J and K
thermocouples are supported over a temperature range of —100 to +500 degrees Celsius
using the tables supplied. The tables may be extended as needed by using the procedure
in Section 5.4. The conversion from voltage to temperature is done by a cubic spline
interpolation. Interpolation tables are loaded from a disk file (THERMO.CFG) when the
first channel of this board is configured. If this file is not present in the current directory
DATAVG will issue a message and temperature readings will not be allowed.

16

5 DISK FILES

5.1 3Setup File

Setup files contain all data needed to configure DATAVG fer a particular job. Each field
in the file will be described in this section. See Figure i for an example setup file.

(LVDT 814 CAL \
2

1

0,0,0,,0,,,0

0.01007, 0.0005, 1, AMM2, 1,1, 0.1” STANDARD, 1
1, 10, 1, AMM2, 2, I, LVDT 814, 2

0,00,0,L,0
OaO»O,’OaIa,O
0,00,,0,L,0
0,0,7,,0,L,0
0,0,0,,0,1,,0
07050,,0’1;30
1, 2, 0, 100, 5, 100, -0.01, 0.01, -10, 10

aa09 1
1,0,0,0,0,0,0,0,0, 0
-1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0

Figure 1: Setup File

The first line lists the test name. The second line contains the highest numbered active
channel plus one and the third line contains the number of active windows.

Subsequent lines contain data for each channel. All available channels are represented
whether they are used or not.

Data are as follows with the fields separated by commas and spaces.

Column one, Scale factor in units per volt. Column two, Trigger threshold in scaled
units. Column three, Flag indicating whether the first reading is to be the zero offset. Non
zero values indicate a zero offset will be applied. Column four, The interface board name.
Column five, The hardware channel number on this board. Column siz, A channel type
character (I (in), O (out) or C (computed)). Column seven, The channel name. Column
eight, The column number these data will occupy in the output file (0 if not in the file).

The last four lines contain data about the windows. This data is the screen positions
and user unit ranges for both axes. The data is as follows with the fields separated by
commas and spaces.

Column one, X axis channel. Column two, Y axis channel. Column three, Screen X axis
minimum. Column four, Screen X axis maximum. Column five, Screen Y axis minimum.
Column siz, Screen Y axis maximum. Column seven, User unit X axis minimum. Column

17

eight, User unit X axis maximum. Column nine, User unit Y axis minimum. Column ten,

User unit Y axis maximum.

5.2 Header File

The header file (filename.HDR, Figure 2) starts with the version of DATAVG being
used. The version includes the compilation date. The version information occupies the first
two lines. Next comes a copy of the setup data as described in Section 5.1. There is a time
stamp (including the date and time) followed by the column headings. Column leadings
are the names of each active chaanel. The offset data are stored in the last line of the
header file. This offset information may be used to reconstruct actual readings if needed.

GATAVG FOR THE IBM PC

Version 1.0, 5/12/1992

LVDT 814 CAL

2

1

0,0,0,,0,,,0

0.01007, 0.0005, 1, AMM2, 1,1, 0.1” STANDARD, 1
1,10, 1, AMM2, 2, I, LVDT 814, 2

0’0’0’10’1”0

0?010’70,17)0

0’0’0,70’1?70

0,0’0”0’I,70

0,0,0,,0,1,,0

0,0,0,,0,1,,0

1,2, 0, 100, 5, 100, -0.01, 0.01, -10, 10
-1,0,0,0,0,0,0,0,0,0
-1,0,0,0,0,0,0,0,0,0
-1,0,0,0,0,0,0,0,0, 0

Mon Aug 31 15:31:50 1992

7 0.1” STANDARD” ” LVDT 814"
-0.999594, -0.93985

N

\

/

Figure 2: Header File

If a filename is re-used, the new header information will be appended to the existing
file. It is easy to find the new header information by searching for the DATAVG program

name in the file.

18

5.3 Data File

Data storage starts in the second file (filename.DAT, Figure 3). Data are stored in
ASCII real numbers with commas and spaces between columns. The data format may
be floating point or exponential, whichever is shorter. Time data is expressed in elapsed
seconds, since the start of test, in floating point format. All data from an event are stored
in a single line. Lines are terminated by CR LF pairs as is customary in DOS systems.

aAG 163e-06, -0.00256348 \

-0.00056577, 0.55899
-0.00107591, 1.04019
-0.00158082, 1.55411

-0.0057996, 5.76239
-0.00634324, 6.29132
-0.00687273, 6.83188

- /

Figure 3: Data File

Data files (filename.DAT) contain data only. If a filename is re-used, data will be
appended to the existing file. There is no blank line or other marker in the file to indicate
where re-use started. It is possible to find the point where data was appended by looking
for a jump, usually negative, in the time channel.

5.4 Thermocouple Data Tables

The tables in THERMO.CFG are created by a supporting program (BUILDTC, see
Appendix G for source code), and are based on tables in the OMEGA temperature
measurement data book Vol. 28. Tables may be created or extended by creating a file
named TEMP.D containing temperature, millivolt pairs in ascending order of temperature.

In THERMO.CFG, the first line of a table must contain the thermocouple type letter,
a comma and the number of temperature points in the list. Subsequent lines contain the
AIMT board output in volts referenced to zero degrees C, a comma then the temperature in
degrees Celsius, a comma and the cubic spline coefficient data. One data point is allowed
on a line. Multiple thermocouple types may be contained in a file by concatenating them.
While BUILDTC does not care how many types are contained in a file, only the first ten
will be read by DATAVG. To conserve memory, the number of types should be kept to a
minimum and only the types in use should be in the configuration file THERMO.CFG.

6 INSTALLATION NOTES

When installing DATAVG, a file named K500.CFG, Figure 4, must be created. It must
contain the address of the interface board and the names, etc., of the boards ir the Keithley
box. This file is described in detail in Section 6.1.

19

The first line contains the segment address of the 500-IBIN-A interface board. This
board is memory mapped and must not conflict with other boards or DOS. If DOS 5.X or
Windows is in use, it is possible to Joad system programs in high memory areas which may
conflict with the factory default address of CFF8 HEX. Run the DOS command

MEM /D > PRN:
to print the memory map. If any programs start at addresses near CFF80, check for conflicts.
Any conflicts will require changing the board address, as described in the Keithley manual,
to remove the conflict. In a GATEWAY 2000 486DX2/50, setting the board to DFF8 works.
DATAVG has not been tested with EMM386.

6.1 Keithley Box Configuration I'ile

The file K500.CFG, Figure 4, must be in the \DATAVG directory when DATAVG is
started. This file contains the configuration of the Keithley 500 mainframe. K500.CFG
must be maintained current for the specific computer. This is the only part of DATAVG
which is specific to a particular computer.

The first line contains the segment address of the interface board expressed in HEX
notation. When DATAVG starts, it reads K500.CFG and uses this address to initialize the
interface board. Subsequent lines contain a list of the boards present.

Board list lines contain four fields separated by commas. The first field is the board
name. Following the name is the slot number, channel count and board type. The type is
Input or Qutput.

While newer Keithley 500 mainframes can identify the boards present, DATAVG does
not currently make use of this feature. Instead, DATAVG uses the board list in K500.CFG.

6.2 Temperature Data Files

The temperature measurement system in DATAVG uses pre-computed data tables which
are read from a file named THERMO.CFG. THERMO.CFG must be in the \DATAVG

directory when temperature channels are configured. The file structure is discussed in
Section 5.4.

(Dors \
AMM2,1,16,1

AIM3,3,32,]
AOM1,5,2,0
DIO1,8,16,1
DIM1,9,16,1
PIM2,10,4,1

e /

Figure 4: Keithley Configuration File, K500.CFG

20

7 LIMITATIONS AND REQUIREMENTS

DATAVG uses 500LIB to interface with its hardware. The library is written with the
assumption that a Keithley 500-IBIN-A interface board is present. This board contains the
counters and clock used to time events. The older 500-IBIN board will not work since it
does not include a crystal oscillator. The analog input routines assume a sixteen bit A/D
converter on a Keithley 500-AMM?2 board. If different hardware is needed, 500LIB must be
modified and recompiled.

7.1 File Manageinent

Data are recorded whenever the defined threshold is crossed on any channel. Data are
written to disk when they are plotted on screen. A power failure during a test could cause
the loss of any data written to the file. Closing the file assures that the disk directory will
be updated in a timely manner which reduces chances of data loss. Therefore, for data
security, the number of data points recorded in a file before closure is limited. When this
limit is reached the file is closed and reopened. Subsequent data are appended to the file,
and this process is repeated until the end of test. There is a limit of 65536 data points
before closing the data file.

7.2 Screen Management

All plots are updated to reflect the latest data written to disk. This update does not
wait for the file closure discussed in Section 7.1.

7.3 Time Interval Triggering Limits

The time data used for triggering is stored in a float. This supplies sufficient precision
to allow triggering at one-second intervals for about ninety days. If a test runs longer than
this, trigger at longer intervals. Actually, one-second intervals would be rather short for a
test of this length so the loss of precision should not be a problem.

8 COMPUTED CHANNEL DESIGN

The remainder of this document is primarily of interest to programmers. The user
probably will not need to read further. This section is included to document the program
structure.

8.1 COMPUTED CHANNEL INTERFACE

Computed channels are implemented using object-oriented programming techniques.
They are treated by DATAVG as if they resided on boards. Pseudo boards may be defined
which have needed properties. These boards may support multiple channels like a real
board. Each channel of a pseudo board must return a computed value based on real readings
and/or other computed channels.

The user may write computed channel drivers and link them into the program by making
proper references in the MAKEFILE. This requires adherence to the function prototype to

21

avoid compiler complaints. User-written drivers must take care of any required initialization.
User-written drivers must #include “DATAVG.H”. If using Borland MAKE, create a file
named DATAVG.LNK contairing the linker instructions.

Computed channel drivers must keep static variables or arrays containing information
used for their calculations. They must, also, handle four functions signified by the card_slot
variable. Card.siot values of —1, —2 and —3 specify special functions as described below.

Another rec uirement is to place the function prototype near the beginning of DATAVG.H
so the compiler can reference it. Include the board name, slot number, channel count, type
and driver pointer in the box[] array found in DATAVG.H. When installing the pseudo
board, choose a slot number greater than ten and within the limits of the box[] array,
(currently 15 as defined by MAX_SLOT). Board names should be seven or less characters.

8.1.1 Computed Channel Driver Function Prototype

The function prototype for computed channel drivers is:
float name(int channel, int card_slot, int num_to_ave).

8.1.2 Initialize Computed Channel

A cardslot value of —1 signifies a need to initialize this channel. This function may
request any information required to perform the required operation such as scale factors
and input sources.

In the setup_channels function (Section 3.1), the user is asked for data about each
channel. Part of this data is the board name and board channel to be used for this program
channel. If the board is a pseudo board, the board driver will be called to do any required
initialization. The initialization request will be signified by a card_slot number of —1.
When making the initialization call, the driver will be given the pseudo board channel
to be configured. The num_to_average variable will contain the program channel number
being processed. The program channel being processed is useful in detecting references to
other channels which will contain obsolete data at the time this channel is evaluated. Only
channel numbers less than this one can provide currently valid data from the D[] array.

Computed channel drivers may use previous channel data, or they may make indepen-
dent readings from the interfaces. During set up, it is possible to test references to other
channels to see if they have been defined. This may be done by testing their scale variable
(channels[n].scale). Channels which are in use have non-zero scale factors. References to
undefined channels should be treated as warnings, since they may be defined later. At run
time, references to undefined channels should be flagged as errors and the run stopped.

During configuration of a computed channel, a physical channel may be selected by a
call to get_valid_board(). This function requires a pointer to the prompt text. It returns an
index into the box[] array where information about the board is located. get_valid_board()
also returns the selected channel on the board. The driver element of the box[] array entry
may be called to make a real reading. Several real readings may be taken as needed by
calling the appropriate drivers. This data may be combined with data from previously read
channels as needed. Previously read data is in the D[] array and may be indexed by the
channel number. Obtaining data from the D[] array is much quicker than making new
readings. It is possible to write drivers which use new readings only when needed.

22

8.1.3 Save Computed Channel Set Up Data

The savesetup() function (Section 3.5) in DATAVG calls computed channel drivers
during its operation. savesetup() calls the driver with the pseudo board channel number
and a slot number of —2. The driver must write any required data to the setup file. This
operation is needed because DATAVG has no way to know what this driver does or how it is
done. Drivers normally maintain private data which needs to be restored before operation
can resume. The file pointer to be used is data_file and the information should be saved in
ASCII with a newline at the end.

8.1.4 Restore Computed Channel Configuration

The restoresetup() function in DATAVG (Section 3.8) calls computed channel drivers
during its operation. restoresetup() calls the driver with the pseudo board channel number
and a slot number of —3. The driver must read saved set up data from the setup file, using
the file pointer data_file, and rebuild its internal tables. User prompts may be made for
other data as required.

8.1.5 Normal Computed Channel Operation

During data collection, the driver for a computed channel will receive a card_slot num-.-
ber as shown in channels.card_slot, the channel number for this board and the number of
readings to average. The number to average is a compile-time constant and is probably
meaningless in a computed channel context but is included for a consistent interface.

The driver must perform its function and return a float result. If data from lower
numbered channels is desired, it may be obtained from the D[] array. The channel number
is the index into this array.

8.1.6 Support Functions

There are several support functions available to writers of computed channel drivers.
These include functions to prompt for and validate numerical data and board identification.
Use of these functions can make your code smaller and easier to write.

8.1.6.1 Get an Integer with prompt and default. get_int() returns an integer. It
requires a prompt string and default value. Input is validated to insure the ¢orrect type. and
the default is returned if the user presses ENTER alone. See the prototype in DATAVG.H
for details of this function.

8.1.6.2 Get a Float with prompt and default. get_float() jréturns a float. It re-
quires a prompt string and default value. Input is validated to insu,r"e the correct type, and
the default is returned if the user presses ENTER alone. See the prototype in DATAVG.H

for details of this function.

¢

23

8.1.6.3 Get a Board and Channel. get_valid_board() requires a pointer to a prompt
string. It asks for and obtains a board and channel identification. This function returns an
index into the box[] array. By using this index, a description of the selected board may be
located. This function also returns a channel number on the board. See the prototype in
DATAVG H for details of this function.

8.1.6.4 Validate a File Name. validate_file_name() requires a pointer to a string con-
taining the file name to be validated. All characters DOS does not like are removed and the
remainder are concatenated in the original string. The name and type fields are truncated
so they do not exceed their maximum lengths. This function removes control and illegal
characters but does not case shift the string.

9 PROGRAM STRUCTURE

DATAVG, written in Turbo C for the IBM PC family, is derived from a program of
the same name which ran on a Digital PDP-11. The original, written in MTS BASIC, was
severely limited by the hardware environment. Using the PC allows greater flexibility in
interfacing and display hardware and larger memory.

DATAVG currently operates with a Keithley 500 data acquisition system. A Keithley
500-IBIN-A interface board is REQUIRED since it contains the clock circuits used for
timing events. A Keithley 500-AMM?2 board is assumed, but a 500-AMM]1 could be used
with minor program changes, as could the Keithley 570 or other hardware.

DATAVG supports computed channels which are implemented using object-oriented
programing techniques. Computed channels may perform nearly any function required
including experiment control. In this implementation of DATAVG, there is a temperature
board which is implemented using computed channels. See Section 8 for instructions on
writing your own drivers.

Display hardware which may be used includes IBM CGA, EGA, VGA and IBM8514
color plus Hercules monochrome. EGA, VGA and 8514 are definitely preferred. When
using a color interface board, a color monitor MUST be used. There is no support for gray
scale on a monochrome VGA system.

DATAVG source code is contained in the file DATAVG.C (Appendix A for DATAVG.H,
and Appendix B for DATAVG.C). This module requests inclusion of DATAVG.H which
includes any required standard header files and a few locally-created header files. Locally-
created headers are 500LIB.H and SRBGRAPH.H. DATAVG.H contains definitions and
data declarations for the program. 500LIB.H and SRBGRAPH.H provide function proto-
types for their respective modules.

DATAVG uses 500LIB to interface with the hardware. This is a driver package written
in Turbo C which makes some assumptions about the available equipment. This library was
not intended to be as comprehensive as the Keithley-supplied driver package. It is assumed
that there will be a 500-IBIN-A interface board or equivalent which provides the timing
equipment. Further, it is assumed there will be a 500-AMM2 in slot one of a Keithley
500 mainframe. By changing some definitions and recompiling the library, it is possible to

support a 500-AMM1. Source code for 500LIB.H is in Appendix C and 500LIB.C is in
Appendix D .

24

In writing DATAVG, efforts were made to keep the code modular and to eliminate special
cases. Channel zero (TIME) requires some special treatment since no scaling is done. Also,
computed channels are “Black Boxes” which may have private data. This requires that
computed channel drivers be able to do their own setup. They must, also, be able to save
and restore their own configuration.

Functions were written so they could be used in several places throughout the code.
Some functions are used to set up the parameters for a call to another, reusable, function.
In a few cases, the use of flag variables allowed changing the behavior of functions for
initialization vs. normal use.

In user-interface functions where speed is not needed, functions were used to make the
code more readable. This was done where the same type of information was requested in
several places and verification was needed.

In the user-interactive routines, extensive range checking has been implemented. When
input is requested, the data is checked to prevent use of invalid information. For instance,
if a number is needed the program will not allow alphabetic entries. Most prompts include
acceptable ranges, and these are tested before DATAVG will continue.

Routines which read files created by this program do not contain extensive range testing.
It was assumed that data in files created by DATAVG, including setup files, had already
been range checked and was correct. While it is possible to modify or create setup files
with a text editor, there is virtually no error checking while reading them. Be careful when
editing setup files.

DATAVG uses SRBGRAPH to do plotting. This is a graph package written by S. R.
Brown and modified by R. D. Hardy (both Sandia National Laboratories). SRBGRAPH
is a very modular library of object modules which may be linked into any program which
requires X-Y graphing capabilities. See Appendix E for the header SRBGRAPH.H and
Appendix F for composite source code.

10 VARIABLES

This section discusses the global variables used by DATAVG.

10.1 Global General Data
char BUFFER[64];

This is a character array used for data entry from the keyboard. In the functions which
interact with the user, most data are read in string form and later parsed into the required
form.

char Test_ID[64];
This string holds the test identification which is placed in the data file header.

char Data_file_name[64];

This string holds the complete data file path. Space is allowed for the longest path DOS
can handle.

25

int num_chan;

This is the highest program channel number in use. It is not the number of channels.
This variable appears in line two of the setup file.

int Points_this_file;

The number of data points recorded since opening the data file. This variable is used
to decide when we need to close and reopen the data file.

int Poiris_per_file;

The number of points to store before closing and reopening the data file.
long Total_points;

Total number of data readings recorded in this test.
int plot_data_count;

This variable is not used as its name implies. It is an index into the channel data
storage buffer. This variable is used by the plot function and to compare current data
against previously stored data.

int plot_windows;

The highest numbered window in use. This variable appears in line three of the setup
file.

unsigned int SEQUENCE;
A flag used to show whether we are storing data or the data header.
float D[MAXCHAN+1];

This global array contains the current data readings. During data scanning, this array
contains data for all channels which have been read. Higher numbered channel data is not
valid. Computed channels may use data from this array as needed.

FILE *data_file, *printer;

File pointers.

26

10.2 Time Data

struct ktime Ktime;

A structure defined in 500LIB.H rhich is used to return time codes from the Keithley
interface board.

double base_time;

This variable holds the time when data recording started. This value is subtracted from
all times to get relative time from the start of recording.

double rel_time;

This variable holds the time from the Keithley board relative to program start. The
Keithley board timer is started during program initialization and can contain a significant
value before recording starts.

struct timeb start_time;

A structure defined in /TC/INCLUDE/SYS/TIMEB.H. This structure is used to return
DOS system time which is used to time stamp the data file header.

10.3 Plot Data

typedef struct Window
{
int Xchan; /* Channels to plot on each axis */
int Ychan;
int SXmin; /* Screen coordinates for this window */
int SXmax;
int SYmin;
int SYmax;
float UXmin; /% User coordinates for this window */
float UXmax;
float UYmin;
float UYmax;
};

This structure defined in DATAVG.H contains all required data about a given window.
struct Window win_data[MAXWINDOWS];
An array of window data structures with one entry for each window. A maximum of

four windows is allowed in the current version, but this could be changed if required. Four
windows are a good trade between visibility and the amount of data we could display.

27

—— 0 0 10O 00 00O 0 B

10.4 Program Channel Data

typedef struct ch
{
char name[64];
float scale;
float trigger;
float zero;
int card_slot;
int chan;
float (*driver)();
char type;
float far *data;

};

/*
/*
/%
/*
/*
/*
/*
/*
/*

title for axis labels */

data scale factor, units per volt */
delta value to trigger recording */
zero offset value */

interface device slot number */
interface device channel */

Pointer to the driver function */
channel type, In, Out or Computed */
data buffer pointer */

This structure defined in DATAVG.H contains the data required for each program chan-
nel. It can be used for either real or computed data channels.

struct ch channels[MAXCHAN+1];

An array of channel data structures. There is one entry for each program channel
allowed. Currently there are thirty channels but this could be increased if needed.

10.5 Hardware Information

typedef struct k500 /# interface box configuration info */

{
char board[8];
int card_slot;
int channels;
char type;
float (*driver)();
H

/*
/*
/*
/*
/%

board name */

slot in box */

number of channels supported */
input or output (I, 0 or T) */
Pointer to the driver function */

The box[] array of structures defined in DATAVG.H contains data for each Keithley
500 board present. This structure is also used to hold information about pseudo boards
supporting computed channels starting at card.slot 11. There is an entry for each real and
pseudo board. Currently there are fifteen entries, but this could be changed.

struct k500 box[MAX_SLOT + 1];

The boards data structure defined in DATAVG.H contains a master list of all Keithley
boards and their characteristics. It is used during auto-identify and to hold driver pointers.
Limited to 35 boards by hardware limitations. This array of structures is initialized at

compile time.

28

struct module
{

char nama[8];

int channels;

char type;

float (*driver)();
};

struct module oards[MAX_BOARDS];

10.6 Cther Variables

There are local variables used in various functions. The variables i, j, k and n are fre-
quently used for loop counters and indexes. Other variables are named and commented so
their function is obvious.

