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Argonne National Laboratory, 9700 So. Cass Ave., Argonne, 60439

Abstract

This paper describes a study of controlling the coupling be-
tween the horizontal and the vertical betatron oscillations in
the 7-GeV Advanced Photon Source (APS) storage ring. First,
we investigate the strengthening of coupling using two families
of skew quadrupoles. Twenty skew quadrupoles are arranged
in the 40 sectors of the storage ring and powered in such a way
so as to generate both quadrature components of the required
21°* harmonic. The numerical results from tracking a single
particle are presented for the various configurations of skew
quadrupoles. Second, we describe the global decoupling pro-
cedure to minimize the unwanted coupling effects. These are
mainly due to the random roll errors of normal quadrupoles.
It is shown that even with the rather large rms roll error of
2 mrad, the coupling effects can be compensated for with 20
skew quadrupoles each having maximum strength one order of
magnitude lower than the typical normal quadrupole strength.

I. GLoBAL COUPLING

A. Introductory Remarks

For a given skew quadrupole distribution, m(8) = E—,g;-)-ﬁf;'-,
we can show that the ratio of the horizontal (z) and vertical
(y) oscillation amplitude can be expressed as [1]

Yamp ., %Vai"'bi
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Zamp

where ax and by are the &** harmonic coefficients defined by
\
p=+oc0

m(8) = > (apcosph + bysinpf),

p=—0o

where @ is the azimuthal angle around the ring. Deriving
Eq. (1), we assumed that the tunes are near the coupling reso-
nance, namely, |vz — vy| = k. For the APS storage ring, since
the design tunes are v, = 35.22 and vy, = 14.30, the above equa-
tion clearly shows that we need to exite the k¥ = 21 harmonic
to cause the coupling most cfficiently. In the next sections, the
arrangement of skew quadrupoles to excite the 21* harmonic
is discussed and some numnierical results are presented.

B. Arrangement of Skew Quadrupoles

Consider N skew quadrupoles with the same strength evenly
distributed around the ring with period 2-;,'— as shown in
Fig. 1(a). Then Fourier harmonic numbers are k = n N where
n is an integer. In order to obtain the harmonic number & such
that k = »N 4+ mAM, we may impose on top of Fig. 1(a) the
square wave function with period % Such a function is shown
in Fig. 1(b) and the corresponding modulated function can be
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expressed as a Fourier series by

AN sin(mM6)
f(0)=— }_J T (2)
m=1,odd
2N sin(nN + mM)0 — sin(nN —m A )6
=D OIS - -

n=1 m=1,0dd

Hence we show that we can generate an arbitrary harmonic by
changing the period of the square wave function.

In the APS storage ring', the spaces available for the skew
quadrupoles are between Q3 and S2 in the upstream half of a
sector (half sector A), which we will call the A:QS family, and
between Q4 and S3 in the downstream half of a sector (half
sector B), which we will call the B:QS family. The number of
skew quadrupoles considered is ten for each family. We may
install the focusing A:QS in every fourth cell, say cell numbers
1,5,9, 13 and 17, and the defocusing A:QS in cells 21, 25, 29, 33
and 37. This family alone can adequately generate the desired
21" harmonic. Using Eq. (2), with N = 10 and M = 1 for
the A:QS family, we find the coefficient of the 21** harmonic
to be by = ¢ = ’2'% which is greater than unity. The B:QS
family adds to the quadrature components because A:QS and
B:QS are not in phase. For the arrangement shown in Fig. 1(c)
which we will call the “normal” arrangement, we may write

m(0) = c(a cos210 + b sin216), (3)

where a = --3tn21A0,, b = 1 + c0s21A8,, and Af, is the shift
of the origin of the B:QS family with respect to the origin of the
A:QS family which is the middle of the A:QS skew quadrupole
in cell number 1. In the APS storage ring A6, is -’BL. We note
that, if A:QS and B:QS are exactly in phase, a =0 and b = 2.
In the next section, we present numerical results of the cou-
pling cocflicient obtained by tracking a single particle. We first
use the “normal” arrangement as the basis and then we attempt
to find the optimum arrangement for obtaining full coupling.

