ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, IL 60439

ANL/MCS-TM-177

Early Experiences with the IBM SP-1

Edited by

William Gropp

Mathematics and Computer Science Division

Technical Memorandum No. 177

June 1993

MASTER

This work was supported by the Office of Scientific Computing, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

S

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



Contents

Abstract 1
1 Introduction 2
2 Programming Packages and Tools 3
2.1 BlockSolve. . . . . . . i i i e e e e e e e e e e e 3

22 Chameleon . . . . . .. i i it ittt it e e s et e e 5
2.3 MPI . . e e e e e e e e e e e 6
24 PON & Lt e e e e e e e e e e e e e e e e e e 7
2.5 Portable, Extensible Tools for Scientific Computing (PETSc) ........ 7
2.6 Porting the p4 Parallel Programming System to the SP-1 .. ... ... .. 7

3 Applications . 8
3.1 Massively Parallel Mesoscale Model . . . . . .. .. ... ... ... ..., 8
3.1.1 SP-1 Difficulties Encountered . ... .. .. .............. 8

3.1.2 SP-1Bemefits . . . ... ..o it i ittt it e 9

3.2 Parallel Community Climate Model . . . . . .. .. ... ... ... ..... 9
3.2.1 SP-1 Difficulties Encountered . . . . .. .. .............. 10

322 SP-1Benefits . . . ... o vt v ittt e e e e 10

3.3 Phylogenetic Trees . . . . . . ¢ . i v vttt ittt ittt e 10
3.4 Protein Folding by the Study of Hydrophilic and Hydrophobic Loops . . . . 11
3.5 Superconductivity—Elastic String Model . . . . . . ... ... .. 0L, 12
3.6 Superconductivity—Time-Dependent Ginzburg-Landau Equation . . . . .. 12
3.7 Parallel Theorem Prover . . . . . . . . . . . i i i ittt it ettt e 13

4 Summary 13
References 14



Early Experiences with the IBM SP-1
Edited by

William Gropp

Abstract

The IBM SP-1 is IBM’s newest parallel distributed-memory computer. As part of a
joint project with IBM, Argonne took delivery of an early system in order to evaluate
the software environment and to begin porting programming packages and applications
to this machine. This report discusses the results of those early efforts. Despite the
newness of the machine and the lack of a fast interprocessore switch (part of the SP-1
but not yet available for our machine), every code that we attempted to port ran on
the SP-1 with little or no modification. The report concludes with a discussion of
expectations for the fast interconnect.

Cover Picture

This is a density plot of the atmospheric pressure over the United States, produced
by the Massively Parallel Mesoscale Model running on the SP-1. This program is a PCN
implementation of the Penn State/NCAR Mesoscale Model version 5. The units on the
histogram are millibars x100.0. The domain is the continental United States, plus southern
Canada and northern Mexico. The Rockies stand out in dark grey. While it is a little
difficult to make out the east coast, the Appalachians do appear in light grey. Thanks to
John Michalakes for this picture.

Contributors

Richard Feldmann Lori Freitag
William Gropp David Levine

Gary Leaf Ewing Lusk
William McCune  John Michalakes
Ross Overbeek Paul Plassmnann

Steven Tuecke



1 Introduction

The IBM SP-1 is a new parallel computer designed to make the best use of IBM’s powerful
RISC technology combined with a high-speed switch.
Special features of this machine are

e large memory per node (128 MBytes),
¢ local disks on each node (1 GByte),

o full Unix on each node (IBM AIX),

¢ high-performance nodes,

e high I/O bandwidth off nodes, and

e relatively mature software environment.

This report describes the applications and programming packages that researchers at
Argonne National Laboratory ported to the SP-1 in the first few weeks after it was delivered.
Since this early system did not include the fast interprocessor switch (to be delivered by
the end of May), these results, particularly the performance results, should not be taken
as representative of performance of the SP-1. Instead, these results indicate the state of
software environments for the SP-1 and the power of the software packages that have been
developed for portable parallel programming.