END OF VARIABLES LIST

29

APPENDICES
A DATAVG.H

R L e T S T

/* datavg.k «/

/* Header file for DATAVG data logging program. */
/* Written by »/

/* R. D. Hardy »/

/* Sandia National Laboratories */

/* Department 6117 =/

/* April 17, 1992 s/

/% %/

/* Modification History »/

/*»/

/# June 25, 1993 */

/* Changed definition of SIXTEEN RDH */

/v %/

/* Comments configured for C2LATEX and IATEX#/

/‘ ok ok ok ok o o o ke e ok ok o ok ok ok ok o ok ok o ok ok ok o o o kol ok ok ok ok ok o ok ok o ok e ok o ok ok 3K ok ko ok ok kR okok ok Kok ok */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <sys\timeb.h>
#include <conio.h>
#include <math.h>
#include <ctype.h>
#include <dos.h>
#include <spline.h>
#include "5001ib.n"

#ifdef DATAVG

#include <graphics.h>

#include <srbgraph.h>

#define VERNUM 1.10 /* Version Number */
#endif

/* MAXCHAN = MAXIMUM NUMBER OF LOGICAL CHANNELS EXCLUDING TIME */
¥define MAXCHAN 40

/* MAX SLOT is the number of boards allowed including psudo-boards =/
#define MAX_SLOT 15

/% Other constants */
#define MAX_MODULES 35 /* number of entries in boards array =/
#define MS_COUNT ((unsigned int)1000) /# counter 1 value, one second */
#define SEC_COUNT ((unsigned int)1000) /# counter 0 value, seconds counter */
#define Zoom_Scale 0.75 /* Window zoom scale factor */

/#* global function prototypes */
void validate_file_name(char #name);
void get_valid_board(char stext, int *box_index, int #chan);
float get_float(char sprompt,float def);
int get_int(char *prompt,int def);
float (#find_driver_pointer(char *name))();
char *get_board_name(float (#driver)());

30

/* computed channel prototypes */
float axial_stress(int chan, int card_slot, int a);
float thermocouple(int chan, int card_slot, int n);

R e L
/#* global data »/

#ifdef MAIN
#define EXTERN

#else
#define EXTERN extern

#endif

EXTERN float D[MAXCHAN+1]; /* input data buffer =/

EXTERN char board_list[300]; /#* List of available boards =/

typedef struct ch /# Channel data #=/

{
char name[64]; /* title for axis labels */
float scale; /* data scale factor, units per volt */
float trigger; /* delta value to trigger recording =/
float zero; /* zero offset value »/
int card_slot;’ /* interface device slot number */
int chan; /* interface device channel within slot */
£loat (sdriver)(int chan, int card_slot, int n);
char type; /* channel type, (Input, Output, Computed]) =/
float far *data; /* data buffer pointer #/

};

EXTERN struct ch channels[MAXCHAN+1]}; /* MAXGHAN channels plus TIME »/

typedef struct k500 /* interface box configuration info */
{
char board{8]; /#* board name */
int card_slot; /* slot in box =/
int channels; /#* number of channels supported */
int last_chan; /#* last channel used on this board */
char type; /% input or output (I, O or C) »/

float (%driver)(int chan, int card_slot, int n);

};
#ifdef MAIN

struct k500 box[MAX_SLOT + 1] =
{

/* Card slot zero is not used, it is a dummy only */

/* this space will be filled in during program startup */
{",0,0,-1,” ’,NULL}, /* dummies for real card slots */
{"“’1’0)-1:, ,,"ULL}v
{",2,0,-1,” ', NULL},

{",3,0,-1,’ ’, NULL},
{"",4,0,-1,’ ’,NULL},
{"",5,0,-1,’ ’ ,NULL},
{,6,0,-1,’ * NULL},
{r,7,0,~-1,’ * NULL},
{",8,0,-1,” ’,NULL},
{",8,0,-1,’ ’,NULL},
{"",10,0,"1,’ ’,HULL},

31

/#* Install computed channel data starting here »/
/* Make sure MAX_SLOT is large enough to include all entries */

{"TEMP",11,16,-1,'C’ ,thermocouple},
/* " AXSTRES”,12,1,-1,’C’,axial stress This module not tested »/
};

#else
extern struct k500 box [MAX_SLOT + 1];
#endif /= MAIN »/

EXTERN FILE sdata_file;

#ifdef DATAVG
#if MAXWINDOWS > 4

#undef MAXWINDOWS

#define MAXWINDOWS 4 /* we use only four windows */
#endif /¢« MAXWINDOWS »/

/+ data buffer size »/
#define BUFSIZE 1000

/* number of readings to average for noise reduction */
#define Num_to_average 10

/* window position definitions in percent of full screen */
#define WIN_TOP 100

EXTERN int WIN_BOTTOM;
#define WIN_LEFT 0
#define WIN_RIGHT 100

/* menu bar position definitions in percent of full screen »/
EXTERN int MENU_TOP;
#define MENU_BOTTOM 0
#define MENU_LEFT O
#define MENU_RIGHT 100

EXTERN double base_time; /* time offset, holds starting time %/
EXTERN double rel_time; /% time from start of program #/
EXTERN int plot_data_count; /% counter for points in plot buffers */
EXTERN long Total_points; /# total points recorded in test */

EXTERK int Points_this_file, Points_per_file;

EXTERN int Check;

EXTERN int num_chan;

EXTERN int plot_windows; /* number of windows to use »/
EXTERN unsigned int SEQUENCE;

EXTERN FILE #printer;

EXTERN union REGS Regs; /* register copy for int86() =/
EXTERN char Test_ID[64];

EXTERN char Data_file_name([64];

EXTERN char filename[64];

EXTERN char BUFFER[64];

EXTERN struct ktime Ktime; /* time code buffers for KEITHLEY counters */
EXTERN struct timeb start_time; /* wall clock time storage */

32

typedef struct Window /* our window data =/

{

int Xchan; /#* X channel for this window */

int Ychan; /* Y channel for this window »/

int SXmin; /% Screen coordinates for this window =/
int SXmax;

int SYmin;

int SYmax;

float UXmin; /#* User coordinates for this window »/

float UXmax;

float UYmin;

float UYmax;
};

EXTERN struct Window win_data[MAXWINDOWS];

/# master data structure used during auto-identify and to hold »/
/* driver pointers »/

struct module
{
char name[8];
int channels;
char type;
float (»driver)(/#int chan, int card.slot, int n*/);

};

#ifdef MAIN

struct module boards [MAX_MODULES] =

{
‘{"AHHIA",I,’I’.HULL},
“{"AMM1",1,°1’,NULL},
{"AMM2",16, 1’ ,read_AMM2},
{"AIM2",2,'1’,NULL},
{"AIM3",32,'1I’,read_AIM3},
{"AIM4",1,°1I’,NULL},
{"AIMS",1,’I’,NULL},
{"AIM6",1,'I’,NULL},
{"AIM7",16,'T’ ,read_AIMT7},
{"AIN8",1,’I’ ,NULL},
{"AIM9",1,°1’ ,NULL},
{"PIM1",2,'I’ ,NULL},
{"PIM2",4,’I’,read_PIM2},
{"STEP1",1,°0’ ,NULL},
{"sTEP2",1,’0’ ,KULL},
{"AOM1/2",2,°’0’ ,urite_AOM1},
{"AOM1/5",5,’0’ ,write_AOM1},
{"AIM2/1",1,'I’ NULL},
{"AOM2/2",2,°0’ ,NULL},
{"A0OM3",2,'0’ ,NULL},
{"AOM4",2,’0’ ,NULL},
{"DIM1",16,’1’ ,read_DIM1},
{*pDOM1",16,°’0’ ,NULL},
{"pI01",16,’0’ ,write_DIO1},

33

{"PCcH1",1,°0’,NULL},
{"PCM2",2,’0’ ,NULL},
{"GPIB",1,’I’ ,NULL},
{"PROTO",1,’0’ ,NULL},
{"",1,’1’,NULL},
{"",1,’1’,WLL}.
{"",1,’1’.'ULL},
{"",1,’1’,IULL},
{"",1,’1’,“[.1.},
{",1,’1’,NULL},
{nu , 1 , ' 1 ,NULL},
};
#else
extern struct module boards [MAX_MODULES];
gendif /+ MAIN »/
tendif /*» DATAVG »/

#undef EXTERN

34

B DATAVG.C

/. ARk Rk Rk Rk kR ko kR ko ko Rk kS Rk kR kAR bk * ‘/

/# DATAVG.C ** DATAVG FOR THE IBM PC FAMILY. =/

/#* USES ALL INPUT BOARDS SUPPORTED BY A KEITHLEY 500 BOX. &/

/+ THE FILE K500.CFG MUST BE PRESENT IN THE DATAVG DIRECTORY TO =/
/* INFORM THIS PROGRAM ABOUT AVAILABLE HARDWARE. */

/+ THE FILE THERMO.CFG MUST BE PRESENT IN THE DATAVG DIRECTORY TO #/
/* PROVIDE THIS PROGRAM WITH THERMOCOUPLE CURVE DATA. »/

/* MAXCHAN IS THE NUMBER OF CHANNELS SUPPORTED BY THIS PROGRAM #/
/+* EXCLUDING TIME. BUFSIZE IS THE DATA BUFFER SIZE FOR EACH CHANNEL #/
/e n/

/* Written by: */

/* R. D. Hardy =/

/* Sandia National Laboratories */

/* Depariment 6117 »/

/% April 17, 1992 =/

ARY)

/* Comments configured for C2LATEX and IATEX*/
R T L L T T Ay

/* Madification History =/

/% %/

/* June 25, 1993 =/

/* Changed get_setup() so it will read sctup files created with more »/

/* or less than MAXCHAN channels. RDH =/

/% %/

/% */

/% %/

/% %/

/% x/

/‘ kR Rk ko kR ok ok ok ok k ok ko kok ko ko ok ok ok ok ok ok kR ok kR sk kR k ok ko ok Rk kR kR k ‘/

/* MODIFICATION HISTORY »/

/% %/

/% March 25, 1993 =/

/* DATAVG now looks for it’s K500.CFG files in the DATAVG directory. */

/* Changed version to 1.10 in DATAVG.H RDH =/

/* %/

/* May 25, 1993 =/

/* Fixed bug in channel setup function. [t was possable to set */

/* channels greater than MAXCHAN. RDH »/

/% */

PR L L L e L Ly

#define MAIN /* MAIN includes the global data in this module */
#define DATAVG /* Includes our definitions, other programs don’t get them. */
#include "datavg.h" /» define global data, DO NOT MOVE THIS LINE */

/* static function prototypes =/

static int init_channels(void);
atatic void show_setup(void);

static void gen_show_setup(FILE *dev);
astatic void get_file_name(void);
static void check_channels(void);
static void get_data(void);
static int proc_function_key(int key);

35

static int get_vindov_nulber(void);
gtatic int save_setup(void);

static void write_setup(void);
static void get_setup(void);

atatic void datavg_init(void);
static void get_box_configuration(void);
static void de_init(void);

static int test_kb(void);

static void new_line(void);

static void read_data(int num_chan) ;
static void grite_data(int flag);

static void redrav_vindows (int flag);
static void plot_data(int flag);

static void my_init_graph(void);

atatic void setup_window(int window) ;
static void def_window(int vindow);
static void redo_window(int window);
static void zoo-_in_vindov(int window);
static void zoom_out_window(int window);
atatic void zoom(int window, float scale);
static void clr_window(int window) ;
static void set_driver_ptr(int glot);
static float timecode(void);

static int open_data_file(void);

static char Version[64]; /#* Program version string »/
static int MaxY; /% screen height */

/% *****t##*#*###t**t***#*tt####***t***t***#t****##**t*t**#****##t* .
void main(void)

/#» INITIALIZE PROGRAM VARIABLES */
datavg_init();

/* MAIN MENU LOOP #/
while(1)
{

clrscr();

printf("%s\n\n",Version);

puts (" MAIN MENU\n");

puts(" 1) SETUP CHANNELS");
puts(" 2) SETUP SCREEN");

puta(" 3) PRINT CHANNEL DATA");
puts(" 4) CHECK CHANNEL SETUP");
pute(" 5) SAVE SETUP DATA");
puts(" 6) NAME DATA FILE");
pute(" 7) GATHER DATA");

puts(" 8) RECALL SETUP DATA");
puts(" 9) EXIT TO DOS");

fputs ("\nENTER YOUR SELECTION ",stdout);

36

switch (getche())
{
case '1’:

{

if(init_channels() == 0)

de_init();
break;
}

case '2’:

{
my_init_graph();
break;

}

case '3’:

{
show_setup();
break;

}

case '4’:

{
check_channels () ;
break;

}

case ’5':

{
save_setup();
break;

}

case '6’:

{
get_file_name();
break;

}

case '7T’:

{
get_data();
break;

}

case '8':

{
get_setup();
break;

}

case '9’:

{
de_init();
break;

}

/* out of memory, abort */

/+ EXIT TO DOS ROUTINE »/

37

default:
{
break;
}
}
}
} /#* main() »/

void interrupt new_ctl_C();

void interrupt new_ctl_break();
static void interrupt (#ctlc)();
static void interrupt (®ctlbrk)();

[PEEPEERERRR AR R RR R AR R R R R ARy /

/» INITIALIZATION CODE CALLED ONLY ONCE #/
static void datavg_init(void)

{

int k;

open_graph() ; /* open graphics */

MaxY = getmaxy(); /* get screen size */

if (MaxY < 200) /* setup menu bar position and size */
WIN_BOTTIOM = 5; /% CGA =/

else
WIN_BOTTOM = 10; /* EGA or better */

MENU_TOP = WIN_BOTTOM;
closegraph(); /* restore screen */

printer = stdprn;
Data_file_name[0] = ’\0’;
delay(0); /* calibrate delay routine #*/

sprintf(Version," DATAVG FOR THE IBM PC\nVersion %3.1f, %s",
VERNUM, __DATE__);

/* read box configuration into a global structure =/
get_box_configuration();

/* initialize some channel variables #/

for (k=1;k<=MAXCHAN; k++)

{
channels[k].name[0] = *\0’; /* clear name #*/
channels[k].scale = 0.0; /% unused channel »/
channels[k].zero = 0.0; /* no offset »/
channela[k].trigger = 0.0; /# no trigger =/
channels[k].type = *I’; /* input =/
channels[k].data = NULL; /#* clear data pointer */

}

/* insure unused windows will not plot »/
for (k=0; k<MAXWINDOWS ; k++)
vin_data[k].Xchan = -1;

38

}

/* Turn off CTRL-C and CTRL-BREAK checking */
Regs.h.ah = 0x33;

Rege.h.al = 0; /#* Get current flag »/
int86 (0x21,&Regs,kRegs) ;
Check = Regs.h.dl; /* Save flag so it can be restored */

Regs.h.ah = 0x33;

Regs.h.al = 1; /* Set flag #/

Regs.h.dl = 0; /* No Control-C checking »/
int86(0x21,&Regs,&Regs) ;

ctlc = getvect (0x23);

ctlbrk = getvect(Ox1b);
setvect (Ox1b,new_ctl_break);
setvect (0x23,new_ctl_C);

/* Initialize some other global data */
astrncpy(Test_ID,"DUMMY DUMMY DUMMY DUMMY DUMMY",sizeof(Test_ID));
plot_data_count = -1; /#* counter for points in plot buffers =/
/* datavg_init() =/

/‘ ok ok ook ok ok ok ok ok okok sk ok koK Ok ok ook e ok ok sk ok ko ok K ROk K ok ok ok sk ok ok ok dokok ko kok ok ok R Kok K */

/* This function de-installs the CTRL-BREAK trap and cleans up #/

/* before exiting the program. */
P T L

static void de_init(void)

{

}

{

closegraph() ;
restorecrtmode();
cirscr();

/* restore Control-Break status =/
Regs.h.ah = 0x33;

Regs.h.al = 01; /* Set flag */
Regs.h.dl = Check; /* To previous value */
int86(0x21,&Regs,&Regs) ;

setvect (Oxib,ctlbrk);

setvect (0x23,ctlc);

puts ("BYE");
exit (0);
/* de_init() =/

[FEERRRRRORR R KRR KRR R KRR Ky f

/#* This function gets the interface box configuration and fills in. */

/#* the box[] array. If the interface cannot auto-identify boards =/

/* a configuration file will be read. */
R L L

tatic void get_box_configuration(void)

int k;

int card_slot, max_chan;
unsigned int SEG;

char type;

char name[sizeof (box[0].board)];
FILE =cfg;

39

/% open configuration file »/
1£((cfg = fopen("\\DATAVG\\K500.cfg","r")) == NULL)

clrscr();
fputs("Conﬁguration file K500.CFG not found, Aborting\n',stderr);
exit(1);

}

/% read segment address from file and initialize the interface %/
fgets (BUFFER,sizeot (BUFFER) ,cfg);
sacanf (BUFFER, "%x",&SEG) ;
init_500(SEG); /* init hardware */
set_tiler(HS_COUHT,SEC_COUNT); /* set the counters */

/% read configuration from the file »/
for(k=1;k<=10;k++)
{
if (£gets (BUFFER,sizeof (BUFFER) ,cfg) == NULL)
break;

strtok (BUFFER,",");

strncpy (name ,BUFFER, sizeof (box[0] .board)) ;

sscanf (strtok(NULL,"\n"),"%d,%d,%c",&card_slot,kmax_chan ,ktype);
strcpy(box{card_slot] .board,name) ;

box[card_glot].card_slot = card_slot;
box[card_slot].channels = max_chan;
box[card_slot].type = type;
box[k].last_chan = ~1;

set_driver_ptr(card_slot); /% put driver pointer in box[] */
}
fclose(cfg);
} /% get_box_configuration() */

/* kAR ok oK Kok Kk ok ook o Kk ok Ok Rk kKRR Ok ok kR kR Kk kR R */

/% load driver pointers into the box structure. */
static void set_driver_ptr(int slot)

{

int i;

/* look up board name in master list =/
for(i=0;i<MAX_MODULES;i++)
if (strcmp(box[slot] .board,boards[i] .name) == 0)
break;

if (i == MAX_MODULES)
return; /* name not found =/

/#* get data about this board and place in box structure */
box[slot].driver = boarde[i].driver;
} /# set_driver.ptr() =/

40

{

[FERERORORR R RO R R R R AR R R R R Rk

/* SETUP PHASE =/

[FERRRRRRRR R R RR R R R SRR RO R ROy

/+* CHANNEL SETUP »/
e S L LI
/* Get data from user and place in channels control structures =/

tatic int init_channels(void)

int k, n, return_val = 1;
float val;

int chan;

char buf[64];

/# build a board list string for prompts */
strcpy(board_list,"Available boards are - \n\n Slot Name\n");
for (k=1;k<=MAX_SLOT; k++)

{
sprintf(buf,"\n %2d) ",x);
strcat(board_list,buf);
if(strlen(box[k].board))
{

strcat(board_list,box[k].board);

}

}

strcat(board_list,"\nPlease select by number 7 ");

clrser();
fflush(stdin);
fprintf(stdout,"\n\nEnter Test ID.\n Current value = (%s8)\n",Test_ID);

fgets(buf,sizeof (buf),stdin);
strtok(buf,"\r\n");
strupr (buf) ;

if(strlen(buf) > 1)
strcpy(Test_ID,buf);

if (num_chan == Q)

{
num_chan = ~-1;
ns=-1;

}

else

n = nus_chan;

/% get info for all channels */
while(1)
{
clrscr();
fputs ("Enter channel data. Defaults are shown in ().\n\n",stderr);

/% insist on a valid channel number */
while(1)
{
fflush(stdin);

fprintf (stdout,"\nCHANNEL # 0 - %d OR DONE (%d) ? ",MAXCHAN,num_chan+1);

strupr(fgets (BUFFER, sizeof (BUFFER) ,stdin));

41

if (strncmp (BUFFER, "DONE" ,4) == 0)
goto status;

if (sscanf (BUFFER,"%d" ,&n) == 1)

{
if((n <= MAXCHAN) & (n >= 0))
break; /% valid channel selected */
}
else
{
n = num_chan+1; /#* take default channel number */
if(n <= MAXCHAN) /#* test for valid channel =/
break;
printf("\nSelect a lower channel number or DONE\n") ;
}
}

if (num_chan < n)
num_chan = n;

if(n == 0)

{
fputs ("\nCHANNEL O IS ALWAYS TIME.\n",stdout);
strcpy(channels[0] .name,"TIME") ;

channels[0].s8cale = 1.0; /% no scaling on time */
channels[0].card_slot = -1;
channels[0].zero = 1.0; /* first point is always zero for TIME #/
channels[0].type = 'X’; /# type X is time »/

} /en==0x»/

else

{

/* get channel data name */
fflush(stdin);

fprintf(stdout,"TITLE FOR CHANNEL #%d (%s) 7 ",
n,channels[n].name);

strupr(fgets (BUFFER,sizeot (BUFFER) ,stdin));
strtok (BUFFER,"\r\n");

if (BUFFER[0] != ’\n’)
{
strncpy(channels[n] .name,BUFFER,sizeof (channels[n] .name));
}
} /en!=0%/

/* get channel scaling info »/
if(n != 0)
{
sprintf (BUFFER,"UNITS PER VOLT FOR CHANEEL %d (%g) 7 ",
n,channels[n].scale);

42

val = get_¢%loat (BUFFER,channels(n].scale);
channeis{i.scale = val;
} /#n =02/

/* Get sample interval info #/
sprintf (BUFFER,"SAVPLE INTERVAL IN SCALED UNITS FOR CHANNEL %d (%g) 7 ",
r.,channele[n].trigger);

val = get_float(BUFFER,channels{n].trigger);
channels[n}.trigger = fabs(val);

/* Get offsct info */
it(n != 0)
{
fprintf (stdout,"IS FIRST POINT THE ZERO FOR %d (Y or N) (Y) 7 ",n);
fflush(stdin);
strv;, (fgets (BUFFER,sizeof (BUFFER) ,s8tdin));
strtok (BUFFER, "\r\n");

if (BUFFER[0] != '\n’)
channels[n] .zero = (BUFFER[0] == ’Y’) ? 1.0 : 0.0;

else
channels[n] .zero = 1.0;

/% get data about this board and place in channels structure =/
if(channels{n].card_slot > 0)
{ /# chaiinel has been defined before */
printf ("Curirent board/channel = %s, %d, Any changes (Y or N) 7
box[channela[n].card_slot]).board, channels[n].chan);

)

fflush(stdin);
strupr (fgets (BUFFER,sizeof (BUFFER) ,stdin));
strtok (BUFFER,"\r\n");

if (BUFFER[0] == 'Y’)