C. Numerical Results

For single particle motion the Courant-Snyder invariant is

2+ (@27 + Be2')?
= 3 .

The coupling ratio in this report is defined as

Cx

. ((-y)ma;r
((J)max ’

This definition is consistent with the ratio of emittances of a
group of particles (a beam), because the emittance is the phase
space area enclosed by the envelope of the beam. However, since
the linear optical parameters, f:, and oz, are ill-defined in
the coupled lattice, our definition of the emittance is not the
true projection of the four-dimensional phase space volume onto
the (z,2") or (y,y") plane as defined in [3]. But for onr appli
cation it is an adequate approximation to the real projected
cmittance.

YEor the arvangenent of lattice eleaents and the nomenclature
vules used in the APS praoject, see Ref. (2]
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In order 1o estimate the coupling ratio with the intentional
tnsertion of skew guadrupoles in the otherwise uncoupled APS
storage ring lattice, we used the program MAD [4]. For “unor-

mal”™ configuration, we achicved full coupling with the inte-
grated skew quadrupole strength of Bl =0.25 T which is larger
than the 0.2 T of the design normal operating strength.

In order to achieve full coupling at the skew quadrupole
strength 0.2 T, we optimized the skew quadrupole arrangement.
One optimization procedure is to rotate the B:QS family by n%
in a clockwise direction while A:QS is fixed at the original place.
With n = 1, B:QS in cell 3 goes to cell 7 and B:QS in cell 7
to cell 11 and so on. This operation is shown in Fig. 1(d). By
using this shifting operation, we control the a and b coefficients
in Eq. 3 which can be written

a=a(A:QS)+a(B:QS), b=bA:QS)+b(B:Q9),

a(A:QS) =0, b=>b(A:QS) =1,

a(B:QS) = —sin21A6,, b(B :QS) = cos21A0,,,
where A8, = Ao + 2Zn and Ao = £. The coefficients a(B :
QS) and b(B : QS) for different n values are plotted in the
polar coordinate system as in Fig. 2. We notice that two skew
families are almost in phase when n = 7 and the amplitude of
the 21°* harmonic is

lea1| = /a2, + 83, 22,

which is the desired result.

The tune separation and the coupling ratio for various ar-
rangements of the B:QS family of the skew quadrupoles with
the integrated strength B'l = 0.2 T are listed in Table 1. The
tune separation data, an indication of coupling, clearly shows
that the n = 7 arrangement is the most efficient way of cou-
pling the lattice. However, the coupling ratio doesn’t show a
clear advantage of the n = 7 over the n = 8 arrangement. This
is because once the beam is close to full coupling, the coui)ling
ratio is saturated, i.e. not much advantage is gained from the
optimized arrangement over a less optimized one.

Table 1
Coupling Effects of Various Skew Quadrupoles
Arrangement
Arrangement No. | [vz — vy| | & = €ymaz/€zmasx
n=0 (normal) 0.104 0.797
n=1 0.080 0.403
n=2 0.087 0.542
n=3 0.115 0.798
n=4 0.145 0.891
n=>5 0.171 0.888
n=6 0.185 0.936
n="7 0.186 0.952
n==8 0.172 0.963
n=>49 0.145 0.936

I1. GrLoBal DiEcovprLINg

A Treatient of Weak Coupling Using Matvir Formalism

Following, S. Peggs [5], we may write the normalized transfer
matrix for the ring as

. M m
I'= n N . ()

This normalized transfer matrix is the similarity transformation
of the Edwards and Teng matrix [6], 7. We further define a
“fundamental” coupling matrix as

H=m+nt (5)

Then, on the coupling resonance vy = vy, the tune separation

becomes
Vdet(H)
Sy —F—— (6)

= 2rsinm(vz +vy)’
The procedure to minimize év is often called “global decou-
pling.”
According to M. Billing {7], H can be written

H = Hysinn(ve +vy) + H_sinw(vz — vy). (7)