The software packages and tools are as follows:

BlockSolve Parallel sparse, symmetric linear systems
Chameleon Lightweight and portable message-passing system
MPI Message-passing interface draft standard
PCN Program Composition Notation (a coordination language)
PETSc Portable, extensible tocls for scientific computing
P4 Portable message-passing and shared-memory library

The applications (all parallel) are as follows:
Community climate model Global climate model

Mesoscale weather model Continent-sized weather model



Phylogenetic tree Program to construct phylogenetic trees from sequence data
Protein folding Program to grow a protein and fold it

Superconductivity Modeling of flux vortices in high-temperature superconductors (two
applications)

Theorem prover Distributed associative-commutative theorem prover

Because the ANL SP-1 does not yet have the fast interconnect, these application ports
are primarily a test of the software environment. However, since all of these applications
are built using one or more of the portable parallel programming packages, successful ports
of those packages immediately give ports of these applications. In addition, these ports will
allow us to address the question of how necessary a fast interconnect is (some workers have
suggested that farms of machines are adequate), by comparing the results with applications
before and after the fast switch is installed.

One common problem that many groups experienced had to do with linking Fortran
programs on the SP-1. Because the Fortran run-time libraries were not available on each
SP-1 node, each group had to link with the options -bnso -bI:/1ib/syscalls.exp. Fur-
ther, since these are not documented on the x1f man page, there was some delay in porting
some applications. Another problem with Fortran was caused by the fact that, by default,
the external names produced by Fortran are not distinguishable from those produced by
C; using the command line switch to x1f to add the trailing underscore common on many
Unix systems is not always a workable solution, particularly for library developers.

Each of these subsections was contributed by the author named in the section; minor
editing has been done, and any errors are the responsibility of the editor.

2 Programming Packages and Tools

This section describes the programming packages that support the applications that have
been ported to the SP-1. The packages include a numerical library (BlockSolve) and three
programming packages (Chameleon, PCN, and p4). In addition, a port of part of the draft
message-passing standard (MPI) has been made to the SP-1.

2.1 BlockSolve

Contributed by Paul Plassmann and Lori Freitag
BlockSolve [5] is a software library for solving large, sparse systems of linear equations on
massively parallel computers. The matrices must be symmetric but may have an arbitrary



fable 1: Results for BlockSolve on the SP-1 with 1-D partitioning (times are CPU times
and do not include communication times)

1-D PARTITIONING
Num. Procs. Local Grid Sz. Total Grid Sz. Time Init. Time Fact. Time/Iter.

1 512 512 .050 2.30 .0100
2 512 1024 .050 2.89 .0167
4 512 2048 .060 2.99 .0186
8 512 4096 .060 3.02 0214
16 512 8196 .070 3.00 0214

Table 2: Results for BlockSolve on the SP-1 with 3-D partitioning (times are CPU times
and do not include communication times)

3-D PARTITIONING
Num. Procs. Local Grid Sz. Total Grid Sz. Time Init. Time Fact. Time/Iter.

1 512 512 .050 2.30 .0100
2 512 1024 .040 2.79 0157
4 512 2048 .040 3.22 .0229
8 512 4096 .080 3.92 0286
16 512 8192 .080 4.28 0357

sparsity structure. BlockSolve is a portable package that is compatible with several different
message-passing paradigms.

For the resuits presented here we are using the p4 communication package (through
Chameleon) on the IBM SP-1. The local problem is based on the 3-D seven-point stencil on
an 8 x 8 x 8 grid and remains fixed as the number of processors increases. For the first set
of test problems, the local grids are connected end to end in one dimension. For the second
set, the local grids are connected in all three directions for eight and sixteen processors.
We expect that for larger local problems the time per iteration will be roughly constant.
The results for measuring the CPU time only are shown in Tables 1 and 2. Results for the
elapsed time (including communication times and potential interference from other running
jobs) are shown in Tables 3 and 4.