{ /* changes desired */
get_valid_board(board_list, &k, &chan);
channels[n].card_slot = box[k].card_slot;
channels[n].type = box[k].type;
channels[n] .driver = box[k].driver;
channelsfn].chan = chan;

}

}

else

{ /* channel has not beeu defined */
get_valid_board(board_list, &k, &chan);
channels[n] .card_slot = box[k].card_siot;
channels[n].type = box[k].type;
channels[n] .driver = box({k}.driver;
channels[n].chan = chan;

} /# card_slot [D %/

/% setup if this is a computed channel */
if(channels(nj.type == ’'C")
channels[n] .driver (cirar,,~1,n);
} /* n!=0=*/

43

/% allocate memory only if needed, if redoing a setup buffers exist */
if (channels[n] .data == NULL)

¢ if ((channels[n] .data = farcalloc(BUFSIZE,sizeof (float))) == NULL)
{
fputs ("Out of memory for data buffers, Aborting setup.\n",stderr);
delay (10000) ; /* wait so user can read message */
return_val = 0;
break;
}
}
} /s data loop, gets data for all ciannels */

/* exit point for this function 74

status:

cirscr();

gen_shov_setup(stderr);

fpute ("Enter to continue" ,s8tderr);

fflush(stdin);

getchQ);

return(return_val);
} /% init_channels() */

/* *****##*#****#*#**#********##*#***#****#****#******t******t******** */

/* SAVE SETUP DATA =/

/% Setup file first line is the test ID. #/

/# The second line contains the number of channels. */

/* The third line contains the number of windows. #/

/# Lines four through MAXCHAN + three are the channel data. */

/# Computed channels insert additional lines. */

/# The last four lines contain the window data. */

/‘ ****“i**#*###***#*#*#t*‘*********‘*******#*#**#***‘***##i********* ‘/

static int save_setup(void)

{
while(1)
{
fflush(stdin);
fputs("\n\nEnter setup file name. 7 ",stdout);
strupr(fgets (BUFFER, sizeof (BUFFER) ,stdin));
strtok(BUFFER, "\r\n");
validate_file_name (BUFFER);
if (etrlen(BUFFER)) /= insist on a file name */
{
if((data_file = fopen(BUFFER,"I")) == NULL)
{
fprintf(stderr,"Unable to open setup file %e.\n",BUFFER);
fputs("Disk must be full\n",stderr);
delay(10000); /* wait so use can read message */
return(0);
}
else
break;
}
}

44

write_setup();
fclose(data_file);
return(1);

} /# savesetup() */

/* oo o ko ok ok ol ok e ok KOk 2 o ook Ok Sk ok R ok ok ok ok oKk ok kR ok kR Kk Rk K ‘/

/* Write setup data to a file. #/

/#* Setup file first line is the test ID. =/

/* The second line contains the number of channels. */

/#* The third line contains the number of windows. =/

/#* Lines four and onward are the channel data. s/

/#* The last four lines contain the window data. »/
P T

static veid write_setup(void)
{
int k, column;
char name[sizeof (box[0].board)];

fprintf(data_file," %s\n",Test_ID);
fprintf(data_file,"%d\n%d\n",num_chan,plot_windows);

/* channel data »/
for (column=0,k=0; k<=MAXCHAN ; k++)
{

name[0] = *\0’; /* clear board name */

if (channelsf(k].scale != 0.0)

{
column++; /* next output column #*/
if(k = 0) /# time channel does not have a board name */
{
atrcpy (name,box[channels{k].card_slot].board);
}
}

fprintf(data_file,"%g, %g, %g, %8s, %d, %c, \"%s\", %d\n",
channels[k].scale,
channels[k].trigger,
channela(k].zero,
name,
channels[k].chan,
channels[k].type,
channele[k] .name,
channela[k].scale != 07 column : 0);

/* save computed channel setup data »/
if(channels[k].card_slot > 10)
channels (k] .driver (channels[k].chan,-2,0);

/* window data »/

for (k=0;k<4;k++)

{

fprintf (data_file,"%d, %d, %d, %d, %d, %d, %g, %g, %g, %g\n",

win_datalk].Xchan,
win_data[k].Ychan,
win_data[k].SXmin,
win_datalk].SXmax,
win_datal[k].SYmin,
vin_datalk].SYmax,
win_data[k].UXmin,
win_data[k].UXmax,
win_datalk].UYmin,
win_datalk].UYmax);

}
} /* writesetup() */

[# FREERRRRREERRRR R EEERR R R R R,y f
/* RECALL SETUP DATA »/

/* Setup file first line is the test ID. */

/* The second line contains the number of channels. */

/* The third line contains the number of windows. */

/* Lines four through MAXCHAN + three are the channel data. */

/* The last four lines contain the window data. */
P ALY

static void get_setup(void)
{

int slot, k, j;

char *ptr;

char name[8];

fpos_t Pos, NewPos;

clrscr();

vhile(1)
{
fflush(stdin);
fputs ("\n\nEnter setup file name.",stderr);
fputs ("\nBlank entry to return to main menu ? ",stderr);
strupr (fgets (BUFFER,sizeof (BUFFER),stdin));

if(strlen(BUFFER) < 2)
return;

strtok (BUFFER, "\r\n"};
if((data_file = fopen(BUFFER,"r")) != NULL)

break;
}

/* determine length of setup file so we do not read too much or little. */
k=0;
while(fgets (BUFFER,sizeof (BUFFER) ,data_file))
k++;

k -= 4; /* total lines including header */

46

rewind(data_file);

/» find position of window data in file »/
for(;k;k--)
fgete (BUFFER,sizeof (BUFFER) ,data_file);

fgetpos(data_file,&Pos);
revind(data_file);

/* get test ID »/
fgets (BUFFER,8izeof (BUFFER) ,data_file);
strtok (BUFFER,"\r\n");
strncpy(Test_ID,BUFFER,sizeot (Test_ID));

/# get channel and window counts #/
fscanf(data_file,"¥%d\n",&num_chan);
facanf (data_file,"%d\n",&plot_windows);

/# read data for all channels and fill in structures */
for (k=0 ; k<=MAXCHAN; k++)
{
if (fgets(BUFFER,sizeof(BUFFER) ,data_file) == NULL)
{
for (k=0;k<10;k++)
puts("\007");

puts(" Unexpected end of setup file encountered");
puts(" Aborting RECALL SETUP operation \007");

delay(5000);
return;

}

/# channel name may be quote delimited, remove the trailing quote if so */
if((ptr = strrchr(BUFFER,’\"’)) != NULL)
{
sptr = '\0’; /* terminate string at last quote */
ptr = strrchr (BUFFER, ’\"’)+1; /* find first quote »/
}

sscanf (strtok(BUFFER,","),"%£" ,&channels [k] .scale);
sscanf (strtok(NULL,","),"%f" ,&channels[k] .trigger);
sscanf (strtok(NULL,","),"%£" ,&channels (k] .zero);
strcpy(name,strtok (NULL,",")+1); /* get board name */
sscanf (strtok(NULL,","),"%d",&channels[k] .chan);

sscanf (strtok(NULL,",")+1,"%c" ,kchannels [k].type) ;

if(ptr != NULL)
strncpy (channels [k] .name,ptr,sizeof (channels[k] .name))i

else

strncpy (channels [k] .name,strtok(NULL,",\0")+1,8izeof (channels [k] .name));

47

if (channels[k].scale != 0.0)
{

/% look up board name in box list to find slot number %/
if(k 1= 0)
{
for(slot=1;8lot<=MAX_SLOT;slot++)

{
if ((strlen(name) > 0) && (strcmp(box[slot].board,name) == 0))

{
break; /* jump out of search loop */
}
}

if(slot == MAX_SLOT)
{

puts("Invalid setup file, this box is missing a required board");
printf("Missing board is %s\n",name);

delay(10000) ;
exit(1); : /* name not found */

}

/* set driver pointers & other data */
channels[k] .card_slot = slot;
channels[k] .driver = box[slot].driver;

}

/* allocate memory only if needed */
if ((channels[k].data = farcalloc(BUFSIZE,sizeof(float))) == NULL)
{
fputs("Out of memory for data buffers, Aborting setup.\n",stderr);

delay(10000); /* wait so user can read message */
exit(1);
}
}

/#* restore computed channel setup data */
if(channels[k].card_slot > 10)
channels[k].driver(channels{k].chan,-3,0);

fgetpos(data_file,&NewPos);
if (NewPos == Pgog)
break;

/* load window data =/
rewind(data_file);
fsetpos(data_file,&Pos);

48

for (k=0;k<4; k++)
{
fgets(BUFFEB,sizeof(BUFFER),data_file);
j = sscanf (BUFFER,"4d, %d, %d, %d, %d, %d, %f, %, 4f, 4f,\n",
gwin_datal[k] .Xchan,
gwin_datalk].Ychan,
gwin_data[k].SXmin,
guin_data[k].SXmax,
gwin_data[k].SYmin,
gwin_data[k].SYmax,
gwin_data[k].UXmin,
gwin_data[k].UXmax,
gwin_data[k] .UYmin,
awin_data[k].U¥Ymax);

if((j '= 10) | (j == EOF))
{
for(slot=0;s8lot<10;s8lot++)
puts("\007");

printf(" Invalid windov %d data encountered\n" k) ;
puts(" Aborting RECALL SETUP operation \007'");

delay(5000);
return;
}
}
/* adapt screen position to resolution */
j = (((WIN_TOP - WIN_BOTTOM) / 2) + WIN_BOTTOM);

switch(plot_windows)

{
case 1:
{
win_data[0].SYmin = WIN_BOTTOM;
break;
}
case 2:
{
win_data[0].SYmin = j;
win_data[1].SYmax = j;
vin_data[1].SYmin = WIN_BOTTOM;
break;
}
case 3:
case 4:
{
win_dataf{0].SYmin = j;
win_data[1].SYmin = j;
win_data[2].SYmax = j;
win_data[2].SYmin = WIN_BOTTOM;
vin_data[3].SYmax = j;
win_data[3].SYmin = WIN_BOTTOM;
break;
}
}
fclose(data_file);

} /* getsetup() */

/. RRRRERRERRRRERRERRRRRRRRRERRPR AR RRE kR R Rk kR Rk ok h kR ok ko kk Xk »/

/= GRAPHICS SETUP »/

/* (IR L ST RSS2SR SRR 220 S R E2 22 2 2222 222 2 A2 2SRttt a2t ttt] s/

/# initialize the screen =/
static void my_init_graph(void)

{

int i;

int next_window = 1;

vin_data(0] .SXmax = 0;

while(1)

{

/# window counter */

/% used for error detection */

fprintf (stderr,"\n\nCurrent window count = %d\n",plot_windous);
sprintf (BUFFER, "Enter number of windows to be displayed 1-4 (%d) 7 "
plot_windovs);

plot_windows = get_int (BUFFER,plot_windows);

svitch(plot_windows)

{

case 1:

{

/% only oae window */

win_data[0] .SXain
vin_data[0] .SXmax
vin_data[0].SYmin
win_data[0] .SYmax
break;

case 2:

{

/* top window */

win_data[0] .SXain
win_data[0] .SXmax
win_data[0] .SYmin
win_data[0] .SYmax

/#* bottom window »/

win_data[1] .SXmin
win_data[1] .SXmax
win_data{1].SYmin
win_data[1] .SYmax
break;

case 3:
case 4:

{

/* top left window »/

50

vin_dataf0].SXmin
vin_data[0].SXmax
vin_data[0].SYmin
win_data[0].SYmax

WIN_LEFT;
WIN_RIGHT;
WIN_BOTTOM;
WIN_TOP;

WIN_LEFT;

WIN_RIGHT;

(((WIN_TOP - WIN_BOTTOM) / 2) + WIN_BOTTOM);
WIN_TOP;

WIN_LEFT;

WIN_RIGHT;

WIN_BOTTOM;

(((WIN_TOP ~ WIN_BOTTOM) / 2) + WIN_BOTTOM);

WIN_LEFT;

(((WIN_RIGHT - WIN_LEFT) / 2) + WIN_LEFT);
(((WIN_TOP - WIN_BOTTOM) / 2) + WIN_BOTTOM);
WIN_TOP;

/# top right window #/

win_data[1] .SXmin = (((WIN_RIGHT - WIN_LEFT) / 2) + WIN_LEFT);
win_data[1] .SXmax = WIN_RIGHT;
win_data(1] .SYmin = (((WIN_TOP - WIN_BOTTOM) / 2) + WIN_BOTTOM);
win_data[1].SYmax = WIN_TOP;

/* bottom left window */
win_data[2] .SXmin = WIN_LEFT;
win_data[2] .SXmax = (((WIN_RIGHT - WIN_LEFT) / 2) + WIN_LEFT);
win_data[2].SYmin = WIN_BOTTOM;
win_data[2].SYmax = (((WIN_TOP - WIN_BOTTOM) / 2) + WIN_BOTTOM);

/* bottom right window */
win_data[3] .SXmin = (((WIN_RIGHT - WIN_LEFT) / 2) + WIN_LEFT);
win_data[3) .SXmax = WIN_RIGHT;
win_data[3].SYmin = WIN_BOTTOM;
win_data[3] .SYmax = (((WIN_TOP - WIN_BOTTOM) / 2) + WIN_BOTTOM);

break;
}
default:
{
puts("Invalid window count");
break;
}
}
if(win_data[0] .SXmax '= 0)
break;
}
while(1) /#* do windows until user finished */
{
if (plot_windows > 1)
{
sprintf (BUFFER, "Setup which window 1-%d (%d) -1 to end 7 ",
plot_windows, next_window);
i= get_int(BUFFER,next_window);
if(i == -1)
break;
if((i >= 1) & (i <= plot_windows))
{
setup_window(i-1);
}
next_window = i+l;
}
else
{
setup_window(0);
next_window++;
}

/* see if we are done */
if(next_window > plot_windows)
{
fputs("Finished Y or N (N) ? ",stdout);
fflush(atdin);

51

if (toupper(getche()) == 'Y?)

{
break;
}
puts("");
}
}

} /#* my_init_graph() =/

/* o s e o o o o o o e o o o o o e ke o ol ke o o e o o o ok o koo s ok sk s ok sk o ok s ok ke sk ok ok ok ok ok ok ok o ok ok ok */

/* setup a window scaled as the user desires #»/
static void setup_window(int window)
{

float min, max;

int chan;

/* Get X-Axis channel for this window */
sprintf (BUFFER,
"Enter channel to plot on window %d X-Axis (%d) or (-1 = nome) ? ",
window+1,win_data[window].Xchan);

chan = get_int (BUFFER,win_datal[window] .Xchan);
win_datalwindow].Xchan = chan;

if(chan == -1)
return;

/* Get Y-Axis channel for this window */
sprintf (BUFFER,"Enter channel to plot on window %d Y-Axis (%d) 7 ",
window+1,win_data[window].Ychan);

chan = get_int (BUFFER,win_datalwindow].Ychan);
win_datalwindow] .Ychan = chan;

/* Get X:-Axis minimum value to plot %/
sprintf (BUFFER,"Enter X-Axis minimum value (%g) ? ",
vin_data[window] .UXmin);

min = get_float(BUFFER,win_data[window].UXmin);

/% Get X-Axis maximum value to plot */
sprintf (BUFFER,"Enter X~Axis maximum value (Y%g) 7 ",
win_data[window].UXmax) ;

max = get_float(BUFFER,vin_data[window].UXmax);

/* store user data in proper order, swap if needed */
if (min <= max)
{
win_data{window].UXmin = min;
win_datalwindow].UXmax = max;

}

else

{
vwin_datal[windov].UXmin = max;
vin_data[window].UXmax = min;

}

52

/+ Get Y-Axis minimum value to plot */
sprintf (BUFFER,"Enter Y-Axis minimum value (%g) 7 ",
win_data[window] .UYmin);

min = get_float(BUFFE‘.R.vin_data[vindov] .UYmin);

/% Get Y-Axis maximum value to plot */
sprintf (BUFFER,"Enter Y-Axis maximum value (%g) ? ",
win_data[window] .UYmax);

max = get_float(BUFFEB.,vin__data[vindow] .UYmax) ;

/# store user data in proper order, swap if needed */
if (min <= max)
{
win_datalwindow] .UYmin = min;
vin_data[window] .UYmax = max;

}

else

{
win_datalwindow].UYmin = max;
win_data[window] .UYmax = min;

}

} /% setup-window() */

/* *uu*nu*n*un**uu*n*nnn*ununuu*un*uu*nnu ./

/% PRINT CHAN DATA »/
static void show_setup(void)
{

gen_show_setup(printer);
fputc(’\f’,printer);
} /#* show.setup() */

/,. ******************#**t***********************************t**#*** ‘/

/* general case show setup function */
static void gen_shov_setup(FILE *dev)
{

int k;

ftime(kstart_time); /* get time stamp */

fprintf(dev,"\r\n\t Test Name = %e\r\n\n",Test_ID);

fprintf(dev,"\t %s\r\n",asct ime(localtime (kstart_time.time)))H

fputs("\t CHAN * TITLE UNITS/VOLT DELTA ZERO\r\n\n",
dev) ;

for (k=0 ; k<=MAXCHAN; k++)

{
if(channels[k].scale != 0.0)
{ .
fprintf(dev,"\t %ad %17s %10.4f %10.4f %d\r\n", ‘ ’
k, channels[k].name, channels[k].scale,
channels[k].trigger, (int)channels[k]. zero);
}
}

} /+ gen_show_setup */

53

/* LR A2 AR 22t RS Rt SRS St R RS RS RS R RS 22D 22] s/

/= CHECKS IF CHANS ARE OK #»/
/# This function reads and displays data from each active channel. s/
/% Data is shown in VOLTS for ease in comparison to machine indicators #/
/* Temperature channels will display in unusual units. */
static void check_channels(void)

{
int 1;
puts("\n\n");

for(1=1;1<=MAXCHAN;1++)

{
if (channels[1] .scale = 0.0)
{
while(1)
{
read_data(num_chan) ; /* read the channels */
D{1] += channels([1].zero; /% undo the scaling */
D[1] /= channels[l].scale;
printf("\n%s\n",channels[1] .name);
printf ("FOR CHAN %d VOLTAGE IS %f\n",1,D[1]1);
printf(" CHANGE CHAN %d, PRESS RETURN ",1);
fflush(stdin);
strupr(gets (BUFFER));
read_data(num_chan); /% read the channels */
D[1] += channels[1].zero; /* undo the scaling */
D[i] /= channels[1].scale;
printf ("NEW READIRG FOR %d IS %f\n",1,D[11);
fputs ("PRESS RETURN OR A(AGAIN) ",stdout);
fflush(stdin);
strupr (gets (BUFFER)) ;
if(strcmp(BUFFER,"A"))
break;
}
}
}

} /# check.channels() */

/. A ok o o ok Ko ok ok Rk AR R R R R Rk ok ok ook Rk ok R ok ok R kok kK ‘/

/# Check file names and remove characters DOS doesn’t like */

R Ty
void validate_file_name(char #name)
{

char #ptr = name;

char sptr1l = "#,$;<>7=";

vhile(1) /* strip out control characters */
{
if (sptr == NULL)
break;

54

it ((eptr <= '2’) & (sptr > ' ’))

ptrt;
else
{
#(ptr) = ’\0’;
strcat(name, (ptr+1));
}
}
while(1) /= strip out other invalid punctuation characters */
{
if (#ptrl == NULL)

break;
ptr = strchr(name,*ptri++);

if(ptr t= NULL)
{
*ptr = ’\0’;
strcat (name,++ptr);
}
}

/* truncate name field if needed */
if ((ptr = strrchr(name,’\\’)) == NULL)

ptr = strchr(name,’:’); /* no sub-directory on path */
if(ptr == NULL) /#* path or drive not present */
ptr = name; .
else
ptr++;

if((ptrl = strchr(name,’.’)) != NULL) /#* type field present */
{
if((ptrt - ptr) > 8)
{
*(ptr+8) = '\0’;
strcat(name,ptri);

}

else
{
if(strlen(ptr) > 8)
*(ptr+8) = *\0’;
}
}

else
{
if(strlen(ptr) > 8)
*(ptr+8) = ’\0’;
}

/* truncate type field if needed »/
if ((ptr = strchr(name,’.’)) != NULL)
if(strlen(ptr) > 3)
#(ptr+4) = ’\0’;

} /# validate_file.name() */

/* nunnnnnt*un#ununt*u*#tn*#nu#u*uuuuuuuu */

/+ RUN PHASE #/
/% B bt e Y
/* GET FILE NAME #/

static void get_file_name(void)

{
/+ SET FILE SEQUENCE NUMBER TO ZERO =/

SEQUENCE = 0;

fflush(stdin);
fputs("\n\nENTER FILE NAME FOR DATA STORAGE ? ",stdout);

/* make sure we get a file name »/
while(1)
{

strupr(fgets(Data_file_name,sizeof (Data_file_name), stdin));
strtok(Data_file_name,".\r\n");

validate_file_name(Data_file_name);

if (strlen(Data_file_name) > 0)
break;
}

/* make sure we get a number */
while(1)
{
fflush(stdin);
fputs ("HOW MANY DATA POINTS BEFORE CLOSING OUTPUT FILE 7 ", stdout);

if (fscanf(stdin,"%d",kPoints_per_file) == 1)
if (Points_per_file > 0)
break;
}
} /» getfile_name() */

R e L L L L)
/* menu bar text »/

/* there must be 20 strings defined. The first 10 print on the */

/#* bottom of the screen. The next 10 print above them. */
R T R e T L L e L LW

char far *titles[20] =

{
"Take Pt", /#* F1 take a point =/
::Reset'H:: , /* F2 reset window to full scales */
"§OOI in , /* F3 zoom and center a window #/
“Doo, out“, /* F4 shrink and center a window */
etm? W, /#* F5 redefine a window completely */
"Clr Win", /#* F6 clear data from a window »/
::glr :}1":‘ /* F7 clear data from all windows=/
"E:; Tlle"' /% F8 start a new file »/
o est", /* F9 end the test */
, /* F10 =/
N "Fi", "F2", "F3", "F4", WFEM, MFEM, UFT", “FgM, "F9, "F10"
’

56

/‘ hkhkkkkkkk ki k hkkk kb kpkkkkkkkkkk kR kR kokk ko kkkk kR Rk */

/% This is the main acquisition loop. START DATA RECORDING #=/
static void get_data(void)

{
. int k, j;
if(strlen(Data_file_name) == 0) /* Be sure we have a file »/
. get_file_nare();
if(open_data_file() == 0) /+* make the first data file »/
return;
bave_time = 0.0; /#* time offset, holds starting time */
rel_time = 0.0; /* time from start of program =/
plot_data_count = -1; /% counter for points in plot buffers &/