Hy are defined as

H:i: = Z dm
sQ

cosw+(Sm) Sinwi(sm)

~sinwi(sm) coswi(sm)

where g¢m = @ is the dimensionless skew quadrupole
strength of focal length f and

wi(s"‘) = (i¢y(3m) - ¢1(3m)) + r(:i:uy - I/I),

where ¢ ,y(sm) is the betatron phase at the skew quadrupole
measured from the reference point. These expressions are
convenient because all the quantities used in the formula arec
those of the uncoupled lattice. Defining p = ) gmcoswy and

r = qusinw+, and noting that the contribution of the H_
term in Eq. (7) vanishes on the coupling resonance, we rewrite

Eq. (6) as
5 | /,,2 + r2

= (®)

which we want to minimize.

B. Decoupling Procedure and Its Application

A routine procedure to decouple the lattice by the operator
is simulated using the MAD program interactively. In the sim-
ulation, Qls (see Ref. [2] for locations) are chosen as the trim
quadrupoles.

Rewriting p and r,

Z gmcCoSw 4 Z gmCosWy + po,

AQS B:Qs

o
E Gin S1NW 4 z Gqustnwy 41, (‘.))

A QS BQs

1

Y
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where p, and r, are from the random roll errors of normal
quadrupoles in the ring, we can ser that it s convenient (o use
A:QS to control r, and B:QS to control p, or vice versa. With



the midpoint of the straight section of cell (¢ as the reference
point, we found that A:QS mainly contrals 7. With the ten
skew quadrupoles of the A:QS family, we get

MA:QS) =02 gm), (A :QS) = 6.0|qm].

For optimal control of p using the B:QS family, we cousult Fig.
2 in order to find the most eflicient arrangement. There we
find that the phase of n == 4 or n = 9 arrangement is almost
orthogonal to that of A:QS.

In the simulation, we used the n = 0 arrangement of
B:QS. Coupling is caused by the random roll errors of nor-
mal quadrupoles. The minimum tune separations before and
after decoupling are summarized in Table 2 with the same seed
number for the assignment of random errors. We note that §v

(7] M. Billing, “Controls in Use at CESR {for Adjusting Hon
zontal to Vertical Coupling,” IEEE NS-32, No. 5, Octaber,
1485
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Table 2 Jl o
Effect of Decoupling Procedure on the Tunes | U l HI ” l U | H*
Error level | 6v (before) | v (after) | A:QS (B1) | B:QS (B']) (c)
0.5 mrad 0.0186 0.00133 0.019 T 0.055 T
1.0 mrad 0.0353 0.00465 0.031 T 0.160 T iu—Lﬂ—lj_LﬂlmrﬂTmi
2.0 mrad 0.0714 0.0282 0.019 T 0.140 T (@

before decoupling is linearly proportional to the magnitude of
rms errors, as expected.

The effects of decoupling on the phase motion at the normal
tunes was found to reduce the coupling ratio significantly. For
the error level of 2 mrad, the coupling ratio reduced down to
0.1 from 0.65.

III. CONCLUSION

In this report we investigated the coupling procedure to put a
beam in the fully coupled state and the decoupling procedure to
cancel the coupling effects due to the random roll errors of nor-
mal quadrupoles. The harmonic analysis of skew quadrupole
distribution provides the common ground for finding the opti-
mum arrangement of skew quadrupoles. We achieved full cou-
pling at the integrated skew quadrupole strength of 0.2 T and
we succeeded in reducing the coupling down to below 10 per-
cent even with the rather large lattice quadrupole rms roll error
of 2 mrad.
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Figure 1

(a) Periodic delta function. (b) Square wave function. (c)
Skew quadrupole arrangement where a solid block represents
the A:QS family and a blank block represents the B:QS family.
The number on the block indicates the cell number in the APS
storage ring and we will call this arrangement the “normal” ar-
rangement. (d) Shift of B:QS by an amount of 27/10, namely
n=1. (e) Shift of B:QS by an amount 7%, namely n=7 (the
optimized arrangement achieving full coupling).
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Note that a(A:QS)=0
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