Table 3: Results for BlockSolve on the SP-1 with 1-D partitioning (times are elapsed time,
averaged over 5 runs)

1-D PARTITIONING
Num. Procs. Local Grid Sz. Total Grid Sz. Time Init. Time Fact. Time/Iter.

1 512 512 .0860 2.41 .0216
2 512 1024 .0704 5.43 .0373
4 512 2048 9.076 14.24 .0660
8 512 4096 9.092 17.53 .1301
16 512 8196 11.167 26.43 .2630

Table 4: Results for BlockSolve on the SP-1 with 3-D partitioning (times are elapsed time,
averaged over 5 runs)

_3-D PARTITIONING
Num. Procs. Local Grid 5z. Total Grid 5z. Time Init. Time Fact. Time/Iter.

1 512 512 .0860 2.41 .0216
2 512 1024 .0704 5.43 0373
4 512 2048 0896 16.21 4705
8 512 4096 .1508 28.25 4088
16 512 8192 8.4649 44.58 .6019

2.2 Chameleon

Contributed by William Gropp

Message passing is a common method for writing programs for distributed-memory parallel
computers. Unfortunately, the lack of a standard for message passing has hampered the
construction of portable and efficient parallel programs. In an attempt to remedy this
problem, a number of groups have developed their own message-passing systems, each with
its own strengths and weaknesses. Chameleon is a second-generation system of this type.
Rather than replacing these existing systems, Chameleon is meant to supplement them by
providing a uniform way to access many of these systems. Chameleon’s goals are to (a) be
very lightweight (low overhead), (b) be highly portable, and (c) help standardize program
startup and the use of emerging message-passing operations such as collective operations
on subsets of processors. Chameleon also provides a way to port programs written using
PICL or Intel NX message passing to other systems, including collections of workstations.



Ethernet communication performance on SP—-1

1200000 BRI N A A NN R B I R | -ty v

Meswage length

Figure 1: Communication performance for the ethernet links in the SP-1

This feature was used by the global climate model (Section 3.2) to port to the SP-1.

Chameleon ported to the SP-1 with no problems other than the need to statically link
Fortran programs. Chameleon includes a set of programs that test the communications
performance of the system. Bearing in mind that the tested system does not have the
switch (all communications are over ethernet), the performance is quite reasonable (better
than our Sun network), as is shown in Figure 1.

2.3 MPI

Contributed by William Gropp and Ewing Lusk

MPI is a message-passing standard that is currently being developed by a broad group
of massively parallel processor (MPP) vendors and users. A partial implementation of the
point-to-point routines of the current (May 1992) MPI draft standard has been implemented
and run on the SP-1. This implementation is designed to give a vendor maximum flexibility
in matching the MPI operations to vendor-specific hardware and/or software. This instance
of the implementation builds on Chameleon, using the p4 transport layer. We expect it to
be easy to port MPI directly on top of EUI-1 or lower level communication primitives.



24 PCN

Contributed by Steven Tuecke

The RS/6000 network version of PCN (net-PCN) [3, 4] worked on the SP-1 with no modifi-
cations. This version of PCN uses TCP/IP (i.e., sockets) for communication between nodes
and uses rsh for node startup.

Initially, PCN programs were compiled on an RS/6000 220 and the executables copied
to the /u filesystem which is mounted on all of the SP-1 nodes. These programs worked
perfectly. Then, to test the stability of the C compiler and environment on the SP-1 nodes,
we rebuilt the PCN compiler from scratch on an SP-1 node in /u with no difficulties.

To work around the problem of needing to statically link the Fortran libraries, the PCN
compiler driver on spgw (the SP-1 gateway machine) was .odified to pass extra arguments
to the linker when linking with Fortran subroutines, so as to force static linking of the
Fortran libraries.