Points_this_file = 0;

/+ CLEAR DATA ARRAY »/
for (j=0; j <*MAXCHAN; j++)
{
D[j1=0.0;
}

/* WAIT FOR RETURN BEFORE STARTING #/
fputs("\n\rPress enter to start test",stderr);

fflush(stdin);
fgets (BUFFER,sj zeof (BUFFER) ,stdin);

/# Draw windows &/
redrav_windows(0); /* draw windo> s but no plot */

/* Write data “ e header, setup data in first file. #/
fprintf(data_file,"%s\n",Version);

write_setup();

/* time stamp the file »/
ftime(kstart_time);

fprintf(data_file,"\n%s'n", asctime(localtime(&start_time.time)));
/~ put channel names in the file »/
f0r (k=0 ; k<=num_chan; k++)
if(channels[k].scale != 0.0)
fprintf(data_file," \"%s\"",channels[k].name);

nevw_line();

/#* LOAD ZEROS =/

read_data(num_chan); /# initial data values */
. for(k=1;k<=num_chan;k++) /#* place zeros in channel structures */
if(channels[k].zero != 0.0) /% non-zero is the offset flag »/

/% remove previous offset and store the new one #/
channels[k].zero = D[k] + channels[k].zero;

%]
-

/#* record initial offsets in file &/
write_data(0); /#» save current time offset #/

/+# close file containing setup data (name.HDR) */
fclose(data_tile);

/# real data starts in file name.DAT »/
if (open_data_file() == 0) /* make the data file &/

return;

/+ initialize data reporting and plots */
base_time = rel_time; /» establish time offset »/

read_data(num_chan) ; /# read initial values and remove offsets »/

/» place in plot buffers and file s/
write_data(0);

Total_points = (long)plot_data_count;

/+ COLLECT DATA /
while(1) /#* do until user requests stop */
{
read_data(num_chan); /* get data from each channel »/

/» CHECK FOR LARGE ENOUGH CHANGE /
for (k=0 ; k<=num_chan;k++)
{
if(channels[k].scale != 0.0) /* test only active channels #/
{
if ((fabs(D[k] - channels[k].datalplot_data_countl))
>= channels[k].trigger)
{
write_data(l); /* write all data and plot */
break; /#% no need to test further »/
}
¥

}

/+ TEST KEYBOARD INTERRUPT STATUS »/
if (proc_function_key(test_kb()) == 1)
return;
} /#* end of data collection loop »/
} /+ getdata() =/

/. Prrrewmprrpeereeerrr e T PR T TTT LA TR AT A LSS L L LA R SR L R R Ll LAl Lt i ./

/» This function processes function keys for get.data() »/
/# Returns 1 if program should exit to main menu, error or end of test s/
static int proc_function_key(int key)
{
svitch(key)
{
case 0: /% no function keys pressed */
{
break;
}

58

case 1: /* F1 write a data point s/

{
write_data(1);
break;
}
case 2: /# F2 Redo window */
{
redo_vindovw(get_window_number());
break;
}
case 3: /% F3 zoom in window &/
{
zoom_in_vwindow(get_window_number());
break;
}
case 4: /% F4 Zoom out window #*/
{
zoom_out_vindow(get_window_number());
break;
}
case 5: /%« F5 Redefine window »/
{
def_window(get_window_number ()); /#* define the window to use »/
break;
}
case 6: /#* F6 Clear data from a window */
{
clr_window(get_windov_number());
break;
}
case 7: /* F7 Clear data from all windows =/
{
closegraph(); /* reset screen to text mode and clear */
clrscr();
clr_window(-1); /#* clear all active windows */
break;
}
case 8: /# F8 Start new file #/
{
closegraph();
clrscr();

fprintf(stdout,"\tTOTAL POINTS %X1d\n",Total_points);
fclose(data_tfile);
get_file_name();

SEQUENCE = 1; /#* no header for this name »/
if (open_data_file() == 0) /#* make the data file »/
return(1); /* error =/

N
o

redrav_windovs(l); /# redraw and replot #/
Points_this_file = 0;
break;

}

case 9: /* F9 End test »/

closegraph();

clrscer();

fprintf (stdout,"\tTOTAL POINTS %1d\n",Total_points) ;

fpute ("\nDo you really wvant to end this test (Y or H) 7 ",stderr);

if (toupper (getche()) != *Y?)

{
redraw_vindows (1)
break;
}
fclose(data_file); /#% close file s/
Data_file_name[0] = '\0’; /% dump old file name »/
return(1); . /* back to main menu */
}
default:
break;
} /* end of switch */
return(0);

} /# proc.function key() */

/s FTTTpTrTerremrerppepeprersr et T TETTTEE DL AL L LLELL A bbb bbbl V4
/+ get a valid window number. If only one window is in use it is */
/* returned as default. »/

static int get_vindov_nu-ber(void)

{

int i, j, window;

/* reset screen to text mode and clear »/
closegraph();
clrscr();

/% check for one window in use */
if (plot_windows == 1)
return(0);

/* check for multi-window screen with only one in use */
for(i=0,j=0;i<plot_windows;i++)

{
if(win_data[i] .Xchan != -1)
j++, window=i;

if (j==1)
return{window) ;

<
<D

/+ Multiple windows in use, get the desired one from user %/
while(1)
{

f£lush(stdin);

fprintf (stderr," Which window (1 - %1d) ? ",plot_windows);

if (scanf ("%d",&window) == 1)
if ((window >= 1) & (window <= plot_vindovs))
break;

return(--window) ;
} /* get.window_number() */

/‘ *#*#*i#****##*##*t*#**##tt#‘*###**#****#*#****##*t##**t*#*###*#* */

/+ TAKE A READING AND RETURN IN THE D[] ARRAY »/
static void read_data(int num_chan)
{
int k, j;

/# read from each channel and scale readings into user units */
p[0] = timecode();

/* clear accumulators =/
for (k=1;k<=num_chan;k++)
D[x] = 0.0;

/% Read and average all active channels #/
for (j=0; j<Num_to_average; j++)

{
for (k=1;k<=num_chan;k++) /* scan all channels */
{
if (channels[k].scale != 0.0) /# process only if in use */
{

/#* get raw reading in volts and divide by Num_to_average then accumulate */
D[k] += (channels[k].driver(channels{k].chan,
channels[k].card_slot, 1)
/ (float)Num_to_average);

/% complete scaling and offsetting »/
for (k=1 ;k<»num_chan; k++)
{
D[k] *= channels[k].scale;
D[x] -= channels[k].zero;
}

} /# read.data() =/

61

P T e T L L L L
/# return a time in seconds from unsigned millisecond and seconds counts. */
/% adjust for rollover in raw_time at 65536 seconds. &/

/+ update global time value (rel_time). »/
T)

static float timecode(void)

{
static unsigned long seconds; /#* running seconds counter #/
static unsigned long carry_time; /» working buffer =/
static unsigned long rollover_detect; /# previous seconds s/
static unsigned int ms; /* milliseconds at this reading */

/# read the timer */
read_timer(&Ktime); /#* get time from counter »/

/* compute and save time in seconds and milliseconds »/
ms = MS_COUNT - Ktime.low; /* MS_COUNT is a defined constant s/

seconds = (long) (SEC_COUNT - Ktime.high);

if(seconds < rollover_detect)
carry_time += SEC_COUNT; /#* SEC_COUNT is a defined constant */

/% save current time reading for rollover detection #/
rollover_detect = geconds;

rel_time = ((((double)(seconds + carry_time)) + (((double)ms) / 1000.0))
~ base_time);

/* return value will round off at high values but is used only for triggering */
return((float)rel_time);

} /# timecode() »/

/. FREEEEERERERERERRERERERRKEFREE AR EE KRR RR KRR SRS R AR Rk kR kKRR Rk k¥ ‘/

/* Write data to the file. s/
/= If flag is set this a new data point to be stored in the next buffer =/
/* location. Otherwise it is an initial point. Place the point in »/
/#* the file in any case »/
static void write_data(int flag)
{
int k;
int first = 1;

if (flag)

{
plot_data_count++; /#* set storage pointer for this event »/
plot_data_count %= BUFSIZE;

}

if (channels[0] .acale != 0.0)

{
fprintf(data_file,"%12.31f",rel_time); /% write time stamp »/
first = 0;

}

62

for (k=1 ; k<=num_chan ; k++)

{ /* put data in a file »/
if (channels[k] .scale != 0.0) /% write data value */
{
if(first)
{
fprintf(data_file,"%12.6g" ,DIx1); /* first column /
first = 0;
}
else
{
fprintf(data_file,”, %12.6g",D[x]); /#* not first column */
}
}
}
nevw_line();
Total_points++; /* iest for end of this file »/
Points_this_file++;

if (Points_this_file >= Points_per_file)
{
fclose(data_file);

if (open_data_file() == 0)
return; /* Open Error */

Points_this_file = 0;
}

/* store data in buffer */
for (k=0 ; k<=num_chan ; k++)

{
if (channels[k].scale != 0.0)
{
channels[k].datalplot_data_count] = D[k];
}
}
plot_data(flag); /* plot the current data points */

} /* write_data() »/

/* ERkERRRRERRRRE KRR ./

/+* GRAPHICS ROUTINES =/
[4 BEREERERRERERERRE o)
/#* Plot the data on the screen */
/» If flag is non-zero the point is to be plotted */
static void plot_data(int flag)
{
int window;
int end = plot_data_count;

for (vindow=0;window<plot_windows;window++)
{
/% do not select inactive windows */
if(win_datal[window].Xchan != -1)

{

select_window(window);

if (flag)
{ /% draw line to this point */
draw_line_to(channels[win_data[window].Xchan].datalend],
channels[win_data[window].Ychan] .data(end]);

}

else

{ /* set origin for this plot »/
move_to(channels[wvin_datal[window].Xchan].data[0],

channels[vin_data[window].Ychan].data[0]);
}
}
}
} /= plot_data() */

/‘ s sk doR R gk ok kR ok kR ok ok ok ok ok R ok R sk ok ok ok ok Rk kR ok kR ok R Rk R kR ok ko k ok Rk ok ok ok */

/* Define a window with new axes and plot the data buffer in it =/
/* Axes are scaled to full scale for the channels in this window. */
/# The screen is completely redrawn »/
static void def_window(int window)
{
setup_window(window) ;
redrav_windows (1) ; /* redraw and replot */

} /% def_window() */

R Ty
/* Redo a window with new axes and plot the data buffer in it »/

/* Axes are scaled to full scale for the channels in this window. */

/% The screen is completely redrawn */ :
i L T Ay

static void redo_window(int window)

{
float X, Y;

/* absolute value of full scale for this channel */
/# scale is in units per volt. *10.0 compensates for 10V full scale »/
/* input range */

X = fabs(channels{win_datal[window].Xchan].scale * 10.0);
Y = fabs(channels{win_datalwindow].Ychan).scale * 10.0);

/* put new plot limits in window control structure */
win_datalwindow] .UXmin = -~X; /* lower left corner =/
win_datalwindow] .UYmin = -Y;

vin_datalwindow] .UXmax = X; /* upper right corner */
¥win_data[window].UYmax = Y;

redrav_windows (1) ; /% redraw and replot */
} /* redo_window() »/

[FEERERRRR ok R KRR R R kR KRR K KAk KKk Rk R KR R KRR o ok R %/

/* Zoom window in. The window is magnified by Zoom _Scale and the */

/% last data point is centered. The screen is completely redrawn */
e S L T T)

gtatic void zoom_in_window(int window)

{
zoom(window, Zoom_Scale);
redraw_windows (1) ; /* redraw and replot »/

64

} /¢ zoom.n_window() =/

[FERRRR RO R R R KRR R R AR K

/* Zoom window out. The window is demagnified by Zoom_Scale and the */
/* last data point is centered. The screen is completely redrawn »/
A L Ty

static void zoom_out_window(int window)
{

zoom(window, 1.0 / Zoom_Scale);

redrav_windows(1); /* redraw and replot »/
} /# zoom_out_window() =/

/‘ o 2 o oo o ok ok o ok o ok o o o s ok ok o o ok sk ok ok ok ok ke o ok ook ok ok ok e o o o ko ok ok oK ok ok o o o ok o ok ok koK o ok ok ok */

/#* This is a generic zoom function used by the above functions */
L LTy

static void zoom(int window, float scale)

{
float x, deltax, y, deltay;

if(win_data[window] .Xchan != -1) /* only zoom active windows */
{
/* Get last data point */
x = channels[vin_datalwindow].Xchan] .data[plot_data_count];

y = channels[win_data[window].Ychan] .datal[plot_data_count];

/* compute offsets, (range*scale}, then divide by 2. This provides #/
/* offsets each side of the last point */

2.

deltax = ((win_datalwvindow].UXmax - win_datal[window].UXmin) #* scale) 0;
2.0;

deltay = ((win_datalwindow].UYmax - win_datal[wvindow].UYmin) * scale)

NN

/#* put new plot limits in window control structure */
vin_datal[windov].UXmin = x - deltax; /% lower left corner »/
vin_data[window].UYain = y -~ deltay;

vin_data{window].UXmax = x + deltax; /#* upper right corner */
vin_data[window] .UYmax = y + deltay:
}
} /% zoom() */

/* dokokdkok ook Aok kokokok ok ook Rk kokokokok kokok kb kb kkk ok ok Rk Aok Rk R Rk koo kok ok kR ok ok kKo ok koK ‘/

/# Clear data from a window. All data is erased from the specified */
/* window by replacing it with the last data value. The last point »/
/* remains to initialize the plot. If the window number is —1 all »/
/* windows will be cleared. s/
static void clr_window(int window)
{
int i, k, x, y;
float X, Y;

if(window == -1)
{
for(i=0; i<MAXWINDOWS;i++)
{
if(vin_datali].Xchan != -1) /#* Active windows only */
{
x = wgin_datali].Xchan;
y = win_data[i].Ychan;

/* Get last data values into local variables to avoid repeated indexing */
X = channels[x].data[plot_data_count];
Y = channels[y].data[plot_data_count];

for (k=0; k<BUFSIZE; k++)
{
channels[x] .data[k] = X
channele[y] .datalk] = Y
}

/* Fill buffers =/

}
}
}

else

{
x = win_data[window].Xchan;
y = win_data[window].Ychan;

/#* Get last data values into local variables to avoid repeated indexing #»/
X = channels[x].data[plot_data_count];
Y = channels[y].datalplot_data_count];

for (k=0; k<BUFSIZE;k++)

{
channels[x].data[kx] = X; /* Fill buffers =/
channels[y].data(k] = Y;
}
}
redrav_windows (1) ; /* redraw and replot */

} /* clr_window() »/

/‘ KRR R R R KRR kR KRRk Rk kR kR Rk ok kR Rk ok k¥ «/

/* redraw all active windows and optionally replot the data. =/
/* replot if flag is non-zero. */
R I L

static void redraw_windows(int flag)
{

int i, j;

char title[16];

open_graph(); /= setup graphics »/
for(i=0;i<plot_windows;i++) /#* redefine and plot all windows »/
{

if(win_data[i].Xchan != -1)

{

define_window(i,win_data[i].SXmin,
win_datal[il.SYmin,
win_data[il.SXmax,
vin_data[i].SYmax,
vin_data[i] .UXmin,
vin_data[i].UYmin,
win_datafi].UXmax,
vwin_data[i].UYmax);

66

sprintf (title,"Window %1d",i+1);

detine_headar(i,title);

draw_axes(i,5,5,channels[win_data[i] .Xchan] .name,
channels[win_data[i].Ychan] .name);

/% dkdkkkkokkkkok Rk kR ko k kR kR kR kk ok Rk ko k kg hhkkhkk kR ko kkkorkkk '/

/#* Plot_data_count indexes the last data placed in the buffer. =/
/% Start plotting from the oldest point (plot.data.count41) »/
/* and continue to the end of the buffer. Then precede to the %/

/* last point inserted (plot.data_count). */
L LTIy,

if (flag)

{
/#* ptr will be (plot_data_count + 2) if the buffer has wrapped around. #/
/# Otherwise ptr starts at 1. This logic starts the plot at the oldest */
/#* data and prevents plotting parts of the buffer which have not been #/
/# filled. »/

/* get data buffer pointers */
float far *X = channels[win_data[il].Xchan].data;
float far *Y = channels[win_data[i].Ychan].data;
int ptr = ((Total_points - (long)plot_data_count) > 0) 7
(plot_data_count + 2) : 1;

/* starting point, move to the oldest point */
move_to(X[ptr -1], Y[ptr -11);

/* do the plot with wrap around until the latest point is encountered *»/
j=1; /# default for one data point */

if(Total_points > 11)
{
for(j=ptr;j'=plot_data_count; j++)
{
j %= BUFSIZE;
draw_line_to(X[jl, Y[j1);
}
}

/% complete the line to the last point */
draw_line_to(X[j]1, Y[jl);
}

if(MaxY < 200)
menu_bar (MENU_TOP,10,titles); /* make menu bar */

else
menu_bar (MENU_TOP,20,titles);
} /* redraw_windows() =/

/‘ Aok ookokofokok ok ook '/

/* UTILITY ROUTINES #/

[HERERRERRRRRRRRE o)

/* NEW LINE SUBROUTINE »/

/* This is a generic function to allow for multiple output streams */
static void nev_line(void)
{

fputs("\n",data_file);

} /% new.line() »/

PR it I

/* prompt and get an integer value from the user &/
/* a valid number or blank line is required »/
/# a blank line will cause return of the default value. »/
/‘ ok o o e o e o o o o e ke o ok o ke ke ok o o ok o o ke ke ok ok ke ook ok o o Rk ok Kok ok ok ek ok ok R kR ROk Rk ok ok R Rk ‘/
int get_int(char sprompt, int def)
{
int val;
char buf[32];

while(1)
{
fflush(stdin);
fputs (prompt,stderr) ;
strupr(fgets (buf,sizeof (buf) ,stdin));
strtok(buf,"\r\n");

if (buf{0] == ’\n’)

{
val = def; /* take default value */
break;

}

if (sscanf (buf,"%d",kval) == 1) /* scan input */
break; /* take input value #/

return(val);
} /% getint() */

R T T T
/* prompt and get a float value from the user */
/* a valid number or blank line is required */
/* a blank line will cause return of the default value. */
R T T Y
float get_float(char sprompt, float def)
{
float val;
char buf[32];

while(1)

{
fflush(stdin);
fputs(prompt ,stderr) ;
strupr(fgets(buf,sizeof (buf),stdin));
strtok(buf,"\r\n");

68

if (buf[0] == ’\n’)

{
val = def; /* take default value &/
break;
}
if (sscanf (buf,"%g",&kval) == 1) /* scan input =/
break; /* take input value */
}

return(val);
} /% getfloat() »/

P e L LIt L L L

/# This function tests for keyboard input and returns a key code »/
/+* indicating which function key was pressed. F1 - F9 are supported. »/

/* Any other key returns zero. */
R L L

static int test_kb(void)
‘ if (kbhit())
‘ if(getch() == 0)
¢ switch(getch())
¢ case 59: /% F1 %/
return(1);

case 60: /% F2 s/
return(2);

case 61: /* F3 =/
return(3);

case 62: /* F4 »/
return(4);

case 63: /% F5 =/
return(S);

case 64: /% F6 =/
return(6);

case 65: /% F7 »/
return(7);

case 66: /* F8 =/
return(8);

case 67: /* F9 =/
return(9);

default: /% Unused function key. #/
return(0);

return(0) ; /#* No key pressed. s/
} /#* test.kb() »/

/s LRSS S RS2SR 222222 RSS2 2 RS AR i it il sy) s/

/#* function to open files and report on detected errors */

/* returns zero on error, one if no error. */

/*» If SEQUENCE = 0 the type is .HDR, else, the type is .DAT »/

R T e L I
static int open_data_file(void)
{

/* remove old file type and replace it »/

strcpy(filename,Data_file_name);

if (SEQUENCE == ()

{
strcat(filename,".HDR");
SEQUENCE = 1;

}

else
{
strcat(filename," DAT");

}

/* Open in append mode so we do not destroy data if the file exists */

if((data_file = fopen(filename,"a")) == NULL)

{
clrscr();
fprintf (stderr,"\n\nUnable to open data file %s\n",filename);
fputs("Disk or Directory must be full\n",stderr);

delay(10000); /#* wait so user can read the message */
return(0); /* ERROR =/
}
return(1); /+ OK »/ '

} /#* open_data._file() */

L

/* L2222 R L R R R RS R L2 SRR 22 R R 2 R 22222 222 2SR 2 L S22 EEEE S 2T] «/

/* get a valid board name and channel number form the user »/
/* Input data is a pointer to the prompt text. »/
/* Returns an index into the box[] array and the board channel to »/
/* be used. »/
R L e
void get_valid_board(char #text, int sbox_index, int ®chan)
{
int k, def;
char buf[16];

while(1) /* insist on a valid board name */
{
fputs ("SELECT BOARD FOR THIS CHANNEL\n",stderr);
fputs(text,stderr);

70

it(scanf("%d",&k) == 1)

{
if((k > 0) && (k <= MAX_SLOT) && (strlen(box(ik].board) > 0))
{
sbox_index = k;
break;
}
}

3

def = (box[k].last_chan+i > box[k].channels-1) ?
box[k].channels-1 : b .x[k].last_chan+1;

vhile(1) /# insist on a valid channel # »/
{
fprintf (stder.s,"WHICH BOARD CHANKNEL IS TO BE USED 0 - %4 (%d) ? ",
box[k] .channels-1, def);

while(1)
{
fflush(stdin);
fgete (buf,sizeof (buf),stdin);

if(strlen(buf) > 1)
{
strtok(buf,"\n");

if (sscanf (buf,"%d",chan) == {1}
break;
}

alse
{
#chan = box[k].last_chan + 1;
break;
}
}

if ((*chan >= 0) && (*chan < box[k].channels))
{
box[{k].last_chan = xchan;
break;
}
}
} /=% get_valid_board() =/

R e L L L L

/* Given a driver pointer find the board name in the boards array. =/

/#* return a pointer to the name. */
R L .

char »get_board_name(float (*driver)())

{

int i;

for (i=0;i<MAX_MODULES;i++)
if(driver == boardse[i].driver)
return(buards[i] .name);

71

return(NULL) ;
} /» get_board name() */

- *###t*#*##t***#‘t##‘##*#*t*t#**##*‘*###‘*i*******#**#t#**###**#* #/

/# find driver pointer given the board name #/
/6 BEEAEREREERERERERRERECERRERAR LR RO R R AR R A SRS o/

float (#find_driver_pointer(char *name)) ()
{

int 1;

for (i=0;i<MAX_MODULES;i++)
if (strncmp(name,boards[i] .name,8) == 0)
return(boards[i] .driver);

return(NULL) ;
} /# find driver_pointer() */

72

B .1 TEMP.C - Temperature Channel Driver

/* kkokgpkkkkgprkkk gk kkhpkkkkkk ok kk ko kkkkkk Rk kR kb kR Rk ok ./

/= TEMP.C »/
/* This module implements thermocouple temperature readings for /
/* DATAVG. It is assumed that a Keithley AIM7 is present. =/
/* This pseudo-board supports 16 channels. =/
-
;. #fttt*tt-ﬂrt##**##t##*tt*tt#t*ttt*#tttt###*tt**t#tt#t##***t##‘*#tt#t ./
/%= Written by »/
/= R. D. Hardy »/
/#* Sandia National Laboratories »/
/% Department 6117 »/
/% April 17, 1992 &/
/* %/
/* Comments configured for C2LATEX and IATgXs/
P T L L D)
/* On entry if card_slot == -1 call the initialization code to setup */
/#* local scaling data and a list of the physical channels to be used. #/
/# 1f cardslot == -2 call the channel data save function. */
/#* If card_slot == -3 call the channel restore function. =/

/#* If card.slot ;= 0 compute the temperature in degrees C. */
R R Ly

/* MODIFICATION HISTORY */

/% March 25, 1993 */

/#* TEMP.CFG must be in the DATAVG directory. RDH. =/

AR

/#* June 25, 1993 =/

/* Made extensive changes in init(), restore() and build_tables(). */
/* This module did not properly initialize itself. RDH =/

/% =/

/* %/

/* Mokokok ok ok Rk ok ok kR Rk ok ok Rk kok ok ok ok ok ok ok ok ok ok kR ok ok R ok ok ok K kok ‘/

#include '"datavg.h"

#define MAX_TC_TAB 5 /#* number of thermocouple types »/

/* function prototypes =/
static void init(int chan);
static int find_board(void);
static void init_error(char *text);
static void save(int chan);
static void restore(int chan);
static struct spline_tab sget_TC_type(void);
static float scale_temp(float TEMP, struct spline_tab *TTAB, int card_slot);
static void build_tables(void);

static int flag = 0;

typedef struct spline_tab

{
double =xa; /* Pointer to temp. array */
double sya; /+* Pointer to voltage array */
double sy2a; /#* Pointer to coefficient array */
int n; /# Number of elements in the arrays */
char type; /* Thermocouple type character s/
};

static struct spline_tab TC[MAX_TC_TAB];

/#+ array of structures holding channel data «/
static struct

{

int chan; /% real board channel »/

struct spline_tab stable; /# pointer to spline table for this type »/
} chanl[16];

int slot;

/‘ RRRREERRR RS RAE SRR RS RERRRRE AR R R R ER bR Kb AR R R EREERES RN kR kR R Rk ‘/

/* Main Function. This function dispatches to other functions to #/
/% implement a thermocouple reading board for DATAVG. »/

/‘ ERERRRRREERERER SRR REEXERRREREERRRRB B R R RS SR E R KRR R AR RRRRERRRKRRERE Rk ./

float thermocouple(int chan, int card_slot, int n)

{
float data;

switch(card_slot)

{
case ~1: /* initialize this channel s/
{
init{chan);
retwn(-1);
}
case -2: /* save configuration for this channel s/
{
save(chan);
return(-1);
}
case -3: /% restore configuration for this channel */
{
restore(chan);
return(-1);
}
default: /# read data from this channel »/
{ /# 100.0 restores the AIM7 gain which is no »/
/* longer passes through read _AIM7() »/
data = read_AIM7(chanl[chan].chan, slot, n) * 100.0;
return(scale_temp(data,chanl [chan].table,slot));
}
}

} /# thermocouple() =/

/. Fhbbkkrkkpikkiokphtkkkkhkpkkkkfokk kR kkk kR kh Rk Rkk kg Rk Rk ‘/

/# setup this channel. AIM7 must be present. */
T Ty

static void init(int chan)
{
chanl[chan].chan = chan;

74

/* Initialize the thermocouple spline tables if not already done »/
it(flag == 0)
{
if((slot = find_board()) == -1)
{
init_error("AIM7 board required.");
return;
}
build_tables();
}

/# get the thermocouple type »/
chanl[chan].table = get_TC_type();
} /# init() =/

/. KRR EE KRR RRRR KRR KRR R KRRk Rk kR Rk Rk kR kR kR Rk Rk Rk kkhkk kK& ‘/

/* locate the AIM7 board and return it’s slot number. */
R e et LY,

static int find_board(void)
{

int i;

/* search for the aim7 board #/
for(im=1;i<=10;i++)
{
if (atrncmp(box[i] .board,"AIM7'",4) == 0)
break;

if(i > 10)
{

return(-1);

}

return(i);
} /= find_board() =/

/* Ak o R ok ok ok kR kKR ROk R R R ok ok ok ok sk ko ok Rk Rk R kR ok Rk ok kR Rk */

/% save the configuration data for chan in the file data_file. *=/
P s e S L I

static void save(int chan)
{
fprintf(data_file,"%d, %c\n",
chanl[chan] .chan, chanl[chan].table->type);
} /# save() #/

/% ok koo kR ok dokkok R ko kR Rk ok kR ok Rk kR Rk dok kR kR kR ok kR ‘/

/% restore configuration data for chan from the file data_file. =/
A S Y

static void restore(int chan)

{
char type, BUFFER[64];
int i;

75

if(flag == 0)

if ((slot = $ind_board()) == -1)

{
init_error ("AIM7 board required.");
return;
} &
build_tables(); /#» build array of data tables »/
}

/* get board channel and thermocouple type */
fgets(BUFFER,sizeof (BUFFER) ,data_file);
gscanf (BUFFER,"%d, %c\n", &chanl([chan].chan, ktype);

/% look up the type in the tables #/
for (i=0;i<MAX_TC_TAB; i++)
if(TC[i].type == type)
break;

if (i == MAX_TC_TAB)
init_error ("Thermocouple type not found in tables'");

/#* set pointer to table structure »/
chanl[chan].table = &TC[il;
} /* restore() */

/* nnunu*uunﬂ#unu*nttt**unn*nnnuunnnunuu** ./

/#+ Print error message and return */
/* *uu*uuunuuuutuuutuunnnuuuutnuuunuuuu ./

static void init_error(char *text)

{
char buf(8];

clrecr();

puts(text);

puts (" Cannot configure for temperature measurement.");
puts (" Return to continue.");

fflush(stdin);

fgets(buf,eizeof (buf), stdin);
} /= init_error() */

/% nunnutuuu*u"utun*unu*utumuuuuun*unuun* «/

/# function to build the interpolation tables from disk file */
/» P AR e T At L bbbt bbbt 74
itatic void build_tables(void)
FILE =cfg;
char type;
int k, n, tc_tab;
char BUFFER[64];

i{f((cfs = fopen("\\DATAVG\\THERMO.CFG","r")) == NULL)

init_error("Thermocouple data file THERMO.CFG not found.");
return;

}

76

/% Process all available thermocouple data tables */
for (tc_tab=0;tc_tab<MAX_TC_TAB; tc_tab++)

{
fgets (BUFFER,sizeof (BUFFER) , ctg);
if (sscanf (BUFFER,"%c,%d\n",ktype,&n) != 2) /= Size and type */
{
break; /% Quit if file exhausted »/
}

TC[tc_tab].type = toupper(type); /* Put in structures */
TC[tc_tabl.n = n;

/+ Allocate memory for the tables */
if ((TC[tc_tab] .xa = malloc(n * sizeof (double))) == NULL)
{

break; /* quit if out of memory =/

}

if ((TC[tc_tab).ya = malloc(n * sizeof (double))) == NULL)
{

break;
}

if ((TC[tc_tab).y2a = malloc(n * sizeof (double))) == NULL)
{

break;
}

/* Read the tables from disk */
for (k=0;k<n;k++)
{
fgets (BUFFER,sizeof (BUFFER) ,cfg);
if(sscanf(BUFFER,“%lf,%1f,%lf\n".
TC[tc_tabl.xa+k, TC[tc_tabl.yat+k, TC [tc_tabl .y2a+k) != 3)
break;
¥
}

/% close configuration file and clear data file name buffer */
fclose(cfg);
flag = 1;

} /# build_tables() »/

/‘ **t*t#t*t*#*#*#*#**#*****ﬁ*#*******##***##t*t#*t******t****#*#*t */

/* get valid thermocouple type from user */

/* A IR R bbb d bbbl bbbt T
static struct spline_tab sget_TC_type(void)
{

char types[3sMAX_TC_TAB];

int n;

char sptr = types;

char BUFFER[16];

for (n=0;n<MAX_TC._TAB;n++)
{
if (TC[n].type == NULL)
break;

optr++ = TC[n].type;
sptr++ = 7,0,
sptr+t = L

}
s(ptr-2) = ’\0’; /* terminate the string »/
strupr(types);
while(1)
{
printf("Enter thermocouple type (%s) ? ",types);
fflush(stdin);

strupr(fgets (BUFFER, sizeof (BUFFER) ,stdin));
ptr = BUFFER;

vwhile(isspace(sptr))
ptr++; /* remove leading white space »/

for (n=0;n<MAX_TC_TAB;n++)
{ /* Thermocouple types =/
if (sptr == TC[n].type)
return(&TC[nl);
}

fputs("Invalid type\n",stderr);
}

#if __TURBOC__ < 0x400
return(&TC[n]);

#endif

} /% get_TC_type() */

/‘ RkkkRkggkkkkRRkRk kR kR Rk Rk kR Rk kR Rk Rk Rk Rk kR Rk Kk ‘/

/% scale a temperature related voltage into degrees C with correction #/
g
/# for cold junction temperature. Assume use of an AIM7 board. */
/8 FEEERRERRERERRAARERR AR R R R AR E R R R R AR AR

static float scale_temp(float TEMP,struct spline_tab #*TTAB, int card_slot)
{

float offset, comp;

int i = 0;

/* get board temperature in offset. 1000.0 corrects for board scaling */
offset = 1000.0 * read_AIM7(32,card_slot,5);

/* interpolate to get voltage corresponding to temperature. #/
/* we use linear interpolation because we are within a small range #/
while(TTAB -> ya[i] < offset)
ite;
comp = ((offset - TTAB->ya[i-1]) / (TTAB->yalil - TTAB->yal[i-11));

/#* offset is now the junction voltage correction »/
offgset = ((TTAB->xa[i] - TTAB->xali-1]) * comp) + TTAB->xafli-1];

/#* spline interpolate to get measured temperature */

return(splint (TTAB->xa,TTAB->ya,TTAB->y2a,TTAB->n, (TEMP + offset)));
} /% scale_temp() »/

78

C 500LIB.H

/‘ ko kool ko ko gokok ok kR kR kg p ok kb kg »/

/* 500LIB.H s/

/#* Prototypes and data declarations for 500LIB.C =/
/e %/

/* Written by Robert D. Hardy =/

/#* Sandia National Laboratories =/

/#* Department 6117 »/

/#* April 17, 1991 »/

/* %/

/* Comments configured for C2LATEX and ITEXs+/

/* Bk ok ko dedok bk ok k ok ko kdok kool koo Rk ok ek ok ok kkk ./

#include <stdio.h>
#include <dos.h>

/* Timer value structure. This must be allocated by the calling program. =/

typedef struct ktime
{
unsigned int low;
unsigned int high;
};

/* Function prototypes »/

void init_500(unsigned int SEG);

float read_AMM2(int channel, int card_slot, int n);
float read_AIM3(int channel, int card_slot, int n);
float read_AIM7(int channel, int card_slot, int n);
float read_PIM2(int channel, int card_slot, int n);
void reset_PIM2(int channel, int card_slot);

float read_ref(void);

float read_gnd(void);

float scale_AMM2(unsigned long reading);
unsigned int read_ad(void);

float read_DIO1(int channel, int card_slot);

float read_DIM1i(int channel, int card_slot);

float write_AOM1(int channel, int card_slot, unsigned int data);
float write_DIO1(int channel, int card_slot, int data);
void set_timer(unsigned int c1, unsigned int c0);

void read_timer(struct ktime sbuf);

int read_ID(int card_slot);

#ifdef KSOOLIB
#ifdef MAIN
#define EXTERN
#else
#define EXTERN extern
#endif /+* MAIN »/

/* define pointers to interface functions. */

/* AMM2 command structures */
typedef union CommandA

{

struct

{

int chan :4;
int mode :1;
int local_gain :1;
int ACQ_mode :1;

:1;

int
Y £

unsigned char cmd;

};

typedef union CommandB

{
struct

{

int card_slot :4;

filter

int readmode :
int range :1;

int global_gain :2;

} £

unsigned char cmd;

};

/* Address offsets.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

CMD1A
CMD1B
CMD1C
CMD1D
CMD2A
CMD2B
CMD2C
CMD3A
CMD3B
CMD3C
CMD4A
CMD4B
CMD5A
CMDSB
CMD6A
CMD6B

CMD7A
CMD7B
CMD8A
CMD8B
CMD9A
CMD9B
CMD10A
CHD10B

»/
0
1
26
27
2
3
21
4
5
22
6
7
8
9
10
11

12
13
14
15
16
17
18
19

/* channel number, 0-7 or 0-15 &/
/* differential or single ended */
/% 1x or 10x =/

/* normal or auto */

/+ 100KHz or 2KHz =/

/% 0-15 »/

/# Status or Data */
/% 4+/-10V or 0-10V */
/* 1x, 2x, 5x or 10x =/

/# define some names to be used later. */

/* Use 128 in a 16MHz Compaq, 512 for a 486/50 =/

80

#define SIXTEEN
#define EOC_masgk

5
0

12 /% delay count for 16uS delay in read-ad() */
x80 /% mask to isolate EOC bit =/

/#* Global gain command codes. */

#define x1
#define x2
#define x5
#define x10

W N = O

/* Set 1X gain %/
/#* Set 2X gain »/
/#* Set 5X gain »/-
/% Set 10X gain =/

/#* array of board specific command addresses */

EXTERN unsigned char far sports[11][4];

/* Fixed addresses on the AMM2 »/

EXTERN

EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

EXTERN

EXTERN

unsigned char

unsigned char

unsigned char
unsigned char
unsigned char
unsigned char

unsigned char

unsigned char

far

far
far
far
far
far

far

far

*SLOT;

*AD_LOW;
«AD_HIGH;
=AD_RECAL;
*AD_START;
»AD_STAT;

#DA_STROBE;

*E0C;

/# Fixed addresses on the interface board */

EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

EXTERN

#$undef

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

unsigned char

EXTERN

gendif /* KS00LIB =/

far
far
far
far
far
far

far

*COUNTERO ;
«COUNTER1;
«COUNTER2;
*=COUNT_CONT;
»TIMER_GLOBAL;
*«TIMER_STAT;

*SET_INT;

WA g

81

D 500LIB.C

/* AR ERREREERRRERRERRRERL RS REERAERRRRRERERRRRERREE R R E R B hpR Rk ./

/# 500LIB.c »/

/#* This file contains the drivers for a Keithley 500 box. »/
/e %/

/* Written by Robert D. Hardy »/

/# Sandia National Laboratories #/

/% Department 6117 »/

/# April 17, 1991 &/

/e %/

/% Comments configured for C2LATEX and IATpXs/
R e T L L)
/* Modification History: »/

/* %/

/+ May 25, 1993 »/

/* Changed AMM2 to use differential inputs conditionally »/
/% if K575 is not defined. RDH »/

/% %/

/* June 25, 1993 »/

/#* Corrected timing error in read.ad(). Fast machines did »/
/#* not wait long enough before starting conversion. RDH »/
/% %/

/* June 25, 1993 »/

/* read_AIM7() removes the board gain so readings are in */
/#* volts. This allows use of the board for low voltage »/

/#* inputs. RDH »/

/e %/

/® Fok ook ok o o s ok ok kokokok ko sk ok ok ok ook ko ook ok ok ok Rk R Rk ok Rk ok s/

#define MAIN /» provide storage for device pointers =/
#define K500LIB /* provide definitions for our data »/
#include "5001ib.h"

/#* Keithley interface segment =/
static unsigned int KS00_SEG = Oxcff8;

/* AMM2 command buffers =/
static union CommandA A;
static union CommandB B;

[FEEEERRRRE RO R R RS R R R R R AR R AR

/#* Function to initialize the interface and set pointers to %/

/* interface functions. */
T e Ty

void init_500(unsigned int SEG)
{
KS00_SEG = SEG; /#* static copy of segment »/

/* Create pointers to all command and status ports. &/

ports[11[0] = MK_FP(KS500_SEG,CMD1A);
ports[1]1[1] = MK_FP(K500_SEG,CMD1B);
ports(1][2] = MK_FP(K500_SEG,CMD1C);
ports{11[3] = MK_FP(K500_SEG,CMD1D);
ports[2][0] = MK_FP(K500_SEG,CMD2A);
ports[2]1[1] = MK_FP(K500_SEG,CMD2B) ;
ports[2]1 (2] = MK_FP(K500_SEG,CMD2C);

ports[3]1[0] = MK_FP(K500_SEG,CMD3A) ;
ports[3]1[1] = MK_FP(K500_SEG,CMD3B) ;
porta[4][0] = MK_FP (KS00_SEG,CMD4A) ;
ports[4][1] = MK_FP (K500_SEG, CMD4B) ;
porte{s][0] = MK_FP(K500_SEG,CMD5A) ;
ports[5171] = MK_FP(K500_SEG,CMDSB) ;
porta(6]1[0] = MK_FP (K500_SEG,CMD6A) ;
ports[6][1] = MK_FP(K500_SEG,CMD6B) ;

porte[7][0] = MK_FP (K500_SEG,CMD7A) ;
ports[7][1] = MK_FP(K500_SEG,CMD7B) ;
ports[81[0] = MK_FP(K500_SEG,CMD8A) ;
ports(8][1] = MK_FP (K500_SEG,CMD8B) ;
porte[9][0] = MK_FP (R500_SEG,CMD9A) ;
porta[9][1] = MK_FP(K500_SEG,CMD9B) ;
ports[iO][O] = MK_FP(K500_SEG,CMD10A) ;
porta[i0][1] = MK_FP (K500_SEG,CMD10B) ;

/#* Interface board addresses »/

COUNTERO = MK_FP (K500_SEG,0x40);
COUNTER1 = HK_FP(KSOO_SEG,OX41):
COUNTER2 = MK_FP (K500_SEG,0x42);
COUNT_CONT = MK_FP(K500_SEG,0x43);
TIMER_GLOBAL = MK_FP (K500_SEG,0x60) ;
TIMER_STAT = MK_FP(K500_SEG,0x61);

SET_INT = MK_FP(K500_SEG,0x63);
AD_LOW = MK_FP(K500_SEG,CMD1A);
AD_HIGH = MK_FP(K500_SEG,CMD1B);
AD_START = MK_FP(KS00_SEG,CMD1D);
AD_RECAL = MK_FP(K500_SEG,CMD1C);

EOC = MK_FP(K500_SEG,CMD1D) ;

*SET_INT = Oxff;

/* Disable all interrupts. */

/#* Recalibrate the AMM2 A/D converter =/

A..

.chan = 0;

#ifndef K575

A.f.