2.5 Portable, Extensible Tools for Scientific Computing (PETSc)

Contributed by William Gropp

PETSc is a package of routines aimed primarily at the solution of partial differential equa-
tions. PETSc is designed to match advanced algorithms to new and existing applications
by taking an object-oriented approach to the design of the routines. For example, the iter-
ative accelerators that are part of PETSc have been designed to allow the user to specify
all of the vector operations as well as matrix-vector product and preconditioning. Thus,
these iterative methods can be used with nontraditional vectors, such as oct-trees or vectors
distributed across a distributed-memory parallel computer. PETSc also includes a number
of packages that aid in writing parallel programs. One of these is BlockComm, a pack-
age for communicating blocks of data between processors. Another is a parallel general
(nonsymmetric) linear system solver using iterative methods.

All of the parallel communication in PETSc is done with Chameleon. Porting PETSc,
with the exception of the Fortran library problem, required no special effort. A version of
PETSc that can take advantage of IBM’s ESSL (when available) is being developed; the
object-oriented nature of PETSc means that users can take advantage of these changes by
relinking rather than rewriting their code.

2.6 Porting the p4 Parallel Programming System to the SP-1

Contributed by Ewing Lusk

The p4 parallel programming system [2, 1] currently runs on nearly all existing parallel
computers and workstations. It has been used routinely on networks of RS/6000’s. It was
hoped that the RS/6000 version of p4 could be built unchanged on the SP-1. This would



have been true except for the shared library problem for Fortran programs. For this reason
the Fortran part of p4 has not yet been ported, although this should happen soon. At the
moment, two different installations of p4 are maintained, one for the RS/6000’s and one for
the SP-1.

The C part of p4 compiled and linked the first time on the SP-1, using all parameters
from the RS/6000 version. C programs compiled and linked for the RS/6000 network have
run unchanged on the SP-1. The phylogenetic tree application (Section 3.3) is in this
category.

3 Applications

Successful port of a programming package to a parallel machine was once considered a
sufficient test of the machine. However, as parallel machines are increasingly being acquired
for production computing, it is more important to test them with ports of actual (as opposed
to model) applications.

3.1 Massively Parallel Mesoscale Model

Contributed by John Michalakes

MPMM is a fine-grained dynamic decomposition of the Penn State/NCAR Mesoscale Model
version 5. Each set of four horizontal grid points is represented as a parallel process running
under PCN (Section 2.4), providing a transparent mechanism for redistributing load between
physical processors. The work is being done in collaboration with the developers of the
original Cray model (who are at NCAR). This program is used for real-time forecasting and
climate prediction.

3.1.1 SP-1 Difficulties Encountered

MPMM is a hybrid code, composed of top-level PCN code to manage parallelism between
core modules of native Fortran. The PCN part of the port was simply a matter of recom-
piling. A day or two earlier Steven Tuecke had ported PCN to the SP-1. The port of the
Fortran code was more difficult, though still manageable.

There are a number of troublesome inconsistencies between IBM’s implementation of
Fortran and other Unix implementations.

The major problem we encountered was x1f’s lack of an -extend option to relax the
column 72 restriction on source lines. We have a number of automatic source code transfor-
mations built into the Fortran parts of MPMM to facilitate the fine-grained decomposition
of the code. These source transformations can generate longer lines, and they do not re-
spect the column 72 restriction. X1f does have a free-format option, but this required some



very radical syntactic changes to the code. Our solution was to write an additional source
transformation that, as a last step before entering the compiler, breaks the long lines into
continuations, respecting column 72.

3.1.2 SP-1 Benefits

The SP-1 has two principal benefits: an excellent programming environment and a large
RAM and virtual memory.

Notwithstanding the relatively minor difficulties we encountered with x1f incompatibil-
ities, the RS/6000 programming environment is vastly superior to the environment we have
experienced with the Intel machines. There are no cross compilers; a program compiled
on any RS/6000 runs on the SP-1. X1f has a rich set of options to assist in debugging,
such as array bounds-checking and floating-point traps. A debugger exists, which gives it
an immediate advantage over the Intel environment; the fact that it also works well is a
welcome bonus.