#else

A.f.
#endif
.local_gain = x1;
.ACQ_mode = O;
.filter = 0;

Af
Af
A.f

T W W
h Hh M M

=AD_
#AD_
*AD_

mode = 0;

mode = 1;

.card_slot = 1;
.readmode = 0;
.range = 1;
.global_gain = x1;

LOW = A.cmd;
HIGH = B.cmd;
RECAL = 0Oxff;

/* set initial mode #/

/# Differential input on AMM2 =/
/* Single ended input on AMM2 */
/* 1X »/

/* Regular acquire */
/+ 100KHz filter */

/* AMM2 in slot 1 »/

/#* read calibrate status */
/* +/-10V range */

/e 1X »/

/* Send command bytes */

/* START RECALIBRATION */

83

ghile((#AD_LOW & EOC_mask) >= 0x80); /* Wait for calibration to complete */
B.f.readmode = 1; /* Read AD data mode */

delay(0); /# calibrate the delay routine just in case #/
}

/‘ **‘**#t####*#####t**#*#**‘#4#*#**#***#***# */

/+ Functions to read from analog channels. #/
/% B L e L L A d LY

/# read and average n samples from AMM2 board */

/* AR R R E R R Rk)
float read_AMM2(int channel, int card_slot, int n)
{

int i;
unsigned long data = 01;

/#* Select the slot to be used. #/
B.f.card_slot = card_slot; /¢« AMM2 is always in slot 1 #/

/% Select the channel to be used. =/
A.f.chan = channel;

read_ad(); /#* dummy read to clear AD »/
for(i=0;i<n;i++)
data += read_ad();

data /= (long)n; /* average reading */
/* scale into volis */
return(scale_AMM2(data));
}

/% ok R RO RO R ARk R Rk /

/% tead and average n samples from AIM3 board */
/* KRR KRR ok kR R RO Rk Ky f

float read_AIM3(int channel, int card_slot, int n)
{

int i;

unsigned long data = 01;

/* Select the slot to be used. */
B.f.card_slot = card_slot;

/#* Select the channel to be used. */
sporta[card_slot][0] = channel;

read_ad(); /* dummy read to clear AD */
for(i=0;i<n;i++)
data += read_ad();

data /= (long)n; /* average reading */
/#* scale into volts */

return(scale_AMM2(data));
}

84

/% Rk Rk kR kkkk e kkkokkkkR Rk Rk Rk kk ‘/

/% read and average n samples from AIM7 board »/
R Iy

float read_AIM7(int channel, int card_slot, int n)
{

int i;

unsigned long data = 01;

M /% Select the slot to be used. */
B.f.card_slot = card_slot;

/% Select the channel to be used. »/
sports[card_slot] [0] = channel;

read_ad(); /* dummy read to clear AD =/
for(i=0;idn;i++)
data += read_ad();

data /= (long)n; /* average reading =/
return(scale_AMM2(data) / 100.0); /* scale into volts */
) }

A L T S T

/* Routine to read from a PIM2 board. 16 bit counters. */
s R T T

i float read_PIM2(int channel, int card_slot, int n)
{

unsigned int data;

sports[card_slot][0] = channel; /* select channel »/
data = sportsfcard_slot][0] + (sports[card_slot}[1] << 8);
return((float)data);

}

[% FERREERRRRRRR R RRR R AR R R Ry

/* Routine to reset a PIM2 board channel *»/
P T T

void reset_PIM2(int channel, int card_slot)
{

sporte[card_slot]{1] = channel; /* reset channel »/

}

/‘ kkkkkkkkkk kR kkkkkkk kR kkkkokkkk Rk kkokkkkkkk ‘/

/* Routine to read the ground (0V) reference */
R T T

float read_gnd(void)
{

unsigned int data;

B.f.card_slot = 0;

data = read_ad();

return((float)data);
. }

/‘ kR Rk ke kR kR Rk kR kR kR ./

/* Routine to read the 10V reference s/
R T LR Ay

float read_ref(void)
{

unsigned int data;

85

ione

B.f.card_slot = 13;

data = read_ad();

return((float)data);
}

/e AR BERERRAEREE R RRRRERRRR AR ERRRR R KPR ARG 4R ./

/# Scale an unsigned integer into a voltage #/
/* Assume use of an AMM2 board for reading the »/
/* data in integer forr.. »/
/‘ FEUEERERBE SRR B SRR RRE A RRREREE SRR S FER SRR RS ./
static float scale_AMM2(unsigned long reading)
{
/# definitions for AMM2 board ¢/
#define AMM2_offset 10.0
#define AMM2_counts_per_volt 3276.75

return(((float)reading / AMM2_counts_per_volt) - AMM2_offaet);

#undef AMM2_offset
#undef AMM2_counts_per_volt
}

/* (A2t 222222 2222222222222 22 22222222 2] Y] =/

/* Low level routine used to read any analog */

/#* input channel regardless of board. The AMM2 »/
/* assumed contains the A/D converter for the »/
/# whole box. =/

/* dhkbhkkkkhkbhkbhbhhkkkkbhhkhhkkhbhbhkkhhhkbkhbshks =/

static unsigned int read_ad(void)
{

int i;

/# Send the commands */
sAD_LOW = A.cmd;
«AD_HIGH = B.cmd;

/#* delay for settling, must be at least 96 microseconds s/
for(i=0;i<(SIXTEEN6);) /* define SIXTEEN as needed s/
ite;

/+* Start conversion %/
sAD_START = Oxft;

/#* delay for conversion, must be at least 16 microseconds */

for(i=0;i<SIXTFEY;) /* define SIXTEEN as needed #/
i++;
while((*EOC & EOC_mask) == 0x80); /= Wait for EOC =/

/* Read the data s/
return(=AD_LOW + (sAD_HIGH << 8));
}

/. RABEXAR R SRR ERE R R ER AR EREBER RS RRE SRR R R R R R AR R R RS RR R XX ER R AR R ‘/

/# Function to write to an analog channel. Assumes AOM1. »/
/* Data must be scaled int> an unsigned int. »/
R L e T Ty,

float write_AOM1(int channel, int card_slot. unsigned int data)
{

channel <<= 1{;

86

sports{card_siot] [0] = channel++;
sports[card_slot) [1] = (data & 255);
sports[card_slot] [0] = channel;
sports{card_slot][1] = (data >> 8);
- «DA_STROBE = 1;
return(0);
N }

/‘ IR ETT SRR S P 2222 0T SIS SRR 2222t 222 2t itddd] */

/* Function to read from digital channels. 1 bit channels. s/
R Y

float read_DIO1(int channel, int card_slot)

{
int bit, byte, data;
unsigned char buf; /* local copy of port data »/
bit = channel % 8; /#* identify the bit position »/
byte = channel / 8;
data = (1 << bit); /* position the data bit for use as a mask =/

/* channels 0-15 are input. channels 16-31 are output only */
if (byte > 1)
return{(-1.0);

sporte[card_slot][0] = byte; /=» select the port containing the channel */
buf = sportslcard_slot][1]; /# get the data from the board */

return((buf & data) ? 0.0 : 1.0);
}

/* L3222 2222222 RS LR SRSt 242 P22 222222222222ttt L] ./

/* Function to read from digital channels. 1 bit channels */
T L L

float read_DIMi(int channel, int card_slot)

{
int bit, byte, data;
unsigned char buf; /* local copy of port data */
bit = channel % 8; /* identify the bit position */
byte = channel / 8;
data = (1 << bit); /# position the data bit for use as a mask =/

buf = sportslcard_slot][bytel; /# get the data from the board #/

return((buf & data) ? 0.0 : 1.0);

/‘ FREEFFRNFEEEPERRERRE RPN AR R R A AR RS RS R R Rk bk Rk kr g ‘/

/* Function to write to a digital channel. 1 bit channels. %/
P e e S S I L I

float write_DIO1(int channel, int card_slot, int data)
{
int bit, byte;
static unsigned char buf(4]; /# local copy of port data */

87

data &= 1; /» Low bit only &/

bit = channel % 8; /# identify the bit position */
byte = channel / 8;
data <<= bit; /# position the data bit for use as a mask */

/% channels 0-15 are input. channels 16-31 are output only =/

if (byte < 2)
return(-1);

if(data)

buf [byte] |= data; /* set the bit »/
else

buf [byte] &= !data; /#* clear the bit »/

sports[card_slot]1[0] = byte; /# select the port containing the channel */
sports[card_slot][1] = buf[bytel; /» send the data to the board */
return(0); /* no error */

}

/* ook o o o ok o o ok o e ok ook ook ok s ok e e sk s ko o ook ok o ok sk e ok ok ok of ko ok ok e ok ko ok ok ok ok ok ok ok */

/* Function to read the board identifications. =/

/* Return board ID code or -1 if unable to read the ID =/

/8 FEEREERRER R R R R RO R AR R KRRy
int read_ID(int card_slot)
{

/*int i; =/

/# char far *slot_ad = MK_FP(K500_SEG,0x14); */

/% char far *start = MK_FP(K500.SEG,0x15); »/ "

/* char far *get.id = MK_FP(K500_SEG,0x16); */

/* *slot_ad = card.slot; »/
/% *start = Oxff; s/

/* for(i=0;i;50;i4+) */
/% if(*start & 0x80) »/
/* break; &/

/# return((i == 50)? -1 : (*get.id & Oxfl)); =/

return(~1);

} /xread ID() s/

/% ***#*lﬁl#*tt***#**#*i#*##*******##*****#***####**#********##t «/

/* Function to set the timer. */
/* Assumes an 8254 with all counters run in mode 2 cascaded #/
/#toroll 2-1-0. A 1MHz clock into counter 2 is assurned. */
/* This function initializes the counters to the following state*/
/* Counter 2 - divide by 1000 to roll over at 1ms intervals &/
/% Counter 1 - divide by cl. #/
/* Counter 0 - divide by c0. s/
/% Where cl and c0 are user specified constants. */
Y i L TP ./
\{roid set_timer(unsigned int ci, unsigned int c0)
unsigned int i, 1, h;
struct ktime buf;

88

}

/* set no rollover for quick init. All counters run at 1IMHz. =/
*TIMER_GLOBAL = (unsigned char)0x0;

i= 1000;

l=ig Ox£ff;

h =i/ 266;

*COUNT_CONT = 0Oxb4; /# select counter 2 in mode 2 »/
COUNTER2 = 1; /# load 1000 to roll at milliseconds =/

*COUNTER2 = h;

#COUNT_CONT = 0x74; /* select counter 1 in mode 2 */
*«COUNTER1 = 20; /# short count to condition counters »/
*COUNTERL = 0;

«COUNT_CONT = 0x34; /* select counter 0 in mode 2 »/
*COUNTERO = 20;
*COUNTERO = 0;

/#* Wait for counter 0 to count to a low value. */
/* Set 48 bit rollover mode. #/
/# Load counter 1 with cl. */
/* Load counter 0 with c0. =/

buf.high = 15;
vhile(buf.high >= 10)
read_timer (kbuf);

*TIMER_GLOBAL = (unsigned char)0x3; /# set 48 bit rollover mode */

i=cl;

1l=3i& Oxff;

h =i/ 256;

COUNT_CONT = 0x74; / select counter 1 in mode 2 */
COUNTER]1 = 1; / load with ci »/

*COUNTER1 = h;

i= c0;

1l =ik Oxff;

h =i/ 256;

sCOUNT_CONT = 0x34; /* select counter 0 in mode 2 s/
#COUNTERO = 1; /#* load with c0 s/

*COUNTERO = h;

/* wait for counter 0 to ‘load */
while(buf.high != q)
read_timer(&buf'),

89

/* SRk Sk kR Rk kR R kR ok ok Rk ok ok ok s/

/* Funciion to read the timer. »/

/e %/

/# The time is returned in buf as two unsigned integers. »/

/* The low integer is in milliseconds and the high one is #/

/% in seconds. The seconds counter rolls over at 65536 or less »/

/* which amounts to about 18 hours max. If timing is required */

/#* for extended periods the using program must adjust for the »/

/# rollover in a local seconds counter. s/
L L L W

void read_timer(struct ktime sbuf)
{
union
{
unsigned int j;
struct
{
unsigned char low;
unsigned char high;
} i
} k;

»COUNT_CONT = 0xd6; /#* latch counters 0 & 1 for reading */
/* read low word =/

k.i.low = *COUNTER1; /#* read low byte »/

k.i.high = sCOUNTER{; /+* read high byte &/

buf->low = k.j; /* store result »/

/#* read high word »/

k.i.low = *COUNTERO; /# read low byte =/
k.i.high = *COUNTERO; /#* read high byte s/
buf->high = k. j; /#* store result »/

}

90

E SRBGRAPH.H

/‘ AEREEERKRK R ERKRERR R RN KRRk R R R Rk Rk Rk kk Rk */

/* SRBGRAPH.H #/

/% %/

/+* This file defines the functions and data structures for a windowing */
/* graphics package written by Steve R. Brown and edited by »/

/* Robert D. Hardy Sandia National Laboratories Dept. 6117. =/

/n %/

/* Comments configured for C2LATEX and IATpXs/

/* s o o o e e o ok e o o e ok ok ok ol ook okl kol ok o oo ok ok ok ke ko ok ok ok ok ook ok ok ok ok ok ok dkokok ook ok ok ‘/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <conio.h>
#include <math.h>
#include <graphics.h>

#define MAXWINDOWS 8 /* Number of windows allowed. */

/* global data, only visible in the graphics library */
#ifdef GRAPH_LIB

#ifdef DATA

#define EXTERN

const float MARGIN = 0.1, HEADSIZE = 0.05, TICKSIZE = 0.01;
#else

#define EXTERN extern

extern const float MARGIN, HEADSIZE, TICKSIZE;
#endif

#define HEADER_LEN 40 /* Length of window header line. */
#define TRUE 1
#define FALSE 0
#define CLIPON 1
#define CLIPOFF O

struct WINDJUWINFO

{
int SXi, SY1, SX2, SY2; /* screen coordinates »/
float UX1, UY1, UX2, UY2; /* user coordinates */
char HEADER[HEADER_LEN];
int DRAWN;
int Xstart, Ystart; /* line starting points »/

float AX, AY, BY;
int X1WND, X2WND, YiWND, Y2WND, SYMBOLSIZE;
};

EXTERN struct WINDOWINFO WIND[MAXWINDOWS];

EXTERN int
GRAPHDRIVER, /#* The graphics device driver */
GRAPHMODE, /* The graphics mode value »/
MAXX, MAXY, /* The maximum resolution of the screen %/
ERRORCODE, /* Reports any graphics errors */
MAXCOLOR, /#* The maximum color value available */

91

XCURSOR, YCURSOR,

MAXWINDOW, INDEX,

FIRSTCURSOR,

BACKGROUNDCOLOR,

WINDOWCOLOR,

AXISCOLOR,

DRAWCOLOR,

gur_Font, Hm, Hd, Vm, Vd, Tv, Th; /# text scaling and font */

EXTERN void *CURSOR;
void srbgraph_lake_near_string(char sheader ,char far *hdr,int n);
#endif /* GRAPH_LIB »/

/#» FUNCTION PROTOTYPES »/
void far data(void);
void far error(char far sstring);
void far open_graph(void);
void far drav_border(int SXmin, int SYmin, int SXmax, int SYmax,
char far sheader);

void far define_vindow(int window, int SXmin, int SYmin,
int SXmax, int SYmax,
float UXmin, float UYmin,
float UXmax, float UYmax);

void far select_window(int window);

void far define_header(int window, char far #hdr) ;

void far coord_display(float xc, float yc, char far *c);
void far erase_coord_display(void);

void far reset_windows(void);

void far erase_window(int window);

int far window_x(float x);
int far window_y(float y);

void far drav_axes(int window, int ticksx, int ticksy,
char far snamex, char far #namey);

void far draw_point(float xr, float yr);
void far draw_line(float UXmin, float UYmin, float UXmax, float UYmax);
void far draw_line_to(float xr, float yr);

void far move_to(float xr, float yr);

void far draw_square(float xr, float yr);
void far draw_x(float xr, float yr);

void far draw_triangle(float xr, float yr);
void far draw_diamond(float xr, float yr);
void far draw_circle(flcat xr, float yr);
void tar draw_cross(float xr, float yr);
void far draw_star(float xr, float yr);

void far make_cursor(void);
void far put_cursor(float x, float y);
void far erase_cursor(void);
void far free_cursor(void);

void far menu_bar(int top, int n, char far stext(l);

92

F SRBGRAPH Composite Source

P e L L LT LW

/* SRBGRAPH.C =/

/e »/

/* This file contains the first part of a windowing graphics package */

/* written by Steven R. Brown and edited by Robert D. Hardy #/

/* Sandia National Laboratories Dept. 6117. %/

/% */

/* comments configured for C2LATEX and IATpX«/

R L Ny
#define GRAPH_LIB /* provides the aata definitions =/
#define DATA /* declares data */
#include "srbgraph.h"

/‘ dede ok ok ok sk s ok o o ok ok ok ook sk ok ool ok kofokok ok ok ok ok ok ko ok ok kok ok ok ok kok kokok ok */

/= Initialize graphics and report any errors that may occur */
R T
void far open_graph(void)
{
registerfarbgidriver (CGA_driver_far);
registerfarbgidriver (EGAVGA_driver_far);
registerfarbgidriver (Herc_driver_far);
registerfarbgifont(small_font_far);

while(1)
{
GRAPHMODE = IBM8514HI;
GRAPHDRIVER = IBM8514;
initgraph (®GRAPHDRIVER, &GRAPHMODE, "");

if ((ERRORCODE = graphresult()) == grOk)
{
Our_Font = SMALL_FONT;
Hm =2, Hd= 1, Vm= 2, Vd = 1;
BACKGROUNDCOLOR = BLACK;
WINDOWCOLOR = LIGHTBLUE;

AXISCOLOR = YELLOW;
DRAWCOLOR = WHITE;
break;

GRAPHMODE = 0;
GRAPHDRIVER = DETECT;
initgraph (&GRAPHDRIVER, &GRAPHMODE, "");

if ((ERRORCODE = graphresult()) == grOk)
{
Our_Font = DEFAULT_FONT;
Hm =1, Hd=1, Vm =1, Vd = {;
if ((GRAPHDRIVER == VGA) || (GRAPHDRIVER == EGA))
{
BACKGROUNDCOLOR = BLACK;
WINDOWCOLOR = BLUE;
AXISCOLOR = LIGHTRED;
DRANCOLOR = WHITE;
}

else

{
BACKGROUNDCOLOR = BLACK:
WINDOWCOLOR = BLACK;

AXISCOLOR = WHITE;
DRAWCOLOR = YHITE;
}
break;
}
printf(" BGI graphics system error: %e\n", grapherrormeg(ERRORCODE));
closegraph();
exit(1);
}
MAXCOLOR = getmaxcolor(); /% Read maximum number of colorss/

MAXX = getmaxx();
MAXY = getmaxy();
MAXVINDONW = O;

setusercharsize(im,Hd,Vm,Vd);
Th = textheight("¥");
Tw = textwidth("W");

/* *#**###**#‘**#*####*t##tt#*#ttt*‘t#***t#*####*#t*####******t#**#t#t* */

void far srbgraph_lake_near_string(char sheader,char far #hdr,int n)
{

int i;

for(i=0;i<n~1;i++)
if ((header[i] = shdr++) == NULL)
break;
header[i] = '\0’;
}

F .1 DEFINE.C

/‘ *t#*####***t*#t#*##*#t***#*##t##*###*tt#*##*#*#*#t##*##*#*#ttt**##* =/

/* DEFINE.C «/

/% %/

/# This file contains part of a windowing graphics package written by »/
/# Steven R. Brown and edited by Robert D. Hardy #/

/# Sandia National Laboratories Dept 6117. »/

/* %/

/% comments configured for C2LATEX and LKTgXs/

/‘ t#**#*t#t*tt#*#t#tt##‘tt###*#*‘*#****#**‘*t#***‘*t#t*tt#t**t##***** */

#define GRAPH_LIB /# pzovides the data definitions */
#include "srbgraph.h"

/* t#*#‘*#####t#t##t*#**#*#####*#*#ttt**#**#**#tttt*#t*t**‘t#t#t***tt# */

/# fill in the WINDINFO structure for this window if all parameters */
/% are valid */
/* AR AR R AR SRR R R R SRR AR R AR R R o
void far define_window(int window,
int SXmin, int SYmin, int SXmax, int SYmax,
flcat UXmin, float UYmin, float UXmax, float UYmax)

94

float Xconst = (float)MAXX / 100.0;
float MaxY = (float)MAXY;
float Yconst = (float)MAXY / 100.0;

if((window < 0) || (window > MAXWINDOWS))
error("define_vindow, Invalid window number");

/+ range check input values »/

if ((SXmin < SXmax) && /#* min values must be ; max values %/
(SYmin < SYmax) &&
(SXmin >= 0) &k /+ window position must be within screen »/

(SXmax <= 100) &&
(SYmin >= 0) &&
(SYmax <= 100) &&
(UXmin < UXmax) &&
(UYmin < UYmax))
{
WIND[window] .HEADER[0] = ’\0’; /# clear header storage */
WIND[window] .DRAWN = FALSE; /* window not drawn */

/# origin: lower left corner »/
WIND[window].SX1 = (int)((float)SXmin #* Xconst);
WIND[window].SY1 = (int)(MaxY - ((float)SYmax * Yconst));
WIND[window] .UX1 = UXmin;
WIND[window] .UY1 = UYmin;

/# origin: upper right corner */
WIND[window].SX2 = (int)((float)SXmax * Xconst);
WIND[window].SY2 = (int)(MaxY - ((float)SYmin * Yconst));
WIND[window] .UX2 = UXmax;
WIKD[window] .UY2 = UYmax;

if (window > MAXWINDOW)

{
MAXWINDOW = window; /* count windows defined */
}
}
else /# invalid input data */

error("define_window, bad data provided");

F .2 DEF DHR.C

/‘ *#******#*********#**********************t*###**#******t#*****#***# %/

/+* DEF_HDR.C #/

/% »/ .

/# This file contains part of a windowing graphics package written by */

/+ Steven R. Brown and edited by Robert D. Hardy #/

/+ Sandia National Laboratories Dept. 6117. #/

/% */

/% comments configured for C2LATEX and KTX#/

/e T T L e R b E kLAY
#define GRAPH_LIB /#* provides the data definitions */
#include "srbgraph.h"

/* ***t***tt#****#**###t#***#****t***t#*‘*****#*t */

/* place the header text in the generic structure &/
/* A e b Y

void far define_header(int window, char far shdr)
char header [HEADER_LEN];

if (vindow <= MAXWINDOW)
{
srbgraph_make_near_string(header,hdr,sizeof (header));
strncpy (WIND[window] . HEADER ,header ,HEADER_LEN-1);
}
}

F .3 DRAWAXIS.C

/* ******t##i#*#t#*###ﬁ##**#**‘*###*********t###*****#*****#**##****‘* ‘/

/* DRAWAXIS.C »/

/e %/

/# This file contains part of a windowing graphics package written by =/

/# Steven R. Brown and edited by Robert D. Hardy =/

/% Sandia National Laboratories Dept. 6117. #/

/% %/

/* Comments configured for C2LATEX and IATpX#*/

/% g e L e L i Lt L LI
#define GRAPH_LIB /* provides the data definitions */
#incliude "srbgraph.h"

static void far draw_x_axis(int number_of_ticks, char far #*name);
static void far drav_y_axis(int number_of_ticks, char far *name) ;
static void scale_axes(char #*text, int n, float MIN, float MAX);
static void make_X_labels(int number_of_ticks);
static void make_Y_labels(int number_of_ticks);

static char s[HEADER_LEN];

static float dx, dy, delta;

static int ticks;

static char =Xptrs[25]; /% pointers used in axis labeling routines #/
static char *Yptrs[25];

/* SRRk R Rk Rkok R Rk Rk kR ko Rk Rk kR Rk kR kR kR Rk ok Rk ko k ‘/

/# draw the X-axis in the current window =/

/* The window to use must be selected before calling this routine */
[a FEERREER R AR AR AR R R R R R R)

static void far draw_x_axis(int number_of_ticks, char far *name)

{
int text_pos;
int line_height = Th+3;

setvievport (WIND[INDEX].X1WND, WIND[INDEX].Y1WND,
WIND[INDEX].X2WND, WIND[INDEX] .Y2WND, CLIPOFF);

setcolor (AXISCOLOR) ;

/* lower line »/

line(window_x(WIND[INDEX] .UX1) ,vindow_y(WIND[INDEX] .UY1),
window_x(WIND[INDEX] .UX2) ,window_y(WIND[INDEX] .UY1));

96

/* upper line =/
line(window_x(WIND[INDEX] .UX1) ,window_y(WIND[INDEX].UY2),
window_x(WIND[INDEX].UX2) ,vindow_y(WIND[INDEX].UY2));

/#* graticule spacing »/
delta = (WINDLINDEX].UX2 - WIND[INDEX].UX1) / (float) (number_of_ticks-1);

/* vertical graticule lines #/
getlinestyle (DOTTED_LINE,O,NORM_WIDTH) ;

for (ticks = 1; ticks < (number_of_ticks-1); ticks++)
{
dx = (float)ticks * delta;
line(window_x(WIND[INDEX] .UX1+dx) ,window_y(WIND[INDEX] .UY1),
vindow_x(WIND[INDEX] .UX1+dx) ,window_y(WIND[INDEX] .UY2));
}

/#* label ticks, text has already been generated »/
setlinestyle (SOLID_LINE,O,NORM_WIDTH) ;
settextjustify (CENTER_TEXT,CENTER_TEXT);
settextstyle(Dur_Font,HORIZ_DIR,0);

/% line position for text »/
text_pos = (window_y(WIND[INDEX].UY1) + Th + 3);

for (ticks = 0; ticks <= (number_of_ticks-1); ticka++)

{
dx = (float)ticks * delta;
outtextxy(window_x (WIND[INDEX] .UX1+dx),text_pos,Xptras[ticks]);
free(Xptrs[ticks]); /# return storage *»/

}
text_pos += line_height;

outtextxy(window_x(WIND[INDEX] .UX1+dx),text_pos,Xptrs[ticksl);
free(Xptrs[ticksl);

/= label axis »/
setviewport (0, O, MAXX, MAXY, CLIPOFF);
settext justify (CENTER_TEXT,BOTTOM_TEXT);
srbgraph_make_near_string(s,name,sizeof(s));
outtextxy (((WIND[INDEX].X2WND - WIND[INDEX].X1WKD) / 2) + WIND[INDEX].X1WND,
(WINDLINDEX].SY2 - 2),8);

setcolor (DRAWCOLOR) ;
setviewport (WIND[INDEX].X1WND, WIND[INDEX].Y1WND,
WIND[INDEX] .X2WND, WIND[INDEX].Y2WND, CLIPON);

/% FEEERRRRRR R R R R R R R KRR Rk R KRR R ARy

/& draw the YV.axis in the current window /
/* The window to use must be selected before calling this routine =/
/‘ Rdokkkk Rk Rk Rk R Rk kR Rk ok k kR Rk kR kR Rk Rk Rk bk ok kk kR kk kR kR kR Rk Rk kk */

static void far dravw_y_axis(int number_of_ticks, char far *name)
{
int text_pos;

int line_height = Th + 3;

97

setviewport (WIND[INDEX].X1WND, WIND[INDEX].Y1WND,
WIND[INDEX].X2WND, WIND[INDEX].Y2WND, CLIPOFF);

setcolor (AXISCOLOR) ;

/% left line =/
line(vindow_x(WIND[INDEX] .UX1) ,vindow_y (WIND[IKDEX].UY1),
window_x (WIND[INDEX].UX1) ,window_y(WIND[INDEX].UY2));

/+* right iine »/
line(window_x (WIND[INDEX].UX2),window_y(WIKD[INDEX].UY1),
window_x(WIND[INDEX] .UX2) ,window_y(WIND[INDEX].UY2));

/#* graticule spacing »/
delta = (WIND[INDEX].UY2 - WIND[INDEX].UY1) / (float) (number_of_ticks-1);

/#* horizontal graticule lines */
setlinestyle (DOTTED_LINE,O0,NORM_WIDTH);

for (ticks = 1; ticks < (number_of_ticks-1); ticks++)
{
dy = {(float)ticks = delta;
line(window_x(WIND[INDEX].UX1) ,window_y(WIND[INDEX].UY1+dy),
window_x (WIND[INDEX].UX2) ,window_y(WIND[INDEX].UYi+dy));

/* label ticks, text has already been generated */
setlinestyle(SOLID_LINE,O,NORM_WIDTH) ;
Bettextstyle(Our_Font,HORIZ_DIR,0);
settextjustify (RIGHT _TEXT,CENTER_TEXT) ;

/% line position for text =/
text_pos = (window_x(WIND[INDEX].UX1) - Tw);

for (ticks = 0; ticks <= (number_of_ticks-1); ticks++)

{
dy = (float)ticks * delta;
outtextxy(text_pos,window_y (WIND[INDEX].UYi+dy),Yptrs[ticks]l);
free(Yptrs[ticks]); /* return storage */

}

/* put exponent on screen */
outtextxy(text_pose, (window_y(WIND[INDEX].UY2)-line_ height),
Yptral[ticks]l);

free(Yptra[ticksl);

/% label axis #/

setviewport(0, 0, MAXX, MAXY, CLIPOFF);
settextstyle(Our_Font,VERT_DIR,0);
settext justify (RIGHT_TEXT,CENTER_TEXT) ;

srbgraph_make_near_string(s,name,sizeof(s));

outtextxy((WIND[INDEX].SX1 + Th +3),
(((WIND[INDEX].Y2WND - WIND[INDEX].Y1WND) / 2) + WIND[INDEX].Y1WND),s);

98

.0 =i g
_— g gﬁé “mzz
TR

| N
|I||'-?é i fee

settextatyle(Qur_Font,HORIZ_DIR,0);

setcolor (DRAWCOLOR) ;

getviewport (WIND[INDEX].X1WND, WIND{INDEX].Y1WND,
WIND[INDEX].X2WND, WIND[INDEX].Y2WND, CLIPON);

[8 BEEERRRRERARRRRRRRRE AR AR AR AR KRR R R AR RE R R R AR AR R AR)

/* draw both axes in the selected window #/
2 T

void far drav_axes(int window, int ticksx, int ticksy,
char far *namex, char far *namey)

{
select_window(window);
if (INDEX > MAXWINDOW)
error("drav_axes, undefined window");
make_X_labels(ticksx); /* make labels and reset plot limits */
make_Y_labels(ticksy);
draw_x_axis(ticksx,namex) ; /#* draw axis using predefined labels =/
draw_y_axis(ticksy,namey);
drav_cross(0.0,0.0); /* place a marker at 0,0 =/
}

[BEERERERERRRRRRRR R RRRERRRRR R KRR R R KRR KRR R R R KRRy

/#* make a set of X axis labels and reset the plot hmxts This must »/
/* be done before the axes are drawn. */
P T

static void make_X_labels(int number_of_ticks)
{

int i;

/#* allocate label storage =/
for(i=0;i<=number_of_ticks;i++)
{

Xptrs[i]l = malloc(16);
}

/* create label text »/
Bscale_axes(Xptrs,number_of_ticks,WIND[INDEX].UX1,WIND[INDEX].UX2);
}

[FEERERRERRORRRRR R R R R KRR R R R R KRR KRR R R R

/* make a set of Y axis labels and reset the plot limits. This must */
/% be done before the axes are drawn. */
R T T T

static void make_Y_labels(int number_of_ticks)
{

int i;

/* allocate label storage »/
for (i=0;i<=number_of_ticks;i++)
{
Yptra[il = malloc(16);
}

99

» create label text */
S e ros (Yptrs,nusber_of_ticks WINDLINDEX] .UY1,VIND(INDEX] .UY2);

}

/* s RERREEREEREREEEE AR EEE LR R R R R R R R AL
/= This function creates an array of tick labels. in text(]. te'xt[] »/

/+ must be at least n+1 items long. Tl}e XAX!S labels are in */

/% text[0] - text[n-1). The exponent string is in text{n]. */

/* e re s EEEERREEEAEERERE R R R AR R R R R o/

static void scale_axes(char sstext, int n, float MIN, float MAX)
{

int 1i;

double L;

float step, start;

float power;

/* scale from mid point */
start = logl0(fabs(((double)MAX - (double)MIN) / 2.0));

if(atart < 0.0)

start--;
L = pow10((int)start); /* Scale factor */
pover = log10(L);
start = MIN / L; /#+ make starting values */

step = (MAX - HIN) / ((n-1) * L);

for(i=0;i<n;i++) /* make axis labels */
{

sprintf (text[il,"%.2f", (start+(i*step)));
}

sprintf (text[n],"E%+3d", (int)pover); /* make exponent string */

F .4 DRAWB.C

Ja FESEREEERRRESEERRRRR KRR R R R B R)
/* DRAW_B.C #»/

/% %/

/+ This file contains part of a windowing graphics package written by */

/# Steven R. Brown and edited by Robert D. Hardy */

/#* Sandia National Laboratories Dept. 6117. =/

/% %/

/* comments configured for C2LATEX and IATgX*/

/* L L T Lttt e e R e e L L R S S L L L s d sttt bt ‘/

#define GRAPH_LIB /* provides the data definitions #/
#include "srbgraph.h"

/‘ ARRRRRRR R KRR KRR KKk Rk R Rk R Rk kR R kR ARk Ak R Rk ‘/

/% draw a border and put in the header text »/

/* The window to use must be selected before calling this routine */
[6 FRERRERRER RO R Rk R R KRR R RRR R f

void far draw_border(int SXmin, int SYmin, int SXmax, int SYmax,

char far *header)
{

int size = MAXY = HEADSIZE;
int scale;

100

setfillatyle(SOLID_FILL,WINDOWCOLOR);
bar3d(0,size,SXmax~SXnin,SYmax-SYmin,0,FALSE);

setfillstyle(SOLID_FILL,BACKGROUNDCOLOR) ;
bar3d(0,0,SXmax~SXmin,size,0,FALSE);

if (header := "")

{
scale = size / Th;
setusercharsize(scale,1,s8cale,1); /#* scale to fit space */
settextjustify (CENTER_TEXT,CENTER_TEXT);
settextatyle(Our_Font,HORIZ_DIR,0);
outtextxy((SXmax~-SXmin) / 2, size / 2, header);
setusercharsize(Hm,Hd,Vm,Vd); /* restore text scaling */

F.5 MENU_BAR.C

/‘ kR kR kR Rk kR Rk Rk kR Rk Rk Rk Rk kR bRk kR Rk Rk ok Rk ok kok ok Rk k =/

/* MENU_BAR.C =/

/e %/

/#* This file contains part of a windowing graphics package written by »/
/* Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept. 6117. »/

/nxf

/* comments configured for C2LATEX and IATEX+/

R T S L LTI L

[FRERRERRRRREE R RO R R R R R R R R R AR /

/# draw a menu bar at the bottom of the screen. the bar is divided */

/+ into ten boxes across the screen width. the bar always starts at %/

/#* the bottom of the screen. top defines the height of the bar in %/

/#* percent of screen height. if n ; 10 there are two rows of boxes */

/# in height screen area. text from the array text(j is placed in */

/% the boxes. #=/

P L L Ty
#define GRAPH_LIB /* provides the data definitions »/
#include "srbgraph.h"

/‘ Rkkkk kR Rk kR kR Rk Rk Rk ko ‘/

/* make a box and display the X,Y values */

[6 FEEEERERRKRRRS A RRERRRRRRR AR AR R)

void far menu_bar(int top, int n, char far stext[])
{

int i;

float 1, r, t, b;

float deltaX, deltaY;

float height;

height = (float)MAXY / 100.0 s (float)top;

deltaX = (float)MAXX / 10.0; /* set intervals for boxes */
deltaY = (n > 10)7? height / 2.0 : height;

1= 0; /* init box positions */

r = deltaX;

b = MAXY; /% BGI topis 0 #/

t = b - deltaY; /* our system is inverted */

101

setfillstyle(SOLID_FILL,BACKGROUNDCOLOR) ;
settextjustify (CENTER_TEXT,CENTER_TEXT);
setviewport (0,0,MAXX ,MAXY,CLIPON) ;

draw boxes and fill in text

for(i=0;i<n;i++)
{
bar3d(1l,t,r,b,0,FALSE);
outtextxy((int) (1 + (deltaX / 2)), (int)(t + (deltaY / 2)), text[il);
l1=r; /# set next left and right ends »/
r = (r + deltaX);

if(i == 9)

{
1=0; /# set next left and right ends »/
r = deltaX;
b=t; /#+ set next top and bottom #/
t = (t - deltaY);

}

}
}

F .6 LINE.C
P
/#» LINE.C »/
/% %/
/+ This file contains part of a windowing graphics package written by =/
/* Steven R. Brown and edited by Robert D. Hardy »/
/* Sandia National Laboratories Dept. 6117. s/
/x %/
/* comments configured for C2LATEX and KTpXs/
2 L T
#define GRAPH_LIB /» provides the data definitions =/
#include "srbgraph.h"

/% RERERRERRR KRR R R R R AR AR R R Rk kR kR R Rk kR kR Rk Rk Kk */

/# draw a line between the specified points in the current window =/
/#* the current position is not updated */
T e L Iy
void far draw_line(float UXmin, float UYmin, float UXmax, float UYmax)
{
line(windov_x(UXmin) ,window_y(UYmin) ,window_x(UXmax),window_y(UYmax));
}

F .7 LINE_TO.C

/‘ RRRREERRTR R KRR RRRE XK KRR RDRR KRR KR RREERERERRRER RS EERRRBRR RS */

/* LINE_TO.C »/

/e %/

/# This file contains part of a windowing graphics package written by =/
/# Steven R. Brown and edited by Robert D. Hardy =/

/* Sandia National Laboratories Dept. 6117. */

/% %/

/* comments configered for C2LATEX and BTgXs/

/» RERRKBEBERESRERERSRERKEREPENBEEREDPEPEPRRNRPNR BRI kAR KKk R R KKk Rk */

#define GRAPH_LIB /» provides the data definitions %/
#include "srbgraph.h"

102

[a BERERERRRE R R R R R R R R AR R

/* draw a line to the specified point in the current window =/
/% the current position is updated */
L LT
void far draw_line_to(float xr, float yr)
{

int Xs, Ys;

Xs = window_x(xr);
Ye = window_y(yr);

line (WIND[INDEX] .Xstart,WINKD[INDEX].Ystart,Xs,Ys);

WIND[INDEX].Xstart = Xs;
WIND[INPEX] .Yatart = Ys;

F .8 MOVETO.C

/» Rk kR kR R kR Rk Rk kR Rk kkok Rk kR ok Rk Rk Rk kR Rk kR kR Rk Rk ‘/

/* MOVETO.C »/

/x%/

/* This file contains part of a windowing graphics package written by */

/% Steven R. Brown and edited by Robert D. Hardy #/

/#* Sandia National Laboratories Dept. 6117. »/

/% %/

/% comments configured for C2LATEX and ATpX*/

J# FEERRERRRRERRR R R R R R Rk R R KRR R R AR ARk oy
#define GRAPH_LIB /* provides the data definitions */
#include "srbgraph.h"

/% ko kkk kg k Rk pokkk ko kkkokok gk */

/* place the current position at xr, yr */
/#* used before starting a line plot */
J& FEREERERRRRRRRERRR R RRRRRRRRRRRRRRAR]
void far move_to(float xr, float yr)
{
WIND[INDEX] .Xatart = window_x(xr);
WINDLINDEX] .Ystart = window_y(yr);
}

F .9 POINT.C

/* Aok ok ook ok ok dokokk ok ok Rk Rk ok kR ok kb ok Rk Rk ko kR ko ko Rk Kok okk ok ok ok ok ok k kK */

/% POINT.C &/

/% %/

/* This file contains part of a windowing graphics package written by */

/+ Steven R. Brown and edited by Robert D. Hardy #/

/% Sandia National Laboratorics Dept. 6117. #/

/% */

/» comments configured for C2LATEX and IATgX*/

L
#define GRAPH_LIB /# provides the data definitions */
#include "srbgraph.h"

103

[FEREEERERRRRERRRREAREE RO RRRA LR o

/#* put a point in the current window »/
Ja REREEEEAREREERERRRRRE KRNI RRRAARRE o/
void far draw_point(float xr, float yr)
{
putpixel(window_x(xr), window_y(yr), DRAWCOLOR);
}

F .10 PUT_CORD.C

/% kR Rk kR R ok ok o kR kR ok ok ok ok R Rk ok ok ko ok Rk ok ok ok ok ok ok ok sk R R kR R ok ko ok ok */

/% PUT.CORD.C %/
/% %/
/= This file contains part of a windowing graphics package written by %/
/* Steven R. Brown and edited by Robert D. Hardy s/
/% Sandia National Laboratories Dept. $117. =/
/% s/
/% comments configured for C2LATEX and IWTEX#/
Y R L T Ty
/* coordinate display routines for SRBGRAPH library */
#define GRAPH_LIB /* provides the data definitions */
#include "srbgraph.h"

/‘ EERRRkhkRk kR bRk Rk kR Rk kR koo Rk Rk ./

/% make a box and display the X,Y values */
/% FERERRERRLRRRR R R B R AR AR R

void far coord_display(float xc, float yc, char far c)
{

char sx[40], sy[40];

int size;

8ize = MAXY » HEADSIZE;
setviewport (WIND[INDEX].SX1, WIND{INDEX].SY1,
WIND[INDEX].SX2, WIND{INDEX].SY2, CLIPON);
setfillstyle(SOLID_FILL,BACKGROUNDCOLOR) ;
bar3d((WIND[IRDEX].SX2 - WIND[INDEX].SX1) / 2, size+2,
WIND[INDEX].SX2 - WIND[INDEX].SX1 - 2, 2#size, 0, FALSE);

gevt(xc,5,8x);
gevt(yc,5,sy);
strcat(sx,", ");
strcat (sx,sy);

settextjustify (LEFT_TEXT, CENTER_TEXT) ;
outtextxy((WIND[INDEX].SX2 - WIND[INDEX].SX1) / 2 + 2, 1.5%size+2, c);

8ettext justify (CENTER_TEXT,CENTER_TEXT);
outtextxy(3 » (WIND[INDEX].SX2 - WIND[INDEX].SX1) / 4, 1.5#size+2, sx);

setviewport (WIND[INDEX).X1WND, WIND[INDEX].Y1WND,
WIND[INDEX].X2WND, WIND[INDEX].Y2WKD, CLIPON);

104

F .11 CLR_.CORD.C

Jh REEERRREROORR R SRR R R R KRR R KRR R R RO R R AR RRE o)

/* CLR.CORD.C =/

/* /* This file contains part of a windowing graphics package written by */

/* Steven R. Brown and edited by Robert D). Hardy */

/* Sandia National Laboratories Dept. 6117. =/

/% %/

/* comments configured for C2LATEX and IATEX+/

R e L L
#define GRAPH_LIB /* provides the data definitions */
#include "srbgraph.h"

[% PERERRRRRERRRRARRRERRRE KRR AR)

‘# remove the coordinate display box */
J# FEREREERR R AR ARy

void far erase_coord_display()
{

int size;
size = MAXY = HEADSIZE;

setviewport (WIND[INDEX].SX1, WIND[INDEX].SY1,
WIND [INDEX].SX2, WIND[INDEX].SY2, CLIPON);
setfillstyle(SOLID_FILL,WINDOWCOLOR);
bar ((WIND[INDEX].SX2 - WIND[INDEX].SX1) / 2, size+2,
WINP[INDEX].SX2 - WIND[INDEX].SX1 - 2, 2#size);

setviewport (WIND[INDEX].X1WND, WIND[INDEX].Y1WND,
WIND [INDEX].X2WND, WIND{INDEX].Y2WND, CLIPON);

F .12 MAKECURS.C

R T L T Ty
/* MAKECURS.C »/

AR

/#» This file contains part of a windowing graphics package written by #/

/* Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept, 6117, */

/e %/

/* comments configured for CZLATEX and IATgX+/

/% kR Rk Rk kRO Rk Rk Rk Ok R R ROk Rk Rk ok kR R Rk ok kK kK */

cursor routines for SRBGRAPH library

#define GRAPH_LIB /#* provides the data definitions #/
#include "srbgraph.h"

/* A o o ok ook koK ok koK ok okok ok kR koK ok kK Kk ‘/

/% draw a cursor mark in the current window »/
R T

void far make_cursor(void)
{

int ulx, uly;

int lrx, 1ry;

int cursorsize;

int scale;

105

/* draw_cursor =/

XCURSOR = 10;

YCURSOR = 10;

scale = 5;

1ine (XCURSOR-scale, YCURSOR, XCURSOR+scale,7CURSOR) ;
1ine (XCURSOR, YCURSOR-scale, XCURSOR, YCURSOR+acale) ;

/* Read cursor image */
ulx = XCURSOR-scale;
uly = YCURSOR-scale;
lrx = XCURSOR+scale;
1ry = XCURSOR+scale;

cursorsize = imagesize(ulx, uly, lrx, 1lry);
CURSOR = malloc(cursorsize);
getimage(ulx, uly, 1lrx, lry, CURSOR);

/* erase old */
putimage(XCURSOR-scale, YCURSOR-scale, CURSOR, XOR_PUT);
FIRSTCURSOR = TRUE;

}

F .13 PUT_CURS.C

/* Aok e 2 o o o o e o ok o ook o s o ok ok e o e o ok o ok o o ok ok ok o ke ok e o ok ok ok ko ok ok o o ook ok ok ok ok ok ok ok ok ‘/
/+ PUT_CURS.C »/

/e w/

/* This file contains part of a windowing graphics package written by #/

/* Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept. 6117. »/

/n %/

/* comments configured for C2ZLATEX and IATgX#+/

R e T 'Y

#define GRAPH_LIB /# provides the data definitions =/
#include "srbgraph.h"

/. Aok i o e koK ok ok ok ko ok ok Rk R kb ok ok Rk kR ok kR K */

/* position the active cursor in the current window */
[a FEERERRRRR RO Rk

void far put_cursor(float x, float y)
{

int scale = §5;

if (FIRSTCURSOR == FALSE) /* erase old cursor */
putilage(XCURSOR-scale, YCURSOR-scale, CURSOR, XOR_PUT);

FIRSTCURSOR = FALSE;

XCURSOR = window_x(x);
YCURSOR = window_y{y);

/% draw new cursor */
putimage(XCURSOR-scale, YCURSOR-scale, CURSOR, XOR_PUT);
}

106

F .14 CLR_CURS.C

/% Ropckokokdokkkkokdkokkokokkk ok kR xRk Rk ok kR kbR Rk kR Rk ko kk ke ko kR ko =/

/+* CLR.CURS.C »/

/# /* This file contains part of a windowing graphics package written by %/

/% Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept. 6117. &/

/% %/

/# comments configured for C2ZLATEX and BTEX#/

R R Ty
#define GRAPH_LIB /* provides the data definitions */
#include "srbgraph.h"

[FEEREERRRRRRRRR R ARy f

void far erase_cursor()

{

int scale = 5;

putimage (XCURSOR-scale, YCURSOR-scale, CURSOR, XOR_PUT);
FIRSTCURSOR = TRUE;
}

F .15 RML.CURS.C

/% ok o ook o o ok ok ok o ok ok ok ok s ok ok sk ok ok Aok ok ok kR ok ok ok Aok R ok Rk ok kok kR kR ok ok kok R okok ok */

/* RM_CURS.C »/

/% %/

/* This file contains part of a windowing graphics package written by #/

/= Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept. 6117, */

/% %/

/* comments configured for C2LATEX and WTEX#/

R T L LS S P L L Ty
#define GRAPH_LIB /* provides the data definitions »/
#include "srbgraph.h"