Each node of the SP-1 has a prodigious amount of physical memory: 128 Mbytes,
augmented by an additional amount of virtual memory. This feature makes it possible to
run large problems on small numbers of nodes or even a single node if performance is not
the main consideration. In particular, this is very useful for debugging. The large amounts
of memory also allow programs to set up large buffers that can be used for asynchronous

1/0.

3.2 Parallel Community Climate Model

Contributed by John Michalakes

PCCM2 is a message-passing implementation of the NCAR Community Climate Model 2
(CCM2). The model is patch decomposed in two horizontal dimensions. Spectral transport
of prognostic variables is accomplished by parallel FFTs in the zonal dimension and Gaus-
sian quadrature in the meridional dimension, approximating Legendre transforms. The
spectral transport mechanism of CCM2 is communication intensive because interchange of
data is not confined to nearest neighbor.

The work is being performed under the directed portion of the Department of Energy
CHAMMP initiative and is the collaborative effort of Argonne, Oak Ridge National Labo-
ratory, and NCAR. The model is used for climate prediction.

PCCM2 is implemented using a message-passing library, PICL. Prior to the IBM SP-1,
PCCM2 has run on the Intel Touchstone Delta and Paragon computers.



3.2.1 SP-1 Difficulties Encountered

We encountered two difficulties: lack of a message-passing library and shortcomings with
the the IBM Engineering and Scientific Subroutine Library (ESSL).

Since the machine is new, there is no implementation of PICL for the SP-1. Bill Gropp
kindly generated a PICL/Fortran compatibility library for his Chameleon package (Section
2.2), and we have run PCCM2 on the SP-1 using that library.

ESSL is available on the SP-1, and we have begun converting the FFTs in CCM to use
the library routines in the hope that processor performance will be further improved. In
general, the availability of this library is a plus, though there have been some difficulties.
One feature of the ESSL FFT routine that could be a problem is the requirement that it
be reinitjalized for even minor changes in the data being transformed. CCM calls forward
and inverse FFTs a number of times each time step, with different numbers of vectors to
be transformed at each call. There is no other change than the number of vectors, yet a
separate initialization is required. This may produce a hit against the potential performance
gain from using the library. The other shortcoming of the library is that there are no parallel
distributed memory implementations of the FFT or other routines. Therefore, the ESSL
FFT can be used on PCCM2 only if the zonal dimension of the model is undecomposed.

3.2.2 SP-1 Benefits

The biggest advantage of the SP-1 for the climate model is processor performance. Running
on a single node of the SP-1, PCCM2 achieved a sustained performance of 21 Mflops at
T21 resolution, as compared with 3-5 Mflops per node on i860 nodes of the Delta.

3.3 Phylogenetic Trees

Contributed by Ross Overbeek

Gary Olsen and Carl Woese of the Ribosomal Database Project at the University of Illi-
nois at Urbana have been creating an alignment of the rRNA from the small subunit of
the ribosome. This alignment has become one of the fundamental tools for phylogenetic
research.

Gary Olsen, along with a group at ANL and Hideo Matsuda of Kobe University, de-
cided to create a fast implementation of a maximum likelihood algorithm for constructing
phylogenetic trees from an alignment of sequence data. This program, called fastDNAmI,
now runs on a wide class of uniprocessors, on networks of workstations, and on several of
the massively parallel systems (most notably, the Delta).

Gary, Rusty Lusk, and [ decided to put the program on the SP-1 and to attempt to use
it to investigate a specific scientific issue: Where do the mitochondria fit within the alpha
purple bacteria? This is a serious issue; the approximate answer produced by a fast insertion

10



algorithm that we developed for use on workstations conflicted with the opinion of Woese
(who is generally acknowledged as a world authority on phylogeny of microorganisms).

The basic goal of our program is to construct a tree with a maximum likelihood of
generating the observable data. The set of trees to be searched is huge. Hence, one uses
heuristic optimization algorithms to search for a “best” tree. Our version is sensitive to
the order in which individual sequences are placed into the tree. We compensate for this
by using many random orders, hoping that the true global optimum will be revealed from
multiple attempts. Thus, the degree of confidence that one can feel about the computed
tree is directlv related to the number of attempts made to locate an optimum value.