/% o o o o ke ok ko ok o ok A ok ok okok */

void far free_cursor()
{

free (CURSOR) ;
}

F .16 SELECT.C

/% FEERRRRRR R KRR R R KRR R R AR R Rk R R Rk /

/# SELECT.C =/

/% %/

/# This file contains part of a windowing graphics package written by =/

/# Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept. 6117. #/

/% %/

/* comments configured for C2LATEX and IATgX#+/

R L L
#define GRAPH_LIB /#* provides the data definitions */
#include "srbgraph.h"

107

/% B R e L L W
/% set the window for future operations and draw it if not already »/
/# done the plot routines use a generic WINDINFO structure filled in #»/

/% by select_window() */
/‘ ’.‘****#‘*#*‘****#***#********t*****#*'ﬁ**#****#******#*******t******* */

void far select_window(int window)

¢ char msgl64]:
if (window <= MAXWINDOW)
¢ INDEX = window; /* current window number for other routines */
if (WIND[INDEX] .DRAWN == FALSE)
¢ setvievport(WIND[IKDEX].SX1, /% draw the window */

WIND(INDEX].sY1,
WIND(IMDEX].SX2,
WIND[INDEX].5Y2,
CLIPON);

draw_border (WIND [INDEX].SX1,
WIND[INDEX].SY1,
WIND[INDEX].SX2,
WIND[INDEX].SY2,
WIND [INDEX] .HEADER) ;

/* window now drawn, check for zero length user axes »/

if ((WIND[INDEX].UX1 == WIND[INDEX].UX2) |{
(WIND[INDEX].UY1 == WIND[INDEX].UY2))
{

‘* default values if either axis has no length */
/# this should not be the case */

WIND{INDEX].X1WND = WIND[INDEX].SX1;
WIND[INDEX].X2WND = WIND[INDEX].SX2;
WIND({INDEX].Y1WND = WIND[INDEX].SY1 + MAXY & HEADSIZE;
WIND(INDEX].Y2WND = WIND[INDEX].SY2;

WIND[INDEX].AX = 1.0;
WINDLINDEX].AY = 1.0;
WIND[INDEX].BY = WIND{INDEX].Y2WND ~ WIND[INDEX].Y1¥ND;

WIND[INDEX] .SYMBOLSIZE = (WIND[INDEX].SX2 - WIND[INDEX].SX1) * TICKSIZE / 2;
}

else /* user axes have length »/

{
/* compute graticule area */
/* leave window size*2*MARGIN on left */
WINDLINDEX].X1WND = WIND[INDEX].SX1 +

(WIND[INDEX] .SX2 - WIND[INDEX].SX1)
* 2 » MARGIN;

/* leave window size* MARGIN on right */
WIND(INDEX].X2WND = WIND[INDEX].SX2 -
(WIND{INDEX].SX2 - WIND[INDEX].SX1) * MARGIN;

108

/* leave window_size*MARGIN + HEADSIZE on top */
WIND[INDEX].Y1WND = WIND[INDEX].SY1 + ((WIND[INDEX].SY2 -
WIND[INDEX].SY1) * MARGIN) + (MAXY * HEADSIZE);

/% leave window _size*1.5*MARGIN on bottom */
WIKD[INDEX].Y2WND = WIND[INDEX].SY2 -
(WIND[INDEX].SY2 - WINDLINDEX].SY1)
* 1.5 = MARGIN;

/#* X scale factor »/
WIND[INDEX].AX = ((WIND[INDEX].X2WND - WIND[INDEX] .X1WND) /
(WIND[INDEX].UX2 - WIND[INDEX].UX1));

/% Y scale factor */
WIND[INDEX].AY = ((WIND[INDEX].Y2WND - WINDLINDEX] .Y1WND) /
(WIND[INDEX].UY2 - WIND[INDEX].UY1));

/* Y offset, used to invert Y-AXIS %/
WIND[INDEX].BY = (WIND[INDEX].Y2WND - WINDLINDEX] . Y1WND);

/» SYMBOLSIZE is used to draw markers */
WIND[INDEX] .SYMBOLSIZE = (WINDLINDEX].SX2 - WIND[INDEX].SX1)
* TICKSIZE;
}
WIND[INDEX].DRAWN = TRUE;
}

setviewport (WIND[INDEX] .X1WND, WIND[INDEX? .Y1WND,
WIND[INDEX] .X2WND, WIND[INDEX].Y2WND, CLIPOR);
}

else
{
sprintf(msg,"select_vindow, undefined window %d.\n",window) ;
error(msg) ;
}
}

F .17 RESET.W.C

[FEEEERREERRRRREERRRRERERE R R KRR LR
/* RESET.W.C #/

/% %/

/+ This file contains part of a2 windowing graphics package written by */

/= Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept. 6117. »/

/% %/

/% comments configured for C2LATEX and IATEX*/
/% A e L L LA s Sttt Y

#define GRAPH_LIB /* provides the data definitions */
#include "srbgraph.h"

[FFEERRRR RO RO R R Xy

/# all windows use the whole screen */
/4 FEERRKRERRRRRR R AR AR ERAE y /

void far reset_windows()
{

int window;

109

for (window = 0; window < MAXWINDOWS; windows+)

{
define_vindow(window, ¢, 0, 100, 100, 0, O, 1, 1);
WIND[window] .Xstart = 0;
VIND[window] .Ystart = 0;

}

select_window(0);
}

F .18 ERASE_W.C
/. PRS2 22 P DI ST Ei RS2 2 ISt 2 d I 2 I it Ests sl ./

/% ERASE_.W.C »/

/e s/

/% This file contains part of a windowing graphics package written by »/

/% Steven R. Brown and edited by Robert D. Hardy »/

/# Sandia National Laboratories Dept. 6117. &/

/% &/

/* Comments configured for C2LATEX and IKTgX#+/

/‘ R EBERERRRRREE R PR R ERRRERRERERE I RR SRR R kR ERR R Rk kR R kR ek Rk Rk k ‘/
#define GRAPH_LIB /* provides the data definitions »/
#include "srbgraph.h" '

/‘ RAXEREEEBEERRKRRER KSR RREERREE s/

/% clear the selected window area =/
/‘ L2123 1321323 22223323233 22772 -/

void far erase_window(int window)
{
if (window <= MAXWINDOW)
{
WIND[window] .DRAWN = FALSE;
setviewport(0, 0, WIND[window] .SX2, WIND[window].SY2, CLIPON);
setfillstyle(SOLID_FILL,BACKGROUNDCOLOR) ;
bar (WIND[window].SX1, WIND[windov].SY1,
WIND[window].SX2, WIND[window].SY2);

else
error("erase_window, undefined window");

F .19 ERROR.C

/. ERRREBRRRREEREERRR AR KRR KRR KRR AR KRR R R R AR R AR ERRARRR RSk & ‘/

/#* ERROR.C »/

/# [* This file contains part of a windowing graphics package written by =/

/#* Steven R. Brown and edited by Robert D. Hardy s/

/% Sandia National Laboratories Dept. 6117. s/

/% s/

/* comments configured for C2LATEX and IKTpXs/

/. BERERKB RSN REBEERFSEBEEBERERRR R RS R BEBEB SRR AR KR RKBER KRR R R KX ERE KK ‘/
#define GRAPH_LIB /# provides the data definitions =/
#include "srbgraph.h"

110

[FERERERERE AR AR RRRRARES o)
void rar error(char far #string)
{
closegraph();
t printf(“"graphics module error: ¥%s\n",string);
exit(1);
}

F .20 SCALE.C

L e L
/% SCALE.C »/

/e %/

/# This file contains part of a windowing graphics package written by »/

/#* Steven R. Brown and edited by Robert D. Hardy »/

/#* Sandia National Laboratories Dept. 6117, %/

/ew/

/* comments coxfigured for C2LATEX and IATgXs/

/% R kxphhrkkkhkchkhhiokkkhkkkkbkkkhkkkkkokkk ko kkkk Rk dkkhkkor Rk kR k& ./

#define GRAPH_LIB /* provide;the data definitions »/
#inciude "srbgraph.h"

/* kkkkkh kR Rk ko k R kR Rk kR Rk kR Rk kR kR kkh Rk s/

/* scale the X-axis data to fit in the current window s/
A L L L2

int far vindow_x(float x)
{

int temp;

x —= WIND[INDEX] .UX1;
temp = (WIND[INDEX].AX * x);

if (temp > MAXX)
{

temp = MAXX;
}

return((temp < 0) ? 0 : temp);

/. Rk Rk E Rk Rk Rk Rk Rk bk kR kkhkkkkkkkkkkkkkRkk ‘/

/% scale the Y-axis data to fit in the current window s/
P LIy

int far window_y(float y)
{

int temp;

y -= WINDLINDEX].UY1;
temp = (WIND[INDEX].BY - WINDLINDEX].AY * y);

if (temp > MAXY)
{

. temp = MAXY;
}

return((temp < 0) ? 0 : temp);

111

F .21 SYM_CIR.C

/* ARRREE Rt 2 RR PR R R RRER R R AR RER Rk R RNk kR R Rk Rk Rk kR kR kR KRR R kK =/

/+ SYM_CIR.C ¢/

/e %/
/+ This file contains part of a windowing graphics package written by «/

/» Steven R. Brown and edited by Robert D. Hardy =/

/+ Sandia National Laboratories Dept. 6117. #/

/% %/

/#* comments conf.gured for C2LATEX and IATpXs/

P L
#define GRAPH_LIB /* provides the data definitions &/
#include "srbgraph.h"

/» kpgpkkkkkkpkkpkk bk kh bk rkkhkkkpkk «/

void far draw_circle(float xr, float yr)
{

circle(window_x(xr), window_y(yr), WIND[INDEX].SYMBOLSIZE);
}

F .22 SYM_CROS.C

Rt e e L L Ly

/* SYM_CROS.C »/

/e %/

/» This file contains part of a windowing graphice package written by »/

/* Steven R. Brown and edited by Robert D. Hardy »/

/* Sandia National Laboratories Dept. 6117. »/

/e /

/* comments configured for C2LATEX and IATgX#*/

/‘ ERRERRERER KRR R R R R KRR R R RN RNk Rk R Rk Rk Kk ‘/
#define GRAPH_LIB /# provides the data definitions */
#include "srbgraph.h"

/‘ ERERERRR KRR Rk kR ke Rk Rk * ‘/

void far draw_cross(float xr, float yr)
{
int x, y, sym_size = WIND[INDEX].SYMBOLSIZE;

x = gindow_x(xr);
y = window_y(yr);

line(x -~ sym_size, y, x + sym_size, y);
line(x, y - sym_size, x, y + sym_size);

F .23 SYM_DIAM.C

/‘ *t“'&#t‘#**ﬁ*‘*#‘*‘**##*#*'*#*#**#‘**#####*#***#*##*'*****##*****# ‘/
/% SYM.DIAM.C »/
/% s/
/% This file contains part of a windowing graphics package written by »/
/# Steven R. Brown and edited by Robert D. Hardy */
5‘ Sz/mdia National Laboratories Dept. 6117. »/
* %

/% comments configured for C2LATEX and KTEX«/

E R L e U P ./

#define GRAPH_LIB /# provides the data definitions +/
#include "srbgraph.h"

112

/‘ *hkhbkhkakk kb phhb kb kkhhkk ko kk k& */

void tar draw_diamond(float xr, float yr)
{
int x, y, sym_size = WIND[IKDEX].SYMBOLSIZE;

x = window_x(xr);
y = window_y(yr);

line(x - aym_size, y, x, y - sym_size);
line(x, y - sym_size, x + sym_size, y);
line(x + sym_size, y, x, y + sym_size);
line(x, y + sym_size, x - sym_size, y);

F .24 SYM_SQR.C
/. Rk hRkkRkE kbR kb kb kb kb kkk kR kkk Rk kkkkkk kR kbR k Gk ./

/* SYM_SQR.C =/
/% %/
/* This file contains part of a windowing graphics package written by #»/
/* Steven R. Brown and edited by Robert D. Hardy %/
/* Sandia National Laboratories Dept. 6117. »/
/e =/
/¢ comments configured for C2LATEX and IATpX+/
A T T Iy
/# symbol drawing routines s/
#define GRAPH_LIB /+ provides thc data definitions »/
#include "srbgraph.h"

/. (2T Ed 222222 a2 222222 2222 R 222222 22 22 2] %/

void far draw_square(float xr, float yr)

{
int x, y, sym_size = WIND[INDEX].SYMBOLSIZE;

x = window_x(xr);
y = window_y(yr);
rectangle(x ~ sym_size, y + sym_size,x + sym_size, y - sym_size);

}

F .25 SYM_STAR.C

/‘ BEREEERRERFRREE SRR E R R KRR RRE KRR SRR AR AR R R R AR Rk R AB AR Rk kS ./

/* SYM.STAR.C &/

/e %/

/% This file contains part of a windowing graphics package written by =/

/* Steven R. Brown and edited by Robert D. Hardy */

/* Sandia National Laboratories Dept. 6117. »/

/% %/

/* comments configured for C2LATEX and IWIpX+/

R T Ly
#define GRAPH_LIB /+* provides the data definitions &/
#include "srbgraph.h"

/‘ HRERkERkA R Rk Rk kR k Rk kR k Rk Rk kkk kK ./

void far draw_star(float xr, float yr)
{
int x, y, scale = WIND[INDEX].SYMBOLSIZE;

113

x = yindow_x(xr);
y = window_y(yr);

line(x ~ scale, y, x + scale, y);
line(x, y - scale, x, y + scale);

scale *= 0.707;

line(x -~ scale, y + scale, x + scale, y - scale);
line(x ~ scale, y - scale, x + scale, y + scale);

F .26 SYM_TRI.C

/‘ EEZ 22222 2222222222 2ottt Rt i i it a 2ttt b i A bR S Ll */

/* SYM_TRLC »/

/% %/

/+* This file contains part of a windowing graphics package written by »/

/# Steven R. Brown and edited by Robert D. Hardy =/

/* Sandia National Laboratories Dept. 6117. »/

/e %/

/* comments configured for C2LATEX and IKTpX#/

T L Ly
#define GRAPH_LIB /% provides the data definitions */
#include "srbgraph.h"

/* Aok o o o o o ok o e ok ko X ook ok ok ok ol o ok ok o ok ok ok K ok ok ok ‘/

void far draw_triangle(float xr, float yr)

{
int x, y, sym_size = WIND[INDEX].SYMBOLSIZE;

x = window_x(xr);
y = window_y(yr);

line(x -~ sym_size, y + sym_size,x, y - sym_size);
line(x, y - sym_size, x + sym_size,y + sym_size);
line(x + sym_size, y + sym_size,x - sym_size, y + sym_size);

F .27 SYMX.C

A L L e LT L
/* SYM X.C =/
/e s/
/= This file contains part of a windowing graphics package written by =/
/+* Steven R. Brown and edited by Robert D. Hardy =/
/# Sandia National Laboratories Dept. 6117. »/
/% %/
/* comments configured for C2ZLATEX and KKTgX#+/
e L L T Y L T
#define GRAPH_LIB /* provides the data definitions »/
#include "srbgraph.h"

/. LR RS SR 22 22222 a2 2222 2 2 L] %/

void far drav_x(float xr, float yr)
{
int x, y, sym_size = WIND[INDEX].SYMBOLSIZE;

114

x = window_x(xr);
y = window_y(yr);

line(x - sym_size, y + sym_size,x + sym_size, y - sym_size);
line(x - sym_size, y - sym_size,x + sym_size, y + sym_size);

115

G BUILDTC.C
/* e L e Tt LTy
/+ BUILDTC.C »/
/% Program to build spline tables for thermocouple data in DATAVG. »/
/% %/
/+ Written by: */
/# Robert D. Hardy */
/# Sandia National Laboratories »/
/# Dept. 6117 */
/#* April 17, 1992 »/
/% e/
/* Comments configured for C2LATEX and KTEX#/
* %
;, *iutuunuuuuuut*unt*nnuﬂuuuuuuun*uunnn* .
/# The first line of a data set contains the thermocouple type »/
/x letter followed by the number of data points to follow (N). =/
/+ Input data is temperature, millivolts pairs separated by commas */
/#* with one point per line. =/
/% %/
/* This program computes coefficients and creates a file containing */
/* the voltage, temperature and coefficient numbers with voltage »/
/* scaled for board gain of 100 as done on the Keithley AIM7. The #/
/* output consists of N sets of numbers preceded by a header line. */
/* The header gives the thermocouple type letter in upper case */
/* followed by the number of points in the data (N). Each data */
/#* point occupies one line in the file. The line contains three */
/#* columns of ASCII characters with comma separators. The columns */
/% are temperature, voltage and the coefficient numbers in that =/
/% order. */
/*»/
/#* The data for each type of thermocouple follows the same format */
/#* with no particular order. This allows flexibility in =/
/* configuration for a particular requirement. If few thermocouple */
/* types are used the tables may be small and therefore consume less */
/* memory. *»/
F b L L

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include "spline.h"
void get_temp(void);
void put_temp(void);

/# arrays used for spline fitting to thermocouple data */
/# allow for 1000 points */

double xa[1000]; /% Voltage =/
double ya[1000]; /* Temperature */
double y2a{1000]; /#* Spline coeflicient =/

116

int n;

char type;
FILE *cfg;
FILE =output;

void main(void)

{

if((cfg = fopen("temp.d","r")) == NULL)

{
puts("Error, input file not found") ;
exit(1);

}

if ((output = fopen("thermo.cfg","w")) == NULL)

{
puts ("Error, unable to create output file");
exit(1);

}

while(!feof(cfg))

{
get_temp(); /* read input data into arrays #/

/# compute coefficients */
spline(xa, ya, n, 1e30, 1e30, y2a);

put_temp(); /# write results to a file */
}
fclose(cfg);
}

/‘ ***#**#‘******t#*‘#***#***‘****“*‘*******#***‘*****##i**#ﬁ*‘****** ‘/
/% /
/% Read a file containing temperature, voltage pairs. One pair */
/# per line. The first line contains the type letter and point */
/% count in that order. Voltage readings are in millivolts. This #/
/#* function multiplies them by 100 for the board gain then divides */
/* by 1000 to get volts. The multiply divide operation is lumped */
/# by dividing each voltage reading by 10.0 which is the net */
/#* effect. s/
/* DA e e T L L e e bbb i it Y
void get_temp(void)
{
int i;
fscanf (cfg,"%c,%d\n", &type, &n);
for (i=0;i<n;i++)
P
fscanf(ctg,"%1g,%1g\n", &yali], &xalil);
xali] /= 10.0;

}
}

117

/» FRRERREPRERREEEEERR KRR R R AR R R R R RRR AR SRR R AR ERRRRRERRR R AR AR RN DE =/

/% Create a file containing the processed input data and the s/

/#* coefficient data. The first line is the type character */

/= followed by the point count. The rest of file is voltage, »/

/% temperature, coefficient all on one line with commas for =/

/% separators. The file is ASCII real. »/

R T Ly
void put_temp(void)
{

int i;

/#* write type character and point count »/
fprintf (output,"%c, %d\n", toupper(type), n);

/* write data table for this type »/
for(i=Q;i<n;i++)
{
fprintf (output,"¥lg, %1g, %1g\n", xalil, yalil, y2a[il);
}
}

R T Ny
/* SPLINE.C »/

/» Taken from Numerical Methods in C #/

/% x/

/#* Given arrays x[1..n] and y[1..n] containing a tabulated function, */
/*ie. Yi = {(Xi), with X1 j X2 j...j Xn, and given values ypi and »/
/# ypn for the first derivative of the interpolating function at &/

/% points 1 and n respectively, this routine returns an array */

/#* y2[1..n] that contains the second derivatives of the »/

/* interpolating function at the tabulated points Xj. If ypi and/or #/
/* ypn are equal to 1e30 or larger, the routine is signaled to set */

/#* the corresponding boundary condition for a natural spline, with »/
/* zero second derivative on that boundary. #/

/% %/

/* Modified to use zero based array indices by decrementing the */

/# pointers. =/
/* koo dok Rk koo Rk okkk koo ok kR Rk ok Aok ok ko kR Rk Rk kk kR ok kkk Kk kR ok ‘/

#include "spline.h"

#ifdef __TURBOC__
void spline(double *x,double #y,int n,double yp1,double ypn,double #y2)

#else
void spline(x,y,n,ypl,ypn,y2)
double *x;
double »y;
int n;

double ypi;

double ypn;

118

double *y2;
#endif
{
STATIC int i,k;
STATIC double p,qn,sig,un,*u;

--x; /% decrement pointers for index correction */
-y
--y2;
u = alloc((n-1)+sizeof (double));
/* Set the lower boundary to be "natural” or to have a specified first derivative. ®/

if(yp1 > 0.99e30)
y2[1] = uf1] = 0.0;

else

{

y2[1] = -0.5;

ul1] = (3.0 / (x[2] - x[1])) *= ((y[21 - y[1D) / (x[2] - x[1]) - yp1);
}

/* This is the decomposition loop of the tridiagonal algorithm. */
/* y2[] and u[] are used for temporary storage of the decomposed factors. */

for(i=2;i<=n-1;i++)
{
sig = (x[i] - x[i-1]) / (x[i+1] - x[i-1]);

p = (sig * y2[i-1]) + 2.0;
y2[i] = (sig - 1.0) / p;

ulil = ((yCi+1] - y(i])/(x[i+11-x[il1))
-((y[i] - yL[i-11))/((x[1] - x[i-1]));

ulil = ((6.0 * ulil) / (x[i+1] - x[i-11)) - ((sig * u[i-11) / p);
}

/* Set the upper boundary to be ”natural” or to have a specified */
/* first derivative. */

if(ypn > 0.99e30)
gn = un = 0.0;

else
{
qn = 0.5;

un = (3.0/(x[n] -~ x[n-11)) * (ypn - (y[nl - y[n-11) / (x[m] ~ x[n-11));
}

y2[n] = (un-gn * uln-11) / ((qn * y2[n-11) + 1.0);
/* This is the back-substitution loop of the tridiagonal algorithm =/

for (k=n-1;k>=1;k-~)
y2[k] = (y2[k] * y2[x+1]) + u[kx];

free(u);

}

119

Distribution

Internal Distribution:

6100
6111
6117
6117
6117
6117
6117
6117
6117
6117
6117
6117
6117
6117
6117
7141
7151
7613-2
8523-2

120

R. W. Lynch
J. L. Wise

S. R. Brown
L. W. Carlson
D. J. Holcomb
J. C. Lorenz

D. J. Zimmerer

R. D. Hardy (10)

Geomechanics Laboratory File (10)
Technical Library (5)

Technical Publications Department
Document Processing for DOE/OSTI (10)
Central Technical Files

DATE
~ FILMED
0] 6 |73