An overnight run involved to construct a tree from 47 aligned rRNA sequences produced
72 different outputs based on random orderings of the sequences. The best value occurred
3 distinc. times, and the placement of the mitochondrial sequence within the alpha purple
was substartially different from the approximate position computed earlier.

My early reactions to the machine are as follows:

1. It is fast. Using 16 nodes, each run took roughly seventeen minutes each; these would
take substantially longer (on the order of days) on single Suns.

2. The software environment is relatively good (infinitely better than the Delta). Unix
works. Unlike the Delta, basic tools such as “head” work, Emacs is available, and
long lines do not produce erratic behavior.

I look forward to making a large effort to resolve a number of critical phylogenetic
questions during the next 3-4 months using the machine under the guidance of Olsen and
Woese.

3.4 Protein Folding by the Study of Hydrophilic and Hydrophobic Loops

Contributed by Richard Feldmann (NIH), and Ewing Lusk
The program Lfold grows a protein in steps of one amino acid at a time. There are 1000
cycles between each amino acid addition. The protein TIM (Triose Phosphate Isomerase,
the most prevalent protein architecture) is 248 amino acids long, so synthesis is complete
at about 247,000 cycles. We believe that if the program can fold TIM, it will be capable
of folding any protein. A cycle is one random examination of each hydrophobic loop in the
protein to see whether this hydrophobic loop can move. The moves are a sort of Feynman
exchange: that is, the existence of a hydrophobic loop at the head of a pair of hydrophilic
loops catalyzes the exchange of the hydrophilic loop pair.

Folding then is the interaction of the backbone hydrophilic water loops (which are com-
mon to every amino acid except PRO) with the hydrophilic water loops of certain amino
acids (i.e., about 10 of the 20 amino acids) with the hydrophobic capacity of each amino

11



acid. Essentially there are two grammars, the hydrophilic grammar and the hydrophobic
grammar. The folding is driven by the interaction of these grammars through the topolog-
ical exchanges and the event-driven extraction of water.

The parallelism is easy to explain. There are three types of blind parallelism th~t we
examine: different random seeds, different parameters, and different proteins. Right now
we are focusing just on TIM, but in earlier experiments we looked at proteins in the other
structural classes to assure ourselves that the program would work for all proteins. We vary
the parameters from run to run. We change the program whenever a new rule or a variation
on an existing rule is indicated by the results from the computational experiments or just
intuition.

3.5 Superconductivity—Elastic String Model

Contributed by David Levine and Gary Leaf

We have developed a code for the numerical simulation of the planar motion of a one-
dimensional elastic filament (single vortex) under tension, to investigate the prop .ties of
the vortex-glass state in superconductors. The computational problem requires the time
integration of a stochastic evolution equation; ensemble averages are obtained by considering
the long-time behavior of the solution for a large number of realizations. The objective of
the numerical simulations is to measure the resulting “average” velocity of the filament as
a function of the applied force.

The parallel approach used with this code is based on the task farming model. Since
each realization is both time consuming and independent of the other realizations, we run a
number of sequential jobs in parallel. Our “production” machines have primarily been the
BBN TC2000 and a Sun Sparc network. Porting this code to the SP-1 was fairly easy. We
compiled, linked, and tested the code on an RS/6000 workstation and ran the same binary
without change on the SP-1. It is worth noting that no problems were encountered using
the Unix system calls gettimeofday() and times().

2.6 Superconductivity—Time-Dependent Ginzburg-Landau Equation

Contributed by David Levine and Gary Leaf

We have developed a parallel, three-dimensional code to study the formation of vortices
in the mixed state of type-II superconductors. The code is based on the time-dependent
Ginzburg-Landau (TDGL) equation, which provides a phenomenological description of the
macroscopic properties of high-temperature superconductors. Effects of external currents,
material defects, and thermal fluctuations can be incorporated into this equation. We are
particularly interested in the formation and subsequent evolution of flux vortices and the
influence of random impurities on vortex pinning.

12



Table 5: Results for TDGL on IBM SP-1

Time (sec.) Time (sec.)

No. Processors {52 x52 x12) (150 x150 x12)
1 133 1092

2 87 725

4 80 675

8 103 444

16 97 327

We use the single-program multiple-data (SPMD) distributed-memory programming
model. The arrays associated with the superconductor are decomposed among the memories
of the individual processors. The communication of data between processors is handled
using the BlockComm software of Bill Gropp (Section 2.5). Before using the SP-1 we had
run this program on several parallel machines, including Sun Sparc and IBM RS/6000
workstation networks and the Intel Gamma and Delta machines.

Porting this code to the SP-1 was fairly easy. We compiled and linked the code with
the BlockComm and p4 libraries on an RS/6000 workstation. (We also ran it-on several
RS/6000 workstations.) We then moved the executable and data files to the SP-1. We were
able to run the code, on two different problems, without any changes on 1-16 processors.
Solution times for 100 iterations are given in Table 5.

3.7 Parallel Theorem Prover

Contributed by William McCune and Ewing Lusk

We were able to port our parallel distributed-memory theorem prover dac (distributed
associative-commutative theorem prover) to the SP-1 with no problems. dac was developed
on the Symmetry and a Sun network using p4. Single-node performance was excellent,
despite the lack of floating-pnint operations in dac. To test speedup, we need to do a more
carefully controlled set of experiments, in which other users are not on the nodes we are
using. The benchmark problem we are using is to prove that a ring where 23 = z for all z
is commutative.

4 Summary

Having a full, ;ﬁhning Unix OS on each node allows for easy ports. We have also taken
advantage of the ability to reboot individual nodes without disturbing the others. Fur-

13



thermore, the use of portability layers (Chameleon, PCN, and p4) let us port applications
quickly and allowed us to: become familar with the programming environment on the SP-1
in the context of significant applications.

We note that Fortran programs must be linked with -bnso -bI:/1ib/syscalls.exp.
This is a serious drawback; it is the one factor that kept people from feeling entirely good
about the IBM SP-1. There are a number of places where x1¢ behaves differently from
many other Unix Fortrans; these also caused problems. They include failure to provide the C
preprocessor to Fortran programs (typically applied automatically to files with extension .F)
and the choice of the compiler to produce symbols from Fortran that are indistinguishable
from symbols generated by C (the lack of a trailing underscore). (We note, however, that we
do not have a full software envirorment up yet; tools such as loadleveler and the parallel
operating environment could be very helpful. Better documentation would also help; the
loadleveler “User’s Guide” neglects to mention how to start the loadleveler GUI and
does not mention the command line routines until Chapter 3.

With the delivery of the fast interconnect, we believe that we can immediately begin
to use the SP-1 for large applications as well as continued development of portable parallel
programming tools. Since all of the applications are built on top of these tools, they should
all run with the fast interconnect without any changes other than relinking. Based on
early documentation about the EUI-1 programming interface, Chameleon already has an
(untested) implementation for the fast interconnect.

References

[1] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ewing Lusk, Ross Over-
beek, James Patterson, and Rick Stevens. Portable Programs for Parallel Processors.
Holt, Rinehart, and Winston, 1987.

[2] Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallel pro-
gramming system. Technical Report P362-0493, Argonne National Laboratory, 1993.

[3] Ian Foster, Robert Olson, and Steven Tuecke. Productive parallel programming: The
PCN approach. Scientific Programming, 1(1):51-66, Fall 1992.

[4] Tan Foster and Steven Tuecke. Parallel programming with PCN. Technical Report
ANL-91/32, Rev. 2, Argonne National Laboratory, 1991.

[5] Mark T. Jones and Paul E. Plassmann. An efficient parallel iterative solver for large
sparse linear systems. In Proceedings of the IMA Workshop on Sparse Matriz Computa-
tions: Graph Theory Issues & Algorithms, Minneapolis, 1991. University of Minnesota.

14



- DATE







